动量和能量综合专题
- 格式:doc
- 大小:256.50 KB
- 文档页数:8
动量与能量综合专题一、动量守恒定律动量守恒定律是物理学中的一个重要定律,它表述的是物体动量的变化遵循一定的规律。
当两个或多个物体相互作用时,它们的总动量保持不变。
这个定律的适用范围非常广泛,从微观粒子到宏观宇宙,只要有物体之间的相互作用,就可以应用动量守恒定律来描述。
在理解动量守恒定律时,需要注意以下几点:1、系统:动量守恒定律适用于封闭的系统,即系统内的物体之间相互作用,不受外界的影响。
2、总动量:动量的变化是指物体之间的总动量的变化,而不是单个物体的动量变化。
3、方向:动量是矢量,具有方向性。
在计算动量的变化时,需要考虑动量的方向。
二、能量守恒定律能量守恒定律是物理学中的另一个重要定律,它表述的是能量不能被创造或消灭,只能从一种形式转化为另一种形式。
这个定律的适用范围同样非常广泛,从微观粒子到宏观宇宙,只要有能量的转化和转移,就可以应用能量守恒定律来描述。
在理解能量守恒定律时,需要注意以下几点:1、封闭系统:能量守恒定律适用于封闭的系统,即系统内的能量之间相互转化和转移,不受外界的影响。
2、转化与转移:能量的转化和转移是不同的。
转化是指一种形式的能量转化为另一种形式的能量,而转移是指能量从一个物体转移到另一个物体。
3、方向:能量的转化和转移是有方向的。
在计算能量的变化时,需要考虑能量的方向。
三、动量与能量的综合应用在实际问题中,动量和能量往往是相互的。
当一个物体受到力的作用时,不仅会引起物体的运动状态的变化,还会引起物体能量的变化。
因此,在解决复杂问题时,需要综合考虑动量和能量的因素。
例如,在碰撞问题中,两个物体相互作用后可能会发生弹射、粘合、破碎等情况。
这些情况的发生不仅与物体的动量有关,还与物体的能量有关。
如果两个物体的总动量不为零,它们将会继续运动;如果两个物体的总能量不为零,它们将会继续发生能量的转化和转移。
因此,在解决碰撞问题时,需要综合考虑物体的动量和能量因素。
四、总结动量守恒定律和能量守恒定律是物理学中的两个重要定律,它们分别描述了物体动量的变化和能量的转化和转移遵循的规律。
动量与能量守恒2025年综合题解析在物理学的领域中,动量与能量守恒定律一直是极为重要的核心概念,不仅在理论研究中具有关键地位,更在实际问题的解决中发挥着不可或缺的作用。
接下来,让我们深入探讨 2025 年的一道有关动量与能量守恒的综合题,通过解析这道题,来进一步加深对这两个重要定律的理解和应用。
题目如下:在一个光滑的水平面上,有两个质量分别为 m1 = 2kg 和 m2 = 3kg 的物体,它们以速度 v1 = 5m/s 和 v2 = 2m/s 相向运动,发生正碰。
碰撞后两物体粘在一起,求碰撞后的共同速度以及碰撞过程中损失的机械能。
首先,我们来分析一下这道题所涉及的知识点。
动量守恒定律指出,在一个不受外力或者所受合外力为零的系统中,系统的总动量保持不变。
对于这道题,在水平方向上,没有外力的作用,所以系统在碰撞前后的总动量是守恒的。
碰撞前两物体的总动量为:P1 = m1 v1 = 2 5 = 10 kg·m/sP2 = m2 v2 = 3 (-2) =-6 kg·m/s (因为相向运动,速度方向相反)总动量 P = P1 + P2 = 10 6 = 4 kg·m/s碰撞后两物体粘在一起,共同速度为 v,根据动量守恒定律可得:(m1 + m2) v = 4(2 + 3) v = 45v = 4v = 08 m/s接下来,我们来计算碰撞过程中损失的机械能。
碰撞前两物体的总动能为:E1 = 1/2 m1 v1^2 = 1/2 2 5^2 = 25 JE2 = 1/2 m2 v2^2 = 1/2 3 2^2 = 6 J总动能 E = E1 + E2 = 25 + 6 = 31 J碰撞后两物体的总动能为:E' = 1/2 (m1 + m2) v^2 = 1/2 5 08^2 = 16 J碰撞过程中损失的机械能为:ΔE = E E' = 31 16 = 294 J通过对这道题的解析,我们可以看出,在解决动量与能量守恒的综合问题时,关键是要清晰地判断系统是否满足动量守恒和能量守恒的条件。
专题07动量和能量的综合应用知识梳理考点一 动量与动量定理应用动量定理解题的一般步骤及注意事项线如图所示,则( )A .t=1 s 时物块的速率为1 m/sB .t=2 s 时物块的动量大小为4 kg·m/sC .t=3 s 时物块的动量大小为5 kg·m/sD .t=4 s 时物块的速度为零【答案】AB【解析】由动量定理可得:Ft=mv ,解得m Ft v = ,t=1 s 时物块的速率为s m m Ft v /212⨯===1 m/s ,故A 正确;在Ft 图中面积表示冲量,所以,t=2 s 时物块的动量大小P=Ft=2×2=4kg.m/s ,t=3 s 时物块的动量大小为P /=(2×21×1)kgm/s=3 kg·m/s ,t=4 s 时物块的动量大小为P //=(2×21×2)kgm/s=2 kg·m/s ,所以t=4 s 时物块的速度为1m/s ,故B正确 ,C 、D 错误 考点二 动量守恒定律一、应用动量守恒定律的解题步骤二、几种常见情境的规律碰撞(一维)动量守恒动能不增加即p122m1+p222m2≥p1′22m1+p2′22m2速度要合理①若两物体同向运动,则碰前应有v后>v前;碰后原来在前的物体速度一定增大,若碰后两物体同向运动,则应有v前′≥v后′。
②若两物体相向运动,碰后两物体的运动方向不可能都不改变。
爆炸动量守恒:爆炸物体间的相互作用力远远大于受到的外力动能增加:有其他形式的能量(如化学能)转化为动能位置不变:爆炸的时间极短,物体产生的位移很小,一般可忽略不计反冲动量守恒:系统不受外力或内力远大于外力机械能增加:有其他形式的能转化为机械能人船模型两个物体动量守恒:系统所受合外力为零质量与位移关系:m1x1=m2x2(m1、m2为相互作用的物体质量,x1、x2为其位移大小)例一(多选)(2021·甘肃天水期末)如图所示,木块B与水平面间的摩擦不计,子弹A沿水平方向射入木块并在极短时间内相对于木块静止下来,然后木块压缩弹簧至弹簧最短。
考题一 动量定理和能量观点的综合应用1.动量定理公式:Ft =p ′-p 说明:(1)F 为合外力①恒力,求Δp 时,用Δp =Ft②b.变力,求I 时,用I =Δp =mv 2-mv 1③牛顿第二定律的第二种形式:合外力等于动量变化率 ④当Δp 一定时,Ft 为确定值:F =Δptt 小F 大——如碰撞;t 大F 小——缓冲(2)等式左边是过程量Ft ,右边是两个状态量之差,是矢量式.v 1、v 2是以同一惯性参照物为参照的.Δp 的方向可与mv 1一致、相反或成某一角度,但是Δp 的方向一定与Ft 一致. 2.力学规律的选用原则单个物体:宜选用动量定理、动能定理和牛顿运动定律.若其中涉及时间的问题,应选用动量定理;若涉及位移的问题,应选用动能定理;若涉及加速度的问题,只能选用牛顿第二定律.例1 据统计人在运动过程中,脚底在接触地面瞬间受到的冲击力是人体自身重力的数倍.为探究这个问题,实验小组同学利用落锤冲击的方式进行了实验,即通过一定质量的重物从某一高度自由下落冲击地面来模拟人体落地时的情况.重物与地面的形变很小,可忽略不计.g 取10 m/s 2.下表为一次实验过程中的相关数据.重物(包括传感器)的质量m /kg重物下落高度H /cm 45 重物反弹高度h /cm 20 最大冲击力F m /N 850 重物与地面接触时间t /s(1)请你选择所需数据,通过计算回答下列问题: ①重物受到地面的最大冲击力时的加速度大小;②在重物与地面接触过程中,重物受到的地面施加的平均作用力是重物所受重力的多少倍. (2)如果人从某一确定高度由静止竖直跳下,为减小脚底在与地面接触过程中受到的冲击力,可采取什么具体措施,请你提供一种可行的方法并说明理由. 解析 (1)①重物受到最大冲击力时加速度的大小为a 由牛顿第二定律:a =F m -mgm解得a =90 m/s 2②重物在空中运动过程中,由动能定理mgh =12mv 2重物与地面接触前瞬时的速度大小v 1=2gH 重物离开地面瞬时的速度大小v 2=2gh重物与地面接触过程,重物受到的平均作用力大小为F ,设竖直向上为正方向 由动量定理:(F -mg )t =mv 2-m (-v 1) 解得F =510 N ,故F mg=6因此重物受到的地面施加的平均作用力是重物所受重力的6倍.(2)可以通过增加人与地面接触时间来减小冲击力(如落地后双腿弯曲),由动量定理Ft =Δmv 可知,接触时间增加了,冲击力F 会减小. 答案 (1)①90 m/s 2②6倍 (2)见解析 变式训练1.高空作业须系安全带,如果质量为m 的高空作业人员不慎跌落,从开始跌落到安全带对人刚产生作用力前人下落的距离为h (可视为自由落体运动).此后经历时间t 安全带达到最大伸长量,若在此过程中该作用力始终竖直向上,则该段时间安全带对人的平均作用力大小为( ) +mg -mg +mg -mg答案 A解析 由自由落体运动公式得人下降h 距离时的速度为v =2gh ,在t 时间内对人由动量定理得(F -mg )t =mv ,解得安全带对人的平均作用力为F =m 2ght+mg ,A 项正确. 2.一质量为 kg 的小物块放在水平地面上的A 点,距离A 点5 m 的位置B 处是一面墙,如图1所示.物块以v 0=9 m/s 的初速度从A 点沿AB 方向运动,在与墙壁碰撞前瞬间的速度为7 m/s ,碰后以6 m/s 的速度反向运动直至静止.g 取10 m/s 2.图1(1)求物块与地面间的动摩擦因数μ;(2)若碰撞时间为 s ,求碰撞过程中墙面对物块平均作用力的大小F ; (3)求物块在反向运动过程中克服摩擦力所做的功W . 答案 (1) (2)130 N (3)9 J解析 (1)对小物块从A 运动到B 处的过程中 应用动能定理-μmgs =12mv 2-12mv 20代入数值解得μ=(2)取向右为正方向,碰后滑块速度v ′=-6 m/s 由动量定理得:F Δt =mv ′-mv 解得F =-130 N其中“-”表示墙面对物块的平均作用力方向向左. (3)对物块反向运动过程中应用动能定理得 -W =0-12mv ′2解得W =9 J.考题二动量守恒定律和能量观点的综合应用1.动量守恒定律(1)表达式:m1v1+m2v2=m1v1′+m2v2′;或p=p′(系统相互作用前总动量p等于相互作用后总动量p′);或Δp=0(系统总动量的增量为零);或Δp1=-Δp2(相互作用的两个物体组成的系统,两物体动量的增量大小相等、方向相反).(2)动量守恒条件:①理想守恒:系统不受外力或所受外力合力为零.②近似守恒:外力远小于内力,且作用时间极短,外力的冲量近似为零,或外力的冲量比内力冲量小得多.③单方向守恒:合外力在某方向上的分力为零,则系统在该方向上动量守恒.动量守恒定律应用要注意的三性(1)矢量性:在一维运动中要选取正方向,未知速度方向的一律假设为正方向,带入求解.(2)同时性:m1v1和m2v2——作用前的同一时刻的动量m1v1′和m2v2′——作用后的同一时刻的动量(3)同系性:各个速度都必须相对于同一个惯性参考系.定律的使用条件:在惯性参考系中普遍适用(宏观、微观、高速、低速)2.力学规律的选用原则多个物体组成的系统:优先考虑两个守恒定律,若涉及碰撞、爆炸、反冲等问题时,应选用动量守恒定律,然后再根据能量关系分析解决.例2 如图2所示,一条带有圆轨道的长轨道水平固定,圆轨道竖直,底端分别与两侧的直轨道相切,半径R= m,物块A以v0=6 m/s的速度滑入圆轨道,滑过最高点Q,再沿圆轨道滑出后,与直轨上P处静止的物块B碰撞,碰后粘在一起运动,P点左侧轨道光滑,右侧轨道呈粗糙段、光滑段交替排列,每段长度都为L= m,物块与各粗糙段间的动摩擦因数都为μ=,A、B的质量均为m=1 kg(重力加速度g取10 m/s2;A、B视为质点,碰撞时间极短).图2(1)求A 滑过Q 点时的速度大小v 和受到的弹力大小F ; (2)若碰后AB 最终停止在第k 个粗糙段上,求k 的数值; (3)求碰后AB 滑至第n 个(n <k )光滑段上的速度v n 与n 的关系式. 解析 (1)从A →Q 由动能定理得 -mg ·2R =12mv 2-12mv 2解得v =4 m/s >gR = 5 m/s在Q 点,由牛顿第二定律得F +mg =m v 2R解得F =22 N.(2)A 撞B ,由动量守恒得mv 0=2mv ′ 解得v ′=v 02=3 m/s设摩擦距离为x ,则-2μmgx =0-12·2mv ′2解得x = m 所以k =x L=45.(3)AB 滑至第n 个光滑段上,由动能定理得 -μ·2mgnL =12·2mv 2n -12·2mv ′2所以v n =错误! m/s (n <45). 答案 (1)4 m/s 22 N (2)45 (3)v n =错误! m/s (n <45) 变式训练3.如图3,在足够长的光滑水平面上,物体A 、B 、C 位于同一直线上,A 位于B 、C 之间.A 的质量为m ,B 、C 的质量都为M ,三者均处于静止状态.现使A 以某一速度向右运动,求m 和M 之间应满足什么条件,才能使A 只与B 、C 各发生一次碰撞.设物体间的碰撞都是弹性的.图3答案 (5-2)M ≤m <M解析 设A 运动的初速度为v 0,A 向右运动与C 发生碰撞,由动量守恒定律得mv 0=mv 1+Mv 2由机械能守恒定律得12mv 20=12mv 21+12Mv 22可得v 1=m -M m +M v 0,v 2=2m m +Mv 0 要使得A 与B 能发生碰撞,需要满足v 1<0,即m <MA 反向向左运动与B 发生碰撞过程,有 mv 1=mv 3+Mv 412mv 21=12mv 23+12Mv 24 整理可得v 3=m -M m +M v 1,v 4=2mm +Mv 1 由于m <M ,所以A 还会向右运动,根据要求不发生第二次碰撞,需要满足v 3≤v 2 即2m m +M v 0≥m -M m +M v 1=(m -M m +M)2v 0 整理可得m 2+4Mm ≥M 2解方程可得m ≥(5-2)M 另一解m ≤-(5+2)M 舍去所以使A 只与B 、C 各发生一次碰撞,须满足 (5-2)M ≤m <M .考题三 电学中动量和能量观点的综合应用系统化思维方法,就是根据众多的已知要素、事实,按照一定的联系方式,将其各部分连接成整体的方法.(1)对多个物理过程进行整体思维,即把几个过程合为一个过程来处理,如用动量守恒定律解决比较复杂的运动.(2)对多个研究对象进行整体思维,即把两个或两个以上的独立物体合为一个整体进行考虑,如应用动量守恒定律时,就是把多个物体看成一个整体(或系统).例3 如图4所示,直角坐标系xOy 位于竖直平面内,x 轴与绝缘的水平面重合,在y 轴右方有垂直纸面向里的匀强磁场和竖直向上的匀强电场.质量为m 2=8×10-3kg 的不带电小物块静止在原点O ,A 点距O 点l = m ,质量m 1=1×10-3kg 的带电小物块以初速度v 0= m/s 从A 点水平向右运动,在O 点与m 2发生正碰并把部分电量转移到m 2上,碰撞后m 2的速度为 m/s ,此后不再考虑m 1、m 2间的库仑力.已知电场强度E =40 N/C ,小物块m 1与水平面的动摩擦因数为μ=,取g =10 m/s 2,求:图4(1)碰后m 1的速度;(2)若碰后m 2做匀速圆周运动且恰好通过P 点,OP 与x 轴的夹角θ=30°,OP 长为l OP = m ,求磁感应强度B 的大小;(3)其他条件不变,若改变磁场磁感应强度的大小,使m 2能与m 1再次相碰,求B ′的大小. 解析 (1)设m 1与m 2碰前速度为v 1,由动能定理 -μm 1gl =12m 1v 21-12m 1v 20代入数据解得:v 1= m/sv 2= m/s ,m 1、m 2正碰,由动量守恒有: m 1v 1=m 1v 1′+m 2v 2代入数据得:v 1′=- m/s ,方向水平向左 (2)m 2恰好做匀速圆周运动,所以qE =m 2g 得:q =2×10-3C由洛伦兹力提供向心力,设物块m 2做圆周运动的半径为R ,则qv 2B =m 2v22R轨迹如图,由几何关系有:R =l OP 解得:B =1 T(3)当m 2经过y 轴时速度水平向左,离开电场后做平抛运动,m 1碰后做匀减速运动.m 1匀减速运动至停止,其平均速度大小为: v =12|v 1′|= m/s>v 2= m/s ,所以m 2在m 1停止后与其相碰由牛顿第二定律有:F f =μm 1g =m 1am 1停止后离O 点距离:s =v 1′22a则m 2平抛的时间:t =s v 2平抛的高度:h =12gt 2设m 2做匀速圆周运动的半径为R ′,由几何关系有:R ′=12h由qv 2B ′=m 2v 22R ′,联立得:B ′= T答案 (1)- m/s ,方向水平向左 (2)1 T (3) T 变式训练4.如图5所示,C 1D 1E 1F 1和C 2D 2E 2F 2是距离为L 的相同光滑导轨,C 1D 1和E 1F 1为两段四分之一的圆弧,半径分别为r 1=8r 和r 2=r .在水平矩形D 1E 1E 2D 2内有竖直向上的匀强磁场,磁感应强度为B .导体棒P 、Q 的长度均为L ,质量均为m ,电阻均为R ,其余电阻不计,Q 停在图中位置,现将P 从轨道最高点无初速度释放,则:图5(1)求导体棒P 进入磁场瞬间,回路中的电流的大小和方向(顺时针或逆时针);(2)若P 、Q 不会在轨道上发生碰撞,棒Q 到达E 1E 2瞬间,恰能脱离轨道飞出,求导体棒P 离开轨道瞬间的速度;(3)若P 、Q 不会在轨道上发生碰撞,且两者到达E 1E 2瞬间,均能脱离轨道飞出,求回路中产生热量的范围.答案 (1)2BL grR,方向逆时针 (2)3gr(3)3mgr ≤Q ≤4mgr解析 (1)导体棒P 由C 1C 2下滑到D 1D 2,根据机械能守恒定律:mgr 1=12mv 2D ,v D =4gr导体棒P 到达D 1D 2瞬间:E =BLv D回路中的电流I =E 2R =2BL grR方向逆时针(2)棒Q 到达E 1E 2瞬间,恰能脱离轨道飞出,此时对Q :mg =mv 2Q r 2,v Q =gr设导体棒P 离开轨道瞬间的速度为v P ,根据动量守恒定律:mv D =mv P +mv Q 代入数据得,v P =3gr(3)由(2)知,若导体棒Q 恰能在到达E 1E 2瞬间飞离轨道,P 也必能在该处飞离轨道.根据能量守恒,回路中产生的热量:Q 1=12mv 2D -12mv 2P -12mv 2Q =3mgr若导体棒Q 与P 能达到共速v ,回路中产生的热量最多,则根据动量守恒:mv D =(m +m )v ,v =2gr回路中产生的热量:Q 2=12mv 2D-12(m +m )v 2=4mgr 综上所述,回路中产生热量的范围是3mgr ≤Q ≤4mgr .专题规范练1.如图1所示,水平桌面左端有一顶端高为h 的光滑圆弧形轨道,圆弧的底端与桌面在同一水平面上.桌面右侧有一竖直放置的光滑圆轨道MNP ,其形状为半径R = m 的圆环剪去了左上角135°后剩余的部分,MN 为其竖直直径,P 点到桌面的竖直距离也为R .一质量m = kg 的物块A 自圆弧形轨道的顶端静止释放,到达圆弧形轨道底端恰与一停在圆弧底端水平桌面上质量也为m 的物块B 发生弹性正碰(碰撞过程没有机械能的损失),碰后物块B 的位移随时间变化的关系式为x =6t -2t 2(关系式中所有物理量的单位均为国际单位),物块B 飞离桌面后恰由P 点沿切线落入圆轨道.(重力加速度g 取10 m/s 2)求:图1(1)BP 间的水平距离x BP ;(2)判断物块B 能否沿圆轨道到达M 点; (3)物块A 由静止释放的高度h . 答案 (1) m (2)不能 (3) m解析 (1)设碰撞后物块B 由D 点以初速度v D 做平抛运动,落到P 点时其竖直速度为v y =2gR同时v y v D=tan 45°,解得v D =4 m/s设平抛用时为t ,水平位移为x ,则有R =12gt 2x =v D t解得x = m物块B 碰后以初速度v 0=6 m/s ,加速度大小a =-4 m/s 2减速到v D ,则BD 间的位移为x 1=v 2D -v 202a= m故BP 之间的水平距离x BP =x +x 1= m(2)若物块B 能沿轨道到达M 点,在M 点时其速度为v M ,则有12mv 2M -12mv 2D =-22mgR设轨道对物块的压力为F N ,则F N +mg =m v 2MR解得F N =(1-2)mg <0,即物块不能到达M 点. (3)对物块A 、B 的碰撞过程,有:m A v A =m A v A ′+m B v 012m A v 2A =12m A v A ′2+12m B v 20 解得:v A =6 m/s设物块A 释放的高度为h ,则mgh =12mv 2A ,解得h = m2.如图2所示为过山车简易模型,它由光滑水平轨道和竖直面内的光滑圆形轨道组成,Q 点为圆形轨道最低点,M 点为最高点,圆形轨道半径R = m.水平轨道PN 右侧的水平地面上,并排放置两块长木板c 、d ,两木板间相互接触但不粘连,长木板上表面与水平轨道PN 平齐,木板c 质量m 3= kg ,长L =4 m ,木板d 质量m 4= kg.质量m 2= kg 的小滑块b 放置在轨道QN 上,另一质量m 1= kg 的小滑块a 从P 点以水平速度v 0向右运动,沿圆形轨道运动一周后进入水平轨道与小滑块b 发生碰撞,碰撞时间极短且碰撞过程中无机械能损失.碰后a 沿原路返回到M 点时,对轨道压力恰好为0.已知小滑块b 与两块长木板间动摩擦因数均为μ0=,重力加速度g =10 m/s 2.图2(1)求小滑块a 与小滑块b 碰撞后,a 和b 的速度大小v 1和v 2;(2)若碰后滑块b 在木板c 、d 上滑动时,木板c 、d 均静止不动,c 、d 与地面间的动摩擦因数μ至少多大(木板c 、d 与地面间的动摩擦因数相同,最大静摩擦力等于滑动摩擦力)(3)若不计木板c 、d 与地面间的摩擦,碰后滑块b 最终恰好没有离开木板d ,求滑块b 在木板c 上滑行的时间及木板d 的长度.答案 (1)4 m/s m/s (2) (3)1 s m解析 (1)根据题意可知:小滑块a 碰后返回到M 点时:m 1v 2M R=m 1g 小滑块a 碰后返回到M 点过程中机械能守恒:12m 1v 21=12m 1v 2M +m 1g (2R ) 代入数据,解得:v 1=4 m/s取水平向右为正方向,小滑块a 、b 碰撞前后:动量守恒:m 1v 0=-m 1v 1+m 2v 2机械能守恒:12m 1v 20=12m 1v 21+12m 2v 22 代入数据,解得:v 0= m/s ,v 2= m/s(2)若b 在d 上滑动时d 能静止,则b 在c 上滑动时c 和d 一定能静止μ(m 2+m 4)g >μ0m 2g解得μ>m 2m 2+m 4μ0≈ (3)小滑块b 滑上长木板c 时的加速度大小:a 1=μ0g = m/s 2此时两块长木板的加速度大小:a 2=μ0m 2m 3+m 4g = m/s 2 令小滑块b 在长木板c 上的滑行时间为t ,则:时间t 内小滑块b 的位移x 1=v 2t -12a 1t 2 两块长木板的位移x 2=12a 2t 2 且x 1-x 2=L解得:t 1=1 s 或t 2=103 s(舍去) b 刚离开长木板c 时b 的速度v 2′=v 2-a 1t 1= m/sb 刚离开长木板c 时d 的速度v 3=a 2t 1= m/sd 的长度至少为x :由动量守恒可知:m 2v 2′+m 4v 3=(m 2+m 4)v解得:v =2 m/sμ0m 2gx =12m 2v 2′2+12m 4v 23-12(m 2+m 4)v 2 解得:x = m3.如图3所示,两个圆形光滑细管在竖直平面内交叠,组成“8”字形通道,在“8”字形通道底端B 处连接一内径相同的粗糙水平直管AB .已知E 处距地面的高度h = m ,一质量m =1 kg 的小球a 从A 点以速度v 0=12 m/s 的速度向右进入直管道,到达B 点后沿“8”字形轨道向上运动,到达D 点时恰好与轨道无作用力,直接进入DE 管(DE 管光滑),并与原来静止于E 处的质量为M =4 kg 的小球b 发生正碰(a 、b 均可视为质点).已知碰撞后a 球沿原路返回,速度大小为碰撞前速度大小的13,而b 球从E 点水平抛出,其水平射程s = m.(g =10 m/s 2)图3(1)求碰后b 球的速度大小;(2)求“8”字形管道上下两圆的半径r 和R ;(3)若小球a 在管道AB 中运动时所受阻力为定值,请判断a 球返回到BA 管道时,能否从A 端穿出答案 (1)1 m/s (2) m m (3)不能解析 (1)b 球离开E 点后做平抛运动h =12gt 2,s =v b t ,解得v b =1 m/s(2)a 、b 碰撞过程,动量守恒,以水平向右为正方向,则有: mv a =-m ×13v a +Mv b解得v a =3 m/s碰前a 在D 处恰好与轨道无作用力,则有:mg =m v 2a rr = mR =h -2r 2= m (3)小球从B 到D ,机械能守恒:12mv 2B =12mv 2a +mgh 解得:12mv 2B = J 从A 到B 过程,由动能定理得:-W f =12mv 2B -12mv 20 解得:W f = J从D 到B ,机械能守恒:12m (v a 3)2+mgh =12mv B ′2 解得:12mv B ′2= J<W f 所以,a 球返回到BA 管道中时,不能从A 端穿出.4.如图4所示,整个空间中存在竖直向上的匀强电场,经过桌边的虚线PQ 与桌面成45°角,其上方有足够大的垂直纸面向外的匀强磁场,磁感应强度为B ,光滑绝缘水平桌面上有两个可以视为质点的绝缘小球,A 球对桌面的压力为零,其质量为m ,电量为q ;B 球不带电且质量为km (k >7).A 、B 间夹着质量可忽略的火药.现点燃火药(此时间极短且不会影响小球的质量、电量和各表面的光滑程度).火药炸完瞬间A 的速度为v 0.求:图4(1)火药爆炸过程中有多少化学能转化为机械能;(2)A 球在磁场中的运动时间;(3)若一段时间后A 、B 在桌上相遇,求爆炸前A 球与桌边P 的距离.答案 (1)k +12k mv 20 (2)3πm 2qB (3)2k -2-3π2k +1·mv 0qB解析 (1)设爆炸之后B 的速度大小为v B ,选向左为正方向,在爆炸前后由动量守恒可得:0=mv 0-kmv BE =12mv 20+12kmv 2B =k +12kmv 20(2)由A 球对桌面的压力为零可知重力和电场力等大反向,故A 球进入电场中将会做匀速圆周运动,如图所示则T =2πm qB 有几何知识可得:粒子在磁场中运动了34个圆周 则t 2=3πm 2qB(3)由0=mv 0-kmv B 可得:v B =v 0k由qv 0B =m v 20R 知,R =mv 0qB 设爆炸前A 球与桌边P 的距离为x A ,爆炸后B 运动的位移为x B ,时间为t B则t B =x A v 0+t 2+R v 0,x B =v B t B由图可得:R =x A +x B联立上述各式解得:x A =2k -2-3π2k +1·mv 0qB .。
动量能量的综合题目各个类型各选一个1.(2017·洛阳市二模)如图所示,光滑水平面上有一质量M=4.0 kg 的平板车,车的上表面是一段长L=1.5 m的粗糙水平轨道,水平轨道左侧连一半径R=0.25 m的四分之一光滑圆弧轨道,圆弧轨道与水平轨道在点O′处相切.现将一质量m=1.0 kg的小物块(可视为质点)从平板车的右端以水平向左的初速度v0滑上平板车,小物块与水平轨道间的动摩擦因数μ=,小物块恰能到达圆弧轨道的最高点A.取g =10 m/s2,求:(1)小物块滑上平板车的初速度v0的大小;(2)小物块与车最终相对静止时,它距点O′的距离.解析:(1)平板车和小物块组成的系统在水平方向上动量守恒,设小物块到达圆弧轨道最高点A时,二者的共同速度为v1由动量守恒得:mv0=(M+m)v1 ①由能量守恒得:12mv20-12(M+m)v21=mgR+μmgL②联立①②并代入数据解得:v0=5 m/s(2)设小物块最终与车相对静止时,二者的共同速度为v2,从小物块滑上平板车,到二者相对静止的过程中,由动量守恒得:mv0=(M+m)v2 ④设小物块与车最终相对静止时,它距O′点的距离为x,由能量守恒得:12mv20-12(M+m)v22=μmg(L+x) ⑤联立③④⑤并代入数据解得:x=0.5 m.2.如图所示,用高压水枪喷出的强力水柱冲击煤层.(1)设水柱直径为D,水流速度为v,水柱垂直煤层表面,水柱冲击煤层后水的速度变为零,水的密度为ρ. 求高压水枪的功率和水柱对煤的平均冲力.(2)若将质量为m的高压水枪固定在装满水、质量为M的消防车上,当高压水枪喷出速度为v(相对于地面)、质量为Δm的水流时,消防车的速度是多大水枪做功多少(不计消防车与地面的摩擦力)解析:(1)设Δt时间内,从水枪中喷出的水的体积为ΔV,质量为Δm,则Δm=ρΔVΔV=vSΔt=14vπD2ΔtΔt时间内从水枪中喷出的水的动能E k=12Δmv2=18ρπD2v3Δt由动能定理,高压水枪对水做的功W=E k=18ρπD2v3Δt高压水枪的功率P=WΔt=18ρπD2v3考虑一个极短时间Δt′,在此时间内喷到煤层上的水的质量为m,则由动量定理可得FΔt′=mvΔt′时间内喷到煤层上的水的质量m=ρSvΔt′=14ρπD2vΔt′解得F=14ρπD2v2.(2)对于消防车和水枪系统,在喷水的过程中,水平方向上不受外力,动量守恒.取喷出水的速度方向为正方向,设喷水时消防车速度为v车,由动量守恒定律,(m+M-Δm)v车+Δmv=0解得v车=-Δmvm+M-Δm.负号表示消防车速度方向与喷出水的速度方向相反由功能关系,水枪做功W=12Δmv2+12(M+m-Δm)v2车=m+M2m+M-ΔmΔmv2.3.如图所示,固定斜面的倾角θ=30°,物体A与斜面之间的动摩擦因数为μ=34,轻弹簧下端固定在斜面底端,弹簧处于原长时上端位于C点,用一根不可伸长的轻绳通过轻质光滑的定滑轮连接物体A 和B,滑轮右侧绳子与斜面平行,A的质量为2m=4 kg,B的质量为m=2 kg,初始时物体A到C点的距离为L=1 m,现给A、B一初速度v0=3 m/s,使A开始沿斜面向下运动,B向上运动,物体A将弹簧压缩到最短后又恰好能弹到C点.已知重力加速度g取10 m/s2,不计空气阻力,整个过程中轻绳始终处于伸直状态,求此过程中:(1)物体A向下运动刚到C点时的速度大小;(2)弹簧的最大压缩量;(3)弹簧中的最大弹性势能.解析(1)物体A向下运动刚到C点的过程中,对A、B组成的系统应用能量守恒定律可得μ·2mg·cos θ·L=12·3mv20-12·3mv2+2mgLsin θ-mgL可解得v=2 m/s.(2)以A、B组成的系统,在物体A将弹簧压缩到最大压缩量,又返回到C 点的过程中,系统动能的减少量等于因摩擦产生的热量, 即12·3mv2-0=μ·2mgcos θ·2x其中x 为弹簧的最大压缩量解得x =0.4 m.(3)设弹簧的最大弹性势能为Epm由能量守恒定律可得12·3mv2+2mgxsin θ-mgx =μ·2mgcos θ·x +Epm. 解得Epm =6 J.4.(2017·河南洛阳模拟)某校物理兴趣小组制作了一个游戏装置,其简化模型如图所示,在A 点用一弹射装置可将静止的小滑块以速度v0水平弹射出去,沿水平直线轨道运动到B 点后,进入半径R =0.3 m 的光滑竖直圆形轨道,运动一周后自B 点向C 点运动,C 点右侧有一陷阱,C 、D 两点的竖直高度差h =0.2 m ,水平距离s =0.6 m ,水平轨道AB 长为L1=1 m ,BC 长为L2= m ,小滑块与水平轨道间的动摩擦因数μ=,重力加速度g 取10 m/s2.(1)若小滑块恰能过圆形轨道的最高点,求滑块在A 点射出速度大小;(2)若游戏规则为小滑块沿着圆形轨道运行一周离开圆形轨道后只要不掉进陷阱即为胜出,求小滑块在A 点弹射出的速度大小的范围.解析:(1)小滑块恰能通过圆轨道最高点的速度为v ,由牛顿第二定律mg =m v2R从B 到最高点小滑块机械能守恒有12mv2B=2mgR+12mv2从A到B由动能定理得-μmgL1=12mv2B-12mv21由以上三式解得A点的速度为v1=5 m/s.(2)若小滑块刚好停在C处,从A到C由动能定理得-μmg(L1+L2)=0-12mv22解得A点的速度为v2=6 m/s若小滑块停在BC段,应满足5 m/s≤vA≤6 m/s若小滑块能通过C点并恰好越过陷阱,利用平抛运动则有竖直方向:h=12gt2水平方向:s=vCt从A到C由动能定理得-μmg(L1+L2)=12mv2C-12mv23解得v3=3 5 m/s所以初速度的范围为5 m/s≤vA≤6 m/s或vA≥3 5 m/s.5.如图所示,质量M=4 kg的滑板B静止放在光滑水平面上,滑板右端固定一根轻质弹簧,弹簧的自由端C到滑板左端的距离L=0.5 m,可视为质点的小木块A质量m=1 kg,原来静止于滑板的左端,滑板与木块A之间的动摩擦因数μ=.当滑板B受水平向左恒力F=14 N作用时间t后撤去F,这时木块A恰好到达弹簧自由端C处,此后运动过程中弹簧的最大压缩量为s=5 cm.g取10 m/s2.求:(1)水平恒力F的作用时间t;(2)木块A压缩弹簧过程中弹簧的最大弹性势能;(3)当小木块A脱离弹簧且系统达到稳定后,整个运动过程中系统所产生的热量.解析:(1)木块A和滑板B均向左做匀加速直线运动,由牛顿第二定律可得a A=μmg ma B=F-μmgM根据题意有s B-s A=L即12a B t2-12a A t2=L ③将数据代入①②③联立解得t=1 s(2)1 s末木块A和滑板B的速度分别为v A=a A tv B=a B t当木块A和滑板B的速度相同时,弹簧压缩量最大,具有最大弹性势能,根据动量守恒定律有mv A+Mv B=(m+M)v ⑥由能的转化与守恒得12mv2A+12Mv2B=12(m+M)v2+E p+μmgs⑦代入数据求得最大弹性势能E p=J.(3)二者同速之后,设木块相对木板向左运动离开弹簧后系统又能达到共同速度v′,相对木板向左滑动距离为x,有mv A+Mv B=(m+M)v′⑧由⑧式解得v=v′由能的转化与守恒定律可得E p=μmgx⑨由⑨式解得x=0.15 m由于s+L>x且x>s,故假设成立整个过程系统产生的热量为Q=μmg(L+s+x) ⑩由⑩式解得Q=J.6.一静止的质量为M的不稳定原子核,放射出一个质量为m的粒子,(1)粒子离开原子核时速度为v0,则剩余部分的速率等于。
动量守恒与能量综合在各类模型中的应用一、 “子弹打木块”模型1. 如图所示,子弹以某一水平速度击中静止在光滑水平面上的木块并留在其中。
对子弹射入木块的过程,下列说法正确的是( )A. 木块对子弹的冲量等于子弹对木块的冲量B. 因子弹受到阻力的作用,故子弹和木块组成的系统动量不守恒C. 子弹和木块组成的系统损失的机械能等于子弹损失的动能减去子弹对木块所做的功D. 子弹克服木块阻力做的功等于子弹的动能减少量和摩擦产生的热量之和2. 光滑水平地面上有一静止的木块,子弹水平射入木块后未穿出,子弹和木块的v -t 图象如图所示.已知木块质量大于子弹质量,从子弹射入木块到达稳定状态,木块动能增加了50 J ,则此过程产生的内能可能是( )A .10 JB .50 JC .70 JD .120 J3. 如图所示,质量为M 的木块放在水平面上,子弹沿水平方向射入木块并留在其中,测出木块在水平面上滑行的距离为s ,已知木块与水平面间的动摩擦因数为μ,子弹的质量为m ,重力加速度为g ,空气阻力可忽略不计,则子弹射入木块前的速度大小为( ) A .m +M m 2μgs B .M -m m 2μgs C .m m +M μgs D .m M -mμgs4. (多选)如图所示,两个质量和速度均相同的子弹分别水平射入静止在光滑水平地面上质量相同、材料不同的两矩形滑块A 、B 中,射入A 中的深度是射入B 中深度的两倍.两种射入过程相比较( )A .射入滑块A 的子弹速度变化大B .整个射入过程中两滑块受的冲量一样大C .射入滑块A 中时阻力对子弹做功是射入滑块B 中时的两倍D .两个过程中系统产生的热量相同5. (多选)矩形滑块由不同材料的上、下两层黏合在一起组成,将其放在光滑的水平面上,质量为m 的子弹以速度v水平射向滑块.若射击下层,子弹刚好不射出;若射击上层,则子弹刚好能射穿一半厚度,如图所示.则上述两种情况相比较( )A .子弹的末速度大小相等B .系统产生的热量一样多C .子弹对滑块做的功不相同D .子弹和滑块间的水平作用力一样大6. 如图所示,相距足够远完全相同的质量均为3m 的两个木块静止放置在光滑水平面上,质量为m 的子弹(可视为质点)以初速度v 0水平向右射入木块,穿出第一块木块时的速度为25v 0,已知木块的长为L ,设子弹在木块中所受的阻力恒定。
动量和能量专题高考试题1.(2006年·全国理综Ⅰ)一位质量为m 的运动员从下蹲状态向上起跳,经Δt 时间,身体伸直并刚好离开地面,速度为v .在此过程中,A .地面对他的冲量为mv +mg Δt ,地面对他做的功为212mv B .地面对他的冲量为mv +mg Δt ,地面对他做的功为零C .地面对他的冲量为mv ,地面对他做的功为212mv D .地面对他的冲量为mv -mg Δt ,地面对他做的功为零提示:运动员向上起跳的过程中,由动量定理可得,I mg t mv -∆=,则I m v m g t =+∆;起跳过程中,地面对运动员的作用力向上且其作用点的位移为零(阿模型化,认为地面没有发生形变),所以,地面对运动员做的功为零.2.(2006年·全国理综Ⅱ)如图所示,位于光滑水平桌面上的小滑块P 和Q 都可视作质点,质量相等.Q 与轻质弹簧相连.设Q 静止,P 以某一初速度向Q 运动并与弹簧发生碰撞.在整个碰撞过程中,弹簧具有的最大弹性势能等于A .P 的初动能B .P 的初动能的1/2C .P 的初动能的1/3D .P 的初动能的1/4提示:设P 的初速度为v 0,P 、Q 通过弹簧发生碰撞,当两滑块速度相等时,弹簧压缩到最短,弹性势能最大,设此时共同速度为v ,对P 、Q (包括弹簧)组成的系统,由动量守恒定律,有02mv mv = ①由机械能守恒定律,有22Pm 01122E mv mv =-×2 ② 联立①②两式解得22Pm 00111422E mv mv ==× 3.(2006年·江苏)一质量为m 的物体放在光滑的水平面上,今以恒力F 沿水平方向推该物体,在相同的时间间隔内,下列说法正确的是A .物体的位移相等B .物体动能的变化量相等C .F 对物体做的功相等D .物体动量的变化量相等提示:物体在恒力的作用下做匀加速直线运动,在相同的时间内,其位移不相等,故力对物体做的功不相等,由动能定理可知,物体动能的变化量不相等;根据动量定理,有F t p ∆=∆,所以,物体动量的变化量相等.4.(2003年·辽宁大综合)航天飞机在一段时间内保持绕地心做匀速圆周运动,则A .它的速度大小不变,动量也不变B .它不断克服地球对它的万有引力做功C .它的速度大小不变,加速度等于零D .它的动能不变,引力势能也不变5.(2003年·上海)一个质量为0.3kg的弹性小球,在光滑水平面上以6m/s的速度垂直撞到墙上,碰撞后小球沿相反方向运动,反弹后的速度大小与碰撞前相同.则碰撞前后小球速度变化量的大小Δv和碰撞过程中墙对小球做功的大小W为A.Δv=0 B.Δv=12m/s C.W=0 D.W=10.8J 6.(2002年·广东大综合)将甲、乙两物体自地面同时上抛,甲的质量为m,初速为v,乙的质量为2m,初速为v/2.若不计空气阻力,则A.甲比乙先到最高点B.甲和乙在最高点的重力势能相等C.落回地面时,甲的动量的大小比乙的大D.落回地面时,甲的动能比乙的大7.(2002年·全国理综)在光滑水平地面上有两个弹性小球A、B,质量都为m,现B球静止,A球向B球运动,发生正碰.已知碰撞过程中总机械能守恒,两球压缩最紧时的弹性势能为E P,则碰前A球的速度等于A B C.D.8.(2001年·全国理综)下列是一些说法:①一质点受两个力作用且处于平衡状态(静止或匀速),这两个力在同一段时间内的冲量一定相同②一质点受两个力作用且处于平衡状态(静止或匀速),这两个力在同一段时间内做的功或者都为零,或者大小相等符号相反③在同样时间内,作用力和反作用力的功大小不一定相等,但正负号一定相反④在同样时间内,作用力和反作用力的功大小不一定相等,正负号也不一定相反以上说法正确的是A.①②B.①③C.②③D.②④9.(1998年·全国)在光滑水平面上,动能为E0、动量的大小为p0的小钢球1与静止小钢球2发生碰撞,碰撞前后球1的运动方向相反.将碰撞后球1的动能和动量的大小分别记为E1、p1,球2的动能和动量的大小分别记为E2、p2.则必有A.E1<E0B.p1<p0C.E2>E0D.p2>p0 10.(1996年·全国)半径相等的两个小球甲和乙,在光滑水平面上沿同一直线相向运动.若甲球的质量大于乙球的质量,碰撞前两球的动能相等,则碰撞后两球的运动状态可能是A.甲球的速度为零而乙球的速度不为零B.乙球的速度为零而甲球的速度不为零C.两球的速度均不为零D.两球的速度方向均与原方向相反,两球的动能仍相等11.(1995年·全国)一粒钢珠从静止状态开始自由下落,然后陷入泥潭中.若把在空中下落的过程称为过程Ⅰ,进入泥潭直到停住的过程称为过程Ⅱ,则A.过程Ⅰ中钢珠动量的改变量等于重力的冲量B.过程Ⅱ中阻力的冲量的大小等于过程Ⅰ中重力冲量的大小C.过程Ⅱ中钢珠克服阻力所做的功等于过程Ⅰ与过程Ⅱ中钢珠所减少的重力势能之和D.过程Ⅱ中损失的机械能等于过程Ⅰ中钢珠所增加的动能12.(1992年·全国)如图所示的装置中,木块B与水平桌面间的接触是光滑的,子弹A沿水平方向射入木块后留在木块内,将弹簧压缩到最短.现将子弹、木块和弹簧合在一起作为研究对象(系统),则此系统在从子弹开始射入木块到弹簧压缩至最短的整个过程中A .动量守恒、机械能守恒B .动量不守恒、机械能不守恒C .动量守恒、机械能不守恒D .动量不守恒、机械能守恒13.(1991年·全国)有两个物体a 和b ,其质量分别为m a 和m b ,且m a >m b .它们的初动能相同.若a 和b 分别受到不变的阻力F a 和F b 的作用,经过相同的时间停下来,它们的位移分别为s a 和s b ,则A .F a >F b 且s a <s bB .F a >F b 且s a >s bC .F a <F b 且s a >s bD .F a <F b 且s a <s b 14.(1994年·全国)质量为4.0kg 的物体A 静止在水平桌面上,另一个质量为2.0kg 的物体B以5.0m/s 的水平速度与物体A 相撞,碰撞后物体B 以1.0m/s 的速度反向弹回.相撞过程中损失的机械能是_________J .【答案】6.015.(1993年·全国)如图所示,A 、B 是位于水平桌面上的两个质量相等的小木块,离墙壁的距离分别为L 和l ,与桌面之间的滑动摩擦系数分别为μA 和μB .今给A 以某一初速度,使之从桌面的右端向左运动.假定A 、B 之间,B 与墙之间的碰撞时间都很短,且碰撞中总动能无损失.若要使木块A 最后不从桌面上掉下来,则A 的初速度最大不能超过_______.16.(2006年·天津理综)如图所示,坡道顶端距水平面高度为h ,质量为m 1的小物块A从坡道顶端由静止滑下,进入水平面上的滑道时无机械能损失,为使A 制动,将轻弹簧的一端固定在水平滑道延长线M 处的墙上,一端与质量为m 2的档板B 相连,弹簧处于原长时,B 恰位于滑道的末端O 点.A 与B 碰撞时间极短,碰后结合在一起共同压缩弹簧,已知在OM 段A 、B 与水平面间的动摩擦因数均为μ,其余各处的摩擦不计,重力加速度为g ,求:(1)物块A 在与挡板B 碰撞前瞬间速度v 的大小;(2)弹簧最大压缩量为d 时的弹性势能E p (设弹簧处于原长时弹性势能为零).【答案】(1)gh 2;(2)211212()m gh m m gd m m μ-++ 解析:(1)由机械能守恒定律,有21112m gh m v =解得v =gh 2 (2)A 、B 在碰撞过程中内力远大于外力,由动量守恒,有112()m v m m v '=+碰后A 、B 一起压缩弹簧,)到弹簧最大压缩量为d 时,A 、B 克服摩擦力所做的功 12()W m m gd μ=+由能量守恒定律,有212P 121()()2m m v E m m gd μ'+=++ 解得21P 1212()m E gh m m gd m m μ=-++ 17.(2006年·重庆理综)如图,半径为R 的光滑圆形轨道固定在竖直面内.小球A 、B 质量分别为m 、βm (β为待定系数).A 球从左边与圆心等高处由静止开始沿轨道下滑,与静止于轨道最低点的B 球相撞,碰撞后A 、B 球能达到的最大高度均为14R ,碰撞中无机械能损失.重力加速度为g .试求:(1)待定系数β;(2)第一次碰撞刚结束时小球A 、B 各自的速度和B 球对轨道的压力;(3)小球A 、B 在轨道最低处第二次碰撞刚结束时各自的速度,并讨论小球A 、B 在轨道最低处第n 次碰撞刚结束时各自的速度.【答案】(1)3;(2)1v =,方向水平向左;2v =4.5mg ,方向竖直向下.(3)见解析解析:(1)由于碰撞后球沿圆弧的运动情况与质量无关,因此,A 、B 两球应同时达到最大高度处,对A 、B 两球组成的系统,由机械能守恒定律得44mgR mgR mgR β=+,解得β=3 (2)设A 、B 第一次碰撞后的速度分别为v 1、v 2,取方向水平向右为正,对A 、B 两球组成的系统,有2212112mgR mv mv β=+12mv mv β=+解得1v =,方向水平向左;2v = 设第一次碰撞刚结束时轨道对B 球的支持力为N ,方向竖直向上为正,则22v N mg m Rββ-=,B 球对轨道的压力 4.5N N mg '=-=-,方向竖直向下.(3)设A 、B 球第二次碰撞刚结束时的速度分别为V 1、V 2,取方向水平向右为正,则 1212mv mv mV mV ββ--=+22121122mgR mV mV β=+ 解得V 1=-gR 2,V 2=0.(另一组解V 1=-v 1,V 2=-v 2不合题意,舍去) 由此可得:当n 为奇数时,小球A 、B 在第n 次碰撞刚结束时的速度分别与其第一次碰撞刚结束时相同;当n 为偶数时,小球A 、B 在第n 次碰撞刚结束时的速度分别与其第二次碰撞刚结束时相同.18.(2006年·江苏)如图所示,质量均为m 的A 、B 两个弹性小球,用长为2l 的不可伸长的轻绳连接.现把A 、B 两球置于距地面高H 处(H 足够大),艰巨为l .当A 球自由下落的同时,B 球以速度v0指向A 球水平抛出间距为l .当A 球自由下落的同时,B 球以速度v 0指向A 球水平抛出.求:(1)两球从开始运动到相碰,A 球下落的高度.(2)A 、B 两球碰撞(碰撞时无机械能损失)后,各自速度的水平分量.(3)轻绳拉直过程中,B 球受到绳子拉力的冲量大小.【答案】(1)2202gl v ;(2)A 0B ,0x x v v v ''==;(3)012mv 解析:(1)设到两球相碰时A 球下落的高度为h ,由平抛运动规律得0l v t =① 212h gt = ② 联立①②得2202gl h v = ③(2)A 、B 两球碰撞过程中,由水平方向动量守恒,得0A B x x mv mv mv ''=+ ④由机械能守恒定律,得22222220B A A A B B 1111()()()2222y y x y x y m v v mv m v v m v v ''''++=+++ ⑤式中A A B B ,y y y y v v v v ''== 联立④⑤解得A0B ,0x x v v v ''== (3)轻绳拉直后,两球具有相同的水平速度,设为v B x ,,由水平方向动量守恒,得 0B 2x mv mv = 由动量定理得B 012x I mv mv == 19.(2005年·广东)如图所示,两个完全相同的质量为m 的木板A 、B 置于水平地面上,它们的间距s=2.88m .质量为2m ,大小可忽略的物块C 置于A 板的左端.C 与A 之间的动摩擦因数为μ1=0.22,A 、B 与水平地面之间的动摩擦因数为μ2=0.10,最大静摩擦力可以认为等于滑动摩擦力.开始时,三个物体处于静止状态.现给C 施加一个水平向右,大小为mg 52的恒力F ,假定木板A 、B 碰撞时间极短且碰撞后粘连在一起,要使C 最终不脱离木板,每块木板的长度至少应为多少?【答案】0.3m解析:设A 、C 之间的滑动摩擦力大小f 1,A 与水平地面之间的滑动摩擦力大小为f 2 0.220.10μμ==12,,则11225F mg f mg μ=<= 且222(2)5F mg f m m g μ=>=+ 说明一开始A 和C 保持相对静止,在F 的作用下向右加速运动,有2211()(2)2F f s m m v -=+ A 、B 两木板的碰撞瞬间,内力的冲量远大于外力的冲量,由动量守恒定律得:mv 1=(m +m )v 2碰撞结束后三个物体达到共同速度的相互作用过程中,设木板向前移动的位移s 1,选三个物体构成的整体为研究对象,外力之和为零,则2mv 1+(m +m )v 2=(2m +m +m )v 3设A 、B 系统与水平地面之间的滑动摩擦力大小为f 3,则A 、B 系统,由动能定理: 2211313232112222(2)f s f s mv mv f m m m gm -=-=++对C 物体,由动能定理得221113111(2)(2)2222F l s f l s mv mv +-+=- 联立以上各式,再代入数据可得l =0.3m .20.(2005年·全国理综Ⅰ)如图,质量为m 1的物体A 经一轻质弹簧与下方地面上的质量为m 2的物体B 相连,弹簧的劲度系数为k ,A 、B 都处于静止状态.一条不可伸长的轻绳绕过轻滑轮,一端连物体A ,另一端连一轻挂钩.开始时各段绳都处于伸直状态,A 上方的一段绳沿竖直方向.现在挂钩上升一质量为m 3的物体C 并从静止状态释放,已知它恰好能使B 离开地面但不继续上升.若将C 换成另一个质量为(m 1+m 2)的物体D ,仍从上述初始位置由静止状态释放,则这次B 刚离地时D 的速度的大小是多少?已知重力加速度为g .解析:开始时,A 、B 静止,设弹簧压缩量为x 1,有kx 1=m 1g ①挂C 并释放后,C 向下运动,A 向上运动,设B 刚要离地时弹簧伸长量为x 2,有 kx 2=m 2g ②B 不再上升,表示此时A 和C 的速度为零,C 已降到其最低点.由机械能守恒,与初始状态相比,弹簧弹性势能的增加量为ΔE =m 3g (x 1+x 2)-m 1g (x 1+x 2) ③C 换成D 后,当B 刚离地时弹簧势能的增量与前一次相同,由能量关系得22311311211211()()()()22m m v m v m m g x x m g x x E ++=++-+-D ④ 由③④式得2131121(2+)=(+)2m m v m g x x ⑤ 由①②⑤式得v = ⑥21.(2005年·全国理综Ⅱ)质量为M 的小物块A 静止在离地面高h 的水平桌面的边缘,质量为m 的小物块B 沿桌面向A 运动并以速度v 0与之发生正碰(碰撞时间极短).碰后A 离开桌面,其落地点离出发点的水平距离为L .碰后B 反向运动.求B 后退的距离.已知B 与桌面间的动摩擦因数为μ.重力加速度为g .【答案】201)2v g m解析:设t 为A 从离开桌面至落地经历的时间,V 表示刚碰后A 的速度,有212h gt =① L =Vt② 设v 为刚碰后B 的速度的大小,由动量守恒,mv 0=MV -mv③ 设B 后退的距离为l ,由功能关系,212mgl mv μ= ④由以上各式得201)2l v g m = ⑤22.(2005年·全国理综Ⅲ)如图所示,一对杂技演员(都视为质点)乘秋千(秋千绳处于水平位置)从A 点由静止出发绕O 点下摆,当摆到最低点B 时,女演员在极短时间内将男演员沿水平方向推出,然后自己刚好能回到高处A .求男演员落地点C 与O 点的水平距离s .已知男演员质量m 1和女演员质量m 2之比122m m =,秋千的质量不计,秋千的摆长为R ,C 点比O 点低5R .【答案】8R解析:设分离前男女演员在秋千最低点B 的速度为v B ,由机械能守恒定律,得212121()()2B m m gR m m v +=+ 设刚分离时男演员速度的大小为v 1,方向与v 0相同;女演员速度的大小为v 2,方向与v 0相反,由动量守恒:(m 1+m 2)v 0=m 1v 1-m 2v 2分离后,男演员做平抛运动,设男演员从被推出到落在C 点所需的时间为t,根据题给条件,从运动学规律,21142R gt s v t ==根据题给条件,女演员刚好回到A 点,由机械能守恒定律得222212m gR m v =已知m 1=2m 2,由以上各式可得s=8R23.(2005年·天津理综)如图所示,质量m A 为4.0kg 的木板A 放在水平面C 上,木板与水平面间的动摩擦因数μ为0.24,木板右端放着质量m B 为1.0kg 的小物块B (视为质点),它们均处于静止状态.木板突然受到水平向右的12N·s 的瞬时冲量I 作用开始运动,当小物块滑离木板时,木板的动能E kA 为8.0J ,小物块的动能E kB 为0.50J ,重力加速度取10m/s 2,求:(1)瞬时冲量作用结束时木板的速度v 0; (2)木板的长度L . 【答案】0.50m解析:(1)设水平向右为正方向,有I =m A v 0 ①代入数据得v 0=3.0m/s ②(2)设A 对B 、B 对A 、C 对A 的滑动摩擦力的大小分别为F AB 、F BA 和F CA ,B 在A 滑行的时间为t ,B 离开A 时A 和B 的速度分别为v A 和v B ,有-(F BA +F CA )t =m A v A -m A v A ③F AB t =m B v B ④其中F AB =F BA F CA =μ(m A +m B )g ⑤设A 、B 相对于C 的位移大小分别为s A 和s B , 有22011()22BA CA A A A A F F s m v m v -+=- ⑥ F AB s B =E kB ⑦动量与动能之间的关系为A A m v = ⑧B B m v =⑨ 木板A 的长度L =s A -s B ⑩代入数据解得L =0.50m24.(2005年·北京春招)下雪天,卡车在笔直的高速公路上匀速行驶.司机突然发现前方停着一辆故障车,他将刹车踩到底,车轮被抱死,但卡车仍向前滑行,并撞上故障车,且推着它共同滑行了一段距离l 后停下.事故发生后,经测量,卡车刹车时与故障车距离为L ,撞车后共同滑行的距离825l L =.假定两车轮胎与雪地之间的动摩擦因数相同.已知卡车质量M 为故障车质量m 的4倍. (1)设卡车与故障车相撞前的速度为v 1,两车相撞后的速度变为v 2,求12v v ; (2)卡车司机至少在距故障车多远处采取同样的紧急刹车措施,事故就能免于发生.【答案】(1)54;(2)32L 解析:(1)由碰撞过程动量守恒 M v 1=(M +m )v 2 ①则1254v v = (2)设卡车刹车前速度为v 0,轮胎与雪地之间的动摩擦因数为μ 两车相撞前卡车动能变化22011122Mv Mv MgL μ-= ② 碰撞后两车共同向前滑动,动能变化221()0()2M m v M m gl μ+-=+ ③ 由②式得v 02-v 12=2μgL由③式得v 22 =2μgL 又因208,325l L v gL μ==得 如果卡车滑到故障车前就停止,由20102Mv MgL μ'-= ④ 故32L L '= 这意味着卡车司机在距故障车至少32L 处紧急刹车,事故就能够免于发生. 25.(2004年·广东)如图所示,轻弹簧的一端固定,另一端与滑块B 相连,B 静止在水平导轨上,弹簧处在原长状态,另一质量与B 相同的滑块A ,从导轨上的P 点以某一初速度向B 滑行,当A 滑过距离L 1时,与B 相碰,碰撞时间极短,碰后A 、B 紧贴在一起运动,但互不粘连,已知最后A 恰好返回出发点P 并停止.滑块A 和B 与导轨的滑动摩擦因数都为μ,运动过程中弹簧最大形变量为L 2,求A 从P 出发时的初速度v 0.解析:令A 、B 质量均为m ,A 刚接触B 时速度为v 1(碰前),由动能关系,有220111122mv mv mgl μ-= A 、B 碰撞过程中动量守恒,令碰后A 、B 共同运动的速度为v 2,有mv 1=mv 2碰后A 、B 先一起向左运动,接着A 、B 一起被弹回,在弹簧恢复到原长时,设A 、B 的共同速度为v 3,在这过程中,弹簧势能始末两态都为零.2223211(2)(2)(2)(2)22m v m v m g l μ-= 此后A 、B 开始分离,A 单独向右滑到P 点停下,由功能关系有23112mv mgl μ=由以上各式解得0v =26.(2004年·全国理综Ⅱ)柴油打桩机的重锤由气缸、活塞等若干部件组成,气缸与活塞间有柴油与空气的混合物.在重锤与桩碰撞的过程中,通过压缩使混合物燃烧,产生高温高压气体,从而使桩向下运动,锤向上运动.现把柴油打桩机和打桩过程简化如下:柴油打桩机重锤的质量为m ,锤在桩帽以上高度为h 处如图(a )从静止开始沿竖直轨道自由落下,打在质量为M (包括桩帽)的钢筋混凝土桩子上.同时,柴油燃烧,产生猛烈推力,锤和桩分离,这一过程的时间极短.随后,桩在泥土中向下移动一距离l .已知锤反跳后到达最高点时,锤与已停下的桩帽之间的距离也为h如图(b ).已知m 1=1.0×103kg ,M =2.0×103kg ,h =2.0m ,l =0.2m ,重力加速度g=10m/s 2,混合物的质量不计.设桩向下移动的过程中泥土对桩的作用力F 是恒力,求此力的大小.【答案】2.1×105N解析:考察锤m 和桩M 组成的系统,在碰撞过程中动量守恒(因碰撞时间极短,内力远大于外力),选取竖直向下为正方向,则mv 1=Mv -mv 2其中12v v 碰撞后,桩M 以初速v 向下运动,直到下移距离l 时速度减为零,此过程中,根据动能定理,有2102Mgl Fl Mv -=-由上各式解得()[2mg m F mg h l l M=+-+ 代入数据解得F =2.1×105N27.(2004年·全国理综Ⅲ)如图所示,长木板ab 的b 端固定一挡板,木板连同档板的质量为M=4.0kg ,a 、b 间距离s=2.0m .木板位于光滑水平面上.在木板a 端有一小物块,其质量m =1.0kg ,小物块与木板间的动摩擦因数μ=0.10,它们都处于静止状态.现令小物块以初速v 0=4.0m/s 沿木板向前滑动,直到和挡板相碰.碰撞后,小物块恰好回到a端而不脱离木板.求碰撞过程中损失的机械能.【答案】2.4J解析:设木块和物块最后共同的速度为v ,由动量守恒定律得v M m mv )(0+= ①设全过程损失的机械能为E ,则220)(2121v M m mv E +-= ②用s 1表示从物块开始运动到碰撞前瞬间木板的位移,W 1表示在这段时间内摩擦力对木板所做的功.用W 2表示同样时间内摩擦力对物块所做的功.用s 2表示从碰撞后瞬间到物块回到a 端时木板的位移,W 3表示在这段时间内摩擦力对木板所做的功.用W 4表示同样时间内摩擦力对物块所做的功.用W 表示在全过程中摩擦力做的总功,则W 1=1mgs μ ③W 2=)(1s s mg +-μ ④W 3=2mgs μ-⑤ (a ) (b )W 4=)(2s s mg -μ ⑥W =W 1+W 2+W 3+W 4 ⑦用E 1表示在碰撞过程中损失的机械能,则 E 1=E -W⑧ 由①~⑧式解得mgs v M m mM E μ221201-+= ⑨代入数据得E 1=2.4J ⑩28.(2004年·全国理综Ⅳ)如图所示,在一光滑的水平面上有两块相同的木板B 和C .重物A (视为质点)位于B 的右端,A 、B 、C 的质量相等.现A 和B 以同一速度滑向静止的C 、B 与C 发生正碰.碰后B 和C 粘在一起运动,A 在C 上滑行,A 与C 有摩擦力.已知A 滑到C 的右端而未掉下.试问:从B 、C 发生正碰到A刚移到C 右端期间,C 所走过的距离是C 板长度的多少倍. 【答案】73解析:设A 、B 、C 的质量均为m .碰撞前,A 与B 的共同速度为v 0,碰撞后B 与C 的共同速度为v 1.对B 、C ,由动量守恒定律得mv 0=2mv 1 ①设A 滑至C 的右端时,三者的共同速度为v 2.对A 、B 、C ,由动量守恒定律得2mv 0=3mv 2 ②设A 与C 的动摩擦因数为μ,从发生碰撞到A 移至C 的右端时C 所走过的距离为s ,对B 、C 由功能关系2122)2(21)2(21v m v m mgs -=μ ③ 设C 的长度为l ,对A ,由功能关系 22202121)(mv mv l s mg -=+μ④ 由以上各式解得73s l = ⑤ 29.(2004年·天津)质量m =1.5kg 的物块(可视为质点)在水平恒力F 作用下,从水平面上A 点由静止开始运动,运动一段距离撤去该力,物块继续滑行t =2.0s 停在B 点,已知A 、B 两点间的距离s =5.0m ,物块与水平面间的动摩擦因数μ=0.20,求恒力F 多大.(g =10m/s 2).【答案】15N解析:设撤去力F 前物块的位移为s 1,撤去力F 时物块速度为v .物块受到的滑动摩擦力F 1=μmg撤去力F 后,由动量定理得-F 1t =-mv由运动学公式得s -s 1=vt /2全过程应用动能定理得Fs 1-F 1s =0 由以上各式得222mgsF s gt μμ=-代入数据得F =15N30.(2003年·江苏)如图(a )所示,为一根竖直悬挂的不可伸长的轻绳,下端拴一小物块A ,上端固定在C 点且与一能测量绳的拉力的测力传感器相连.已知有一质量为m 0的子弹B 沿水平方向以速度v 0射入A 内(未穿透),接着两者一起绕C 点在竖直面内做圆周运动.在各种阻力都可忽略的条件下测力传感器测得绳的拉力F 随时间t 变化关系如图(b )所示,已知子弹射入的时间极短,且图(b )中t =0为A 、B 开始以相同的速度运动的时刻.根据力学规律和题中(包括图)提供的信息,对反映悬挂系统本身性质的物理量(例如A 的质量)及A 、B 一起运动过程中的守恒量,你能求得哪些定量的结果?【答案】06m g F m m -=;g F v m l m22020536=;22003m m v E g F = 解析:由图2可直接看出,A 、B 一起做周期性运动,运动的周期T =2t 0 ①令m 表示A 的质量,l 表示绳长.1v 表示B 陷入A 内时即0=t 时A 、B 的速度(即圆周运动最低点的速度),2v 表示运动到最高点时的速度,F 1表示运动到最低点时绳的拉力,F 2表示运动到最高点时绳的拉力,根据动量守恒定律,得1000)(v m m v m += ② 在最低点和最高点处应用牛顿定律可得tv m m g m m F 21001)()(+=+- ③ tv m m g m m F 22002)()(+=++ ④根据机械能守恒定律可得 2202100)(21)(21)(2v m m v m m g m m l +-+=+ ⑤ 由图2可知 02=F ⑥ m F F =1⑦ 由以上各式可解得,反映系统性质的物理量是06m g F m m -= ⑧ g F v m l m 22020536= ⑨A 、B 一起运动过程中的守恒量是机械能E ,若以最低点为势能的零点,则2011()2E m m v =+ ⑩ 由②⑧⑩式解得22003m m v E gF =31.(2003年·江苏)(1)如图(a ),在光滑水平长直轨道上,放着一个静止的弹簧振子,它由一轻弹簧两端各联结一个小球构成,两小球质量相等.现突然给左端小球一个向右的速度μ0,求弹簧第一次恢复到自然长度时,每个小球的速度.(2)如图(b ),将N 个这样的振子放在该轨道上,最左边的振子1被压缩至弹簧为某一长度后锁定,静止在适当位置上,这时它的弹性势能为E 0.其余各振子间都有一定的距离,现解除对振子1的锁定,任其自由运动,当它第一次恢复到自然长度时,刚好与振子2碰撞,此后,继续发生一系列碰撞,每个振子被碰后刚好都是在弹簧第一次恢复到自然长度时与下一个振子相碰.求所有可能的碰撞都发生后,每个振子弹性势能的最大值.已知本题中两球发生碰撞时,速度交换,即一球碰后的速度等于另一球碰前的速度.【答案】(1)021,0u u u ==;(2)014E 解析:(1)设每个小球质量为m ,以1u 、2u 分别表示弹簧恢复到自然长度时左右两端小球的速度.由动量守恒和能量守恒定律有021mu mu mu =+(以向右为速度正方向)202221212121mu mu mu =+,解得021201,00,u u u u u u ====或 由于振子从初始状态到弹簧恢复到自然长度的过程中,弹簧一直是压缩状态,弹性力使左端小球持续减速,使右端小球持续加速,因此应该取解:021,0u u u ==(2)以v 1、v 1’分别表示振子1解除锁定后弹簧恢复到自然长度时左右两小球的速度,规定向右为速度的正方向,由动量守恒和能量守恒定律,mv 1+mv 1’=0021212121E v m mv ='+,解得1111v v v v ''=== 在这一过程中,弹簧一直是压缩状态,弹性力使左端小球向左加速,右端小球向右加速,故应取解:mE v m E v 0101,='-= 振子1与振子2碰撞后,由于交换速度,振子1右端小球速度变为0,左端小球速度仍为1v ,此后两小球都向左运动,当它们向左的速度相同时,弹簧被拉伸至最长,弹性势能最大,设此速度为10v ,根据动量守恒定律,有1102mv mv =用E 1表示最大弹性势能,由能量守恒有 211210210212121mv E mv mv =++解得0141E E 32.(2003年·全国理综)一传送带装置示意如图,其中传送带经过AB 区域时是水平的,经过BC 区域时变为圆弧形(圆弧由光滑模板形成,未画出),经过CD 区域时是倾斜的,AB 和CD 都与BC 相切.现将大量的质量均为m 的小货箱一个一个在A 处放到传送带上,放置时初速为零,经传送带运送到D 处,D 和A 的高度差为h ,稳定工作时传送带速度不变,CD 段上各箱等距排列,相邻两箱的距离为L ,每个箱子在A 处投放后,在到达B 之前已经相对于传送带静止,且以后也不再滑动(忽略经BC 段时的微小滑动).已知在一段相当长的时间T 内,共运送小货箱的数目为N .这装置由电动机带动,传送带与轮子间无相对滑动,不计轮轴处的摩擦.求电动机的平均输出功率P . 【答案】T Nm [222TL N +gh ] 解析:以地面为参考系(下同),设传送带的运动速度为v 0,在水平段运输的过程中,小货箱先在滑动摩擦力作用下做匀加速运动,设这段路程为s ,所用时间为t ,加速度为a ,则对小箱有s =1/2at 2 ①v 0=at ②在这段时间内,传送带运动的路程为s 0=v 0t ③由以上可得s 0=2s ④用f 表示小箱与传送带之间的滑动摩擦力,则传送带对小箱做功为A =fs =1/2mv 02 ⑤传送带克服小箱对它的摩擦力做功A 0=fs 0=2·1/2mv 02 ⑥两者之差就是克服摩擦力做功发出的热量Q =1/2mv 02 ⑦可见,在小箱加速运动过程中,小箱获得的动能与发热量相等.T 时间内,电动机输出的功为W =P T ⑧此功用于增加小箱的动能、势能以及克服摩擦力发热,即W =1/2Nmv 02+Nmgh +NQ ⑨已知相邻两小箱的距离为L ,所以v 0T =NL ⑩联立⑦⑧⑨⑩解得P =T Nm [222TL N +gh ] 33.(2003年·春招理综)有一炮竖直向上发射炮弹,炮弹的质量为M =6.0kg (内含炸药的质量可以忽略不计),射出的初v 0=60m/s .当炮弹到达最高点时爆炸为沿水平方向运动的两片,其中一片质量为m =4.0kg .现要求这一片不能落到以发射点为圆心、以R。
动量和能量综合例析例1、如图,两滑块A、B的质量分别为m1和m2,置于光滑的水平面上,A、B间用一劲度系数为K的弹簧相连。
开始时两滑块静止,弹簧为原长。
一质量为m的子弹以速度V沿弹簧长度方向射入滑块A并留在其中。
试求:(1)弹簧的最大压缩长度;(已知弹性势能公式EP=(1/2)KX2,其中K为劲度系数、X为弹簧的形变量) ;(2)滑块B相对于地面的最大速度和最小速度。
【解】(1)设子弹射入后A的速度为V1,有:mV0=(m+m1)V1(1)得:此时两滑块具有的相同速度为V,依前文中提到的解题策略有:(m+m1)V1=(m+m1+m2)V (2)(3)由(1)、(2)、(3)式解得:(2)mV0=(m+m1)V2+m2V3(4)(5)由(1)、(4)、(5)式得:V3[(m+m1+m2)V3-2mV]=0解得:V3=0 (最小速度)(最大速度)例2、如图,光滑水平面上有A、B两辆小车,C球用0.5m长的细线悬挂在A车的支架上,已知mA=m B=1kg,m C=。
开始时B车静止,A车以V0=4m/s的速度驶向B车并与其正碰后粘在一起。
若碰撞时间极短且不计空气阻力,g取10m/s2,求C球摆起的最大高度。
【解】由于A、B碰撞过程极短,C球尚未开始摆动,故对该过程依前文解题策略有: m A V 0=(m A +m B )V 1 (1) E 内= (2)对A 、B 、C 组成的系统,图示状态为初始状态,C 球摆起有最大高度时,A 、B 、C 有共同速度,该状态为终了状态,这个过程同样依解题策略处理有:(m A +m C )V 0=(m A +m B +m C )V 2 (3)(4)由上述方程分别所求出A、B刚粘合在一起的速度V1=2m /s ,E内=4J ,系统最后的共同速度V2=2.4m /s ,最后求得小球C摆起的最大高度h=。
例3、质量为m 的木块在质量为M 的长木板中央,木块与长木板间的动摩擦因数为μ,木块和长木板一起放在光滑水平面上,并以速度v 向右运动。
为了使长木板能停在水平面上,可以在木块上作用一时间极短的冲量。
试求:(1)要使木块和长木板都停下来,作用在木块上水平冲量的大小和方向如何 (2)木块受到冲量后,瞬间获得的速度为多大方向如何 (3)长木板的长度要满足什么条件才行【解】(1)水平冲量的大小为:()I M m v =+(1分) 水平冲量的方向向左(1分)(2)以木块为研究对象:取向左为正方向,则: ()()I M m v mv mv m =+=--'(2分) ∴=v Mmv m '(2分) (3)根据能的转化与守恒定律得:μmg L mv Mv m 21212022=+-'(2分) ()∴=+L M M m v m g22μ(2分)即木板的长度要满足:()L M M m v m g≥+22μ综上所述,解决动量守恒系统的功能问题,其解题的策略应为: 一、分析系统受力条件,建立系统的动量守恒定律方程。
二、根据系统内的能量变化的特点建立系统的能量方程三、建立该策略的指导思想即借助于系统的动能变化来表现内力做功。
1、如图,在光滑绝缘的长直轨道上有A 、B 两个带同种电荷小球,其质量分别为m 1、m 2。
小球A 以水平速度V 0沿轨道向右冲向静止的B 球,求最后两球最近时(A 、B 两球不相碰)系统电势能的变化。
2、如图所示,光滑的水平面上有质量为M 的滑板,其中AB 部分为光滑的1/4圆周,半径为r ,BC 水平但不光滑,长为。
一可视为质点的质量为m 的物块,从A 点由静止释放,最后滑到C 点静止,求物块与BC 的动摩擦因数。
3、如图所示, 在高为h 的光滑平台上放一个质量为m 2的小球, 另一个质量为 m 1的球沿光滑弧形轨道从距平台高为h 处由静止开始下滑, 滑至平台上与球m 2发生正碰, 若m 1= m 2, 求小球m 2最终落点距平台边缘水平距离的取值范围.4、如图所示,A 、B 是位于水平桌面上的两质量相等的木块,离墙壁的距离分别为L 1和L 2,与桌面之间的滑动摩擦系数分别为μA 和μB ,今给A 以某一初速度,使之从桌面的右端向左运动,假定A 、B 之间,B 与墙间的碰撞时间都很短,且碰撞中总动能无损失,若要使木块A 最后不从桌面上掉下来,则A 的初速度最大不能超过______。
5、如图在光滑的水平台上静止着一块长50cm ,质量为1kg 的木板,板的左端静止着一块质量为1千克的小铜块(可视为质点),一颗质量为10g 的子弹以200m/s 的速度射向铜块,碰后以100m/s 速度弹回。
问铜块和木板间的摩擦系数至少是多少时铜块才不会从板的右端滑落。
(g 取10m/s 2 )AB7、如图所示,小球A 从半径为R=的1/4光滑圆弧轨道的上端点以v 0=3m/s 的初速度开始滑下,到达光滑水平面上以后,与静止于该水平面上的钢块B 发生碰撞,碰撞后小球A 被反向弹回,沿原路进入轨道运动恰能上升到它下滑时的出发点(此时速度为零)。
设A 、B 碰撞机械能不损失,求A 和B 的质量之比是多少8、如图,有光滑圆弧轨道的小车静止在光滑水平面上,其质量为M 。
一质量为m 的小球以水平速度V 0沿轨道的水平部分冲上小车,求小球沿圆弧形轨道上升到最大高度的过程中圆弧形轨道对小球的弹力所做的功。
9、如图6—5—5所示,一质量为M ,长为L 的长方形木 板B 放在光滑的水平地面上,在其右端放一质量为 m 的小木块m <M 。
现以地面为参照系,给A 和B 以大小相等方向相反的初速度(如图),使A 开始向 左运动、B 开始向右运动,但最后A 刚好没有滑离B 板。
以地面为参照系,则求解下例两问:(1)若已知A 和B 的初速度大小为v0,求它们最后的速度的大小和方向。
(2)若初速度的大小未知,求小木块A 向左运动到达的最远处(从地面上看)离出发点的距离。
1、 m 1m 2V 02/2(m 1+m 2)2、 r /L3、 (h<s<2h )4、 5、6、 (1) 1m/s, 方向向下; (2) k>3, V F 方向向上; k =3,V F =0; k<3, V F方向向下。
7、 1 : 9 8、20)(2Mm mV M W +-= HMVmlv 0v9、(1) v = v 0,方向向右 ; (2) L 1= L滑块、子弹打木块模型之一子弹打木块模型:包括一物块在木板上滑动等。
μNS 相=ΔE k 系统=Q ,Q 为摩擦在系统中产生的热量。
②小球在置于光滑水平面上的竖直平面内弧形光滑轨道上滑动 :包括小车上悬一单摆单摆的摆动过程等。
小球上升到最高点时系统有共同速度(或有共同的水平速度);系统内弹力做功时,不将机械能转化为其它形式的能,因此过程中系统机械能守恒。
例题:质量为M 、长为l 的木块静止在光滑水平面上,现有一质量为m 的子弹以水平初速v 0射入木块,穿出时子弹速度为v ,求子弹与木块作用过程中系统损失的机械能。
解:如图,设子弹穿过木块时所受阻力为f ,突出时木块速度为V ,位移为S ,则子弹位移为(S+l)。
水平方向不受外力,由动量守恒定律得:mv 0=mv+MV ①由动能定理,对子弹 -f(s+l )=2022121mv mv - ②对木块 fs=0212-MV ③由①式得 v=)(0v v M m - 代入③式有 fs=2022)(21v v Mm M -• ④ ②+④得 f l =})]([2121{2121212120220222v v Mm M mv mv MV mv mv -+-=-- 由能量守恒知,系统减少的机械能等于子弹与木块摩擦而产生的内能。
即Q=f l ,l 为子弹现木块的相对位移。
结论:系统损失的机械能等于因摩擦而产生的内能,且等于摩擦力与两物体相对位移的乘积。
即Q=ΔE 系统=μNS 相其分量式为:Q=f 1S 相1+f 2S 相2+……+f n S 相n =ΔE 系统(13年高考35题)如图18,两块相同平板P 1、P 2至于光滑水平面上,质量均为m 。
P 2的右端固定一轻质弹簧,左端A 与弹簧的自由端B 相距L 。
物体P 置于P 1的最右端,质量为2m 且可以看作质点。
P 1与P 以共同速度v 0向右运动,与静止的P 2发生碰撞,碰撞时间极短,碰撞后P 1与P 2粘连在一起,P 压缩弹簧后被弹回并停在A 点(弹簧始终在弹性限度内)。
P 与P 2之间的动摩擦因数为μ,求(1)P 1、P 2刚碰完时的共同速度v 1和P 的最终速度v 2; (2)此过程中弹簧最大压缩量x 和相应的弹性势能E p【解析】P 1与P 2发生完全非弹性碰撞时,P 1、P 2组成的系统遵守动量守恒定律;P 与(P 1+P 2)通过摩擦力和弹簧弹力相互作用的过程,系统遵守动量守恒定律和能量守恒定律.注意隐含条件P 1、P 2、P 的最终速度即三者最后的共同速度;弹簧压缩量最大时,P 1、P 2、P 三者速度相同.(1)P 1与P 2碰撞时,根据动量守恒定律,得 mv 0=2mv 1解得v 1=v 02,方向向右P 停在A 点时,P 1、P 2、P 三者速度相等均为v 2,根据动量守恒定律,得 2mv 1+2mv 0=4mv 2解得v 2=34v 0,方向向右.(2)弹簧压缩到最大时,P 1、P 2、P 三者的速度为v 2,设由于摩擦力做功产生的热量为Q ,根据能量守恒定律,得从P 1与P 2碰撞后到弹簧压缩到最大 12×2mv 21+12×2mv 20=12×4mv 22+Q +E p 从P 1与P 2碰撞后到P 停在A 点 12×2mv 21+12×2mv 20=12×4mv 22+2Q 联立以上两式解得E p =116mv 20,Q =116mv 2根据功能关系有Q =μ·2mg (L +x )解得x =v 2032μg-L .答案:(1)v 1=12v 0,方向向右 v 2=34v 0,方向向右(2)v 2032μg -L 116mv 20 练习6、如图所示,长木板ab 的b 端固定一挡板,木板连同档板的质量为M=,a 、b 间距离s=.木板位于光滑水平面上.在木板a 端有一小物块,其质量m =,小物块与木板间的动摩擦因数μ=,它们都处于静止状态.现令小物块以初速v 0=s 沿木板向前滑动,直到和挡板相碰.碰撞后,小物块恰好回到a 端而不脱离木板.求碰撞过程中损失的机械能.【答案】1、(2012肇庆一模第35题)如图所示,半径为R 的光滑半圆环轨道竖直固定在一水平光滑的桌面上,在桌面上轻质弹簧被a 、b 两个小球挤压(小球与弹簧不拴接),处于静止状态。