(a) 输入图像; (b)高斯噪声污染图像;(c) 用均值滤波结果
均值滤波-示例
(d) 几何均值滤波(e)Q=-1.5的逆谐波滤波 (f) Q=1.5滤波的结果
顺序统计滤波
1.中值滤波
其中,其中,g为输入图像, s(x,y)为滤波窗口。 修正后的阿尔法均值滤波器
1 ˆ f ( x, y ) [max g ( s, t ) min g ( s, t )] 2 ( s ,t )S xy ( s ,t )S xy
g ( x, y )
f ( , ) h ( x , y ) d d n ( x , y )
f ( x, y ) h( x, y ) n( x, y )
G (u , v ) F (u , v ) H (u , v ) N (u , v )
由此可见,图像复原实际上就是已知g(x,y)从上式求 f(x,y)。进行图像处理关键的问题是寻求降质系统在 空间域上的冲激函数。
离散模型
M 1 N 1 m 0 n 0
g e ( x, y ) f e ( x, y )he ( x m, y n) ne ( x, y)
把上式写为矩阵形式,
综合上两式,对于线性空间不变系统,退化图像为:
g ( x, y )
f ( , ) h ( x , y ) d d
f ( x, y ) h( x, y )
退化的数学模型
利用二维冲激函数,f(x,y)可表示为点源函数的卷
积:
f ( x, y )
g ( x, y) f [ x x0 (t ), y y0 (t )]dt