微分计算及练习题
- 格式:ppt
- 大小:2.46 MB
- 文档页数:25
练习题第六章 定积分1.1()(2(0)xF x dt x =->⎰的单调增加区间为_____. 1(,)4+∞2. 函数0()xt F x te dt -=⎰在点x =____处有极值. 03.设sin 201()sin ,()sin 2x f x t dt g x x x ==-⎰,则当0x →时有( A ). (A) ()~()f x g x (B) ()f x 与()g x 同阶,但()f x 不等价于()g x (C) ()(())f x o g x = (D) ()(())g x o f x =4.计算3523220sin sin 2sin cos . []3515x x x xdx ππ⋅-=⎰5.计算21e ⎰1)6.求函数dt t t x x I )ln 1(1)(-=⎰在],1[e 上的最大值与最小值. 最大值()3412-e ,最小值07.设函数⎪⎩⎪⎨⎧≥=<<-+01 2cos 110 )(2x xx xe x f x ,计算⎰-41)2(dx x f .()11tan 214-+e 8.2sin ()xt dt tπ'=⎰( C ) (其中2x π>).(A)sin x x (B)sin xC x+ (C)sin 2x x π- (D) sin 2x C x π-+ 9. 设()f x 是连续函数,且3()x f t dt x =⎰,则(8)f =_____.11210. xdt t x x cos 1)sin 1ln(lim-+⎰→=___1__ ;)1ln(cos lim202x tdtx x +⎰→=__1__ .11. 设()()()bad d I f x dx f x dx f x dx dx dx '=+-⎰⎰⎰存在,则(C ). (A) ()I f x = (B) ()I f x C =+ (C) I C = (D) 0I =12. 已知1(2),(2)02f f '==,及20()1f x dx =⎰,则120(2)x f x dx ''⎰ = 0__ .13. 若sin 0()cos xf t dt x x =+⎰(0)2x π<<,则()f x ___.第五章 不定积分1. 若()()F u f u '=,则(sin )cos f x xdx =⎰__ _. (sin )F x C +2. 若()sin 2,f x dx x C =+⎰则()f x =__ _. 2cos 2x3.2()1xf x dx C x =+-⎰,则sin (cos )xf x dx =⎰_ __. 2cos sin x C x-+ 4. 若()()f u du F u C =+⎰.则211()f dx x x⋅=⎰__ _. 1()F C x -+5.求sin cos sin cos x xdx x x -=+⎰_____. ln sin cos x x C -++6. 求ln(ln )x dx x ⎰. ln (ln ln 1)x x C -+7. 已知()f x 的一个原函数为xe -,求(2)xf x dx '⎰. 211()22x e x C--++8.计算⎰+dx xx2cos 12. tan ln cos x x x C ++9.求dx ex⎰-11. ln 1xx e C --+10.计算⎰+dx x xe x2)1(. 1xx xe e C x -+++ 11.计算 ⎰++dx x xx )1(21222. 1arctan x C x-++ 12.求⎰dx x x 2sin 2cos 2. 12sin 2Cx -+13.求ln(x x C -+第四章 导数应用1.计算极限 (1)0ln lim ln sin x xx+→=___1___. (2) cot20lim(1)xx x →+ =___2e ___(3) 01lim(ln )xx x +→=___1___ (4) sin 0lim(cot)x x +→ =__1__(5) +1ln(1)lim arccot x x x →∞+=___1___2. 函数()(1)(2)(3)(4)f x x x x x x =----的二阶导函数有_____个零点. 33. 下列极限计算中,不能使用罗必塔法则的是( B ). (A) 111lim xx x-→ (B)201sinlimsin x x x x→(C) limx lim ln x x ax x a→+∞-+4. 设()y f x =满足方程sin 0xy y e'''+-=,且0()0f x '=,则()f x 在( A ).(A) 0x 处取得极小值 (B) 0x 处取得极大值 (C) 0x 的某个邻域内单调增加 (D) 0x 的某个邻域内单调减少 5. 若()f x 与()g x 可导,lim ()lim ()0x ax af xg x →→==,且()lim()x af x Ag x →=,则( C ). (A)必有()lim()x af x Bg x →'='存在,且A B = (B) 必有()lim()x af x Bg x →'='存在,且A B ≠ (C) 如果()lim()x af x Bg x →'='存在,则A B = (D) 如果()lim()x af x Bg x →'='存在,不一定有A B = 6. 设偶函数()f x 具有连续的二阶导数,且()0f x ''≠,则0x =( B ). (A) 不是函数()f x 的驻点(B) 一定是函数()f x 的极值点(C) 一定不是函数()f x 的极值点 (D) 是否为函数()f x 的极值点还不能确定7.求曲线22x y -=的单调区间、极值、拐点并研究图形的凹向.8.求函数32)1()4()(+⋅-=x x x f 的极值和拐点并讨论函数图形的单调性与凹向.9. 证明不等式:13(0)x x≥->.10. 证明方程5510x x -+=在(0,1)内有且仅有一个实根. (提示:设5()51f x x x =-+,利用零点存在定理和罗尔中值定理.) 11. 证明不等式:ln(1)1xx x x<+<+ (0x >). (提示:对()ln(1)f t t =+在[0,]x 上使用拉格朗日中值定理.)第三章 导数1.设函数()f x 依次是,,sin x ne x x ,则()()n fx =____ ,!,sin()2x ne n x π+.2.若直线12y x b =+是抛物线2y x =在某点处的法线,则b =_____.32 3.设)(x f 是可导函数,则220()()limx f x x f x x∆→+∆-=∆( D ).(A) 0 (B) 2()f x (C) 2()f x ' (D) 2()()f x f x '4.若0()sin 20ax e x f x b x x ⎧<=⎨+≥⎩ 在0x = 处可导,则,a b 值应为( A ).(A) 2,1a b == (B) 1,2a b == (C) 2,1a b =-= (D) 1,2a b ==- 5.设函数()y f x =有01()3f x '=,则0x ∆→ 时,该函数在0x x =的微分dy 是( B ).(A) 与x ∆等价的无穷小(B) 与x ∆同价的无穷小,但不是等价无穷小 (C) 比x ∆低阶的无穷小 (D) 比x ∆高阶的无穷小6.曲线21y ax =+在点1x =处的切线与直线112y x =+垂直,则a =__ _. -1 7.设()2xf x =,则0()(0)limx f x f x→''-=____. 2ln 28.)(x f =21sin00x x xx ⎧≠⎪⎨⎪=⎩ 在点x=0处 D .A.连续且可导B.连续,不可导C.不连续D .可导,但导函数不连续9.设()f x ''存在,求函数()f x y e-=的二阶导数. ()2[(())()]f x y ef x f x -'''''=-10.2ln(1)x y e =+,求dy . 2222ln(1)1x xx e x dy e dx dx e⋅'=+=+.11.arctanyxe =确定y 是x 的函数,求导数x y '.第一、二章 函数极限与连续1. )(x f 定义域是[2,3],则)9(2x f -的定义域是___. ]5,5[-2. 设x x g -=2)(,当1≠x 时,[]1)(-=x xx g f ,则=)23(f _ _. -13. 设函数)(x f 和)(x g ,其中一个是偶函数,一个是奇函数,则必有( D ). (A))()()()(x g x f x g x f -=-+- (B) )()()()(x g x f x g x f +-=-+-(C) )()()()(x g x f x g x f ⋅=-⋅- (D) )()()()(x g x f x g x f ⋅-=-⋅-4.()()()10201521213lim16x x x x →∞+++. 53()25.()()111lim 13352121n n n →∞⎛⎫+++⎪ ⎪••-+⎝⎭. 12 6. 231sin 53limxx x x -∞→. 37. 设⎪⎪⎪⎩⎪⎪⎪⎨⎧>=<+=0sin01)1()(1x e x x x x x x f x ,求)(lim 0x f x →. e8. 0x →512。
常微分期末试题及答案[正文开始]第一部分:选择题1. 若函数 f(x) = 3x^2 + 2x + c 在区间 [0, 1] 上是增函数,则实数 c 的取值范围是:A) c > 1/4B) c > -1/4C) c < 1/4D) c < -1/4答案:A) c > 1/4解析:当 f(x) 是增函数时,f'(x) > 0。
对于 f(x) = 3x^2 + 2x + c,求导得到 f'(x) = 6x + 2。
显然当 x > -1/3 时,f'(x) > 0,即 c > 1/4。
2. 解微分方程 dy/dx = x^2 + 1 的通解为:A) y = (1/3)x^3 + x + CB) y = (1/3)x^3 + CC) y = (1/3)x^2 + x + CD) y = (1/3)x^2 + C答案:A) y = (1/3)x^3 + x + C解析:对方程 dy/dx = x^2 + 1 进行积分,得到 y = (1/3)x^3 + x + C,其中 C 为积分常数。
3. 设三角函数f(x) = sin(2x + π/3),则 f'(x) = ?A) 2cos(2x + π/3)B) 2cos(2x - π/3)C) 2cos(2x)D) 2cos(2x + π/6)答案:B) 2cos(2x - π/3)解析:根据链式法则,对sin(2x + π/3) 求导,得到 f'(x) = 2cos(2x +π/3) * 2 = 2cos(2x - π/3)。
4. 设 f(x) = e^x,g(x) = ln(x),则 f(g(2)) = ?A) e^2B) e^3C) 2D) ln(2)答案:A) e^2解析:首先求 g(2) = ln(2),然后将结果代入 f(x) = e^x 中计算,得到 f(g(2)) = f(ln(2)) = e^ln(2) = 2。
计 算 题(每题10分)1、求解微分方程2'22x y xy xe -+=。
2、试用逐次逼近法求方程2y x dxdy+=通过点(0,0)的第三次近似解. 3、求解方程'2x y y y e -''+-=的通解4、求方程组dx dt ydydtx y ==+⎧⎨⎪⎩⎪2的通解5、求解微分方程'24y xy x +=6、试用逐次逼近法求方程2y x dxdy-=通过点(1,0)的第二次近似解。
7、求解方程''+-=-y y y e x '22的通解8、求方程组dxdt x ydydtx y =+=+⎧⎨⎪⎩⎪234的通解9、求解微分方程xy y x '-2=24 10、试用逐次逼近法求方程2y x dxdy-=通过(0,0)的第三次近似解. 11、求解方程''+-=-y y y e x '24的通解12、求方程组dxdtx y dydtx y =+=+⎧⎨⎪⎩⎪2332的通解13、求解微分方程x y y e x (')-=14、试用逐次逼近法求方程22x y dxdy+=通过点(0,0)的第三次逼近解. 15、求解方程''+-=--y y y e x '22的通解16、求解方程x e y y y -=-+''32 的通解17、求方程组⎪⎩⎪⎨⎧-+=-+=yx dt dydtdx x y dt dy dt dx243452的通解 18、解微分方程22(1)(1)0x y dx y x dy -+-= 19、试用逐次逼近法求方程2dyx y dx=-满足初始条件(0)0y =的近似解:0123(),(),(),()x x x x ϕϕϕϕ.20、利用逐次逼近法,求方程22dyy x dx=-适合初值条件(0)1y =的近似解:012(),(),()x x x ϕϕϕ。
微积分练习题及答案微积分练习题及答案微积分是数学中的一门重要学科,它研究的是函数的变化规律和求解各种问题的方法。
在学习微积分的过程中,练习题是非常重要的,它能够帮助我们巩固知识、提高技能。
下面,我将为大家提供一些微积分的练习题及其答案,希望能够对大家的学习有所帮助。
一、求导练习题1. 求函数f(x) = x^3 + 2x^2 - 3x + 1的导数。
答案:f'(x) = 3x^2 + 4x - 32. 求函数g(x) = e^x * sin(x)的导数。
答案:g'(x) = e^x * sin(x) + e^x * cos(x)3. 求函数h(x) = ln(x^2 + 1)的导数。
答案:h'(x) = (2x) / (x^2 + 1)二、定积分练习题1. 计算定积分∫[0, 1] (x^2 + 1) dx。
答案:∫[0, 1] (x^2 + 1) dx = (1/3)x^3 + x ∣[0, 1] = (1/3) + 1 - 0 = 4/32. 计算定积分∫[1, 2] (2x + 1) dx。
答案:∫[1, 2] (2x + 1) dx = x^2 + x ∣[1, 2] = 4 + 2 - 1 - 1 = 43. 计算定积分∫[0, π/2] sin(x) dx。
答案:∫[0, π/2] sin(x) dx = -cos(x) ∣[0, π/2] = -cos(π/2) + cos(0) = 1三、微分方程练习题1. 求解微分方程dy/dx = 2x。
答案:对方程两边同时积分,得到y = x^2 + C,其中C为常数。
2. 求解微分方程dy/dx = e^x。
答案:对方程两边同时积分,得到y = e^x + C,其中C为常数。
3. 求解微分方程d^2y/dx^2 + 2dy/dx + y = 0。
答案:设y = e^(mx),代入方程得到m^2 + 2m + 1 = 0,解得m = -1。
一、填空题(每空1分,共15分)1. 通过x 轴且过点(4, -3, -1)的平面方程是 .2. 设函数22),(y x y x y x f -=-+,则),(y x f = ,),(y x df = .3.=+→222)0,0(),(limyx xyy x ,=+→22)0,0(),(limyx xy y x .4.σd D⎰⎰1= , 其中}.10|),{(22≤+≤=y x y x D σd y x D⎰⎰+)(= , 其中}.21,30|),{(≤≤≤≤=y x y x D5. 几何级数,0,0,11≠≠∑∞=-q a aqn n ,当|q| 时,级数收敛,且收敛时其和为 ;当|q| 时,级数发散.6. 级数∑∞=+112n n n 的敛散性是 .7. 方程0'=+yy x 的通解为 ;满足初始条件4)3(=y 的特解为 . 8. 方程xxec ec y 321+=-是二阶常系数齐次线性微分方程 的通解.9. n 阶微分方程的通解中含 个任意常数. 二、判断题(每小题2分,共10分)1. 若函数),(y x f 在有界区域D 上连续,σ为D 面积,则至少存在一点D ∈),(ηξ,使得.),(),(σηξσ⎰⎰=Df d y x f ( )2. 若二元函数),(y x f 在区域D 上的二个偏导数),('y x f x , ),('y x f y 都存在,则),(y x f在该区域D 上可微. ( )3. 若级数∑∞=1n n u ,∑∞=1n nv都发散,则∑∞=+1)(n n n v u 必发散. ( )4. 若级数∑∞=1n n u 绝对收敛,),2,,1( =n v n 为有界数列,则n n n v u ∑∞=1收敛 . ( ) 5. 方程222'x xe xy y -=+的通解是2)(2xe C x y -+=,C 为任意常数.( )三、计算题(每小题5分,共45分) 1. 设xy z arctan=, 求dz.2. 计算由曲面0,0,1,0,1===+=++=y x y x z y x z 所围成的立体的体积.3. 设函数xyzeu =,求.3zy x u ∂∂∂∂ 4 . 设,,sin ,cos xe v x u v u z ===, 求dz.5. 求由方程2sin xy xey y=+所确定的隐函数y=f(x)的导数.6. 计算σ⎰⎰Dxyd , 其中D 是圆环4122≤+≤y x 在第一象限的部分.7. 解方程yxxy dxdy 22=-.8. 求方程x y y +='''满足初始条件0)0(',0)0(==y y 的特解.9. 求方程22'2''x y y y =+-的通解.四、(10分) 讨论级数∑∞=+-1)1()1(n nn n 的敛散性, 若收敛, 是条件收敛还是绝对收敛.五、(10分) 设某产品的生产函数5.03.0LKQ =为, 其中Q 为产量, K 为资金, L 为劳动, 且K 与L 受条件限制6K+2L=384. 求资金与劳动各投入多少时, 可使产出Q 最大? 六、证明题(每小题5分,共45分) 1.dx y x f dy y y⎰⎰+-1112),(=dy y x f dx x⎰⎰-11102),(+.),(1121dy y x f dx x ⎰⎰-2. .02sinlim 2=∞→nn n π答案一、1. y-3z=0; 2. xy , ydx+xdy; 3. 0, 不存在; 4. π, 9; 5. <1,qa -1, 1≥; 6. 发散;7. C y x =+22, 2522=+y x ; 8. 03'2''=--y y y ; 9. n. 二、错; 错; 错; 对; 对.三、1. dy yx x dx yx y dz 2222+++-=; 2.65;3. )13(222++xyz z y x exyz; 4. xx x e x e x e sin sin cos cos ⋅-⋅;5.xyxey e y dxdy yy2cos 2-+-=; 6.815; 7. Cx x y +=32;8. 122---=x xe y x; 9. xe x C x C x y )sin cos ()1(21212+++=.四、条件收敛. 五、K=24, L=120.微积分试题一、填空:(10分,每空1分)1.函数z y =的定义域为 。
大学微分练习题微分学是高等数学中的一个重要分支,它研究函数变化率的性质和计算方法。
作为大学数学课程的一部分,微分学的学习对于培养学生的逻辑思维和问题解决能力具有重要意义。
本文将为大家提供一些微分学的练习题,帮助大家巩固和加深对微分学的理解和掌握。
1. 求函数 f(x) = 3x^2 - 2x + 1 的导数。
解答:首先,根据导函数的定义,我们可以采用求导公式对给定的函数进行求导。
对于 f(x) = 3x^2 - 2x + 1,分别对 x 的各项进行求导。
f'(x) = d/dx(3x^2) - d/dx(2x) + d/dx(1)= 6x - 2因此,函数 f(x) = 3x^2 - 2x + 1 的导数为 f'(x) = 6x - 2。
2. 求函数 f(x) = sin(2x) 的导数。
解答:对于函数 f(x) = sin(2x),我们使用链式法则对其进行求导。
根据链式法则,导数 f'(x) = (d/dx)sin(2x) = (d/dt)sin(t)|t=2x * (d/dx)2x = 2cos(2x)。
因此,函数 f(x) = sin(2x) 的导数为 f'(x) = 2cos(2x)。
3. 求函数 f(x) = e^x / (1 + e^x) 的导数。
解答:对于函数 f(x) = e^x / (1 + e^x),我们可以使用除法求导法则对其进行求导。
根据除法求导法则,导数 f'(x) = ((d/dx)e^x*(1+e^x) -e^x*(d/dx)(1+e^x)) / (1 + e^x)^2= (e^x*(1 + e^x) - e^x*e^x) / (1 + e^x)^2= (e^x + e^2x - e^2x) / (1 + e^x)^2= e^x / (1 + e^x)^2因此,函数 f(x) = e^x / (1 + e^x) 的导数为 f'(x) = e^x / (1 + e^x)^2。
求导全微分练习题1. 已知函数f(x) = 3x^2 + 2x - 1,求f(x)的一阶导数和全微分。
解析:首先,我们计算f(x)的一阶导数。
对于多项式函数来说,我们可以简单地将指数降低一次,并将指数乘以其系数。
f'(x) = d(3x^2)/dx + d(2x)/dx - d(1)/dx= 6x + 2 - 0= 6x + 2接下来,我们计算f(x)的全微分。
我们知道,全微分是函数的所有偏导数与自变量之差的线性组合。
df = (∂f/∂x)dx + (∂f/∂y)dy + (∂f/∂z)dz + ...因为f(x)是一个只与x有关的函数,所以除了dx以外,其它变量的偏导数都为0。
df = (∂f/∂x)dx= (6x + 2)dx请注意,全微分的含义是f(x)在给定点处的微小变化。
因此,在计算全微分时,我们只考虑与自变量直接相关的微小变化。
2. 已知函数g(x, y) = x^2 + xy + y^2,求g(x, y)关于x和y的一阶偏导数和全微分。
解析:首先,我们计算函数g(x, y)关于x的一阶偏导数。
∂g/∂x = d(x^2)/dx + d(xy)/dx + d(y^2)/dx= 2x + y接下来,我们计算函数g(x, y)关于y的一阶偏导数。
∂g/∂y = d(x^2)/dy + d(xy)/dy + d(y^2)/dy= x + 2y因此,g(x, y)的一阶偏导数为∂g/∂x = 2x + y 和∂g/∂y = x + 2y。
接下来,我们计算g(x, y)的全微分。
根据定义,全微分是函数在给定点处的微小变化。
dg = (∂g/∂x)dx + (∂g/∂y)dy= (2x + y)dx + (x + 2y)dy3. 已知函数h(x, y, z) = x^2 + y^2 + z^2,求h(x, y, z)关于x、y和z 的一阶偏导数和全微分。
解析:首先,我们计算函数h(x, y, z)关于x的一阶偏导数。
微积分试题 (A 卷)一. 填空题 (每空2分,共20分)1.已知则对于,总存在δ>0,使得当,)(lim 1A x f x =+→0>∀ε时,恒有│ƒ(x )─A│< ε。
2.已知,则a = ,b =2235lim 2=-++∞→n bn an n 。
3.若当时,α与β 是等价无穷小量,则 。
0x x →=-→ββα0limx x 4.若f (x )在点x = a 处连续,则 。
=→)(lim x f ax 5.的连续区间是 。
)ln(arcsin )(x x f =6.设函数y =ƒ(x )在x 0点可导,则______________。
=-+→hx f h x f h )()3(lim0007.曲线y = x 2+2x -5上点M 处的切线斜率为6,则点M 的坐标为 。
8. 。
='⎰))((dx x f x d 9.设总收益函数和总成本函数分别为,,则当利润最大时产2224Q Q R -=52+=Q C 量是。
Q 二. 单项选择题 (每小题2分,共18分)1.若数列{x n }在a 的ε 邻域(a -ε,a +ε)内有无穷多个点,则()。
(A) 数列{x n }必有极限,但不一定等于a (B) 数列{x n }极限存在,且一定等于a(C) 数列{x n }的极限不一定存在 (D) 数列{x n }的极限一定不存在2.设则为函数的( )。
11)(-=x arctg x f 1=x )(x f(A) 可去间断点(B) 跳跃间断点 (C) 无穷型间断点(D) 连续点3.( )。
=+-∞→13)11(lim x x x(A) 1 (B) ∞(C)(D) 2e 3e4.对需求函数,需求价格弹性。
当价格( )时,5p eQ -=5pE d -==p 需求量减少的幅度小于价格提高的幅度。
(A) 3 (B) 5 (C) 6(D) 105.假设在点的某邻域内(可以除外)存)(),(0)(lim ,0)(lim 0x g x f x g x f x x x x ''==→→得0x 0x 在,又a 是常数,则下列结论正确的是( )。
高数微分复习题及答案一、选择题1. 函数 \( f(x) = x^2 + 3x + 2 \) 在 \( x = 1 \) 处的导数是:A. 4B. 5C. 6D. 7答案:B2. 如果 \( y = \ln x \),那么 \( \frac{dy}{dx} \) 在 \( x = e \) 时的值是:A. 1B. 2C. eD. \( e^2 \)答案:A二、填空题1. 函数 \( g(x) = \sin x + \cos x \) 的导数是\( _{\_\_\_\_\_\_\_\_\_\_} \)。
答案:\( g'(x) = \cos x - \sin x \)2. 若 \( h(x) = e^x \),那么 \( h'(x) =\( _{\_\_\_\_\_\_\_\_\_\_} \)。
答案:\( h'(x) = e^x \)三、计算题1. 求函数 \( f(x) = x^3 - 2x^2 + x - 5 \) 在 \( x = 2 \) 处的导数和二阶导数。
答案:- 一阶导数 \( f'(x) = 3x^2 - 4x + 1 \),所以 \( f'(2) =3(2)^2 - 4(2) + 1 = 11 \)。
- 二阶导数 \( f''(x) = 6x - 4 \),所以 \( f''(2) = 6(2) - 4 = 8 \)。
2. 已知 \( y = \ln(x^2) \),求 \( \frac{dy}{dx} \)。
答案:- \( y = \ln(x^2) = 2\ln(x) \)。
- \( \frac{dy}{dx} = \frac{d}{dx}(2\ln(x)) = 2\frac{1}{x} = \frac{2}{x} \)。
四、简答题1. 解释什么是链式法则,并给出一个应用链式法则的例子。
答案:链式法则是微积分中用于求复合函数导数的一种规则。
计 算 题(每题10分)1、求解微分方程2'22x y xy xe -+=。
2、试用逐次逼近法求方程2y x dxdy+=通过点(0,0)的第三次近似解. 3、求解方程'2x y y y e -''+-=的通解4、求方程组dx dt ydydtx y ==+⎧⎨⎪⎩⎪2的通解5、求解微分方程'24y xy x +=6、试用逐次逼近法求方程2y x dxdy-=通过点(1,0)的第二次近似解。
7、求解方程''+-=-y y y e x '22的通解8、求方程组dxdt x ydydtx y =+=+⎧⎨⎪⎩⎪234的通解9、求解微分方程xy y x '-2=24 10、试用逐次逼近法求方程2y x dxdy-=通过(0,0)的第三次近似解. 11、求解方程''+-=-y y y e x '24的通解12、求方程组dxdt x y dydtx y =+=+⎧⎨⎪⎩⎪2332的通解 13、求解微分方程x y y e x (')-=14、试用逐次逼近法求方程22x y dxdy+=通过点(0,0)的第三次逼近解. 15、求解方程''+-=--y y y e x '22的通解16、求解方程x e y y y -=-+''32 的通解17、求方程组⎪⎩⎪⎨⎧-+=-+=yx dt dydtdx x y dt dy dt dx243452的通解 18、解微分方程22(1)(1)0x y dx y x dy -+-= 19、试用逐次逼近法求方程2dyx y dx=-满足初始条件(0)0y =的近似解:0123(),(),(),()x x x x ϕϕϕϕ.20、利用逐次逼近法,求方程22dyy x dx=-适合初值条件(0)1y =的近似解:012(),(),()x x x ϕϕϕ。