单相半控桥式整流电路的设计说明
- 格式:doc
- 大小:792.00 KB
- 文档页数:19
摘要随着科学技术的日益发展,人们对电路的要求也越来越高,由于在生产实际中需要大小可调的直流电源,而相控整流电路结构简单、控制方便、性能稳定。
整流的基础是整流电路。
由于电力电子技术是将电子技术和控制技术引入传统的电力技术领域,利用半导体电力开关器件组成各种电力变换电路实现电能和变换和控制,而构成的一门完整的学科。
整流电路的应用十分广泛。
广泛的应用于直流电动机、电镀、电解电源、同步发电机励磁、通信系统电源灯。
本设计研究了单相半控桥式整流电路,对整流电路的原理及特点进行了分析,对整流元件进行了参数计算并选择出了合适的器件。
本设计选择KJ004集成触发器做为晶闸管的触发电路,详细的介绍了KJ004的工作原理。
本设计还设计了合理的保护电路。
最后利用simulink搭建仿真模型。
关键词:半控整流,驱动电路,保护电路,simulink仿真单相半控桥式整流电路设计1 主电路的设计1.1设计目的(1)、把从电力电子技术课程中所学到的理论和实践知识,在课程设计实践中全综合的加以运用,使这些知识得到巩固、提高,并使理论知识与实践技能密切结合起来。
(2)、初步树立起正确的设计思想,掌握一般电力电子电路设计的基本方法和技能,培养观察、分析和解决问题及独立设计的能力,训练设计构思和创新能力。
(3)、培养具有查阅参考文献和技术资料的能力,能熟悉或较熟悉地应用相关手册、图表、国家标准,为今后成为一名合格的电气工程技术人员进行必须的基本技能和基本素质训练。
1.2整流电路的选择整流电路是电力电子电路中出现最早的一种,整流电路是把交流电能转换为直流电能的电路。
大多数整流电路由变压器、整流主电路和滤波器等组成。
20世纪70年代以后,主电路多用硅整流二极管和晶闸管组成。
滤波器接在主电路与负载之间,用于滤除脉动直流电压中的交流成分。
变压器设置与否视具体情况而定。
变压器的作用是实现交流输入电压与直流输出电压间的匹配以及交流电网与整流电路之间的电隔离。
北京交通大学海滨学院电力电子学课程设计说明书单相半控桥式晶闸管整流电路的设计(阻感负载)学生姓名刘楷鹏.学号09142087 .专业电气工程及其自动化班级0902指导教师杨国庆.完成时刻2012-5-10 .摘要随着科学技术的日趋进展,人们对电路的要求也愈来愈高,由于在生产实际中需要大小可调的直流电源,而相控整流电路结构简单、控制方便、性能稳固,利用它能够方便地取得大中、小各类容量的直流电能,是目前取得直流电能的主要方式,取得了普遍应用。
可是晶杂管相控整流电路中随着触发角α的增大,电流中谐波分量相应增大,因此功率因素很低。
把逆变电路中的SPWM控制技术用于整流电路,就组成了PWM整流电路。
通过对PWM整流电路的适当控制,能够使其输入电流超级接近正弦波,且和输入电压同相位,功率因素近似为1。
这种整流电路称为高功率因素整流器,它具有普遍的应用前景。
由于电力电子技术是将电子技术和控制技术引入传统的电力技术领域,利用半导体电力开关器件组成各类电力变换电路实现电能和变换和控制,而组成的一门完整的学科。
故其学习方式与电子技术和控制技术有很多相似的地方,因此要学好这门课就必需做好实验和课程设计,因此咱们进行了这次课程设计。
又因为整流电路应用超级普遍,而三相晶闸管半控整流电路又有利于夯实基础,故咱们单结晶体管触发的单相晶闸管半控整流电路这一课题作为这一课程的课程设计的课题。
关键词:电力电子相控流PWM 整流课程设计目录1.摘要 (2)2. 设计目的与要求 (4).3. 电器元件选择 (5)4. 辅助电路的设计 (6)驱动电路的设计保护电路的设计电流上升率、电压上升率的抑制保护5. 主体电路的设计 (13)单相半控式晶闸管整流电路图主电路设计与原理分析6. 设计总结 (15)7. 参考文献 (16)8.附录 (16)参数计算二.设计目的与要求设计目的“电力电子技术”课程设计时在教学及实验的基础上,对课程所学理论知识的深化高。
摘要电力电子技术课程设计是在教学及实验基础上,对课程所学理论知识的深化和提高。
本次课程设计要完成单相桥式半控整流电路的设计,对电阻负载供电,并使输出电压在0到180伏之间连续可调,由于是半控电路,因此会用到晶闸管与电力二极管。
此外,还要用MATLAB对设计的电路进行建模并仿真,得到电压与电流波形,对结果进行分析。
关键词:半控整流晶闸管目录1 设计内容及要求 (1)2 电路的设计及工作原理 (2)3 元器件的选择 (4)3.1 晶闸管 (4)3.1.1 晶闸管的结构与工作原理 (4)3.1.2 晶闸管的选择 (5)3.2 电力二极管 (6)4 触发电路 (8)5 MATLAB建模与仿真 (9)6 心得体会 (12)参考文献 (13)单相桥式半控整流电路的设计1 设计内容及要求本次课程设计要求设计一个单相桥式半控整流电路,对电阻负载供电,其中R=10Ω,要求直流输出电压在0~180伏连续可调。
设计成功后,用MATLAB 对所设计的电路进行建模并仿真,获得相应的电压与电流波形,根据波形分析设计方法的可行性。
2 电路的设计及工作原理单相相控整流电路可分为单相半波、单相全波和单相桥式相控流电路,它们所连接的负载性质不同就会有不同的特点。
而负载性质又分为带电阻性负载、电阻-电感性负载和反电动势负载时的工作情况。
单相桥式半控整流电路带电阻负载的电路图如图2-1所示。
图2.1 单相桥式半控整流电路带电阻负载在单向桥式半控整流电路中,VT1和VD4组成一对桥臂,VD2和VT3组成另一对桥臂。
在u正半周(即a点电位高于b点电位),若4个管子均不导通,负载电流i d为零,u d也为零,VT1、VD4串联承受电压u,设VT1和VD4的漏电阻相等,则各承受u的一半。
若在触发角α处给VT1加触发脉冲,VT1和VD4即导通,电流从电源a端经VT1、R、VD4流回电源b端。
当u过零时,流经晶闸管的电流也降到零,VT1和VD4关断。
一、实验基本内容1.实验名称:单相半控桥整流电路实验2.已知条件:a)工作电路原理图图1 工作原理图b)理想工作波形c)产生失控现象的原因及理论结果对于单相桥式半控整流电路,在正常运行的情况下,如果突然把触发脉冲切断或者将触发延迟角α增大到180°,电路将产生“失控”现象。
失控原因:正在导通的晶闸管的关断必须依赖后续晶闸管的开通,如果后续晶闸管不能导通,则已经导通的晶闸管就无法关断。
失控结果:失控后,一个晶闸管持续导通,两个二极管轮流导通,整流输出电压波形为正弦半波,即半周期为正弦波,另外半周期为零,输出电压平均值恒定。
d)各物理量基本数量关系(感性负载)Ⅰ.输出直流电压平均值U dU d=1π2παsinwtd(wt)=0.9U21+cosα2Ⅱ.负载电流平均值I d=U dR =0.45U2R1+cosα2Ⅲ.流过晶闸管的电流有效值I VTI VT=I VD=π−α2πI dⅣ.流过晶闸管的电流平均值I dVTI dVT=I dVD=π−α2πI dⅤ.变压器二次电流有效值I2I2=1πI d2d(ωt)π+αα=I d=2I VTⅥ.续流二极管电流有效值I VD RI VTR =απI dⅦ.续流二极管电流平均值I dVT RI dVTR =απI d3.实验目标:a)实现控制触发脉冲与晶闸管同步;b)观测单相半控桥在纯阻性负载时的移相控制特点,测量最大移相范围及输入-输出特性;c)观测单相半控桥在阻-感性负载时的输出状态,制造失控现象并讨论解决方案。
二、实验条件1.主要设备仪器a)电力电子及电气传动教学实验台i.型号MCL-Ⅲ型ii.生产厂商浙江大学求是公司b)Tektronix示波器i.型号TDS2012ii.主要参数带宽:100MHz最高采样频率:1GS/sc)数字万用表i.型号GDM-81452.小组人员分工u 2abVT1VT2VD2VD4Ru da)实验主要操作人辅助操作人电流表监控影像记录数据记录b)报告实验基本内容描述实验图片整理实验图片处理实验条件阐述实验过程叙述数据处理电路仿真讨论思考题讨论结果整理实验综合评估报告整合排版三、实验原理1.阻性负载如图所示为带阻性负载时单相桥式半控整流电路。
单相桥式半控整流电路一.单相桥式半控整流电路手册1.单相桥式半控整流电路原理图如图1-1所示图1-1二.工作原理单相桥式半控整流电路在电阻性负载时的工作情况与全控电路完全相同。
当在阻感性负载工作时,当电源电压u2在正半周期,控制角为a 时触发晶闸管VT1使其导通,电源经VT1和VD4向负载供电。
当u2过零变负时,由于电感的作用使VT1继续导通。
因a点电位低于b点电位,使得电流从VD4转移至VD2,电流不再流经变压器二次绕组,而是由VT1和VD2续流。
此阶段忽略器件的通态压降,则ud=0,不像全控电路那样出现ud为负的情况。
在u2负半周控制角为a时触发VT3使其导通,则向VT1加反压使之关断,u2经VT3和VD2向负载供电。
u2过零变正时,VD4导通。
VT3和VD4续流,ud又为零。
此后重复以上过程。
若无续流二极管,则当a突然增大至180°或触发脉冲丢失时,会发生一个晶闸管持续导通而两个二极管轮流导通的情况,这使lid成为正弦半波,即半周期ud为正弦,另外半周期ud为零,其平均值保持恒定,称为失控。
有续流二极管VD时,续流过程由VD完成,在续流阶段晶闸管关断,避免了某一个晶闸管持续导通从而导致失控的现象。
三.波形分析利用matlab仿真,能够直观地观察整流电路波形的变化(注:从上至下,第一个为电源电压波形,第二个为品闸管VT1两端电压波形,第三个为VT2两端电压波形,第四个为负载电流,第五个为负载两端电压波形,第六个为触发脉冲。
)1.单相桥式半控整流电路电阻性负载。
仿真原理图如图波形图如图3T-2(Q=30)RUEdeMrwO(apUy^muUtionCodeBohHelp比”—卜的❶•图3@■,M。
I图3-1-1图3-1-22.单相桥式半控整流电路阻感性负载仿真原理图如图3-2-1,波形图如图3-2-2(Q=30)RUEde M E OhpUrCugr«mitmuhtionAni>/aiiCedeBobH«lp3.单相桥式半控整流电路反电势负载仿真原理图如图3-3-1,波形图如图3-3-20dt4%图3-2-1 图3-2-2fita(dieMewOiaplayCUgMm^muiatcnAna^atCodebchHelp图3-3-1 :臼z-八1A图3-3-2四.电路参数晶闸管承受的最大正向电压和反向电压分别为七/2U 和&U 。
《电力电子技术》课程设计任务书一、设计课题一单相桥式整流电路设计二、设计要求1、单相桥式相控整流的设计要求为:负载为感性负载 ,L=600H,R=500 欧姆 .2、技术要求 :(1).电网供电电压为单相220V;(2).电网电压波动为+5%--10%;(3).输出电压为0~200V在整个设计中要注意培养灵活运用所学的电力电子技术知识和创造性的思维方式以及创造能力要求具体电路方案的选择必须有论证说明,要说明其有哪些特点。
主电路具体电路元器件的选择应有计算和说明。
课程设计从确定方案到整个系统的设计,必须在检索、阅读及分析研究大量的相关文献的基础上,经过剖析、提炼,设计出所要求的电路(或装置)。
课程设计中要不断提出问题,并给出这些问题的解决方法和自己的研究体会。
在整个设计中要注意培养独立分析和独立解决问题的能力前言随着科学技术的日益发展 , 人们对电路的要求也越来越高 , 由于在生产实际中需要大小可调的直流电源 , 而相控整流电路结构简单、控制方便、性能稳定 , 利用它可以方便地得到大中、小各种容量的直流电能 , 是目前获得直流电能的主要方法 , 得到了广泛应用。
但是晶杂管相控整流电路中随着触发角α的增大,电流中谐波分量相应增大,因此功率因素很低。
把逆变电路中的SPWM控制技术用于整流电路,就构成了PWM整流电路。
通过对PWM整流电路的适当控制,可以使其输入电流非常接近正弦波,且和输入电压同相位,功率因素近似为1。
这种整流电路称为高功率因素整流器,它具有广泛的应用前景第 1 章方案的选择单相桥式整流电路可分为单相桥式相控整流电路和单相桥式半控整流电路,它们所连接的负载性质不同就会有不同的特点。
下面分析两种单相桥式整流电路在带电感性负载的工作情况。
单相半控整流电路的优点是:线路简单、调整方便。
弱点是:输出电压脉动冲大,负载电流脉冲大(电阻性负载时),且整流变压器二次绕组中存在直流分量 , 使铁心磁化,变压器不能充分利用。
单相半控桥式晶闸管整流电路设计
首先,我们需要选取合适的晶闸管。
选择晶闸管时,需要考虑电流、
电压和功率的要求,以确保晶闸管能够正常工作并满足应用需求。
第二步是设计电流限制电路。
电流限制电路用于限制电流通过晶闸管
的大小,以防止晶闸管因过载而损坏。
一种常见的电流限制电路是采用电
流互感器,通过测量电流并输出反馈信号,以控制晶闸管的导通角度。
此外,还可以使用电流变压器或电阻器来实现电流限制。
接下来,我们需要设计控制电路。
控制电路用于控制晶闸管的导通角度,并确定晶闸管何时开启和关闭。
常用的控制电路包括脉冲宽度调制(PWM)控制和零点检测控制。
在PWM控制中,通过调制输入信号的脉冲
宽度来控制晶闸管的导通角度。
而零点检测控制则是通过检测电压波形的
零点来判断晶闸管的开启和关闭时机。
此外,为了确保整流电路的稳定性和安全性,还需要添加电容滤波电
路和过压保护电路。
电容滤波电路用于平滑输出电压,减少电压波动;而
过压保护电路则用于防止电压超出设定范围,保护电路和设备。
最后,根据设计的电路参数和需求进行计算和选取其他元器件,如电阻、电感、二极管等。
通过计算和仿真,验证电路的性能和稳定性,确保
整流电路能够正常工作。
总结起来,设计单相半控桥式晶闸管整流电路需要考虑晶闸管的选取、电流限制电路、控制电路、电容滤波电路和过压保护电路等因素。
通过综
合考虑这些因素,并进行计算和仿真,可以设计出一个性能稳定的单相半
控桥式晶闸管整流电路。
单相桥式半控整流电路实验报告单相桥式半控整流电路实验报告引言:在电力系统中,整流电路是一种常见的电力转换器,用于将交流电转换为直流电。
单相桥式半控整流电路是一种常用的整流电路,具有简单、高效、可靠等特点。
本实验旨在通过搭建和测试单相桥式半控整流电路,深入了解其原理和性能。
实验装置和原理:实验中使用的装置包括变压器、整流电路、电阻、电感、电容、开关管等。
变压器用于将交流电源的电压变换为适合整流电路的电压。
整流电路由四个二极管和一个可控硅组成,其中二极管用于实现整流功能,可控硅用于实现半控功能。
电阻、电感和电容用于实现电路的滤波功能,使输出电压更加稳定。
实验步骤和结果:1. 搭建电路:按照实验指导书的要求,将变压器、整流电路、电阻、电容等元件连接起来,并接上交流电源。
确保电路连接正确无误。
2. 测试输出电压:将示波器连接到输出端,调节可控硅触发角度,观察输出电压的变化。
记录不同触发角度下的输出电压值。
3. 测试输出电流:将电流表连接到输出端,调节可控硅触发角度,观察输出电流的变化。
记录不同触发角度下的输出电流值。
4. 测试电路的滤波效果:将示波器连接到滤波电容的两端,观察输出电压的波形变化。
记录不同滤波电容下的输出电压波形。
根据实验结果,我们可以得到以下结论:1. 随着可控硅触发角度的增大,输出电压呈线性增长。
这是因为可控硅的导通时间增加,导致整流电路的导通时间增加,从而输出电压增大。
2. 随着可控硅触发角度的增大,输出电流呈非线性增长。
这是因为可控硅的导通时间增加,导致整流电路的导通时间增加,从而输出电流增大。
但当可控硅触发角度接近90度时,输出电流基本保持不变,因为此时整流电路的导通时间接近整个交流周期,无法进一步增大。
3. 增加滤波电容可以有效减小输出电压的波动,提高输出电压的稳定性。
这是因为滤波电容能够储存电荷,在整流电路导通时间短暂中释放电荷,从而平滑输出电压。
实验总结:通过本次实验,我们深入了解了单相桥式半控整流电路的原理和性能。