卡方分布表,t分布表,F分布表,标准正态分布
- 格式:xls
- 大小:409.50 KB
- 文档页数:4
标准正态分布对照表摘要:一、标准正态分布的定义与性质1.标准正态分布的定义2.标准正态分布的概率密度函数3.标准正态分布的累积分布函数二、标准正态分布对照表的应用1.对照表的构成与意义2.对照表的使用方法3.对照表在实际问题中的应用举例三、标准正态分布与其他分布的关系1.标准正态分布与正态分布的关系2.标准正态分布与t 分布的关系3.标准正态分布与卡方分布的关系四、标准正态分布在统计学中的重要性1.描述性统计分析中的应用2.推断性统计分析中的应用3.概率论与数理统计的基础知识正文:标准正态分布,又称为高斯分布(Gaussian distribution),是一种连续型概率分布。
它具有对称的钟形曲线,其分布的均值(μ)为0,标准差(σ)为1。
标准正态分布广泛应用于统计学、概率论、工程学等领域,其对照表是研究和解决实际问题的关键工具。
一、标准正态分布的定义与性质标准正态分布的定义可以追溯到19 世纪初,德国数学家卡尔·弗里德里希·高斯(Carl Friedrich Gauss)对这一分布的深入研究。
标准正态分布的概率密度函数为:f(x) = (1 / (√(2π))) * e^(-(x^2) / 2)其累积分布函数为:F(x) = 1 / (√(2π)) * ∫[e^(-(t^2) / 2), t ≤ x] dt二、标准正态分布对照表的应用标准正态分布对照表是一个重要的工具,它可以帮助我们快速查找标准正态分布在一定置信水平下的临界值。
对照表通常包括正态分布的累积分布函数值、z 分数(Z-score)以及对应的概率。
使用对照表时,我们可以根据实际问题中所给的置信水平,找到对应的z 分数,从而求解问题。
例如,在产品质量控制中,我们希望确定一个产品的合格率。
已知过去经验表明,合格率约为95%。
我们可以使用对照表查找标准正态分布在95% 置信水平下的z 分数,得到±1.96。
然后,将这个z 分数代入到正态分布的累积分布函数中,得到产品的合格率。
布,它们与正态分布一起,是试验统计中常用的分布。
2当X 1、X 2、…、Xn 相互独立且都服从 N(0,1)时,Z=v X i 的i2(n),它的分分布称为自由度等于 布密度p(z )=n 的1 AnX22- n2 0,n-1.+处 2 -u , 0u 2e du ,2分布,记作Zz _2e其他,称为Gamma 函数,且】1 =1,式中的『-=I2分布是非对称分布,具有可加性,即当丫与Z_I - = n 。
2相互独立,且丫2(n ), Z 2(m ),贝y Y+Z 〜2(n+m )。
Y+Z= X+§1.4 常用的分布及其分位数 1.卡平方分布卡平方分布、t 分布及F 分布都是由正态分布所导出的分证明:先令X 1、X 2、…、X n 、X n+1、X n+2、…、X n+m 相互独 立且都服从N(0,1),再根据 2分布的定义以及上述随机变 量的相互独立性,令 丫=X 2+X 2+…+X -, z=x 备+X 2+2+…+Xn+m ,即可得到丫+Z 〜2(n +m )。
2. t 分布若X 与丫相互独立,且X 〜N(0,1) , 丫〜2(n ),则Z =x . 丫的分布称为自由度等于n的t分布,记作Z〜t (n),它的分布密度;z2 V .n丿n 1 ~Y。
”心LP(z)=―;=时(殳)I请注意:t分布的分布密度也是偶函数,且当n>30时,t分布与标准正态分布 N(0,1)的密度曲线几乎重叠为一。
这时,t 分布的分布函数值查 N(0,1)的分布函数值表便可以得到。
3. F分布若X与丫相互独立,且X〜2(n),丫〜2(m), 则Z=X丫的分布称为第一自由度等于n、第二自由度等于n mm的F分布,记作Z〜F (n, m),它的分布密度2P (Z(m nz) 2n mn m------ in——1 z2-,z 0 n m2 20,其他。
请注意:F 分布也是非对称分布,它的分布密度与自由度1的次序有关,当 Z 〜F (n , m )时,刁〜F (m ,n )。
§1、4 常用得分布及其分位数1、 卡平方分布卡平方分布、t 分布及F 分布都就是由正态分布所导出得分布,它们与正态分布一起,就是试验统计中常用得分布。
当X 1、X 2、…、Xn 相互独立且都服从N(0,1)时,Z=∑ii X 2 得分布称为自由度等于n 得2χ分布,记作Z ~2χ(n),它得分布密度p(z )=⎪⎪⎩⎪⎪⎨⎧>⎪⎭⎫ ⎝⎛Γ--,,00,2212122其他z e x n z n n 式中得⎪⎭⎫ ⎝⎛Γ2n =u d e u u n ⎰∞+--012,称为Gamma 函数,且()1Γ=1,⎪⎭⎫ ⎝⎛Γ21=π。
2χ分布就是非对称分布,具有可加性,即当Y 与Z 相互独立,且Y ~2χ(n ),Z ~2χ(m ),则Y+Z ~2χ(n+m )。
证明: 先令X 1、X 2、…、X n 、X n+1、X n+2、…、X n+m 相互独立且都服从N(0,1),再根据2χ分布得定义以及上述随机变量得相互独立性,令Y=X 21+X 22+…+X 2n ,Z=X 21+n +X 22+n +…+X 2m n +,Y+Z= X 21+X 22+…+X 2n + X 21+n +X 22+n +…+X 2m n +,即可得到Y+Z ~2χ(n +m )。
2、 t 分布 若X 与Y 相互独立,且X ~N(0,1),Y ~2χ(n ),则Z =n Y X得分布称为自由度等于n 得t 分布,记作Z ~ t (n ),它得分布密度 P(z)=)()(221n nn ΓΓ+2121+-⎪⎪⎭⎫ ⎝⎛+n n z 。
请注意:t 分布得分布密度也就是偶函数,且当n>30时,t 分布与标准正态分布N(0,1)得密度曲线几乎重叠为一。
这时, t 分布得分布函数值查N(0,1)得分布函数值表便可以得到。
3、 F 分布 若X 与Y 相互独立,且X ~2χ(n ),Y ~2χ(m ), 则Z=m Y n X得分布称为第一自由度等于n 、第二自由度等于m 得F 分布,记作Z ~F (n , m ),它得分布密度 p(z)=⎪⎪⎪⎩⎪⎪⎪⎨⎧>++-⎪⎭⎫ ⎝⎛Γ⎪⎭⎫ ⎝⎛Γ⎪⎭⎫ ⎝⎛+Γ•。