分数和百分数应用题例题讲解
- 格式:pdf
- 大小:73.00 KB
- 文档页数:6
第六讲:分数百分数应用题例题精讲1.甲、乙两人星期天一起上街买东西,两人身上所带的钱共计是86元.在人民市场,甲买一双运动鞋花去了所带钱的49,乙买一件衬衫花去了人民币16元.这样两人身上所剩的钱正好一样多.问甲、乙两人原先各带了多少钱?巩固:一实验五年级共有学生152人,选出男同学的111和5名女同学参加科技小组,剩下的男、女人数正好相等。
五年级男、女同学各有多少人?巩固:五年级有学生238人,选出男生的14和14名女生参加团体操,这时剩下的男生和女生人数一样多,问:五年级女生有多少人?2.甲、乙两个书架共有1100本书,从甲书架借出13,从乙书架借出75%以后,甲书架是乙书架的2倍还多150本,问乙书架原有多少本书?3.五年级上学期男、女生共有300人,这一学期男生增加125,女生增加120,共增加了13人.这一学年六年级男、女生各有多少人?巩固:把金放在水里称,其重量减轻119,把银放在水里称,其重量减轻110.现有一块金银合金重770克,放在水里称共减轻了50克,问这块合金含金、银各多少克?4.光明小学有学生900人,其中女生的47与男生的23参加了课外活动小组,剩下的340人没有参加.这所小学有男、女生各多少人?巩固:二年级两个班共有学生90人,其中少先队员有71人,又知一班少先队员占全班人数的34,二班少先队员占全班人数的56,求两个班各有多少人?5.盒子里有红,黄两种玻璃球,红球为黄球个数的25,如果每次取出4个红球,7个黄球,若干次后,盒子里还剩2个红球,50个黄球,那么盒子里原有________个玻璃球.巩固:甲乙两班的同学人数相等,各有一些同学参加课外天文小组,已知甲班参加的人数恰好是乙班未参加人数的三分之一,乙班参加人数恰好是甲班未参加人数的四分之一,问甲班没有参加的人数是乙班没有参加的人数的几分之几?6.工厂生产一批产品,原计划15天完成。
实际生产时改进了生产工艺,每天生产产品的数量比原计划每天生产产品数量的511多10件,结果提前4天完成了生产任务。
在分数应用题中如何寻找单位“1”一、把分率作为突破口,找准单位“1”分数应用题存在着三种数量即比较量、标准量和分率,这三种数量有着如下的关系:标准量×分率=比较量,比较量÷标准量=分率,比较量÷分率=标准量,要正确找准单位“1”的量即标准量必须从题目中的分率着手,看这个分率是哪个量的分率,哪个量就是标准量;例如:幸福村有旱地300亩,水亩面积是旱地面积的3/5,水田面积有多少亩这道题中的分率3/5是旱地面积的3/5,所以旱地面积是单位“1”的量;二、部分数和总数有些分数应用题,存在着整体和部分两个数量,部分数和总数作比较关系时,部分数通常作为比较量,而总数则作为标准量,那么总数就是单位“1”;例如:我国人口约占世界人口的1/5,世界人口是总数,我国人口是部分数,所以,世界人口就是单位“1”;例如:食堂买来100千克白菜,吃了2/5,吃了多少千克在这里,食堂一共买来的白菜是总数,吃掉的是部分数,所以100千克白菜就是单位“1”;例如:红星小学有学生1000人,男生占总人数的3/5,男生有多少人在这道应用题中,学生的总人数是标准量,男生人数量比较量;解答这类分数应用题,只要找准总数和部分数,确定单位“1”就很容易了;三、两种数量比较分数应用题中,两种数量相比的关键句非常多;有的是“比”字句,有的则没有“比”字,而是带指向性特征的“占”、“是”、“相当于”;在含有“比”字的关键句中,比后面的那个数量通常就作为标准量,也就是单位“1”;例如:六2班男生比女生多1/2;就是以女生人数为标准单位“1”,男生比女生多的人数作为比较量;在另外一种没有比字的两种量相比的时候,我们通常找到分率,看“占”谁的,“相当于”谁的,“是”谁的几分之几;这个“占”,“相当于”,“是”后面的数量——谁就是单位“1”;例如,一个长方形的宽是长的5/12;在这关键句中,很明显是以长作为标准,宽和长相比较,也就是说长是单位“1”;又如,今年的产量相当于去年的4/3倍;那么相当于后面的去年的产量就是标准量,也就是单位“1”;四、原数量与现数量有的关键句中不是很明显地带有一些指向性特征的词语,也不是部分数和总数的关系;这类分数应用题的单位“1”比较难找;例如,水结成冰后体积增加了1/10,冰融化成水后,体积减少了1/12;象这样的水和冰两种数量到底谁作为单位“1”两句关键句的单位“1”是不是相同用上面讲过的两种方法不容易找出单位“1”;其实我们只要看,原来的数量是谁这个原来的数量就是单位“1”比如水结成冰,原来的数量就是水,那么水就是单位“1”;冰融化成水,原来的数量是冰,所以冰的体积就是单位“1”;五、抓关键词“是”、“比”、“等于”、“相当于”找准单位“1”分数应用题,题目中经常出现“是”、“占”、“比”、“等于”、“相当于”这些词,一般来说,单位“1”的量就隐藏在这些的后面,只要从这些词的后面寻找,就可以找出单位“1”的量,例如:1、甲有人民币100元,乙的钱数是甲的1/2,求乙有人民币多少元在这道题中,甲的钱数是单位“1”的量;2、甲有人民币100元,乙的钱数占甲的1/2,求乙有人民币多少元在这道题中,甲的钱数是单位“1”的量;3、甲有人民币100元,乙的钱数比甲多1/2,求乙有人民币多少元在这道题中,甲的钱数是单位“1”的量;4、甲有人民币100元,乙的钱数等于甲的1/2,求乙有人民币多少元在这道题中,甲的钱数是单位“1”的量;5、甲有人民币100元,乙的钱数相当于甲的1/2,求乙有人民币多少元在这道题中,甲的钱数是单位“1”的量;典型题型如下:1工程队计划修公路12千米,已经修了千米,还剩多少千米没修2工程队计划修公路12千米,已经修了,已经修了多少千米3工程队计划修公路12千米,实际修的比原计划多,实际比原计划多修几千米4一堆货物60吨,第一次用去总数的,第二次用去总数的,两次共用去多少吨货物5一堆货物60吨,第一次用去总数的,第二次用去余下的,两次共用去多少吨货物6饭店买来面粉吨,第一天用去这面粉的,第二天又用去吨,共用去面粉多少吨7一根绳子长米,先剪下它的一半,再把剩下的剪下一半……剪3次后,剩下的部分长多少米8有一批水果,共360千克,第一天卖出了它的,第二天卖出它的,第二天比第一天少卖这批水果的几分之几少卖多少千克9一堆货物120吨,5天运走了它的,平均每天运走多少吨10一辆汽车从甲地开往乙地,每小时行60千米,小时刚好行到全程的中点处,甲、乙两地相距多少千米11甲乙两筐水果共重35千克,如果各吃掉,甲筐还余下12千克,乙筐还余下多少千克12在一次测验中,小明做对的题数是11道,错了4道,小明在这次测验中正确率是百分之几13大米加工厂用2000千克的稻谷加工成大米时,共碾出大米1600千克,求大米的出米率;14林场春季植树,成活了24570棵,死了630棵,求成活率;15家具厂有职工1250人,有一天缺勤15人,求出勤率;16王师傅生产了一批零件,经检验合格的485只,不合格的有15只,求这一批新产品的合格率;17用一批玉米种子做发芽试验,结果发芽的有192粒,没有发芽的有8粒,求这一批种子的发芽率;18六1班今天有48人来上课,有2人请事假,求这一天六1班的出勤率;19六1班有50人,期中考试有5人不及格,求这个班的及格率;20在一次射击练习中,小王命中的子弹是200发,没命中的是50发,命中率是多少21大豆的出油率是54%,用40千克大豆可以榨油多少千克22杉树的成活率是95%,今年植树节植树成活了285棵,求一共植了多少棵树23一本书360页,第一天看了全书的40%,第二天看了全书的25%,这时还剩多少页没有看24一块地用40%种冬瓜,其余的按3:2分别种西红柿和茄子,已知茄子种了0.6公顷,这块地有多少公顷25小军读一本故事书,第一天读了42页,第二读了43页,还余下全书的83%没有读,这本故事书一共多少页26一堆煤,用去了20吨,余下的是用去的25%,这一堆煤一共多少吨27青年农场第一天割麦8.5公顷,第二天比第一天多割20%,第二天割多少公顷28某养猪场,今年养猪400头,比去年多养25%,去年养猪多少头29育华小学六年级有学生120人,其中70人已达到国家体育锻炼标准,要使六年级“达标率”达到85%,还应有多少人达标30一条绳子,剪去全长的60%,还剩下12米,原来绳子长多少米31一根电线长1.2米,截去20%后,再截去0.2米,还剩多少米32一条公路修了60千米,正好是全长的70%,求这条公路剩下多少千米33一辆汽车从甲地到乙地,第一小时行了全程的25%,第二小时行了全程的30%,两小时一共行了220千米,甲乙两地全长多少千米34一种化工原料,原来每吨生产成本是1250元,现在成本降低了20%;现在每吨成本是多少元35有一条水渠,两星期修好,第一星期修了全长的55%,比第二星期多修480米,这条水渠全长多少米36车站有一批货物,如果运走它的25%,剩下156吨,如果运走它的9/16,运走多少吨37农场今年收小麦150万吨,比去年增产20%,今年比去年增产小麦多少万吨38小刚读一本书,第一天读了全书的30%,第二天比第一天少读15页,这时还有一半没有读,这本书共有多少页39某厂共有三个车间,第一车间月产机床330台,正好占全厂月产量台数的30%;第二车间的月产量是第三车间月产量的3/4,第三车间月产机器多少台40某化肥厂今年产值比去年增加了20%,比去年增加了500万元,今年道值是多少万元41果品公司储存一批苹果,售出这批苹果的30%后,又运来160箱,这时比原来储存的苹果多1/10,这时有苹果多少箱42一件商品,原价比现价少百分之20,现价是1028元,原价是多少元43教育储蓄所得的利息不用纳税;爸爸为笑笑存了三年期的教育储蓄基金,年利率为5.40%,到期后共领到了本金和利息22646元;爸爸为笑笑存的教育储蓄基金的本金是多少44服装店同时买出了两件衣服,每件衣服各得120元,但其中一件赚20%,另一件陪了20%,问服装店卖出的两件衣服是赚钱了还是亏本了45爸爸今年43岁,女儿今年11岁,几年前女儿年龄是爸爸的20%46比5分之2吨少20%是几吨吨的30%是60吨47一本200页的书,读了20%,还剩下几页没读甲数的40%与乙数的50%相等,甲数是120,乙数是多少48张平有500元钱,打算存入银行两年.可以有两种储蓄办法,一种是存两年期的,年利率是2.43%;一种是先存一年期的,年利率是2.25%,第一年到期时再把本金和税后利息取出来合在一起,再存入一年.选择哪种办法得到的税后利息多一些49小丽的妈妈在银行里存入人民币5000元,存期一年,年利率2.25%,取款时由银行代扣代收20%的利息税,到期时,所交的利息税为多少元一种小麦出粉率为85%,要磨13.6吨面粉,需要这样的小麦多少吨51某工厂四月份下半月用水5400吨,比上半月节约20%,上半月用水多少吨52电视机厂五月份计划生产电视机5000台,实际生产了6000台,超额完成百分之几一种电脑原价6800元,现降价1700元,降价百分之几54一段路,甲走完全程需20分钟,乙走完全成需15分钟,甲的速度是乙速度的百分之几55一份稿件,原计划5天抄完,结果只用4天就抄完了,实际工作效率比计划提高了百分之几56从甲堆煤中,取出1/5给乙堆,这时两堆煤重量就相等了,原来乙堆煤的重量比甲堆煤的重量少百分之几57六1班有男生32人,女生28人;六2班人数是六1班的95%,六2班有多少人一条围巾,如果卖100元,可赚25%,如果卖120元,可赚百分之几买来足球55个,买来的篮球比足球少20%,买来篮球多少个60一堆沙子,第一次运走40%;第二次运走30%,还剩下48吨;这堆沙子有多少吨一个面粉厂,用20吨小麦能磨出13000千克的面粉;求小麦的出粉率在100克水中,加入25克盐;这盐水的含盐率是多少63某种菜籽出油率为33%,要想榨出100千克菜籽油;至少要多少千克菜籽;李师傅加工200个零件,经检验4个是废品,合格率是多少照这样计算,加工700个零件,不合格的有多少个;小红的爸爸将5000元钱存入银行活期储蓄,月利率是0.60%,4个月后,他可得税后利息多少元可取回本金和利息共有多少元王老师每月工资1450元,超出1200元的部分按5%交纳个人所得税;王老师每月税后工资是多少元一种篮球原价180元,现在按原价的七五折出售;这种篮球现价每只多少元每只便宜了多少元李丹家去年收玉米300千克,前年收玉米249千克,去年比前年的玉米增产了几成68明明在商店里买了一个计算器,打八五折,花了68元,这个计算器原价多少元69小华家前年收了4000千克稻谷,去年因为虫害,比前年减产三成五,去年小华家收稻谷多少千克70某商品现价18元,亏了25%,亏了多少元如果想赢利25%,应按多少元出售该商品含盐率10%的盐水30千克,加入多少千克盐后,才能制成含盐率25%的盐水某件皮衣原价1800元,现降价270元该商品是打了几折出售的73保险公司有员工120人,其中男职工是女职工人的50%,这个保险公司有男职工多少人74某工程队,第一天修600米,第二天修全长的20%,第三天修了全长的25%,这时修了的占全长的75%,这条公路全长多少米 75小军以每套72元的价格买了一套打折服装,比原价便宜8元;这套服装打了几折出售的761520千克的盐水中,含盐率为25%,要使这些盐水变为含盐率为50%的盐水,需蒸发掉多少千克水77玩具商店同时出售两种玩具售价都是120元,一件可赚25%,另一件赔25%;如果同时出售这两件玩具,算下来是赔还是赚,如赔,赔多少元,如赚,赚多少元78一批化肥先运走25%,又运走18吨,这时还剩45%没有运,这批化肥共有多少吨79小明每天看12页故事书,看了5天,还剩下全书的40%,这本故事书共有多少页80工人修一条公路,第一天修了全长的10%,第二天修了63米,还剩下全长的70%,求全长81一块铜和银的合金有290克,其中铜的质量比银的25%少10克,这块合金中银和铜各有多少克82某校新建一幢教学楼,实际投资了126万元,比计划节约了10%,计划投资是实际投资的百分几百分号前面的数保留一位小数83哥哥体重45千克,比弟弟重,哥哥比弟弟重多少千克84汽车开往某地,行驶2.5小时,距目的地还有全程的,如果速度不变,全程共需行驶多少小时85小刚的爸爸参与一项研究活动,得到劳务费3600元,按照国家规定,个人劳务收入1000元以内的,要按照3%缴纳个人所得税;1000元以上的部分,缴纳20%的个人所得税;小刚的爸爸缴纳个人所得税以后,实际得到多少元86小红看了一本书的,还剩30页,这本书共有多少页87一根电线,用去75%,还剩42米,这根电线原来长多少米88一批树苗,第一次种了146棵,第二次种了154棵,两次共种了总数的37.5%,这批树苗共多少棵89一桶油用去一半后,又倒进30千克,这样桶内油的重量是原来的,原来有油多少千克90一袋水泥,用去20%,剩下的比用去的多30千克,这袋水泥共重多少千克13、李阿姨月工资是4100元;按规定,扣除2600元以外的部分,要缴纳5%的个人所得税;李阿姨税后工资是多少元91一根绳子,第一次用去它的37.5%,第二次用去,还剩33米,这根电线原来长多少米92某校高年级学生占全校人数的25%,中年级学生占全校人数的,低年级有学生375人,全校共有学生多少人93李明看一本书,第一天看了全书的25%,第二天看了全书的,还剩60页没看,这本书共有多少页94小红看一本书,第一天看了全书的10%,第二天看了12页,还剩全书的,全书多少页95修一段公路,第一天修了5千米,第二天修了7千米,两天共修了这段路的40%,这段公路全长多少米96一根电线,用去10米,余下的比全长的40%多5米,这根电线原有多少米97一桶油用去又3千克,剩下9千克,这桶油原有多少千克98甲厂有工人400名,比乙厂的多100人,乙厂有多少人99有桃树96棵,比李树的少3棵,李树有多少棵100学校今年种树300棵,比去年多种,今年比去年多种树多少棵101有黑兔25只,比白兔少,黑兔比白兔少多少只102有科技书100本,比文艺书少20%,文艺书比科技书多多少本103一袋米,吃了还多3千克,剩下的比吃去的多4千克,这袋米原有多少千克104一桶油,吃了还多4千克,剩下的比吃去的多5千克,这桶油原有多少千克105一本书分两天看完,第一天看了60页,恰好占全书的是40%,第二天看了多少页106定期一年,年利率是3.5%;李叔叔存款一年后得到的本金和利息一共是41400元;李叔叔存入的本金是多少元107一桶油,吃了20千克,正好吃了这桶油的,还剩多少千克108某时装店同时卖出两件衣服,每件各卖200元,其中一件赚了20%,另一件亏了20%,这家店卖出这两件衣服是赚了还是亏了109某班男生人数占全班人数的,女生比男生少10人,全班多少人110某班男生人数占全班人数的,女生比男生少10人,男、女生各多少人111一辆汽车从甲地开往乙地,行了全程的,距乙地还有60千米,已行了多少千米112修一段800米长的水渠,第一次修了全长的,第二次修的是第一次的80%,剩下的第三次修完,第三次修多少米113商店运进50千克糖果,其中水果糖占60%,其余的是奶糖,水果糖比奶糖多多少千克小红看一本书,第一天看了20页,比第二天多看25%,第二天看的页数是全书是,这本书有多少页小红看一本书,上午看了8页,恰好占全书的20%,下午又看了全书的,还剩几页一桶油,两次共取出90%,还剩10千克,两次共取出多少千克一桶油,两次共取出90%,还剩10千克,第一次取出20千克,第二次取出多少千克一批柴油,运走40桶,剩下的占总数的60%,剩下的比运走的多多少桶119修一段公路,第一天修了全长的,第二天修了全长的25%,第三天修的是前两天的和,还剩100米,这段公路全长多少米120把80分米的缎带剪去,再剪去分米,还剩多少分米121学校买来一批墨水,其中是红墨水,其余是黑墨水,红墨水比黑墨水多12瓶,这批墨水共多少瓶122小红看一本120页的书,第一天看了全书的,第二天看了余下的25%,两天共看了几页123一个果园长850米,宽600米,用来种梨树和苹果树,梨树所占面积是苹果树的50%,苹果树占多少平方米果园里有苹果树和梨树两种,苹果树占总棵数的70%,比梨树多240棵,两种树各多少棵一根绳子,截下9米,剩下的比全长的短3米,这根绳子全长多少米126服装厂一月份计划生产一批衬衫,上半月完成计划的62.5%,下半月生产的与上半月同样多,结果超产10000件,这个月计划生产衬衫多少件从甲城到乙城,行了全程的,离中点还有2.5千米,两城相距多少千米一套衣服,原价120元,现在降价40%,现在每套售价多少元129一本书,第一天看了180页,第二天比第一天少看25%,两天共看了全书的,这本书共有多少页130一件工程甲乙两队合做6小时完成,甲乙两队的效率比是3:2;甲乙单独做,各需要多少天131修一条水渠,第一天修了150米,比第二天少修25米,两天修的正好占这条水渠的,这条水渠的全长是多少米134一本小说书,小芳已经看的与未看的页数比是2:5,如果再看27页,正好占这本小说书的一半,这本书共有多少页135七月份用水360吨,比六月份节约40吨,比六月份节约百分之几136王师傅要加工720只零件,其中有36只不合格,求合格率;137修一条公路,第一天修了全长的10%,第二天修了全长的15%,还剩下360米没有修,这条路全长多少米138某工程队修一条3500米的高速公路,第一个月修了全长的20%,第二个月修的是第一个月的80%,第二个月修了多少米139实验小学六年级的女生人数占全年级的48.75%,男生占全年级人数的百分之几如果男生人数比女生人数多12人,那么实验小学六年级人数共有多少人140有山羊120只,绵羊的只数比山羊多30%,绵羊有多少只141一台洗衣机售价1900元,比原价降低了300元,降价百分之几142某班有男生30人,女生人数比男生少10%,全班有多少人143某班有男生30人,是女生人数的125%,全班有多少人144某班有男生30人,占全班人数的60%,这个班有女生多少人145一台电脑打九折后售价5040元,原价是多少元降价了多少元146甲乙两地相距130千米,一辆汽车从甲地开往乙地,行了全程的55%,离乙地还有多少千米147一项工程,甲独做需20天完成,乙独做需25天完成;甲的工作效率比乙的工作效率高百分之几148甲、乙、丙三人,甲的年龄比乙的年龄大20%,乙的年龄比丙的年龄大20%,甲比丙的年龄大百分之几149妈妈把5万元钱存入银行,定期两年,年利率是4.4%;到期后扣除5%的利息税,实得利息够买一台3600元的彩电吗150有两堆煤共136吨,某厂从甲堆中取走30%,从乙堆中取走,这时乙堆剩下的煤恰好比原来总数的62.5%少13吨,这个厂从甲堆中取走多少吨煤151兴趣小组四年级学生比三年级多25%,五年级学生比四年级少10%,六年级学生比五年级多10%,如果六年级学生比三年级多38人,那么三至六年级共有学生多少人1524吨葡萄在新疆测得含水量99%,运抵南京后测得含水量是98%,问葡萄运抵南京后还剩几吨153某商品先后两次降价,第一次降价10%,第二次降价20%,现价相当于原价的百分之几154甲数比乙数多20%,乙数比丙数少20%,甲数相当于丙数的百分之几155甲、乙两人每人都有10张纸,甲给乙多少张纸可以使乙的纸张数比甲多50%156甲、乙两人有人民币若干元,其中甲占60%,若乙给甲12元后,乙余下的钱比总数的25%少3元,甲、乙两人共有人民币多少元157有一堆沙子,第一次用去35%,第二次用去余下的20%,第三次用去第二次剩下的75%,还剩下15.6立方米,这堆沙子原来有多少立方米158有浓度为8%的盐水200克,需加入多少克水,才能成为浓度为5%的盐水159用4吨大豆榨油600千克,出油率是多少160六年级有学生180人,今天出勤的男生有91人,女生有85人,今天的出勤率是多少161杨师傅3小时生产零件225个,技术革新后,2小时生产180个,生产效率提高了百分之几162某印刷厂有工人980人,其中男工占全厂职工人数的80%,后又调进一部分女工,这时女工占全厂职工总数的30%,又调进女工多少人163有一堆糖果,其中奶糖占,再放入16块水果糖后,奶糖就只占;那么,这堆糖中有奶糖多少块164一批零件按5:4分给师徒两人加工;师傅比所给任务多加工,而徒弟因病只完成了任务的,问师徒两人实际完成任务数的几分之几165一种耳机原来一副80元,现在按原价的八折销售,现在每副售价多少元166王大爷家今年收稻谷4800千克,比去年增产二成五,去年收稻谷多少千克167修一条公路,第一天修了全长的,第二天修了全长的30%,还剩下360米没有修,这条路全长多少米168某工程队修一条3500米的高速公路,第一个月修了全长的,第二个月修的是第一个月的80%,第二个月修了多少米169化肥厂今年七个月完成全年生产的75%,再生产2000吨就可超产200吨,该厂全年生产化肥多少吨170工地上的水泥用去25%,又运进250吨,这时工地水泥是原来的90%,工地原有水泥多少吨171一辆汽车从甲地开往乙地,行了全程约40%,离中点还有10千米,甲乙两地相距多少千米172三五大酒店去年的营业额是480万元,如果按5%缴纳营业税,这个酒店去年应缴纳的营业税款是多少元173有含糖6%的糖水1800克,要使其含量加大到10%,需加糖多少克174有含盐25%的盐水30千克,现加入清水,要使其含量降低为15%,需加清水多少千克175笑笑看一本书,第一天看了15%,第二天看了10%,还剩90页没看,这本书共多少页176笑笑看一本书,第一天看了45页,第二天看了10%,还剩50页,这本书共多少页177笑笑看一本书,第一天看了36页,第二天看了19页,还剩全书的45%,这本书共多少页178一辆汽车从甲地开往乙地,行了全程的70%,正好行了35千米,甲乙两地相距多少千米179笑笑看一本书,看了50页,正好看了这本书的25%,这本书共多少页还剩多少页没有看180笑笑看一本书,看了全书的40%,还剩120页没看,这本书共多少页181笑笑看一本书,看了全书的25%,还剩120页没看,这本书共多少页182笑笑看一本书,看了48页,还剩全书的40%,这本书共多少页183笑笑看一本书,看了180页,还剩全书的40%没看,这本书共多少页184笑笑看一本书,第一天看了25%,第二天看了20%,两天共看了90页,这本书共多少页185一块稻田,前年收稻谷1500千克,去年比前年增产15%,去去年收稻谷多少千克186一块麦地,去年收小麦780千克,比前年增产20%,前年收小麦多少千克187一块地去年收马铃薯450千克,比前年增产10%,前年收马铃薯多少千克188一块菜地,前年收白菜1500千克,去年收白菜1350千克,减产百分之几189有一块菜地,前年收萝卜200千克,去年收萝卜220千克,增产百分之几190一套衣服,原价160元,现在降价20%,现价多少元191一套衣服售价160元,比原价降低20%,原价多少元192一种收录机原价250元,现价是原价的60%,现价多少元193一部手机原价4600元,现价比原价降低30%,降价多少元194一种电视机原价3800元,现价比原价降低405元,降价百分之几195何家庄前年收油菜籽35吨,去年比前年增产12%,去年收油菜籽多少吨196面粉做成面包,重量增加,501千克面粉可做成多少千克的面包198兄弟俩岁数的和是25,弟弟的年龄是哥哥的,弟弟多少岁199一套课桌椅49元,椅子的价钱是桌子的,椅子每把多少钱200一套衣服120元,裤子的价格是上衣价格的,上衣的价格是多少元201洗衣机厂去年生产洗衣机1367台,比计划的1.5倍还多17台,计划生产多少台202商店运来白糖2100吨,相当于红糖的80%,白、红糖共多少千克203南阳村去年计划产粮30万吨,实际比计划超产15%,去年产粮多少万吨204一台录音机原价250元,现在降价,现在售价多少元205糖厂生产白糖2100吨,红糖比白糖多,生产红糖多少吨206在股票交易中,每买进或卖出一种股票,都必须按成交额的0.1%缴纳印花税手续费,王叔叔去年以每股15元的价格买进一种科技股票2000股,今年又以每股18元的价格全部卖出,王叔叔买卖这种股票赚了多少钱207某时装店同时卖出两件衣服,每件各卖200元,其中一件赚了20%,另一件亏了20%,这家店卖出这两件衣服是赚了还是亏了。
分数,百分数的应用题(含详细解答)好的,以下是35道分数、百分数的应用题及其解答过程:1. 小明考试得了27分,占总分的45%,那么这场考试的总分是多少分?解答:设总分为x,则由题意得27/x=0.45,解得x=60,因此这场考试的总分是60分。
2. 一条裤子原价是320元,现在打5折出售,折后价格是多少?解答:折后价格为320×0.5=160元。
3. 甲乙两人同时从A点出发,相向而行,甲每小时走5公里,乙每小时走7公里,多少小时后他们相遇?解答:设相遇时间为t小时,则由题意得5t+7t=12t=AB,其中AB为A点到B点的距离。
已知A、B两点距离为12公里,因此t=1,所以他们相遇的时间为1小时。
4. 甲、乙、丙三个人完成一项工作需要8天,甲、丙两人一起完成同样的工作需要12天,那么乙独立完成这项工作需要多少天?解答:设乙独立完成这项工作需要t天,则有1/8=1/12+1/t,解得t=24,因此乙独立完成这项工作需要24天。
5. 小明买了一本原价为28元的书,打8折后用一张50元的钞票付款,找回多少钱?解答:书的折后价格为28×0.8=22.4元,小明用50元钞票付款,找回的钱为50-22.4=27.6元。
6. 有两个数的和为70,两数之比为3:2,求这两个数。
解答:设两个数分别为3x和2x,则由题意得5x=70,解得x=14,因此这两个数分别为42和28。
7. 水果店购进了200斤苹果,其中有20%是烂掉的,店主把好的苹果以每斤3.5元的价格卖出,亏了120元,那么店主买进每斤苹果的价格是多少元?解答:好的苹果有80%×200斤=160斤,店主卖出的苹果收入为160×3.5元=560元,因此总成本为560+120=680元。
设每斤苹果的进价为x元,则有0.8×200x=680,解得x=4.25元,因此店主买进每斤苹果的价格是4.25元。
8. 甲、乙两人合伙开了一家小卖部,甲出资3万元,乙出资2万元,半年后两人共获利4万元,按照各自出资的比例分配利润,甲能分到多少万元?解答:甲和乙出资的比例为3:2,因此甲能分到的利润为4×3/(3+2)=2.4万元。
小升初——分数百分数应用题分数百分数应用题是研究数量之间关系的典型应用题,一方面它是在整数应用上的延续和深化;另一方面它有其自身的特点和解题规律。
遇到这类问题时,分析数量之间的关系,准确的找出“量“与”率“之间的对应关系是解题的关键。
一、 转化单位一在解答较复杂的分数百分数应用题时,我们往往需要从题目中找出不变的量,把不变的量看作单位一,将已知的条件进行转化,找出所求数量相当于单位一的几分之几,再列式解答。
1. 五年级三个班举行数学竞赛。
一班参加比赛的占全年级参赛总人数的13,二班与三班参加比赛人数的比是11:13,二班比三班少8人。
一班有多少人参加了数学竞赛?2. 今年8月份,甲所得的奖金比乙少200元,甲得的奖金的23 正好是乙得奖金的47,甲、乙两人各得奖金多少元?3. 仓库里的大米和面粉共有2000袋。
大米运走25 ,面粉运作110后,仓库里剩下大米和面粉正好相等。
原来大米和面粉各有多少袋?4. 一批水果四天卖完。
第一天卖出180千克,第二天卖出余下的27,第三、四天共卖出这批水果的一半,这批水果有多少千克?5. 有一块菜地和一块麦地,菜地的一半和麦地的13放在一起是13公顷,麦地的一半和菜地的13放在一起是12公顷,那么,菜地有多少公顷?6. 有5元和2元的人民币若干张,其金额之比为15:4。
如果5元人民币减少6张,则两种人民币的张数相等。
求原来两种人民币的张数各是多少?7. 王师傅生产一批零件,不合格产品是合格产品的191,后来从合格产品中又发现了2个不合格产品,这时算出产品的合格率是94%。
合格产品共有多少个?8. 一堆什锦糖,其中奶糖占45%,再放入16千克其他糖后,奶糖只占25%,这堆糖中有奶糖多少千克?9.一堆围棋子黑白两种颜色,拿走15枚白棋子后,黑子与白子的个数之比为2:1;再拿走45枚黑棋子后,黑子与白子的个数比为1:5,开始时黑棋子,求白棋子各有多少枚?1,新转来2个女生后,女生人数占全班总人10.六(一)班原有女生占全班总人数的51,求:原来有女生多少人?数的411.袋子里红球与白球的数量之比是19:13。
试题答案
考点:分数的意义、读写及分类,分数除法应⽤题
专题:分数和百分数,分数百分数应⽤题
分析:求每段长是这根绳⼦的⼏分之⼏,平均分的是单位“1”,求的是分率,⽤1除以平均分的份数;求两段长多少⽶,就是求4⽶的25,⽤乘法解答即
可.
解答:解:每段占全长的分率:1÷5=15
2段长的⽶数:4×25=135(⽶)
故答案为:15,135.
点评:解决此题关键是弄清求得是具体的数量还是分率,求具体的数量平均分的是具体的数量,求分率平均分的是单位“1”.
考点:分数的意义、读写及分类,分数除法应⽤题
专题:分数和百分数,分数百分数应⽤题
分析:求每段长是这根绳⼦的⼏分之⼏,平均分的是单位“1”,求的是分率,⽤1除以平均分的份数;求两段长多少⽶,就是求4⽶的25,⽤乘法解答即
可.
解答:解:每段占全长的分率:1÷5=15
2段长的⽶数:4×25=135(⽶)
故答案为:15,135.
点评:解决此题关键是弄清求得是具体的数量还是分率,求具体的数量平均分的是具体的数量,求分率平均分的是单位“1”.。
第十讲分数应用题综合【知识概述】分数、百分数应用题是小学数学的重要组成部分,在我们的现实生活及生产中经常会遇到分数和百分数的有关问题。
分数和百分数应用题研究的是数量之间的倍数关系,体现的是单位“1”的量、分率、分率对应数量之间的关系,解题时就要注意抓住单位“1”的量。
对于题中只有一个单位1的量,要注意分析题中分率和具体数量的对应关系,可以抓住分率找对应的具体数量,也可以通过具体的数量找对应的分率。
在对应关系确定后,如果单位“1”的量是已知的,就用乘法;如果要求单位“1”,就要用除法。
对于题目中单位“1”的量不同时,就要注意将各分率进行转化,将这些分率转化为同一个单位“1”的几分之几或百分之几,便于找分率与具体数量的对应关系.对于出现两三个数量,而且都是单位“1”的量,我们要想办法将分率转化为同一个单位“1”的几分之几或百分之几,有时转化会较为复杂,我们也可以用方程解。
【典型例题】1.学校运动会上,某班参加比赛的女生占全班人数的16,参加比赛的男生占全班人数的14,参加比赛的男生比女生多4人。
这个班有学生多少人?2.某商场有一批毛巾,卖出总数的62.5%后,又运来270条,这时商场的毛巾数与原来的毛巾数的比是6 :7。
商场里原来有毛巾多少条?3.某工厂第一车间的人数比第二车间的 45少30人,如果从第二车间调10人到第一车间,这时第一车间的人数是第二车间人数的 34。
第二车间原来有多少人?4.有一杯重300克的盐水,含盐率为20%,要使含盐率下降为l0%,需要加水多少克?5.生产一批零件,第一天生产了180个,第二天生产的比总数的14少30个,两天共生产了总数的 13。
这批零件共有多少个?6.甲桶油比乙桶油多3.6千克,如果从两桶中各取出1千克后,甲桶里剩下油的212等于乙桶里剩下油的71。
那么甲桶原有油多少千克?7.甲粮仓装43吨面粉,乙粮仓装37吨面粉,如果把乙粮仓的面粉装入甲粮仓,那么甲粮仓装满后,乙粮仓里剩下的面粉占乙粮仓容量的21;如果把甲粮仓的面粉装入乙粮仓,那么乙粮仓装满后,甲粮仓里剩下的面粉占甲粮仓容量的31,每个粮仓各可以装面粉多少吨?8.荔枝树和龙眼树的比是5 :3 ,荔枝树比龙眼树多40棵,荔枝树和龙眼树各有多少棵?9.学校买进一批图书,其中科技书有270本,故事书比这批图书的总数的52少90本,科技书和故事书共占这批图书的总数的85,这批图书一共有多少本?10.西山小学六年级原有女生人数是男生人数的80%,后来转来女生3人,现在女生人数是男生人数的65,原来全级有多少人?11.两个车间,甲车间人数是乙车间的85,乙车间调走48人后,甲车间人数比乙车间少41,甲车间有多少人?12.某工厂把制衣任务按5:3分给甲、乙两个车间,甲车间实际制衣960套,超过原分配任务的20%, 原计划乙车间要制衣多少套?13.一批零件,先加工120个,又加工余下的2/5,这是已加工的零件个数与未加工的零件个数相等,这批零件共多少个?14.一辆汽车从甲地向乙地行使,行了一段距离后,距离乙地还有210千米,接着又行了全程距离的20%,此时已行驶的距离与未行使的距离比为3:2,求甲乙两地的距离?15.一袋米30千克,第一周吃了40%,第二周吃了50%,还剩多少千克?16.小李把10万元存入某银行,定期2年,年利率为2.79%,到期要交纳20%的利息税,请你帮他计算存款到期时可得到多少利息?17.金放在水里称,重量减轻191;银放在水里称,重量减轻101。
一题多解-分数和百分数应用题一题多解分数和百分数应用题(1)例1 某厂五月份计划用电2500度,实际用电2125度,节约百分之几?【分析1】先求出实际用电比计划节约了多少度,再除以五月份计划用电度数,即得实际用电比计划节约百分之几. 【解法1】实际比计划节约用电几度?2500-2125=375(度)实际比计划节约用电百分之几?375÷2500=0.15=15%综合算式:(2500-2125)÷2500 =375÷2500=15%.【分析2】把计划用电看作标准“1”。
先求出实际用电是计划的百分之几,再求出此百分数与“1”的差,即为实际比计划节约的百分数.【解法2】实际是计划的百分之几?2125÷2500=0.85=85%实际用电比计划节约百分之几? 1-85%=15%综合算式: 1-2125÷2500=1-0.85=15%. 答:实际用电比计划节约了15%.【评注】解法1是一般解法,易于理解和掌握,并且运算较简便,是本题较好解法. 例2 某厂五月份生产机床160台,六月份生产200台,六月份比五月份增产百分之几?【分析1】先求出六月份比五月份增产多少台,再除以五月份生产台数,即得六月份比五月份增产百分之几. 【解法1】六月份比五月份增产多少台? 200-160=40(台)六月份比五月份增产百分之几?40÷160=0.25=25%综合算式:(200-160)÷160=40÷160=25%.【分析2】把五月份生产台数看作“1”.先求出六月份生产台数是五月份的百分之几,再减去“1”,即得六月份比五月份增产百分之几.【解法2】六月份是五月份的百分之几?200÷160=1.25=125%六月份生产台数比五月份增产百分之几? 125%-1=25%综合算式:200÷160-1=1.25-1=25%. 答:六月份比五月份增产25%.【评注】解法1 的思路简明,运算较为简便,也是通常使用的解法.例3 红星机床厂,上个月计划生产机床200台,实际比计划多生产40台,实际产量是计划的百分之几?【分析1】先求出实际生产多少台,再除以计划生产的台数,所得百分数就是实际产量是计划的百分之几. 【解法1】实际生产机床多少台?200+40=240(台)实际产量是计划的百分之几?240÷200=1.2=120%综合算式:(200+40)÷200=240÷200=120%.【分析2】把计划生产的台数看作标准“1”.先求出实际比计划多生产百分之几,再加上“1”即得实际产量是计划的百分之几.【解法2】实际比计划多生产百分之几?40÷200=0.2=20%实际产量是计划的百分之几? 1+20%=120%综合算式:1+40÷200=1+0.2=1.2=120%.【评注】解法1是常用解法,思路直接,但计算较繁,解法2思路简明,运算简便,是本题的较好解法. 例4 五一班有50人,在一次数学测验中,有1人不及格,求及格率.【分析1】根据“×100%=及格率”,先求及格人数,再求及格率.【解法1】格率.×100%=0.98×100%=98%.【分析 2】先求出不及格人数占全班人数的百分之几,即不及格率,再用标准“1”减去不及格率,即得这次测验及【解法 2】1-10÷50=1-0.02=0.98=98%. 答:这次数学测验的及格率是98%.例5 小研看一本课外书,4天看了全书总页数的还要用的天数.【解法1】每天读全书的几分之几?,照这样计算,他看完这本书还要多少天?【分析1】先求出每天读全书的几分之几,再除全书总页数“1”,即得读全书要用天数.最后减去已用的4天,即得÷4=读全书共用多少天?1÷=6(天)看完全书还要多少天? 6-4=2(天)综合算式:1÷(÷4)-4 =1÷-4=2(天).【分析 2】把读全书要用天数看作标准“1”,那么4天恰是读全书要用天数的求还要多少天.【解法2】读全书共用多少天?,由此可求出读全书用多少天,再4÷=6(天)读完全书还要多少天? 6-4=2(天)综合算式:4÷-4=6-4=2(天).【分析3】把转化为2∶3,那么全书页数可平均分成3份,已读了2份,还剩下1份没有读.由此可求读每份书用多少天,即还要多少天. 【解法3】4÷2×(3-2)=4÷2×1=2(天). 或:设还要用x天. 4∶2=x∶(3-2) 2x=4 x=2【分析4】因为“读书量÷天数=每天读书量”,每天读书量一定,所以读书量和读书的天数成正比例,由此列比例式解题.【解法 4】设读全书还要用x天.(1-)∶x=∶4∶x=∶4x=4×x= x=2【分析5】用倍比解法.把全书总页数看作“1”,先求出“1”里包含几个求出读全书要用天数,再求还要多少天.,那么读全书也就需要几个4天,由此【解法5】4×(1÷)-4=4×-4=6-4=2(天).答:他看完全书还要2天.【评注】解法1和解法4都是常用解法,易于理解和掌握,但一般来说计算较繁,其它三种解法都是转换角度进行思考问题,有益于锻炼思维.其中解法2和解法3思维角度选择巧妙,运算简便,是本题的最好解法. 例6 六年三班有女生24人,占全班人数的40%,这个班有学生多少人?【分析 1】把全班人数看作标准“1”.根据“比较量÷对应分率=标准量”,用女生人数除以它占全班人数的40%,即得全班人数.【解法1】24÷40%=24×=60(人).【分析2】把40%转化为40∶100,那么全班人数可分为100等份,其中女生占40份,可先求出每份有多少人,再求100份有多少人即全班的人数.【解法 2】24÷40×100=0.6×100=60(人).【分析3】把女生人数看作标准“1”,那么全班人数是女生人数的.由此可根据分数乘法意义求出全班人数。
应用题-分数百分数应用题-经济问题基本知识-1星题课程目标知识提要经济问题基本知识•概述经济问题主要包含利润和折扣问题、利息问题、纳税问题等。
成本:商品的进价,也称为买入价、成本价.售价:商品被卖出时候的标价,也称为卖出价、标价、定价、零售价.利润:商品卖出后商家赚到的钱.利润率:利润与成本的百分比叫做利润率.折扣:买卖商品按照原价的若干成计价,如按九成叫九折•利润和折扣问题的基本公式售价=成本+利润=成本×(1+利润率)利润=售价−成本=成本×利润率利润率=(售价−成本)÷成本×100%=利润÷成本×100%售价=定价×折扣率•利息问题基本公式利息=本金×利率×时间•纳税问题税款=应交税额×税率精选例题经济问题基本知识1. 某商品单价先上调后,再下降20%才能降回原价.该商品单价上调了%.【答案】25【分析】设原价为1,则上调后为:1÷(1−20%)=1.25,则(1.25−1)÷1=25%.2. 李刚在一家商店买了许多乒乓球,这里对每次购物要加5%的销售税.如果他不必缴税,则他用同样的钱可多买3个球.他买了个球.【答案】60【分析】假设李刚买乒乓球花了100元,那么销售税为100×5%=5(元),每个球价格是5÷3=53(元),100÷53=60(个).3. 小明买了一辆二手山地车,支付了山地车原价的90%,没过几天,他的朋友看中了这辆山地车,并表示愿意支付高出原价25%的价格买下.小明答应了,只经过简单一转手,这辆山地车就让小明赚了105元.那么,小明这辆山地车的原价是元.【答案】300【分析】把这辆山地车的原价看成单位1,那么小明赚的钱对应的分率为1+25%−90%= 35%,105÷35%=300(元).4. 书店以每本10.08元的价格购进某种图书,每本售价16.8元,卖到还剩10本时,除了收回全部成本外,还获利504元.这个书店购进该种图书本.【答案】 100【分析】 我们发现最后 10 本卖得钱全部都是利润,最后总利润为 504+10×16.8=672(元).每本获利 16.8−10.08=6.72(元),说明总数为 672÷6.72=100(本).5. 一套玩具售价是 120 元,打八折出售,仍能获利 60%,则每套玩具的进价是 元.【答案】 60【分析】 详解:进价是 120×0.8÷(1+60%)=60 元.6. 如果甲商品价格的 25% 比乙商品价格的 25% 多 25%;那么,乙的价格比甲的价格少 %.【答案】 20【分析】 方法一:设甲商品的价格为单位 1,那么乙商品价格的 25% 为 1×25%÷(1+25%)=15,乙商品的价格为 15÷25%=45,那么乙的价格比甲的价格少 1−45=15=20%.方法二:$\text{甲商品价格的$ 25\% $}:\text{乙商品价格的$ 25\% $}=5:4$,所以 甲商品价格:乙商品价格=5:4,因此乙的价格比甲的价格少 (5−4)÷5=20%.7. —个灰太狼玩具的进价是 20 元,售价是 50 元,结果没人来买.于是店主决定打折出售,但希望利润率不低于 25%,那么这个玩具最多能打 折.【答案】 五【分析】 详解:20×(1+25%)÷50=0.5,所以最多能打五折.8. 五位同学决定购买一台电脑,费用平均分担,后来小组又来了 3 名新成员,费用重新由 8 个人平均分担,因此原来的同学每人节省了 285 元,这台电脑价格为 元.【答案】 3800【分析】 设一台电脑的价格为单位 1,那么原来每名同学需付款 15,增加三名同学后每名同学只需付 18,那么电脑价格为 285÷(15−18)=3800(元).9. 某种商品若以 6 折(标价的 60%)降价出售,仍相对于进货价获利 10%,那么该商品款应为进货价的 倍.【答案】116【分析】(1+10%)÷60%=11610. 小红买1支钢笔和3个笔记本共用了36.45元,其中每个笔记本售价的154与每支钢笔的售价相等,则1支钢笔的售价是元.【答案】20.25【分析】由题可知:1钢+1笔=36.45,钢=154笔,则154笔+3笔=36.45,笔=5.4,则钢=154×5.4=20.25.11. 商店以每张2角1分的价格进了一批贺年卡,共卖14.57元.若每张的售价相同,且不超过买入价格的两倍,则商店赚了元.【答案】 4.7【分析】14.57元=1457分,1457=31×47.每张的售价不超过买入价格的两倍,47是张数,31分是售价;商店赚了(31−21)×47=470(分)=4.7(元).12. 明星动物园的门票,大人100元,儿童50元.六一儿童节这天,儿童门票免费,这样大人入园者比前一天增加了60%,儿童入园者增加了80%,结果共增加了780人.但这天门票收入和前一天收入相同.那么,六一儿童节这天明星动物园的门票收入是元.【答案】80000元【分析】方法一:假设前一天儿童有30人(也可以为其他数),由于儿童票价是大人的一半,那么,要使收入不变,则六一儿童节大人需增加30÷2=15(人),儿童增加30%×80%=24(人),大人与儿童共增加15+24=39人.实际增加了780人,780÷39=20(组).由此可见,前一天儿童有 30×20=600(人),大人则有 600÷2÷60%=500(人),那么门票收入为 100×500+50×600=80000(元).方法二:设节前一天入园大人人数为 x ,儿童人数为 y ,则 {x ⋅60%+y ⋅80%=780x ⋅160%×100=100x +50y, 解得 y =600,x =500.因此门票收入为 100×500+50×600=80000(元).13. 某城市对煤气费的规定是:用煤气不超过 60 立方米,每立方米收费 0.8 元;若超过 60 立方米,则超出的部分每立方米收费 1.2 元.已知小明家4月份煤气费平均每立方米 0.88 元,则他家4月份应缴煤气费 元.【答案】 66【分析】 方法一:不超过 60 立方米的部分比平均共少给了 60×(0.88−0.8)=4.8(元),则超过 60 立方米的部分共比平均多了 4.8 元,超过 60 立方米有 4.8÷(1.2−0.88)=15(立方米),共 75 立方米,每立方米 0.88 元,所以共缴费 75×0.88=66(元).方法二:根据十字交叉计算没超过 60 立方米和超过 60 立方米的煤气量的比为 4:1,如下图,所以共使用煤气 60÷4×(4+1)=75(立方米),每立方米 0.88 元,所以共缴费 75×0.88=66(元).14. 某种商品的进价为 800 元,出售时标价为 1200 元.后来由于该商品积压,商店准备打折出售,但要保持利润率不低于 5%,则最多可以打 折.【答案】 7【分析】 打折后的售价至少为 800×(1+5%)=840(元),此时打折为 840÷1200=710=7折.15. 制鞋厂生产的皮鞋按质量共分 10 个档次,生产最低档次(即第 1 档次)的皮鞋每双利润为 24 元.每提高一个档次,每双皮鞋利润增加 6 元.最低档次的皮鞋每天可生产 162 双,提高一个档次每天将少生产9双皮鞋.那么按天计算,生产第档次的皮鞋所获得利润最大.最大利润是元.【答案】8;6534元【分析】依题意,制鞋厂生产第n档鞋,则每双获利为24+(n−1)×6.可生产162−(n−1)×9双.则每天获利:[24+(n−1)×6]×[162−(n−1)×9]=(18+6n)×(171−9n)=6×(3+n)×9×(19−n)=54×(3+n)×(19−n)因为3+n与19−n的和一定,故当3+n=19−n,即n=8时,54×(3+n)×(19−n)最大,为54×11×11=6534(元).即生产第8档鞋时利润最大且最大为6534元.16. 小明带着一些钱去买签字笔,到商店后发现这种笔降价了12.5%,如果他带的钱恰好可以比原来多买13支,那么降价前这些钱可以买支签字笔.【答案】91【分析】方法一:由于签字笔降价前后单价比为1:(1−12.5%)=8:7,且小明所带的钱数不变,所以可购买签字笔降价前后数字比7:8,因此降价前可以买13÷(8−7)×7=91(支).=91(支).方法二:设原来单价为单位1,则有13×(1−12.5%)12.5%17. 农科所向农民推荐丰收I号和丰收II号两种新型良种稻谷.在田间管理和土质相同的情况下,II号稻谷单位面积的产量比I号稻谷低20%,但II号稻谷的米质好,价格比I号稻谷高.已知政府对I号稻谷的收购价是1.6元/千克.(1)当政府对II号稻谷的收购价是多少时,在田间管理、土质和面积相同的两块田里分別种植I号、II号稻谷的收益相同?(2)去年王伯伯在土质和面积相同的两块田里分别种植I号、II号稻谷,并且进行了相同的田间管理.收获后,王伯伯把稻谷全部卖给政府.卖给政府时,II号稻谷的收购价为2.2元/千克,I号稻谷的收购价不变,这样王伯伯卖II号稻谷比卖I号稻谷多收入1040元.求王伯伯去年卖给政府的稻谷共有多少千克?【答案】(1)2元/千克;(2)11700千克【分析】(1)收益=价格×产量,现在要想收益相等,而产量之比为100%:80%=5:4,则价格之比应为4:5.I号的收购价是1.6元/千克,则II号稻谷的收购价为:1.6÷4×5=2(元/千克).(2)II号稻谷有1040÷(2.2−2)=5200(千克).所以I号稻谷有5200÷4×5=6500(千克).所以共有5200+6500=11700(千克).18. 物美超市饮料部为鼓励消费,规定:买5瓶以下或5瓶可乐,每瓶10元;如果买5瓶以上,超出5瓶部分,每瓶8元.已知小高比卡莉娅多花了42元,小高买了多少瓶可乐?【答案】9瓶.【分析】42=4×8+10,说明小高买了9瓶,卡莉娅买了4瓶.19. 费叔叔有10000元钱,打算存入银行两年.(1)办法一:存两年期的整存整取定期储蓄,年利率为4.7%,到期后可去取出本金和利息一共多少元?(2)办法二:先存一年期的整存整取定期储蓄,年利率为4%;到期后将本金和利息再存一年,最后本金和利息一共多少元?【答案】(1)10940;(2)10816【分析】(1)办法一:10000×(1+4.7%×2)=10940(元);(2)办法二:10000×(1+4%)×(1+4%)=10816(元).20. 某商店卖出两件商品,两件商品的进价都是990元,其中一件比进价高10%出售,另一件比进价低10%出售.试问:这两件商品售出后,商店是赚了,还是赔了?【答案】不赚不赔.【分析】两件进价和为:990×2=1980(元);售价和为:990×(1+10%)+990×(1−10%)=990×2=1980(元).所以不赚也不赔.21. 某商店卖出一支钢笔的利润是9元,一个小熊玩具的进价为2元.一次,商家采取“买4支钢笔赠送一个小熊玩具”的打包促销,共获利润1922元.问这次促销最多卖出了多少支钢笔?【答案】226【分析】19221922÷(4×9−2)=56⋯⋯18;56×4+18÷9=226(支).22. 商店以每双13元的价格购进一批拖鞋,售价为14.8元,卖到还剩5双时,除去购进这批拖鞋的全部开销外还获利88元.问:这批拖鞋共有多少双?【答案】90【分析】由已知,可以计算出全部获利,再根据每双鞋的获利,可以计算出鞋的数量:(88+5×14.8)÷(14.8−13)=90(双).23. LED灯泡每只售价80元,而传统灯泡每只只要10元.有一个霓虹灯总共有8000只灯泡,依照每天开灯4小时计,每只传统灯泡每年电费需24元,而每只LED灯泡每年电费只需6元.每只传统灯泡的平均寿命为1年,而LED灯泡平均寿命为5年.如果将此霓虹灯的灯泡全部替换为LED灯泡,请问平均每年约可节省多少元?【答案】96000元【分析】因传统灯泡可用1年.因此1年的平均花费为8000×10+8000×24=272000(元);若用LED灯泡,可用5年,故1年的平均花费(8000×80)÷5+8000×6=176000(元);因此平均一年可节省272000−176000=96000(元).24. 某商店卖出两件商品,其中一件比进价高10%出售,另一件比进价低10%出售,结果两件的售出价都是990元,试问:这两件商品售出后,商店是赚了还是赔了?【答案】赔了.【分析】由题意得,第一件商品的进价为990÷(1+10%)=900元,另一件商品的进价为990÷(1−10%)=1100元.因此两件商品的总成本为900+1100=2000元.而最终两件商品只卖了990+990=1980元,比成本少了20元,因此在这两件商品售出后,商店是赔了.25. 文东商店进了一批笔记本,按30%的利润率定价.当售出这批笔记本的80%后,为了尽早销完,商店把剩下的笔记本半价出售.那么销售完后商店实际获得的利润率是多少?【答案】17%【分析】详解:假设共进了5本笔记本,每本成本100元,那么有4本以130元卖出,有1本以65元卖出,所以总收入585元,所以利润率是17%.26. 一件商品如果按180元定价,可获利20%.实际上,该商品售价是240元,那么所得的利润是多少元?【答案】90【分析】这件商品的成本是180÷(1+20%)=150元.若售价是240元,所得的利润是240−150=90元.27. (1)一部电话的进价是250元,售出价是320元,这部电话的利润率是多少?(2)一个鼠标的进价是108元,定价是180元,实际上打七五折出售,这个鼠标的利润率是多少?【答案】(1)28%;(2)25%【分析】根据公式:利润率=利润成本×100%=售价−成本成本×100%;(1)利润率=320−250250×100%=28%;(2)利润率=180×75%−108108×100%=25%.28. 一件商品,本月进货价降低了5%,但是售价不变,利润提高了6个百分点,问商品上个月的进货价未降低时利润是百分之多少?【答案】14%【分析】设上个月的进货价为100,利润率为x%;则这个月的进货价为95,利润率为(x+6)%;则有100×x%+5=95(x+6)%,解得x=14,即上月的利润率为14%.29. (1)—条小狗,每天吃由牛肉和火腿肠组成的食物300克,牛肉的蛋白质含量为15%,火腿肠的蛋白质含量为10%.已知小狗每天需要36克蛋白质,那么食物中火腿肠的含量是多少克?(2)某公司进了A、B两种不同型号的钢材,共花了28万元.A型钢材出售后可以获利29%,B型钢材出售后可以获利22%.钢材全部出售后,公司获利7万元,那么进货的时候,A、B两种钢材各花去多少万元?【答案】(1)180克;(2)12万元,16万元.【分析】(1)把300克食物看作是溶液,其中含有的蛋白质看作是溶质,那么就可以用十字交叉法来解决了,溶液的浓度为36300×100%=12%.十字交叉法300÷5×3=180(克).(2)公司花了28万,售出后获利7万,那么利润率为7=25%.28用十字交叉法28÷(3+4)=4(万元),3×4=12(万元),4×4=16(万元).30. 某种少年读物,如果按原定价格销售,每售一本,获利 0.24 元;现在降价销售,结果售书量增加一倍,获利增加 0.5 倍.问:每本书售价降价多少元?【答案】 0.06【分析】 降价销售平均每售 2 本书获利 0.24×(1+12)=0.36(元),每本获利 0.18 元.所以每本书售价降低 0.24−0.18=0.06(元).31. 某工厂二月份比元月份增产 310,三月份比二月份减产 710.问三月份比元月份增产了还是减产了?【答案】 减产.【分析】 工厂二月份比元月份增产 310,将元月份产量看作1,则二月份产量为:1×(1+310)=1310,三月比二月减产 710,则三月份产量为:1310×(1−710)=39100<1,所以三月份比元月份减产了.32. 小明到商店买红黑两种笔共 66 支,红笔每支定价 5 元,黑笔每支定价 9 元.由于买的数量多,商店给予优惠,红笔按定价的 85% 付钱,黑笔按定价的 80% 付钱,如果他付的钱比按定价少比较付了 18%,那么他买了红笔多少支?【答案】 36【分析】 设买了 x 支红笔,则:5x ×85%+9(66−x )×80%=[5x +9(66−x )]×82%解得x =36所以他买了红笔 36 支.33. 某国家的社会风气不大好,有一家商店的物品被偷窃了 14,被员工偷回家了 15,剩下的物品全部被售出,结果这家商店竟然还获利 10%.请问这家商店的物品是以进货价的几倍售出的?【答案】 2 倍.【分析】 设物品总量为 1 份,是以进货价的 x 倍售出的.被偷窃 14,被员工偷回家了 15,还剩下 1−14−15=1120 依题意得 1120x =1×(1+10%),解得 x =2,所以这家商店的物品是以进货价的 2 倍售出的.34. 一件皮衣的进价是 800 元,标价是 1440 元,结果没人来买.店主决定打折出售,但希望利润率不能低于 35%,请问:这件皮衣最低可以打几折?【答案】 七五折.【分析】 当利润率为 35% 时,售价为 800×(1+35%)=1080(元),所以最低折扣为 10801440×100%=75%,即最低七五折.35. 商场,卖一种款式的冰箱,按照 25% 的利润来定价,如果打九折出售,每台能赚 450 元,那么这款冰箱的进价是多少元?【答案】 3600【分析】 设进价为 1 份,那么定价就为 1.25 份,打九折出售,利润为 1.25×0.9−1=0.125(份),所以进价是 450÷0.125=3600(元).36. (1)一部电话的进价是 250 元,售出价是 320 元,这部电话的利润率是多少?(2)一个鼠标的进价是 108 元,定价是 180 元,实际上打七五折出售,这个鼠标的利润率是多少?(3)一件皮衣的进价是 800 元,标价是 1440 元,结果没人来买,店主决定打折出售,但希望利润率不能低于 35%,请问:这件皮衣最低可以打几折?【答案】 (1)28%;(2)25%;(3)七五折.【分析】 (1)根据利润 = 总售价 − 总成本,因此这部电话的利润是:320−250=70 元. 再根据利润率 =利润总成本×100%,因此这部电话的利润率是:70250×100%=28%.(2)鼠标的价格打了七五折,所以它的实际售出价是:180×0.75=135 元.所以鼠标的利润是:135−108=27 元.利润率是:27108×100%=25%.(3)我们只需算出利润率是 35% 时的售出价即可.根据:总售价 = 总成本 ×(1+利润率),可知售出价是:800×(1+35%)=1080 元. 它与原价相比,是原价的 1080÷1440=0.75.所以这件皮衣最低可以打 75 折,才能使利润率不低于 35%.37. 某贵金属工场职员误把每克售 0.73 元的贵金属看成每克售 0.73 元.他售出 b 公斤后.出纳员发觉工场损失了 146 元.求 b 的值.【答案】 19.8【分析】 方法一算术法:先将 0.73 化为分数. 所以预售价格为每克 7399 元.实际每克为 73100 元,所以每克损失 7399−73100=739900 元,所以金属有 146÷739900=19800 克,换算成千克为 19.8 千克.方法二方程法:由题意列方程得:1000b(0.73−0.73)=146,则 1000b (7399−73100)=146 1000b ×73(199−1100)=146 1000b ×19900=2 b =19.838. 一家公司购买了18台设备,包括计算机、投影仪,共计76000元,其中每台计算机价格4000元,投影仪每台6000元,求各台设备购买的数量.【答案】计算机、投影仪分别有16台、2台.【分析】设计算机、投影仪购买数量分别为x、18−x,由条件可得:4000x+6000(18−x)=76000,解得x=16;故计算机、投影仪分别有16台、2台.39. 现在有两种照明灯:一种是10瓦(即0.01千瓦)的节能灯,售价60元;另一种是60瓦(即0.06千瓦)白炽灯,售价3元.两种灯的照明效果相同,使用寿命也相同.电费每小时0.5元/千瓦.那么两种灯用多少时间的费用相等(包括购买价)?【答案】2280小时.【分析】设两种灯用x小时费用相等,则:60+0.01×0.5x=3+0.06×0.5x解得x=2280所以两种灯用2280小时的费用相等.40. 一天,小高拿着爸爸给他的钱去超市买可乐,平时每瓶可乐3.5元钱,当他到超市的时候,正巧碰到优惠活动,可乐变为每瓶3元钱,于是小高多买了1瓶可乐.那么爸爸给了小高多少钱?【答案】21元.【分析】总钱数不变,单价与瓶数成反比,单价比为7:6,可知瓶数比为6:7.那么本来可以买6瓶,小高带了21元.。
分数和百分数及比的应用题例题精讲【例题1】西山小学六年级原有女生人数是男生人数的80%,后来转来女生3 人,现在女生人数是男生人数的5/6,原来全级有多少人?【答案】此题应把男生的人数看作单位“1”,要求原来全级有多少人?必须先求出男生的人数,然后再求出女生的人数,进而求出原来全级有多少人。
3÷(5/6−80%)=90(人)90×80%=72(人)90+72=162(人)答:原来全级有162 人.【例题2】一辆汽车从甲地向乙地行驶,行了一段距离后,距离乙地还有210 千米,接着又行了全程距离的20%,此时已行驶的距离与未行驶的距离比为3:2,求甲乙两地的距离。
【答案】全程的总份数:3+2=5(份)行驶的路程占全程的3/5,未行驶的路程占全程的2/5,甲乙两地的距离:210÷(2/5+20%)=350(米)答:甲乙两地的距离是350 米。
【例题3】为了学生的卫生安全,学校给每个学生配一个水杯,每只水杯3 元,美好家园打九折,汇集超市“买八送一”。
学校想买180只水杯,请你当“参谋”,算一算:到哪家购买较合算?请写出你的理由。
【答案】美好家园:3×0.9×180=486(元)汇集超市:180÷(8+1)=20 3×8×20=480(元)486 元>480 元答:汇集超市购买比较合算。
举一反三【变式1】一桶油,用去40 千克,用去的比剩下的少五分之一,这桶油共有多少千克?【答案】解:设剩下的油为X 千克(X - 40)/ X = 1/5解得:X=50共有油X+40 = 90 (千克)答:这桶油共有 90 千克。
【变式2】工程队用3 天修完一段路,第一天修的是第二天的9/10,第三天修的是第二天的6/5 倍,已知第三天比第一天多修270 米,这段路长多少米?【答案】设第二天修的为单位“1”,则第一天修9/10,第三天修6/5,270÷(6/5-9/10)=900(米)所以,这段路长=900×(1+6/5+9/10)=2790(米)【变式3】12 减去它的1/2、再减去剩下的1/3、再减去剩下的1/4、……最后减去剩下的1/12,剩下的数是()。
分数和百分数应用题典型解法一、数形结合思想数形结合是研究数学问题的重要思想,画线段图能将题目中抽象的数量关系,直观形象地表示出来,进行分析、推理和计算,从而降低解题难度。
画线段图常常与其它解题方法结合使用,可以说,它是学生弄清分数(百分数)应用题题意、分析其数量关系的基本方法。
【例1】一桶油第一次用去51,第二次比第一次多用去20千克,还剩下22千克。
原来这桶油有多少千克?[分析与解]从图中可以清楚地看出:这桶油的千克数×(1-51-51)=20+22则这桶油的千克数为:(20+22)÷(1-51-51)=70(千克)【例2】一堆煤,第一次用去这堆煤的20%,第二次用去290千克,这时剩下的煤比原来这堆煤的一半还多10千克,求原来这堆煤共有多少千克?[分析与解]显然,这堆煤的千克数×(1-20%-50%)=290+10则这堆煤的千克数为:(290+10)÷(1-20%-50%)=1000(千克)二、对应思想量率对应是解答分数应用题的根本思想,量率对应是通过题中具体数量与抽象分率之间的对应关系来分析问题和解决问题的思想。
(量率对应常常和画线段图结合使用,效果极佳。
)【例3】缝纫机厂女职工占全厂职工人数的207,比男职工少144人,缝纫机厂共有职工多少人?[分析与解]解题的关键是找到与具体数量144人的相对应的分率。
从线段图上可以清楚地看出女职工占207,男职工占1-207=2013,女职工比男职工少占全厂职工人数的2013-207=103,也就是144人与全厂人数的103相对应。
全厂的人数为: 144÷(1-207-207)=480(人)【例4】菜农张大伯卖一批大白菜,第一天卖出这批大白菜的31,第二天卖出余下的52,这时还剩下240千克大白菜未卖,这批大白菜共有多少千克?[分析与解]从线段图上可以清楚地看出240千克的对应分率是第一天卖出31后余下的(1-52)。
分数、百分数应用题知识梳理:1、求一个数是另一个数的几分之几(或百分之几),用等式表示三种量得关系:分量÷单位“1”的量=分率(或百分率)2、已知一个数,求它的几分之几(或百分之几)是多少,用等式表示三种量的关系:单位“1”的量×分率(或百分率)=分量3、已知一个数的几分之几(或百分之几)是多少,求这个数,用等式表示三种量的关系:分量÷分率(或百分率)=单位“1”的量工程问题是分数应用题的特例,它是探讨工作总量、工作效率和工作时间三个数量之间相互关系的一种应用题。
工作总量、工作效率、工作时间之间的关系是:工作总量=工作效率×工作时间工作时间=工作总量÷工作效率工作效率=工作总量÷工作时间工作总量÷工作效率之和=工作时间5、浓度问题浓度问题是一种研究溶液配比的百分数应用题。
基本数量关系有:溶液质量=溶质质量/溶液质量×100%=溶质质量/(溶质质量+溶剂质量)×100%溶质质量=溶液浓度×溶液质量溶液质量=溶质质量÷溶液浓度6、纳税与银行利息问题依法纳税是每个公民应有的义务。
把应缴纳的税款叫做应纳税额,应纳税额与收入的百分比叫做利率。
基本数量关系有:总利息=本金×利率×时间个人应得利息=总利息×(1-利息税税率)利率=总利息÷本金÷时间×100%本金=总利息÷利率÷时间7、折扣与商品利润问题工厂或商店有时减价出售商品,通常我们把它称为“打折”出售,几折就是百分之几十。
利润问题亦是一种常见的百分数应用题。
一般情况下,从厂家购进商品的价格称为成本价。
商家在成本价的基础上提升价格出售,所赚的钱称为利润,利润与成本价的百分比就称为利润率。
基本数量关系:利润率=(售价-成本价)/成本价×100%售价=成本价×(1+利润率)成本价=售价÷(1+利润率)定价=成本价×(1+期望利润率)期望利润=成本价×期望利润率1、一桶油第一次取出总数的10%,第二次取出剩下的20%,两次共取出28升。
分数、百分数应用题的分析及解答过程一、分数、百分数应用题的结构例。
小红有20元,小军是小红的6倍,小军有多少元?20 × 6 = 120 (元)求一个数的几倍是多少?例。
小红有20元,小军相当于小红0.7倍,小军有多少元?20 ×0.7 = 14 (元)求一个数的十分之几、百分之几、千分之几……是多少?例。
小红有20元,小军占小红3/10,小军有多少元?20 ×3/10 = 6 (元)求一个数的几分之几是多少?由于上面的三道题从文字的叙述方式和表达的意思是一致的,所以应用的解题方法也是相同的,根据整数、小数、分数乘法的意义都是用乘法进行计算。
也可以把它们统称为倍比应用题。
结合我们已经学过的倍数应用题的基本结构(“1”份数×倍数=几份数),可以归纳为:求一个数的几倍是多少?(整数乘法应用题——倍数应用题)求一个数的十分之几、百分之几、千分之几……是多少?(小数乘法应用题)求一个数的几分之几是多少?(分数乘法应用题)单位“1”×分率= 分率的对应量(量率相对应)在这里都是以“一个数”为标准,用“另一个数”来同“一个数”进行比较,每次比较都有一个“结果”。
因此我们把“一个数”称为单位“1”,把“另一个数”称为分率的对应量,把比较的“结果”称为分率。
注意在这里进行比较时,产生的关系是倍比关系(乘除关系)。
二、分数、百分数应用题的分析1.怎样判断分数、百分数应用题的单位“1”、分率、分率的对应量?首先,找出题中的分率。
分率的表现形式有:倍数、百分数、比、分数(不带计量单位)。
在一道题中如果有倍比关系,也就分率出现,而题中出现的倍数、百分数、比都是反映两个量之间的倍比关系,因此倍数、百分数、比都是分率。
当出现分数时,就有两种情况,如果分数的后面带有计量单位,那么这个分数表示的是具体的数量;如果分数的后面不带有计量单位,那么这个分数表示的是两个量之间的倍比关系,它就是分率。
第一章 简单分数应用题简单分数应用题主要有两种类型:(1)求一个数是另一个数的几(百)分之几,或一个数的几(百)分之几是多少。
计算方法用乘法,计算公式是:单位“1”的量⨯对应分率=对应比较量。
(2)已知一个数的几(百)分之几是多少,求这个数。
计算方法用除法,计算公式为:比较量÷对应分率=单位“1”的量。
分数应用题在计算的过程中,可以参考和倍,差倍的方法,采用线段图辅助分析。
【典型题解】例1:中华小学男生占全校人数的74,(1)男生是女生的几分之几?(2)女生比男生少百分之几?【分析点拨】本道题目属于典型的第一种类型的题目,本题的关键点和难点就是没有具体的量。
其实我们不妨把全校学生看做单位“1”,那么男生就是74,而女生就是73,然后利用第一种题型计算就可以了。
另外,本题也可以利用我们前面学习过的赋值法,不妨设全校有7人,则男生有4人,女生有3人,问题就简单多了,读者朋友不妨一试。
【解答】(1)347374=÷; (2)0025417473-74==÷)(;答:(1)男生是女生的34,(2)女生比男生少0025。
【模仿提升】(1) 某班女生是男生的53; ① 男生比女生多百分之几? ② 女生占全班的几分之几?①3233-5=÷)(;② 83353=+÷)(。
(2) A 大附中某班,一次数学测试,没有及格的同学是及格同学的91。
求这个班这次数学测试的及格率?00909.0199==+÷)(例2:佳佳喝一瓶矿泉水,第一次喝了整瓶的31,第二次喝了整瓶的52少120毫升,这时还剩280毫升没有喝完。
求这瓶矿泉水共有多少毫升?【分析点拨】本题单位“1”是总量,而总量不知道,属于第二种类型的问题,关键点是找到比较量及它的对应分率,利用除法求得单位“1”。
利用线段图进行分析:第二次喝的不是52,而是少了120毫升,若把第二次假设为52,我们不难发现只需要从剩余的280毫升中去掉120毫升,此时剩余280-120=160毫升而160毫升所对应的分率是52-31-1。
六年级数学上册典型例题系列之第六单元百分数的应用题其一:百分数与分数乘除法应用题的结合(解析版)编者的话:《六年级数学上册典型例题系列》是基于教材知识点和常年考点考题总结和编辑而成的,其优点在于选题典型,考点丰富,变式多样。
本专题是第六单元百分数的应用题其一:百分数与分数乘除法应用题的结合,后续内容为《第六单元百分数的应用题其二:百分数与比应用题的结合》、《第六单元百分数的应用题其三:百分率问题》和《第六单元百分数的应用题其四:浓度问题》。
本部分内容是百分数与分数乘除法应用题的结合问题,由于分数乘除法应用题主要体现在第一、三单元的内容中,所以,本部分内容考点划分较为笼统,分数乘除法应用题详细内容请参考第一、三单元的典型例题系列。
该部分内容多考察填空、选择、应用等题型,综合性较强,题目难度稍大,建议结合分数乘除法应用题作为重点部分和复习内容进行讲解,共划分为六个考点,欢迎使用。
【考点一】百分数与分数乘法应用题的结合其一:基本类型题。
【方法点拨】1.百分数应用题多是在分数乘除法应用题的基础上进行变式,因此,掌握了分数乘除法应用题也就掌握了百分数应用题。
(注意:分数乘除法应用题的详细考点请参考编者的第一、三单元典型例题系列)2.百分数应用题与分数乘法应用题的结合:(1)求一个数的百分之几是多少?(单位“1”已知)单位“1”×百分率=分率所对应的量(2)求一个数比另一个数多(少)百分之几的数是多少?单位“1”×(1+百分率)=分率所对应的数量【典型例题1】东风化肥厂九月份计算生产化肥2800万袋,实际上半月完成计划的59%,下半月完成计划的65%。
全月超额生产化肥多少袋?解析: 2800×(59%+65%)-2800=672(袋)答:略。
【典型例题2】从1997年至今,我国铁路进行多次提速。
有一列火车,原来每小时行驶80千米,提速后,这列火车的速度比原来增加了40%。
现在这列火车每小时行驶多少千米?解析:80×(1+40%)=112(千米)答:略。
分数和百分数应用题例题讲解
例1六(1)班有男生25人,女生20人。
(1)男生人数是女生的几倍?
(2)女生人数是男生的几分之几?
(3)男生占全班人数的几分之几?
(4)男生比女生多百分之几?
(5)女生比男生少百分之儿?
【分析】求一个数是另一个数的几分之几、百分之几与求一个数是另一个数的几倍,有着相同的数量关系,都是要找准单位“1”的量(1倍数的量)和与单位“1”相比较的量,然后用与单位“1”相比较的量除以单位“1”的量。
题例中,已知条件相同,所求问题不同,我们要掌握如何根据不同的问题,找到相应的数量来解答实际问题。
【思路】我们可以通过下面的表格,列出小题中需要找的数量,然后列式解答。