高中数学 平面方程式 范本例题
- 格式:pptx
- 大小:734.10 KB
- 文档页数:25
2.3.2 圆的一般方程1曲线x2+y2+2x-2y=0关于()A.直线x=2对称B.直线y=-x对称C.点(-2,2)中心对称D.点(-2,0)中心对称(x+)2+(y-)2=4.圆心(-)在直线y=-x上,故圆关于直线y=-x对称.故选B.2若方程a2x2+(a+2)y2+2ax+a=0表示圆,则a的值是()A.-1B.2C.-1或2D.1可得a=-1或a=2(舍).3过原点的直线与圆x2+y2+4x+3=0相切,若切点在第三象限,则该直线的方程是()A.y=xB.y=-xC.y=xD.y=-xy=kx,因为圆心(-2,0)到直线kx-y=0的距离等于圆的半径1,所以=1,解得k=±.又因为切点在第三象限,所以k=-舍去.所以所求直线的方程为y=x.4点P(4,-2)与圆x2+y2=4上任一点连线的中点的轨迹方程是()A.(x-2)2+(y+1)2=1B.(x-2)2+(y+1)2=4C.(x+4)2+(y-2)2=1D.(x+2)2+(y-1)2=1(x1,y1),其与点P连线的中点为(x,y),则代入x2+y2=4,得(2x-4)2+(2y+2)2=4,化简得(x-2)2+(y+1)2=1.5圆x2+y2-4x-4y-10=0上的点到直线x+y-14=0的最大距离与最小距离的差是()A.36B.18C.6D.52+y2-4x-4y-10=0⇒(x-2)2+(y-2)2=18,即圆心为(2,2),半径为3.由点到直线的距离公式得圆心到直线的距离为=5,由数形结合思想可得:该圆上的点到已知直线的距离的最小值为2,最大值为8,故所求距离之差为6.6已知A(1,4),B(-2,3),C(4,-5),D(4,3)四点,则这四点()A.共线B.不共面C.共圆D.不共圆A,B,C三点的圆的方程为x2+y2+Dx+Ey+F=0,则有解得所以经过A,B,C三点的圆的方程为x2+y2-2x+2y-23=0,将点D(4,3)的坐标代入上述方程有42+32-2×4+2×3-23=0,所以点D在此圆上,故A,B,C,D四点共圆.7已知A(-2,0),B (0,2),点C是圆x2+y2-2x=0上任意一点,则△ABC的面积的最大值为()A.3-B.4-C.D.3+ABC的面积最大,即要求点C到AB的距离最大,亦即求圆上的点到直线AB距离的最大值,应为圆心到直线AB的距离d与半径r之和.由于圆心C(1,0)到直线AB:x-y+2=0的距离d为,即C到AB的距离的最大值为+1,故△ABC的面积的最大值为×|AB|×=3+.8设圆x2+y2-4x-5=0的弦AB的中点为P(3,1),则直线AB的方程是.AB与点P和圆心所确定的直线垂直,由点斜式可得.4=09圆x2+y2-2x-K2+2K-2=0的面积的最小值是.(x-1)2+y2=K2-2K+3,因此其半径为,圆的面积S=π()2=(K2-2K+3)π=[(K-1)2+2]π,故当K=1时,圆的面积最小,最小值为2π.π10判断下列方程表示什么图形.(1)x2+y2=0;(2)x2+y2-2x-2y-3=0;(3)x2+y2+2ax+2by=0.因为x2+y2=0,所以x=0,且y=0.即方程表示一个点(0,0).(2)原方程可化为(x-1)2+(y-1)2=5,即方程表示圆心为(1,1),半径为的圆.(3)原方程可化为(x+a)2+(y+b)2=a2+b2,当a=b=0时,方程表示一个点(0,0);当a2+b2≠0时,方程表示圆心为(-a,-b),半径为的圆.11已知过点M(-1,1)的直线l被圆C:x2+y2-2x+2y-14=0所截得的弦长为4,求直线l的方程.C的坐标为(1,-1),半径为4,因为直线l被圆C所截得的弦长为4,所以圆心C到直线l的距离为2.(1)若直线l的斜率不存在,则直线l的方程为x=-1,此时点C到l的距离为2,可求得弦长为4,符合题意.(2)若直线l的斜率存在,设为k,则直线l的方程为y-1=k(x+1),即kx-y+k+1=0,因为圆心C到直线l的距离为2,所以=2,所以k2+2k+1=k2+1,所以k=0,所以直线l的方程为y=1.综上(1)(2)可得:直线l的方程为x=-1或y=1.★12某圆拱桥的示意图如图,该圆拱的跨度AB是16 m,拱高OP是4 m,在建造时,每隔2 m需用一个支柱支撑,求支柱A2P2的长度.,以线段AB所在直线为x轴,线段AB的中点O为坐标原点建立直角坐标系,设出圆的一般方程,代入点的坐标即可求出.AB所在直线为x轴,线段AB的中点O为坐标原点建立直角坐标系,那么点A,B,P的坐标分别为(-8,0),(8,0),(0,4),设圆拱所在的圆的方程为x2+y2+Dx+Ey+F=0.∵点A,B,P在所求的圆上,则代入坐标得解得∴圆拱所在的圆的方程为x2+y2+12y-64=0.将点P2的横坐标x=2代入圆的方程,解得y1=-6-4(舍)或y2=-6+4.答:支柱A2P2的长为(4-6) m.。
6.3一、单选题1、平面330x y z +--=的截距式方程为( ).A 3(1)0x y z +--= B133x z y +-= C 33x y z +-= D 13y x z +-=答案: B解析: 根据截距式方程的标准形式,可将平面的一般式方程330x y z +--=,化为133x z y +-=.2、过三点1(0,1,0)M -, 2(1,0,1)M , 3(1,1,1)M -的平面的一般式方程为( ).A 32(1)0x y z -+-=B 3220x y z --+=C 3220x y z ---=D 1232x z y --= 答案: C解析:方法一 直接求平面的一般方程 .设平面的一般方程为0Ax By Cz D +++= ①,将已知的三个点123,,M M M 坐标分别代入方程①中, 即有方程组000B D A C D A B C D -+=⎧⎪++=⎨⎪+-+=⎩, 运用中学学过的消元法解方程组, 用D来表示,,A B C , 可得3212B DA D C D ⎧⎪=⎪⎪=-⎨⎪⎪=⎪⎩ , 因此, 所求平面的一般方程为 310,22D x D y D z D -⋅+⋅+⋅+=方程两边同时除以2D -化简得3220x y z ---=.方法二 先求平面的点法式方程, 再化为一般方程 .将三个点任意连成两个向量, 不妨作1213,,M M M M则有1213(1,1,1),(1,2,1),M M M M ==-从1213,M M M M的坐标可以看出这两个向量并不平行, 可以通过这两个向量求出平面方程的法向量1213111121i j kn M M M M =⨯=-11111132.211112i j k i j k =+=-++--- 再从123,,M M M 中任取一点, 不妨就取1(0,1,0)M -, 根据点法式, 可得所求的平面方程(3)(0)2(1)1(0)0,x y z -⋅-+⋅++⋅-=化为平面的一般方程即3220x y z ---=. (大家还可以想想其他方法.)(做选择题也可以用代入法,将平面上点的坐标逐个代入四个选项检验。
必修2一、平面几何 (一)直线1、 直线的斜率与倾斜角 (1)斜率①两点的斜率公式:1122(,),(,)P x y Q x y ,则212121()PQ y y k x x x x -=≠-②斜率的范围:k R ∈(2)直线的倾斜角范围:)0,180⎡⎣o o(3)斜率与倾斜角的关系:tan (90)k αα=≠o注:(1)每条直线都有倾斜角,但不是每条直线都有斜率;(2)特别地,倾斜角为0o的直线斜率为0;倾斜角为90o的直线斜率不存在。
2、直线方程(1)点斜式:00()y y k x x -=-;适用于斜率存在的直线 (2)斜截式:y kx b =+;适用于斜率存在的直线注:b 为直线在y 轴上的截距,截距不是距离,截距可正,可负,可为零(3)两点式:1112122121(,)x x y y x x y y x x y y --=≠≠--;适用于斜率存在且不为零的直线(4)截距式:1x ya b+=;适用于斜率存在,且不为零且不过原点的直线 (5)一般式:0Ax By C ++=(,A B 不同时为0) (6)特殊直线方程①斜率不存在的直线(与y 轴垂直):0x x =;特别地,y 轴:0x = ②斜率为0的直线(与x 轴垂直):0y y =;特别地,x 轴:0y = ③在两轴上截距相等的直线:(Ⅰ)y x b =-+;(Ⅱ)y kx = 在两轴上截距相反的直线:(Ⅰ)y x b =+;(Ⅱ)y kx =在两轴上截距的绝对值相等的直线:(Ⅰ)y x b =-+;(Ⅱ)y x b =+;(Ⅲ)y kx = 3、平面上两直线的位置关系及判断方法 (1)111222:;:l y k x b l y k x b =+=+①平行:12k k =且12b b ≠(注意验证12b b ≠) ②重合:12k k =且12b b = ③相交:12k k ≠特别地,垂直:121k k =-(2)11112222:0;:0l A x B y C l A x B y C ++=++= ①平行:1221A B A B =且1221A C A C ≠(验证) ②重合:1221A B A B =且1221A C A C = ③相交:1221A B A B ≠特别地,垂直:12120A A B B +=(3)与直线0Ax By C ++=平行的直线可设为:0Ax By m ++=与直线0Ax By C ++=垂直的直线可设为:0Bx Ay n -+= 4、其他公式(1)平面上两点间的距离公式:1122(,),(,)A x y B x y,则AB =(2)线段中点坐标公式:1122(,),(,)A x y B x y ,则,A B 中点的坐标为1212(,)22x x y y ++ (3)三角形重心坐标公式:112233(,),(,),(,)A x y B x y C x y ,则三角形ABC 的重心坐标公式为:123123(,)33x x x y y y ++++ (4)点00(,)P x y 到直线:0l Ax By C ++=的距离公式:d =(5)两平行线112212:0;:0()l Ax By C l Ax By C C C ++=++=≠间的距离:d =(用此公式前要将两直线中,x y 的系数统一)(6)点A 关于点P 的对称点B 的求法:点P 为,A B 中点(7)点A 关于直线l 的对称点B 的求法:利用直线AB 与直线l 垂直以及AB 的中点在直线l 上,列出方程组,求出点B 的坐标。