服务器集群技术+网络存储技术基础精辟讲解
- 格式:doc
- 大小:316.50 KB
- 文档页数:17
网络存储技术简介随着信息技术的发展,网络存储技术在企业和个人生活中扮演越来越重要的角色。
它不仅提供了便捷的数据存储和共享功能,还在数据备份和灾难恢复方面发挥了关键作用。
本文将介绍网络存储技术的基本原理、分类和应用。
一、网络存储技术的基本原理网络存储技术是指利用网络连接来存储和访问数据的技术。
它包括网络附加存储(NAS)和存储区域网络(SAN)两种主要形式。
NAS是指通过网络连接的存储设备,可以直接提供文件共享服务,通常使用网络文件系统(NFS)或服务器消息块协议(SMB)来实现。
SAN则是一种专门用于存储的高速网络,它利用光纤通道或以太网等技术将存储设备连接到计算机系统,提供块级数据存储和访问服务。
在网络存储技术中,存储设备通常是通过局域网或广域网与计算机系统连接,从而实现数据的共享和访问。
这种架构不仅方便了用户的数据管理,还实现了数据的集中存储和管理,提高了存储资源的利用率。
二、网络存储技术的分类根据存储设备的不同特点和应用场景,网络存储技术可以分为多种类型。
其中,NAS是最常见的一种形式,它通常由存储设备和文件共享服务组成,可以方便地实现数据的共享和访问。
SAN则适用于对存储性能和可靠性有较高要求的场景,如企业数据库和虚拟化环境。
此外,还有一种新兴的存储技术叫做对象存储,它采用对象作为数据存储的基本单元,适用于大规模数据存储和分布式存储场景。
对象存储具有高可扩展性和强大的元数据管理功能,适合云存储和大数据分析等应用。
三、网络存储技术的应用网络存储技术在企业和个人生活中有着广泛的应用。
在企业领域,它被广泛应用于数据中心、企业应用和虚拟化环境等场景。
通过网络存储技术,企业可以实现数据的集中管理和共享,提高数据的可靠性和可用性,并降低存储成本。
在个人生活中,网络存储技术也发挥了重要作用。
随着云存储技术的发展,个人用户可以通过云存储服务方便地存储和访问自己的数据,如照片、音乐和文档等。
此外,网络存储技术还为用户提供了数据备份和灾难恢复的方案,保护用户重要数据的安全性。
服务器存储基础知识在当今数字化的时代,服务器存储扮演着至关重要的角色。
无论是企业的业务数据、个人的重要文件,还是互联网上的海量信息,都离不开服务器存储这个“大后方”。
那么,什么是服务器存储?它是如何工作的?又有哪些常见的类型和技术呢?接下来,让我们一起揭开服务器存储的神秘面纱。
首先,我们来理解一下服务器存储的基本概念。
简单来说,服务器存储就是用于保存数据的设备或系统,它为服务器提供了数据的存放和读取功能。
想象一下,服务器就像是一个忙碌的办公室,而存储设备就是里面的文件柜,负责妥善保管各种重要的文件和资料。
服务器存储的工作原理其实并不复杂。
当我们向服务器发送保存数据的请求时,服务器会将数据按照一定的规则和格式写入存储设备中。
而当我们需要读取这些数据时,服务器又会从存储设备中找到相应的数据,并将其返回给我们。
这个过程就像是从文件柜中存放和取出文件一样。
接下来,让我们了解一下常见的服务器存储类型。
直接附加存储(DAS)是比较早期和简单的一种存储方式。
它直接将存储设备(如硬盘)连接到服务器上,就像给服务器单独配备了一个专属的“文件柜”。
这种方式的优点是简单直接,成本相对较低,但缺点是扩展性较差,难以满足大规模数据存储的需求。
网络附加存储(NAS)则是通过网络连接的方式提供存储服务。
它相当于一个专门的“网络文件柜”,多个服务器都可以通过网络访问和共享其中的数据。
NAS 具有易于管理、共享性好等优点,适用于中小型企业或家庭用户。
存储区域网络(SAN)则是一种更为高端和复杂的存储架构。
它通过专用的高速网络将存储设备与服务器连接起来,提供了高性能、高可靠性的数据存储服务。
SAN 通常用于大型企业和数据中心,能够满足对数据存储和处理要求极高的业务场景。
在服务器存储中,还有一些关键的技术和概念。
RAID(独立磁盘冗余阵列)是一种常见的技术,它通过将多个磁盘组合在一起,实现数据的冗余备份和性能提升。
例如,RAID 1 会将数据同时写入两个磁盘,实现数据的镜像备份;RAID 5 则通过奇偶校验信息来保证数据的可靠性,并提高读写性能。
了解服务器网络存储和数据共享技术服务器网络存储和数据共享技术在现代信息技术领域中扮演着至关重要的角色。
它们为我们提供了高效、可靠、安全的数据存储和共享平台,使得信息在不同的终端设备间得以无缝传输和共享。
本文将深入探讨服务器网络存储和数据共享技术,重点介绍其原理、应用场景以及相关的安全考虑。
一、服务器网络存储技术服务器网络存储技术是指利用专用的网络设备将多台服务器连接起来,以形成一个高性能、大容量的存储系统。
它采用分布式存储的方式,将数据分散存储在多台服务器上,通过网络连接实现数据的读写操作。
该技术通过提高存储系统的可扩展性和吞吐量,有效地解决了大规模数据处理和存储需求的问题。
在服务器网络存储技术中,常见的存储架构有网络附加存储(NAS)和存储区域网络(SAN)。
NAS是指将存储设备通过网络连接到服务器,通过文件共享协议提供文件级别的访问;SAN则是通过高速网络将存储设备与服务器直接连接,提供块存储级别的访问。
这两种存储技术各有优劣,可以根据具体需求来选择。
二、数据共享技术数据共享技术旨在实现不同终端设备之间的数据无缝传输和共享。
通过提供统一的数据访问接口和协议,数据共享技术能够使得用户可以在不同设备上自由地访问和编辑数据。
常见的数据共享技术包括网络文件系统(NFS)和分布式文件系统(DFS)。
NFS是一种基于客户-服务器模型的文件共享协议,可以在跨网络的环境中实现文件级别的共享。
通过NFS,用户可以像访问本地文件一样访问远程主机上的文件,极大地方便了数据的共享和协作。
DFS 则是一种通过将数据分布在多个存储节点上实现数据共享的技术。
它可以提高数据的可靠性和可用性,并且支持数据的动态扩展和负载均衡。
三、安全考虑在服务器网络存储和数据共享技术的应用过程中,安全性是至关重要的考虑因素。
以下是一些常见的安全措施:1. 访问控制:通过权限管理和身份认证机制,只允许授权用户访问存储和共享的数据。
这可以避免未授权访问和数据泄露的风险。
网络存储系统基础介绍如今的网络时代是资源共享的时代,各类信息资源的积累加剧了其膨胀性,人们对数据审视观念也发生了改变,不单单只是安全存储的数据,更把它们当成竞争优势的战略性资产;而且网络已经成为主要的信息处理模式。
对数据传输、管理、维护、虚拟化等等要求,都意识着对数据存储技术的发展提出了全面的挑战,对存储体系结构提出了进一步的要求。
不管网络发展到何种阶段,用户最终需要的是数据。
网络上大量的数据需要存储,如何才能简便、快速、安全地存储这些数据呢?这对存储系统的容量和速度提出了空前的要求。
传统的以服务器为中心的DAS(Direct Attached Storage)方式(这种方式是将RAID硬盘阵列直接安装到网络系统的服务器上),已不能满足用户的需要,越来越多的用户已经从原来的…服务器中心‟模式转换为以…数据为中心‟的NAS和SAN上。
我们通过以下几个方面系统了解网络存储系统:(一)直接连网存储(NAS)(二)区域存储网络(SAN)(三)IP SAN(四)NAS与SNA的比较(五)NAS与SNA的统一(六)网络存储系统市场趋势通过下面的讲解,希望可以给大家一个系统性的认识。
随着市场对网络存储设备的需求,大量厂商对这块市场早已做大量的工夫,网络技术的发展,产品也是层出不穷。
再下篇文章中我会对市场的主流产品进行详细介绍和讲评。
(一)直接连网存储(NAS)NAS的全称是Network Attached Storage,中文翻译为直接连网存储。
在NAS存储结构中,存储系统不再通过I/O总线附属于某个特定的服务器或客户机,它完全独立于网络中的主服务器,可以看作是一个专用的文件服务器。
也就是说,客户机与存储设备之间的数据访问已不再需要文件服务器的干预,允许客户机与存储设备之间进行直接的数据访问。
在LAN环境下,NAS已经完全可以实现异构平台之间的数据级共享,比如NT、UNIX等平台之间的共享。
一个NAS包括处理器、文件服务管理模块和多个的硬盘驱动器用于数据的存储。
网络存储技术简介随着互联网的发展,数据量的急剧增长,对于数据的存储和管理需求也日益迫切。
传统的存储设备往往面临容量受限、安全性差等问题,因此,网络存储技术应运而生。
本文将就网络存储技术的定义、特点、分类和发展趋势进行简要介绍。
一、定义网络存储技术是一种将数据存储在网络服务器上,并通过网络进行访问和管理的技术。
它通过网络连接,将存储设备连接到计算机或者服务器上,实现对数据的远程访问和管理。
与传统的本地存储相比,网络存储技术具有更高的灵活性和可扩展性。
二、特点网络存储技术具有以下几个显著特点:1. 高可靠性:网络存储设备通常采用冗余阵列独立磁盘(RAID)技术,可以实现数据的备份和冗余,提高数据的可靠性和安全性。
2. 高性能:网络存储设备采用高速数据传输接口和高性能硬件,可以实现快速的数据读写操作。
3. 可扩展性:网络存储设备支持在线扩容和热插拔功能,可以根据实际需求随时扩展存储容量。
4. 灵活性:网络存储设备支持多种接口和协议,可以适配各种不同的操作系统和应用环境,具有较高的灵活性和通用性。
三、分类根据不同的存储技术和设备类型,网络存储技术可以分为以下几种主要类型:1. 文件存储:文件存储是最常见的一种网络存储技术,它将数据以文件的形式存储在网络存储设备上,并通过文件共享协议进行访问和管理。
常见的文件存储设备包括网络附加存储(NAS)和分布式文件系统等。
2. 块存储:块存储是以块为单位进行数据存储和管理的技术,它可以直接连接到计算机或服务器,并以块设备的形式呈现给主机。
常见的块存储设备包括光纤通道存储区网(LUN)和iSCSI存储等。
3. 对象存储:对象存储是一种新兴的存储技术,它将数据以对象的形式进行存储和管理,每个对象包含数据、元数据和唯一的标识符。
对象存储技术具有高度的可扩展性和弹性,适用于大规模的数据存储和分布式存储环境。
四、发展趋势随着云计算、大数据、人工智能等新兴技术的发展,网络存储技术也将迎来新的发展机遇。
服务器集群技术第一点:服务器集群技术概述服务器集群技术是一种计算机技术,通过将多个服务器组合成一个集群,共同提供计算、存储和网络服务,以提高系统的性能、可靠性和可扩展性。
集群中的每个服务器被称为节点,节点之间通过网络连接,协同工作,共同完成任务。
服务器集群技术的主要优点有:1.高可用性:当集群中的某个节点出现故障时,其他节点可以接管故障节点的任务,从而保证系统的正常运行。
通过配置高可用性软件,如heartbeat、corosync 等,可以实现节点之间的故障转移和负载均衡。
2.可扩展性:服务器集群技术可以根据系统的负载情况,动态地增加或减少节点,以满足不断变化的计算需求。
这使得集群可以随着业务的发展而扩展,而无需停机或重新配置系统。
3.负载均衡:通过负载均衡技术,可以将任务均匀地分配到集群中的各个节点,从而提高系统的处理能力和效率。
负载均衡可以通过软件实现,如LVS、HAProxy 等,也可以通过硬件设备实现,如 F5 负载均衡器。
4.数据冗余:在服务器集群中,可以通过数据冗余技术,将数据复制到多个节点,以提高数据的可靠性和安全性。
常见的数据冗余技术有 RAID、DNS 轮询等。
5.灵活性:服务器集群技术可以支持多种应用和服务,如 Web 服务、数据库服务、文件服务等。
此外,集群可以根据不同的业务需求,灵活地调整节点数量、配置和负载策略。
服务器集群技术的主要应用场景有:1.大型网站:为了应对高并发、高流量的需求,大型网站通常采用服务器集群技术,将网站的业务流量分发到多个服务器,提高网站的访问速度和稳定性。
2.云计算平台:云计算平台通过服务器集群技术,提供大规模、弹性可扩展的计算资源和服务,满足不同用户的计算需求。
3.分布式存储:分布式存储系统通过服务器集群技术,将数据分布存储到多个节点,提高数据的可靠性和可扩展性。
4.大数据处理:大数据处理框架如 Hadoop、Spark 等,通过服务器集群技术,实现大规模数据的分布式计算和存储。
存储和服务器技术知识在当今数字化时代,存储和服务器技术成为企业和个人的重要需求。
随着数据量的不断增长和对高效性能的需求,存储和服务器技术的发展变得日益重要。
本文将介绍存储和服务器技术的相关知识,包括存储介质、存储架构、服务器工作原理等,以帮助读者更好地理解和运用这些技术。
一、存储介质存储介质是指用于存储数据的物理介质,常见的存储介质包括硬盘、固态硬盘(SSD)和光盘等。
硬盘是一种机械存储介质,通过磁头在磁性盘片上读写数据。
相比之下,固态硬盘使用闪存芯片存储数据,具有更快的读写速度和更低的能耗。
光盘则使用激光技术读写数据,适用于存储大量的音频、视频和软件等。
二、存储架构存储架构是指存储系统的组织结构,常见的存储架构包括直连式存储和网络存储。
直连式存储使用本地连接方式将存储设备与服务器连接,适合小规模的存储需求。
而网络存储则采用网络连接的方式,将存储设备连接到局域网或广域网中,能够满足大规模的存储需求。
网络存储又包括网络附加存储(NAS)和存储区域网络(SAN)等不同形式。
三、服务器工作原理服务器是一种专门用于提供网络服务的计算机,它根据客户端的请求提供相应的服务。
服务器工作原理主要包括请求处理、负载均衡和数据管理等。
当客户端发送请求时,服务器接收并处理请求,然后将结果返回给客户端。
负载均衡是指服务器将请求分发到多个处理单元上,以实现资源的合理分配和提高性能。
数据管理则涉及对存储数据的读写、备份和恢复等操作,以确保数据的安全性和可靠性。
四、存储和服务器技术的发展趋势存储和服务器技术在不断发展,其主要趋势包括高可靠性、高性能和高效能耗等方面。
高可靠性是指存储和服务器系统具备较高的故障容忍性和可用性,以确保数据的安全和服务的连续性。
高性能则要求存储和服务器系统具备更快的存取速度和更高的数据处理能力。
而高效能耗则意味着存储和服务器系统要在性能和能耗之间取得平衡,以提供更经济环保的解决方案。
综上所述,存储和服务器技术是当今数字化时代不可或缺的重要组成部分。
服务器存储基础知识第一点:服务器存储的类型与特点服务器存储是计算机网络中至关重要的组成部分,它负责数据的存放、管理和访问。
在服务器存储的世界里,有多种存储类型,每一种都有其独特的特点和适用场景。
1.1 直接附加存储(DAS)直接附加存储是最常见的存储类型,它将存储设备直接连接到服务器上。
这种存储类型的特点是速度快、控制简单,但扩展性和容错能力较差。
DAS适用于小型企业或者对数据访问速度有较高要求的环境。
1.2 网络附加存储(NAS)网络附加存储是通过网络连接的独立存储设备,它可以被网络中的多个服务器访问。
NAS的优点在于易于扩展和共享,但相对DAS,其访问速度可能会慢一些。
NAS适用于需要数据共享和备份的中型企业。
1.3 存储区域网络(SAN)存储区域网络是一种高速专用网络,连接服务器和存储设备。
SAN提供高效的存储池化,可以实现大量的数据存储和快速的访问速度。
但SAN的成本较高,且需要复杂的配置和管理。
它适用于大型企业或数据中心,特别是在需要高可用性和高扩展性的环境中。
1.4 分布式存储分布式存储是将存储资源分布在网络中的多个位置,通过软件进行管理和协调。
这种存储类型的优点在于高可用性和弹性,可以动态调整资源。
分布式存储适用于云计算和大数据应用,能够提供海量数据的存储和处理能力。
第二点:服务器存储的关键技术在服务器存储的领域,有一些关键技术是确保数据安全、提高数据访问效率和实现高效管理的关键。
2.1 数据冗余技术数据冗余是通过将数据复制到多个位置来提高数据的可靠性。
常见的数据冗余技术包括磁盘镜像、磁盘阵列和数据校验技术。
通过冗余技术,即使部分存储设备损坏,也不会丢失数据,提高了数据的可靠性。
2.2 数据快照技术数据快照技术可以创建数据的静态视图,使得用户可以随时访问某个时间点的数据状态。
快照可以用于数据备份、恢复和测试,大大提高了数据管理的灵活性和效率。
2.3 数据压缩和去重技术数据压缩和去重技术是为了提高存储效率而开发的。
服务器存储基础知识1. 介绍在计算机领域中,服务器存储是指用于保存和管理数据的设备或系统。
它扮演着重要角色,为用户提供可靠、高效的数据访问服务。
本文将详细介绍服务器存储的基础知识。
2. 存储类型2.1 直连式存储:直接连接到主机上,并通过总线进行通信。
- 硬盘驱动器(HDD):使用旋转磁盘来读写数据。
- 固态驱动器(SSD):使用闪存芯片来读写数据,速度更快且耐久性较好。
2.2 网络附加型存储(NAS):NAS 是一种专门设计用于文件共享和网络协议支持的设备,在局域网内提供统一资源访问能力。
3. 存储技术3.1 RD(Redundant Array of Independent Disks)RD 技术可以将多个物理磁盘组合成一个逻辑单元以实现容错和/或性能增强功能。
- RD0: 数据分散在多个磁盘上, 提高了I/O 性能但没有冗余保护.- RD1: 将相同内容复制到两块磁盘上, 提供了冗余保护但没有性能增强.- RD5: 将数据和校验信息分散存储在多个磁盘中,提供容错功能。
3.2 SAN(Storage Area Network)SAN 是一种高速网络架构,用于连接服务器与存储设备。
它可以通过光纤通道或以太网进行传输。
4. 存储管理4.1 卷管理:将物理存储资源划分为逻辑卷,并对其进行配置、监控和维护。
- LVM(Logical Volume Manager):Linux 系统下的卷管理工具,可动态调整逻辑卷大小等。
4.2 快照技术:创建一个文件系统状态的副本,在需要时恢复到该状态。
- 块级快照(Block-level Snapshot): 对底层块设备(如硬盘)执行快照操作,可实现较低开销且更加灵活的还原过程;- 文件级快照( Snapshot): 针对特定目录或文件系统创建只读镜像,共享给用户使用.5. 数据保护在服务器存储领域中,数据安全至关重要。
以下是常见的数据保护方法:a) 备份(Backup): 定期将生产环境数据复制到备份设备中,以防止意外丢失。
存储技术概述——集群存储运用集群技术来扩展服务器的性能、容量、连通性和实用性已经没有什么可好奇的了。
然而,集群存储就是另外一回事了。
什么是集群存储在集群里,一组独立的节点或主机可以象一个系统一样步调一致地工作。
它们不仅可以共享公用的存储阵列或者SAN,也可以拥有只有一个命名空间的公用文件系统。
最近的一些案例来自Cluster File Systems、Oracle、Red Hat以及新兴的Panasas 和Spinnaker Networks公司等。
Red Hat公司于去年收购了Sistina公司,该公司发布了适用于开放源码的集群Global File System。
Network Appliance公司则收购了Spinnaker Networks公司,该公司目前正在使用其SpinCluster软件来改进网格战略,即对网络附加存储(NAS)以及SAN存储进行集群整合。
Oracle公司也在该公司的真正应用集群(Oracle 9i RAC)上使用其Cluster File System。
Cluster File Systems 公司则使用其Lustre File System来建立高性能的集群。
在一些成功案例里,单独的服务器也是通过元数据服务器或设备与存储连接,元数据服务器或设备可以对数据进行很细的分类,以使这些数据可以很容易地找到。
更好的性能是一些用户使用集群文件系统的一个关键理由。
某用户目前使用Lustre File System,他们通过构建的集群来进行科学仿真和模型建立工作,如今把两个1000节点的集群用于生产系统。
以前,需要在每一个集群上安装文件系统,而且当有人需要数据时,经常需要把一个文件复制到另一个集群上去,文件系统之间频繁的FTP任务对整个系统的性能造成了很大的影响。
而现在他们能够随时将数据从文件系统中调出来阅读,在不影响正常仿真任务进行的同时查看系统运行结果。
集群存储产品列表集群存储的优势通常,集群存储总是和高性能计算联系在一起,不过事实上,集群存储正快速被主流的商业环境所采用。
网络存储技术解析随着信息时代的到来,大量的数据被生成和存储,网络存储技术日益受到关注。
网络存储技术允许将数据存储在网络之中,实现远程访问、共享和备份。
本文将对网络存储技术进行深入解析,包括分布式存储、虚拟化存储和云存储等。
一、分布式存储分布式存储是一种将数据分散存储在多个节点上的存储方式。
它通过将数据分割成若干块,每个节点存储其中的一部分数据,实现数据的高可用性和并行访问。
分布式存储具有存储容量扩展性强、数据冗余度高的优点。
常见的分布式存储系统包括Hadoop分布式文件系统(HDFS)和GlusterFS。
Hadoop分布式文件系统(HDFS)是基于Hadoop的存储系统,它将大文件分割成多个块,并存储在不同的节点上。
HDFS采用主从架构,包括一个NameNode和多个DataNode,NameNode负责管理文件的元数据,而DataNode负责存储实际的数据块。
HDFS的优点是可扩展性强,适用于大规模数据存储和分析。
GlusterFS是一种开源的分布式文件系统,它采用了联网复制(Network Replicated)的方式,将数据复制到多个节点上以实现容灾和高可用性。
GlusterFS具有良好的扩展性和弹性,可以根据需要添加新的存储节点。
二、虚拟化存储虚拟化存储是一种通过虚拟化技术将物理存储资源抽象为虚拟存储池,为虚拟机提供统一的存储接口的技术。
虚拟化存储可以将不同类型的物理存储池整合在一起,实现资源的共享和优化。
常见的虚拟化存储技术包括存储区域网络(SAN)和网络附加存储(NAS)。
存储区域网络(SAN)是一种基于光纤通道或以太网的高速专用存储网络。
SAN将存储设备与服务器进行直接连接,将存储资源整合在一个集中的存储池中,并通过光纤通道进行数据传输。
SAN具有高速传输、可扩展性好的优点,适用于对存储性能和可靠性要求较高的场景。
网络附加存储(NAS)是一种基于以太网的存储解决方案,将存储设备通过网络连接到服务器。
服务器存储培训在当今数字化的时代,数据的重要性不言而喻。
无论是企业的业务数据、个人的重要文件,还是互联网上的海量信息,都需要安全、高效的存储方式。
服务器存储作为数据存储的核心技术之一,对于保障数据的完整性、可用性和安全性起着至关重要的作用。
为了让更多的人了解和掌握服务器存储的相关知识和技能,我们特地组织了这次服务器存储培训。
一、服务器存储的基本概念服务器存储,简单来说,就是将数据存储在服务器上的一种技术。
它包括了硬件设备(如硬盘、磁带库、光盘库等)和软件系统(如存储管理软件、文件系统等)。
服务器存储的目的是为了提供可靠的数据存储和访问服务,满足不同应用场景的需求。
服务器存储的类型有很多种,常见的包括直接附加存储(DAS)、网络附加存储(NAS)和存储区域网络(SAN)。
DAS 是将存储设备直接连接到服务器上,这种方式简单但扩展性较差。
NAS 则是通过网络连接的文件级存储设备,适用于文件共享和数据备份等场景。
SAN 是一种高速的网络存储架构,提供了块级的数据访问,常用于大型企业的关键业务系统。
二、服务器存储的硬件设备1、硬盘硬盘是服务器存储中最常见的设备之一。
目前市场上主要有机械硬盘(HDD)和固态硬盘(SSD)两种类型。
HDD 具有容量大、价格低的优点,但读写速度相对较慢。
SSD 则具有读写速度快、能耗低的优势,但价格相对较高。
在服务器存储中,通常会根据不同的需求选择合适类型的硬盘。
2、磁带库磁带库是一种大容量的离线存储设备,常用于数据备份和归档。
磁带库具有成本低、存储容量大、保存时间长等优点,但数据访问速度较慢。
3、光盘库光盘库是一种基于光盘的存储设备,适用于对数据访问速度要求不高、但需要长期保存的场景。
三、服务器存储的软件系统1、存储管理软件存储管理软件用于对服务器存储设备进行管理和监控,包括磁盘分区、RAID 配置、存储资源分配等功能。
常见的存储管理软件有Windows Server 的磁盘管理工具、Linux 的 LVM 等。
深入讲解服务器集群技术(精辟)在发展初期,一路处理器便可为一台服务器及其所有应用提供动力。
接着就发展到了多处理时代,这时两路或多路处理器共享一个存储池,并能处理更多更大的应用。
然后出现了服务器网络,该网络中的每台服务器都专门处理不同的应用集。
现在,发展到了服务器集群,两台或多台服务器像一台服务器一样工作,提供更高的可用性和性能,这已经远远超出了您的想像。
应用可从一台服务器转移到另一台服务器,或同时运行在若干台服务器上――所有这一切对用户都是透明的。
集群并不是新事物,但在软件和硬件方面,直到最近它们还是专有的。
信息系统经理对集群进行了更加仔细的考虑,这是因为现在他们可以使用大规模生产的标准硬件实现集群,如RAID、对称多处理系统、网络和I/O网卡及外设。
集群技术在未来将会获得更大的发展,现在,不断推出新的集群选件,而真正的集群标准尚在制定之中。
何为集群?简单的说,集群就是两台或多台计算机或节点在一个群组内共同工作。
与单独工作的计算机相比,集群能够提供更高的可用性和可扩充性。
集群中的每个节点通常都拥有自己的资源(处理器、I/O、内存、操作系统、存储器),并对自己的用户集负责。
故障切换功能提供丝捎眯裕旱币桓鼋诘惴⑸ 收鲜保 渥试茨芄?quot;切换"到集群中一个或多个其它节点上。
一旦发生故障的节点恢复全面运行,通过前瞻性地将一台服务器的功能"切换"到集群中其它服务器上,可以实现升级,停止该服务器的运行以增加组件,然后将其放回到集群中,再将其功能从其它服务器转回该服务器。
利用分布式讯息传递(DMP)可提供额外的可扩充性,DMP是一种集群内通信技术,该技术允许应用以对最终用户透明的方式扩展到单个对称多处理(SMP)系统以外。
集群中的每个节点必须运行集群软件以提供服务,如故障检测、恢复和将服务器作为约个系统进行管理的能力。
集群中的节点必须以一种知道所有其它节点状态的方式连接。
这通常通过一条由于局域网路径相分离的通信路径来实现,并使用专用网卡来确保节点间清楚的通信。
该通信路径中继系统间的一?quot;心跳",这样,如果一个资源发生故障因而无法发送心跳,就会开始故障切换过程。
实际上,最可靠的配置采用了使用不同通信连接(局域网、SCSI和RS232)的冗余心跳,以确保通信故障不会激活错误的故障切换。
集群级别今天,对于集群购买者来说,幸运的是有多款不同档次的集群可供选择,它们可提供广泛的可用性。
当然,可用性越高,价格也越高,管理复杂性也越大。
共享存储共享磁盘子系统往往是集群的基础、它使用共享的SCSI或光纤通道。
每个节点使用其本地磁盘存储操作系统交换空间和系统文件,而应用数据存储在共享磁盘上,每个节点均可读取由其它节点写入的数据。
应用间的并发磁盘访问需要分布锁定管理器(DLM),而且共享磁盘子系统与其集群节点之间的距离会受到所选择介质(SCSI或光纤通道等)的限制。
服务器镜像(镜像磁盘)需要数据冗余而又无需占用额外磁盘子系统的环境有权选择服务器间的镜像数据。
除了成本更低以外,服务器镜像的另一个优势是,在主板服务器与辅助服务器之间的连接可以是基于局域网的,这样就消除了SCSI距离限制。
数据写到主板服务器上后,它还写到了辅服务器上;通过锁定服务器数据保持了数据的完整性。
一些服务器镜像产品还可将工作负载从主服务器转换到辅服务器上。
非共享现在,一些集群产品使用的是"非共享"体系结构,在此体系结构中,节点既不共享集中式磁盘,也不在节点间镜像数据。
发生故障时,非共享集群所具有的软件能够将磁盘所有权从一个节点传送至另一个节点,而无需使用分布式分布式锁定管理器(DLM)。
如何实现故障切换?可以使用多种方法配制集群实现故障切换。
第一种方法是N路配制,集群中的所有节点在正常情况下都拥有自己的用户和工作负载。
一个故障节点的资源可切换到其它节点,但由于剩余的服务器承担了额外的负载,因此其性能将有所下降。
N+1配制包括一个热待机系统,它在主系统发生故障之前一直处于空闲模式。
在N+1配制中,当一个节点发生故障时可避免其它节点的性能下降。
但是,由于待机节点在正常情况下并不提供服务,因而成本较高。
在任何配制中,一旦出现问题,集群软件将能够首先进行本地恢复。
本地恢复即在发生故障时,在本地节点自动重新启动应用或服务的能力。
对节点并非致命的故障来说,逻辑上本地恢复是首选方式,因为与切换至另一个节点相比,它对用户的中断更少。
就故障切换的种类而论,一些集群产品可进行并行恢复,其中资源能够故障切换到不同地区的远程节点上。
这很适合于容灾需求。
次外,为了解决多个节点故障问题,一些集群产品可以进行级联故障切换,其工作方式就像多米诺骨牌一样:节点一故障切换到节点二,节点二发生故障后再切换到节点三等等。
故障切换举例以下是双节点集群故障切换举例,其中两个节点都拥有其自己的用户和以下的应用。
1. 节点1因出现内存问题导致了应用故障。
用户讯息错误且其应用停止运行。
集群管理软件将这一问题通知系统管理员。
2. 节点1进行本地恢复,重新启动故障应用。
用户能够重新启动其应用。
3. 当应用再次发生故障时,集群软件向节点2进行故障切换。
故障切换需要大约1分钟,用户必须等待。
(实际时间可能会从几秒至几分钟。
)一些应用能够检测故障过程并向用户显示信息,告知她们向另一台服务器传输应用。
4. 一旦该应用在节点2中重新启动,用户即可继续工作。
5. 诊断和修理节点1。
将已恢复正常的节点1放回远处后,关恢复(切换)过程就会启动,以使应用和相关资源回到节点1。
可人工或自动实现该故障恢复。
例如,在非高峰期间,可将其配置为故障恢复状态。
集群可扩充性除了提高的可用性,性能可扩充性也是集群的一个主要优势。
通常,可通过集群负载平衡提高性能。
本质上,负载平衡意味着将相关应用和资源从繁忙节点转移到不繁忙节点。
真正的可扩充性是在其它区域实现的。
第一个区域是增加可扩充性,这意味着能够在不抛弃以前系统的情况下,不断添加服务器、磁盘存储器等。
实际上,随着您的计算机需求不断增加,集群提供了随着您的发展进行支付的环境。
当能够在集群多个节点上自动分配其工作负载的真正"支持集群"应用在未来形成开发标准后,您将看到第二种类型的可扩充性。
除此之外还可分离应用,以使一个应用的不同"线程"运行在不同节点上,从而极大提高可应用如何处理故障切换?下一个问题是"应用如何处理故障切换?"答案是"这取决于所使用的应用和集群产品。
"一些集群产品为专门应用(如数据库或通信协议)提供了恢复或切换套件。
这些套件可在应用故障时进行检测,并可在另一服务器上重新启动该应用。
应用处理故障的方法由于集群产品的不同而不同。
正如我们以前提到的一样,尽管不同的厂商都试图制定一个通用标准,但现在集群软件还没有公共标准。
然而,必须修改现在的应用以处理故障切换,应用的最终目标不受硬件的影响。
一个解决方案是与操作系统共同运行的一组程序和API(应用编程口),从而使得应用厂商能够创建执行这些恢复功能的程序。
使用这些API使应用"支持集群"。
当前集群产品的许多厂商都在努力奋斗,以确保集群产品能够符合这些不同的操作系统API。
虚拟接口体系结构(VIA)由英特尔、康柏、惠普、微软、戴尔、SCO和天腾联合推出了虚拟接口体系结构(VIA)计划正为开发集群硬件和软件产品制定标准,该标准将是独立于厂商的,它将为用户购买技术时提供更多的选择。
需牢记的重点真正的集群可被认为是多处理发展演变的下一步――以前,应用应用跨越一个系统的多个处理器运行,现在,应用可以跨越跨越若干系统的多个处理器运行。
集群提供了两个主要优势:高可用性(通过故障切换功能)和可扩充性(通过增加扩展和跨越处理器进行负载平衡)。
当节点出现硬件或软件问题后,就会进行故障切换,该节点的应用及通信连接将切换到另一台服务器上。
可使用集群管理产品规定那些应用应进行故障切换,以及那些故障条件可触发这一过程。
可以获得许多集群种类和配置,以为用户提供他们所需的确切可用性级别。
共享磁盘、服务器镜像及非共享是这些配置的几个。
三种服务器的结构如何区别?相信大家一定注意到了,各种媒体上经常按塔式、机架式和刀片式这三种结构来划分服务器,服务器的外形为什么会有这样的划分呢?主要原因就是具体的应用环境不同,塔式服务器长得跟我们平时用的台式机一样,占用空间比较大,一般是一些小型企业自己使用自己维护;而机架式服务器长得就像卧着的台式机,可以一台一台的放到固定机架上,因此而得名,它可以拿去专业的服务器托管提供商那里进行托管,这样每年只需支付一定的托管费,就免去了自己管理服务器的诸多不便;而刀片服务器是近几年才比较流行的一种服务器架构,它非常薄,可以一片一片的叠放在机柜上,通过群集技术进行协同运算,能够处理大量的任务,特别适合分布式服务,如作为WEB服务器。
看完上面的简单介绍,相信各位对这3种服务器已经有个基本的认识了,下面我们就来一一细说,为大家做更详细的讲解:什么是塔式服务器:塔式服务器应该是大家见得最多,也最容易理解的一种服务器结构类型,因为它的外形以及结构都跟我们平时使用的立式PC差不多,,当然,由于服务器的主板扩展性较强、插槽也多出一堆,所以个头比普通主板大一些,因此塔式服务器的主机机箱也比标准的ATX 机箱要大,一般都会预留足够的内部空间以便日后进行硬盘和电源的冗余扩展。
由于塔式服务器的机箱比较大,服务器的配置也可以很高,冗余扩展更可以很齐备,所以它的应用范围非常广,应该说目前使用率最高的一种服务器就是塔式服务器。
我们平时常说的通用服务器一般都是塔式服务器,它可以集多种常见的服务应用于一身,不管是速度应用还是存储应用都可以使用塔式服务器来解决。
就使用对象或者使用级别来说,目前常见的入门级和工作组级服务器基本上都采用这一服务器结构类型,一些部门级应用也会采用,不过由于只有一台主机,即使进行升级扩张也有个限度,所以在一些应用需求较高的企业中,单机服务器就无法满足要求了,需要多机协同工作,而塔式服务器个头太大,独立性太强,协同工作在空间占用和系统管理上都不方便,这也是塔式服务器的局限性。
不过,总的来说,这类服务器的功能、性能基本上能满足大部分企业用户的要求,其成本通常也比较低,因此这类服务器还是拥有非常广泛的应用支持。
什么是机架式服务器:作为为互联网设计的服务器模式,机架服务器是一种外观按照统一标准设计的服务器,配合机柜统一使用。
可以说机架式是一种优化结构的塔式服务器,它的设计宗旨主要是为了尽可能减少服务器空间的占用,而减少空间的直接好处就是在机房托管的时候价格会便宜很多。