八年级函数应用题
- 格式:doc
- 大小:127.00 KB
- 文档页数:4
初二数学函数试题及答案一、选择题(每题2分,共10分)1. 函数y = 3x + 5的斜率是:A. 3B. -3C. 5D. 02. 如果函数f(x) = 2x - 1,那么f(-3)的值是:A. -7B. -5B. 5D. 73. 下列哪个是一次函数:A. y = x^2B. y = 4x + 3C. y = 1/xD. y = sin(x)4. 函数y = 2x的图象经过第几象限:A. 第一象限和第二象限B. 第一象限和第四象限C. 第二象限和第三象限D. 第三象限和第四象限5. 如果一个函数的图象是一条直线,那么这个函数是:A. 一次函数B. 二次函数C. 三次函数D. 指数函数二、填空题(每题2分,共10分)6. 函数y = kx + b中,k表示______。
7. 函数f(x) = 3x^2 + 2x - 1的顶点坐标是______。
8. 当x > 0时,函数y = 1/x的值是______。
9. 函数y = |x - 3|的图象是一条折线,折点坐标为______。
10. 如果一个函数的增减性是单调递增,那么这个函数是______。
三、解答题(每题10分,共30分)11. 已知函数y = 2x + 4,求当x = -1时,y的值。
12. 给定函数f(x) = x^2 - 4x + 3,求该函数的顶点坐标。
13. 函数y = 1/x在x = 2处的切线斜率是多少?四、应用题(每题15分,共30分)14. 一个物体从静止开始以匀速直线运动,其速度与时间的关系为v = 3t。
求物体在第5秒时的速度。
15. 某工厂生产的产品数量与生产时间的关系为Q = 100t + 50,其中Q表示产品数量,t表示生产时间(小时)。
如果工厂从上午8点开始生产,到中午12点结束,求工厂在这段时间内生产的总产品数量。
五、综合题(每题20分,共20分)16. 已知一次函数y = 2x - 6,如果该函数的图象与x轴交于点A,与y轴交于点B,求点A和点B的坐标。
人版数学八年级下册 第十九章 一次函数 一次函数的应用 专题练习题1.在一条笔直的公路上有A ,B ,C 三地,C 地位于A ,B 两地之间,甲、乙两车分别从A ,B 两地出发,沿这条公路匀速行驶至C 地停止.从甲车出发至甲车到达C 地的过程,甲、乙两车各自与C 地的距离y(km )与甲车行驶时间t(h )之间的函数关系如图所示,当甲车出发____h 时,两车相距350 km .2.小亮家与姥姥家相距24 km ,小亮8:00从家出发,骑自行车去姥姥家.妈妈8:30从家出发,乘车沿相同路线去姥姥家.在同一直角坐标系中,小亮和妈妈的行进路程s(km)与时间t(h)的函数图象如图所示.根据图象得出下列结论,其中错误的是( )A .小亮骑自行车的平均速度是12 km/hB .妈妈比小亮提前0.5 h 到达姥姥家C .妈妈在距家12 km 处追上小亮D .9:30妈妈追上小亮3.甲骑摩托车从A 地去B 地,乙开汽车从B 地去A 地,同时出发,匀速行驶,各自到达终点后停止,设甲、乙两人间距离为s(千米),甲行驶的时间为t(小时),s 与t 之间的函数关系如图所示,有下列结论:①出发1小时时,甲、乙在途中相遇;②出发1.5小时时,乙比甲多行驶了60千米;③出发3小时时,甲、乙同时到达终点;④甲的速度是乙速度的一半.其中正确结论的个数是( )A .4B .3C .2D .14.设甲、乙两车在同一直线公路上匀速行驶,开始甲车在乙车的前面,当乙车追上甲车后,两车停下来,把乙车的货物转给甲车,然后甲车继续前行,乙车向原地返回.设x 秒后两车间的距离为y 米,关于y 与x 的函数关系如图所示,则甲车的速度是____米/秒.5.周末,小明骑自行车从家里出发到野外郊游,从家出发1 h 后到达南亚所(景点),游玩一段时间后按原速前往湖光岩.小明离家116 h 后,妈妈驾车沿相同路线前往湖光岩.如图是他们离家的路程y(km )与小明离家时间x(h )的函数图象.(1)求小明骑车的速度和在南亚所游玩的时间;(2)若妈妈在出发后25 min时,刚好在湖光岩门口追上小明,求妈妈驾车的速度及CD所在直线对应的函数解析式.6.小明和爸爸从家步行去公园,爸爸先出发一直匀速前行,小明后出发.家到公园的距离为2500 m,如图是小明和爸爸所走的路程s(m)与步行时间t(min)的函数图象.(1)直接写出小明所走路程s与时间t的函数关系式;(2)小明出发多少时间与爸爸第三次相遇?(3)在速度都不变的情况下,小明希望比爸爸早20 min到达公园,则小明在步行过程中停留的时间需作怎样的调整?7.五月份,某品牌衬衣正式上市销售,5月1日的销售量为10件,5月2日的销售量为35件,以后每天的销售量比前一天多25件,直到日销售量达到最大后,销售量开始逐日下降,至此,每天的销售量比前一天少15件,直到5月31日销售量为0.设该品牌衬衣的日销售量为P(件),销售日期为n(日),P与n之间的关系如图所示.(1)试求第几天销售量最大;(2)直接写出P关于n的函数关系式(注明n的取值范围);(3)经研究,该品牌衬衣的日销售量超过150件的时间为该品牌的流行期,请问:该品牌衬衣本月在市面上的流行期为多少天?8.某个体户购进一批时令水果,20天销售完毕,他将本次销售情况进行了跟踪记录,根据所记录的数据可绘制如图所示的函数图象,其中日销售量y(千克)与销售时间x(天)之间的函数关系如图甲所示,销售单价p(元/千克)与销售时间x(天)之间的函数关系如图乙所示.(1)直接写出y 与x 之间的函数关系式;(2)分别求出第10天和第15天的销售金额;(3)若日销售量不低于24千克的时间段为“最佳销售期”,则此次销售过程中“最佳销售期”共有多少天?在此期间销售单价最高为多少元?答案:1. 32 分析:根据图象可得A 与C 的距离等于B 与C 的距离,根据行驶路程与时间的关系可得相应的速度,根据甲、乙之间的距离可得方程,解之可得答案.2. D3. B4. 205. 分析:(1)由函数图象的数据可得答案;(2)根据题意求出C 点的坐标和妈妈驾车的速度,由待定系数法即可求出CD 的解析式.解:(1)由题意得,小明骑车的速度为20÷1=20(km /h ),小明在南亚所游玩的时间为2-1=1(h ) (2)由题意得,小明从南亚所到湖光岩的时间为2560+116-2=14(h ),∴小明从家到湖光岩的路程为20×(1+14)=25(km ),∴妈妈驾车的速度为25÷2560=60(km /h ),易知C(94,25).设直线CD 对应的函数解析式为y =kx +b ,由题意得⎩⎪⎨⎪⎧0=116k +b ,25=94k +b ,解得⎩⎨⎧k =60,b =-110,∴直线CD 对应的函数解析式为y =60x -110 6. 解:(1)s =⎩⎨⎧50t (0≤t ≤20)1000(20<t ≤30)50t -500(30<t ≤60)(2)可求爸爸所走的路程与步行时间的关系式为s=30t +250,由题意得50t -500=30t +250,解得t =37.5,即t =37.5 min 时,小明与爸爸第三次相遇 (3)由题意得30t +250=2500,解得t =75,即小明的爸爸到达公园需要75 min ,∵小明到达公园需要的时间是60 min ,而小明希望比爸爸早20 min 到达公园,60+20-75=5(min ),则小明在步行过程中停留的时间需减少5 min7. 分析:(1)设第a 天销售量最大,从而得出方程10+25(a -1)=15(31-a),解方程即可得出答案;(2)利用待定系数法求解;(3)利用不等式组的知识求解.解:(1)设第a 天的销售量最大,所以日销售量从最大开始减小到0的天数为(31-a),依题意得10+25(a -1)=15(31-a),解得a =12,故第12天的销售量最大(2)P =⎩⎨⎧25n -15(1≤n ≤12,且n 为整数)-15n +465(12<n ≤31,且n 为整数) (3)由题意得⎩⎨⎧25n -15>150,-15n +465>150,解得635<n <21,整数n 的值可取7,8,9,…,20,共14个,所以该品牌衬衣本月在市面上的流行期为14天8. 解:(1)y =⎩⎨⎧2x (0≤x ≤15,且x 为整数)-6x +120(15<x ≤20,且x 为整数)(2)当10≤x ≤20时,p =-15x +12,当x =10时,销售单价为10元,销售金额为10×20=200(元);当x =15时,销售单价为9元,销售金额为9×30=270(元) (3)若日销售量不低于24千克,则y ≥24,当0≤x ≤15时,y =2x ,由2x ≥24得x ≥12;当15<x ≤20时,y =-6x +120,由-6x +120≥24,得x ≤16,∴12≤x ≤16,∴“最佳销售期”共有16-12+1=5(天).∵p =-15x +12(10≤x ≤20),-15<0,∴p 随x 的增大而减小,∴当12≤x ≤16时,x 取12时p 有最大值,此时p =-15×12+12=9.6,即销售单价最高为9.6元。
一次函数实际常用应用类问题 答案1、解:⑴由图象可知:当0≤x ≤10时,设y 关于x 的函数解析y=kx-100,∵(10,400)在y=kx-100上,∴400=10k-100,解得k=50 ∴y=50x-100,s=100x-(50x-100),∴s=50x+100⑵当10<x ≤20时,设y 关于x 的函数解析式为y=mx+b , ∵(10,350),(20,850)在y=mx+b 上, ∴ 10m+b=350 解得 m=5020m+b=850 b=-150∴y=50x-150 ∴s=100x-(50x-150)-50∴s=50x+100 ∴y= 50x-100 (0≤x ≤10)50x-150 (10<x ≤20) 令y=360 当0≤x ≤10时,50x-100=360 解得x=9.2 s=50x+100=50×9.2+100=560 当10<x ≤20时,50x-150=360解得x=10.2 s=50x+100=50×10.2+100=610。
要使这次表演会获得36000元的毛利润. 要售出920张或1020张门票,相应支付的成本费用分别为56000元或61000元。
2、解:⑴设甲、乙两同学登山过程中,路程s (千米)与时间t (时)的函数解析式分别为s 甲=k 1t ,s 乙=k 2t 。
由题意得:6=2 k 1,6=3 k 2,解得:k 1=3,k 2=2 ∴s 甲=3t ,s 乙=2t ⑵当甲到达山顶时,s 甲=12(千米),∴12=3t 解得:t=4∴s 乙=2t=8(千米) ⑶由图象可知:甲到达山顶宾并休息1小时后点D 的坐标为(5,12) 由题意得:点B 的纵坐标为12-23=221,代入s 乙=2t ,解得:t=421∴点B (421,221)。
设过B 、D 两点的直线解析式为s=kx+b ,由题意得 421t+b=221 解得: k=-65t+b=12 b=42 ∴直线BD 的解析式为s=-6t+42 ∴当乙到达山顶时,s 乙=12,得t=6,把t=6代入s=-6t+42得s=6(千米)3、解:⑴设存水量y 与放水时间x 的函数解析式为y=kx+b, 把(2,17)、(12,8)代入y=kx+b,得 17=2k+b 解得 k=-109 b =5948=12k+b∴y=-109x+594 (2≤x ≤9188) ⑵由图象可得每个同学接水量为0.25升,则前22个同学需接水0.25×22=5.5(升),存水量y=18-5.5=12.5(升)∴12.5=-109x+594解得 x=7 ∴前22个同学接水共需要7分钟。
八年级函数试题及答案一、选择题1. 下列哪个选项是函数y=2x+3的图象?A. 一条直线B. 一个圆C. 一个椭圆D. 一个抛物线答案:A2. 函数y=-3x+2的斜率是多少?A. 3B. -3C. 2D. -2答案:B3. 如果f(x)=x^2-4x+3,那么f(2)的值是多少?A. 1B. -1C. 3D. 5答案:A4. 函数y=x^3-3x+2的零点个数是:A. 0B. 1C. 2D. 3答案:D二、填空题1. 函数y=5x-2的图象与x轴的交点坐标是______。
答案:(2/5, 0)2. 如果函数f(x)=x^2+bx+c的顶点坐标是(-2, -3),那么b和c的值分别是______和______。
答案:-4,-33. 函数y=2x+1在x=3时的函数值是______。
答案:7三、解答题1. 已知函数f(x)=2x-3,求f(-1)的值。
答案:f(-1) = 2*(-1) - 3 = -52. 已知一次函数y=kx+b的图象经过点(1, 5)和(-1, 1),求k和b的值。
答案:将点(1, 5)代入方程得5 = k + b,将点(-1, 1)代入方程得1 = -k + b。
解方程组得k=2,b=3。
3. 已知二次函数y=ax^2+bx+c的图象开口向下,且顶点坐标为(2, 3),求a的值。
答案:因为图象开口向下,所以a<0。
顶点坐标为(2, 3),所以函数可以表示为y=a(x-2)^2+3。
由于顶点是(2, 3),所以a<0。
四、应用题1. 某工厂生产的产品数量与成本的关系为y=0.5x+1000,其中x表示产品数量,y表示成本。
如果工厂生产了500件产品,那么总成本是多少?答案:将x=500代入方程得y=0.5*500+1000=1250。
所以总成本是1250元。
2. 某地的气温与时间的关系为y=-0.2x^2+4x+10,其中x表示月份,y 表示气温。
求4月份的气温。
八年级数学下册一次函数应用题
八年级数学下册一次函数应用题
1. 线性函数图象与生活
•线性函数是一种常见的数学模型,在生活中有广泛的应用。
•请举例说明线性函数在以下方面的应用:
–人口增长模型
–距离与时间的关系
–成本与产量的关系
2. 小明的邮费计算
•小明收到一份包裹,重量为x kg,根据邮局的规定,邮费与重量成正比。
•已知5kg包裹的邮费为10元,写出此线性函数的函数表达式。
•请计算10kg包裹的邮费。
3. 卖苹果的小摊贩
•小明是一个卖苹果的小摊贩,每个苹果的价格与其重量成正比。
•已知小明卖1kg苹果的价格为10元,写出此线性函数的函数表达式。
•若小明卖出苹果,求其总收入。
4. 速度与距离的关系
•小红骑自行车从家骑到学校,假设她以每小时15km的速度匀速骑行。
•已知她骑行的时间为t小时,写出速度与时间的关系函数表达式。
•若小红骑行小时,求她骑行的距离。
5. 温度的变化
•一台加热器每分钟提高温度2℃,已知加热器刚启动时的室温为20℃。
•写出温度与时间的关系函数表达式。
•若加热器加热了8分钟,求此时的温度。
6. 最佳购买方案
•商场A和商场B同时举行打折促销活动,小明正好需要购买一件商品。
•商场A打折后商品价格为x元,商场B打折后商品价格为y元。
•请编写一个一次函数,表示小明在不同商场购买商品的总花费。
1。
如图,已知直线y=x/2与双曲线y=k/x (k >0)交于A,B 两点,且点A 的横坐标为4.(1)求k 的值(2)若双曲线y=k/x (k >0)上一点C 的纵坐标为8,求△AOC 的面积(3)过原点O 的另一条直线L 交双曲线y=k/x(k >0)于P ,Q 两点(P 点在第一象限),若由点A ,B ,P,Q 为顶点组成的四边形面积为24,求点P 的坐标.2..如图1,A,B ,C 三个容积相同的容器之间有阀门连接,从某一时刻开始,打开A 容器阀门,以4升/分的速度向B 容器内注水5分钟,然后关闭,接着打开B 容器阀门,以10升/分的速度向C 容器内注水5分钟,然后关闭.设A ,B ,C 三个容器内的水量分别为y a ,y b ,y c (单位:升),时间为t (单位:分).开始时,B 容器内有水50升,y a ,y c 与t 的函数图象如图2所示,请在0≤t≤10的范围内解答下列问题:(1)求t=3时,y b 的值.(2)求y b 与t 的函数关系式,并在图2中画出其函数图象.(3)求y a :y b :y c =2:3:4时t 的值.3.某部队甲、乙两班参加植树活动。
乙班先植树30棵,然后甲班才开始与乙班一起植树。
设甲班植树的总量为y甲(棵),乙班植树的总量为y乙(棵),两班一起植树所用的时间(从甲班开始植树时计时)为x(时).y甲、y乙分别与x之间的部分函数图象如图所示.(1)当0≤x≤6时,分别求y甲、y乙与x之间的函数关系式.(3分)(2)如果甲、乙两班均保持前6个小时的工作效率,通过计算说明,当x=8时,甲、乙两班植树的总量之和能否超过260棵。
(3分)(3)如果6个小时后,甲班保持前6个小时的工作效率,乙班通过增加人数,提高了工作效率,这样继续植树2小时,活动结束.当x=8时,两班之间植树的总量相差20棵,求乙班增加人数后平均每小时植树多少棵。
(4分)4 甲、乙两组工人同时加工某种零件,乙组工作中有一次停产更换设备,更换设备后,乙组的工作效率是原来的2倍.两组各自加工零件的数量y(件)与时间x(时)的函数图象如图所示.(1)求甲组加工零件的数量y与时间x之间的函数关系式.(2分)(2)求乙组加工零件总量a的值.(3分)(3)甲、乙两组加工出的零件合在一起装箱,每够300件装一箱,零件装箱的时间忽略不计,求经过多长时间恰好装满第1箱?再经过多长时间恰好装满第2箱?(5分)5如图1,在一条笔直地公路上有A、B、C三地,B、C两地相距150km,甲、乙两辆汽车分别从B、C两地同时出发,沿公路匀速相向而行,分别驶往C、B两地.甲、乙两车到A 地的距离y1、y2与行驶时间x(h)的函数图象如图2所示.(乙:折线E-M—P)(1)请在图1中标出A地的大致位置。
八年级函数变换应用题专项练习及答案=======================题目一1. 函数$f(x) = 2x + 3$,求出其对应的函数$g(x)$,使得$g(f(x)) = x$。
解答:设$g(x) = \frac{x - 3}{2}$,则有$$g(f(x)) = g(2x + 3) = \frac{2x + 3 - 3}{2} = x.$$因此,$g(x) = \frac{x - 3}{2}$。
题目二2. 函数$f(x) = 2x^2$,求出其对应的函数$g(x)$,使得$g(f(x)) = x^2$。
解答:设$g(x) = \sqrt{\frac{x}{2}}$,则有$$g(f(x)) = g(2x^2) = \sqrt{\frac{2x^2}{2}} = \sqrt{x^2} = x.$$因此,$g(x) = \sqrt{\frac{x}{2}}$。
题目三3. 已知函数$f(x) = \frac{1}{x}$,求出其对应的函数$g(x)$,使得$g(f(x)) = x^2$。
解答:设$g(x) = \frac{1}{\sqrt{x}}$,则有$$g(f(x)) = g\left(\frac{1}{x}\right) = \frac{1}{\sqrt{\frac{1}{x}}} = \frac{1}{\frac{1}{\sqrt{x}}} = \sqrt{x} = x^2.$$因此,$g(x) = \frac{1}{\sqrt{x}}$。
题目四4. 函数$f(x) = \frac{1}{x}$,求出其对应的函数$g(x)$,使得$g(f(x)) = \frac{1}{x^2}$。
解答:设$g(x) = \frac{1}{x^2}$,则有$$g(f(x)) = g\left(\frac{1}{x}\right) =\frac{1}{\left(\frac{1}{x}\right)^2} = \frac{1}{\frac{1}{x^2}} = x^2.$$ 因此,$g(x) = \frac{1}{x^2}$。
八年级函数练习题及答案一、选择题1. 函数y=2x+3的斜率是()A. 2B. -2C. 3D. 12. 以下哪个不是函数的值域()A. {x| x>0}B. {x| x≤0}C. {x| x≥0}D. {x| x<0}3. 函数y=x^2的图象是一个()A. 直线B. 抛物线C. 双曲线D. 圆4. 如果函数f(x)=x^2+1的值域是[1,+∞),那么它的函数的定义域是()A. (-∞,1)B. [1,+∞)C. RD. [0,+∞)5. 函数y= \frac {1}{x}的图象不经过()A. 第一象限B. 第二象限C. 第三象限D. 第四象限二、填空题1. 函数y=3x-2的图象与x轴交点的坐标是______。
2. 函数y=-2x+1与y轴交点的坐标是______。
3. 函数y= \frac {1}{x}的图象关于______对称。
4. 函数y=x^2-2x+1的顶点坐标是______。
5. 函数y= \frac {1}{x}的图象在第一象限的斜率是______。
三、解答题1. 已知函数f(x)=x^2-4x+3,求f(2)的值。
2. 已知函数g(x)=-x^2+2x+3,求g(x)的值域。
3. 已知函数h(x)= \frac {1}{x}+2,求h(4)的值。
4. 已知函数m(x)=x^2-6x+8,求m(x)的图象与x轴的交点坐标。
5. 已知函数n(x)= \frac {1}{x}-3,求n(x)的图象与y轴的交点坐标。
四、应用题1. 某工厂生产的产品,每件产品的成本为C元,售价为P元。
已知售价P与成本C之间的关系为P=C+0.1C,求当成本为100元时的售价。
2. 某公司需要购买一批材料,每吨材料的价格为2000元,公司计划购买x吨,总费用为y元。
求y关于x的函数表达式,并计算当购买5吨材料时的总费用。
3. 某学校为学生提供校车服务,每辆车的座位数为40个,学校需要安排x辆校车,每辆车的费用为1000元。
八年级函数练习题及答案一、选择题1. 函数y=2x+3的斜率是()A. 2B. -2C. 3D. 12. 如果一个函数的图象是一条直线,那么这个函数是()A. 一次函数B. 二次函数C. 三角函数D. 对数函数3. 函数y=x^2-4x+4的顶点坐标是()A. (2, 0)B. (-2, 0)C. (2, 4)D. (0, 4)二、填空题4. 函数y=3x-2与x轴的交点坐标是()。
5. 函数y=x^2的最大值是()。
三、解答题6. 已知函数y=kx+b(k≠0),请根据以下条件求出k和b的值: - 当x=1时,y=0;- 当x=0时,y=-3。
7. 函数y=-\frac{1}{2}x^2+2x+1的最大值是多少?并求出此时x的值。
四、应用题8. 某工厂生产一种产品,每件产品的成本为10元,售价为20元。
设工厂生产x件产品,利润为y元,求利润函数y关于x的表达式,并求出当生产200件产品时的利润。
答案:一、选择题1. A2. A3. C二、填空题4. 函数y=3x-2与x轴的交点坐标是(0,-2)。
5. 函数y=x^2的最大值是无穷大,因为x^2没有最大值。
三、解答题6. 根据条件,我们可以列出方程组:- 当x=1时,y=0,得到 k+b=0;- 当x=0时,y=-3,得到 b=-3。
解得 k=3,b=-3,所以函数表达式为y=3x-3。
7. 函数y=-\frac{1}{2}x^2+2x+1可以写成顶点式:y=-\frac{1}{2}(x-2)^2+3,所以当x=2时,函数取得最大值3。
四、应用题8. 利润函数y=售价-成本=20x-10x=10x,当生产200件产品时,利润y=10*200=2000元。
八年级上册一次函数的应用题:
题目:一辆汽车以每小时60公里的速度行驶,从起点出发后经过3小时到达目的地。
假设汽车的行驶距离和时间成一次函数关系,请回答下列问题:
汽车在3小时内行驶了多远?
如果汽车行驶6小时,预计会到达的距离是多少?
汽车需要行驶多少小时才能行驶500公里?
解答:
由题意可知,汽车的速度为每小时60公里,行驶了3小时,因此汽车在3小时内行驶的距离为:60公里/小时× 3小时 = 180公里。
根据题目中给出的信息,汽车的行驶距离和时间成一次函数关系。
我们可以使用函数的定义来解答这个问题。
设汽车行驶的距离为D(单位:公里),行驶的时间为t(单位:小时),那么汽车行驶的速度为60公里/小时。
由一次函数的定义可知,D = 60t。
当t = 6时,代入公式计算得到D = 60 × 6 = 360公里。
因此,如果汽车行驶6小时,预计会到达的距离是360公里。
同样地,我们可以使用函数的定义来解答这个问题。
设汽车行驶的距离为D(单位:公里),行驶的时间为t(单位:小时)。
根据题目中给出的信息,我们知道D = 60t。
要计算汽车需要行驶多少小时才能行驶500公里,我们可以将D设为500,然后求解t。
即:500 = 60t。
解这个方程可得到t = 500 / 60 ≈ 8.33小时。
因此,汽车需要行驶约8.33小时才能行驶500公里。
1.如图,已知直线y=x/2与双曲线y=k/x(k>0)交于A,B两点,且点A的横坐标为4.
(1)求k的值
(2)若双曲线y=k/x(k>0)上一点C的纵坐标为8,求△AOC的面积
(3)过原点O的另一条直线L交双曲线y=k/x(k>0)于P,Q两点(P点在第一象限),若由点A,B,P,Q为顶点组成的四边形面积为24,求点P的坐标.
2..如图1,A,B,C三个容积相同的容器之间有阀门连接,从某一时刻开始,打开A容器阀门,以4升/分的速度向B容器内注水5分钟,然后关闭,接着打开B容器阀门,以10升/分的速度向C容器内注水5分钟,然后关闭.设A,B,C三个容器内的水量分别为y a,y b,y c(单位:升),时间为t(单位:分).开始时,B容器内有水50升,y a,y c与t的函数图象如图2所示,请在0≤t≤10的范围内解答下列问题:
(1)求t=3时,y b的值.
(2)求y b与t的函数关系式,并在图2中画出其函数图象.
(3)求y a:y b:y c=2:3:4时t的值.
3.某部队甲、乙两班参加植树活动.乙班先植树30棵,然后甲班才开始与乙班一起植树.设甲班植树的总量为y甲(棵),乙班植树的总量为y乙(棵),两班一起植树所用的时间(从甲班开始植树时计时)为x(时).y甲、y乙分别与x之间的部分函数图象如图所示.
(1)当0≤x≤6时,分别求y甲、y乙与x之间的函数关系式.(3分)
(2)如果甲、乙两班均保持前6个小时的工作效率,通过计算说明,当x=8时,甲、乙两班植树的总量之和能否超过260棵.(3分)
(3)如果6个小时后,甲班保持前6个小时的工作效率,乙班通过增加人数,提高了工作效率,这样继续植树2小时,活动结束.当x=8时,两班之间植树的总量相差20棵,求乙班增加人数后平均每小时植树多少棵.(4分)
4 甲、乙两组工人同时加工某种零件,乙组工作中有一次停产更换设备,更换设备后,乙组的工作效率是原来的2倍.两组各自加工零件的数量y(件)与时间x(时)的函数图象如图所示.
(1)求甲组加工零件的数量y与时间x之间的函数关系式.(2分)(2)求乙组加工零件总量a的值.(3分)
(3)甲、乙两组加工出的零件合在一起装箱,每够300件装一箱,零件装箱的时间忽略不计,求经过多长时间恰好装满第1箱再经过多长时间恰好装满第2箱(5分)
5如图1,在一条笔直地公路上有A、B、C三地,B、C两地相距150km,甲、乙两辆汽车分别从B、C两地同时出发,沿公路匀速相向而行,分别驶往C、B两地.甲、乙两车到A 地的距离y1、y2与行驶时间x(h)的函数图象如图2所示.(乙:折线E-M-P)
(1)请在图1中标出A地的大致位置.
(2)图2中,求点M的坐标,并解释该点的实际意义.
(3)求甲车到A地的距离y1与行驶时间x(h)的函数关系式,直接写出乙车到A地的距离y2与行驶时间x(h)的函数关系式,并在图2中补全甲车的函数图象.
(4)(4)A地设有指挥中心,指挥中心与两车配有对讲机,两部对讲机在20km之内(含20km)时能够互相通话,直接写出两车可以同时与指挥中心用对讲机通话的时间.
6一列快车从甲地驶往乙地,一列慢车从乙地驶往甲地,两车同时出发,设慢车行驶的时间为x(h),两车之间的距离为y(km),图中的折线表示y与x之间的函数关系.根据图
象进行以下探究:
信息读取:
(1)甲、乙两地之间的距离为km;
(2)请解释图中点B的实际意义;
图象理解:
(3)求慢车和快车的速度;
(4)求线段BC所表示的y与x之间的函数关系式,并写出自变量x的取值范围;
问题解决:
(5)若第二列快车也从甲地出发驶往乙地,速度与第一列快车相同.在第一列快车与慢车相遇30分钟后,第二列快车与慢车相遇.求第二列快车比第一列快车晚出发多少小时。