量子力学第一章下
- 格式:ppt
- 大小:1.10 MB
- 文档页数:40
量⼦⼒学讲义1第⼀章绪论前⾔⼀、量⼦⼒学的研究对象量⼦⼒学是现代物理学的理论基础之⼀,是研究微观粒⼦运动规律的科学。
量⼦⼒学的建⽴使⼈们对物质世界的认识从宏观层次跨进了微观层次。
综观量⼦⼒学发展史可谓是群星璀璨、光彩纷呈。
它不仅极⼤地推动了原⼦物理、原⼦核物理、光学、固体材料、化学等科学理论的发展,还引发了⼈们在哲学意义上的思考。
⼆、量⼦⼒学在物理学中的地位按照研究对象的尺⼨,物理学可分为宏观物理、微观物理和介观物理三⼤领域。
量⼦理论不仅可以正确解释微观、介观领域的物理现象,⽽且也可以正确解释宏观领域的物理现象,因为经典物理是量⼦理论在宏观下的近似。
因此,量⼦理论揭⽰了各种尺度下物理世界的运动规律。
三、量⼦⼒学产⽣的基础旧量⼦论诞⽣于1900年,量⼦⼒学诞⽣于1925年。
1.经典理论⼗九世纪末、⼆⼗世纪初,经典物理学已经发展到了相当完善的阶段,但在⼀些问题上经典物理学遇到了许多克服不了的困难,如⿊体辐射等。
2.旧量⼦论旧量⼦论= 经典理论+ 特殊假设(与经典理论⽭盾)旧量⼦论没有摆脱经典的束缚,⽆法从本质上揭露微观世界的规律,有很⼤局限性。
但旧量⼦论为量⼦⼒学理论的建⽴提供了线索,促进了量⼦⼒学的快速诞⽣。
四、量⼦⼒学的研究内容1.三个重要概念:波函数,算符,薛定格⽅程。
2.五个基本假设:波函数假设,算符假设,展开假定,薛定格⽅程,全同性原理。
五、量⼦⼒学的特征1.抛弃了经典的决定论思想,引⼊了概率波。
⼒学量可以不连续地取值,且不确定。
2.只有改变观念,才能真正认识到量⼦⼒学的本质。
它是⼈们的认识从决定论到概率论的⼀次巨⼤的飞跃。
六、量⼦⼒学的应⽤前景1.深⼊到诸多领域:本世纪的三⼤热门科学(⽣命科学、信息科学和材料科学)的深⼊发展都离不开它。
2.派⽣出了许多新的学科:量⼦场论、量⼦电动⼒学、量⼦电⼦学、量⼦光学、量⼦通信、量⼦化学等。
3.前沿应⽤:研制量⼦计算机已成为科学⼯作者的⽬标之⼀,⼈们期望它可以实现⼤规模的并⾏计算,并具有经典计算机⽆法⽐拟的处理信息的功能。
量子力学习题及解答第一章 量子理论基础1.1 由黑体辐射公式导出维恩位移定律:能量密度极大值所对应的波长m λ与温度T 成反比,即m λ T=b (常量);并近似计算b 的数值,准确到二位有效数字。
解 根据普朗克的黑体辐射公式dv e chv d kThv v v 11833-⋅=πρ, (1)以及 c v =λ, (2)λρρd dv v v -=, (3)有,118)()(5-⋅=⋅=⎪⎭⎫ ⎝⎛-=-=kThc v v ehc cd c d d dv λλλπλλρλλλρλρρ这里的λρ的物理意义是黑体内波长介于λ与λ+d λ之间的辐射能量密度。
本题关注的是λ取何值时,λρ取得极大值,因此,就得要求λρ 对λ的一阶导数为零,由此可求得相应的λ的值,记作m λ。
但要注意的是,还需要验证λρ对λ的二阶导数在m λ处的取值是否小于零,如果小于零,那么前面求得的m λ就是要求的,具体如下:01151186'=⎪⎪⎪⎭⎫⎝⎛-⋅+--⋅=-kT hc kThce kT hc ehcλλλλλπρ⇒ 0115=-⋅+--kThc ekThcλλ⇒ kThcekThc λλ=--)1(5 如果令x=kThcλ ,则上述方程为 x e x =--)1(5这是一个超越方程。
首先,易知此方程有解:x=0,但经过验证,此解是平庸的;另外的一个解可以通过逐步近似法或者数值计算法获得:x=4.97,经过验证,此解正是所要求的,这样则有xkhc T m =λ 把x 以及三个物理常量代入到上式便知K m T m ⋅⨯=-3109.2λ这便是维恩位移定律。
据此,我们知识物体温度升高的话,辐射的能量分布的峰值向较短波长方面移动,这样便会根据热物体(如遥远星体)的发光颜色来判定温度的高低。
1.2 在0K 附近,钠的价电子能量约为3eV ,求其德布罗意波长。
解 根据德布罗意波粒二象性的关系,可知E=hv ,λh P =如果所考虑的粒子是非相对论性的电子(2c E e μ<<动),那么ep E μ22= 如果我们考察的是相对性的光子,那么E=pc注意到本题所考虑的钠的价电子的动能仅为3eV ,远远小于电子的质量与光速平方的乘积,即eV 61051.0⨯,因此利用非相对论性的电子的能量——动量关系式,这样,便有ph=λnmm m E c hc E h e e 71.01071.031051.021024.1229662=⨯=⨯⨯⨯⨯===--μμ在这里,利用了m eV hc ⋅⨯=-61024.1以及eV c e 621051.0⨯=μ最后,对Ec hc e 22μλ=作一点讨论,从上式可以看出,当粒子的质量越大时,这个粒子的波长就越短,因而这个粒子的波动性较弱,而粒子性较强;同样的,当粒子的动能越大时,这个粒子的波长就越短,因而这个粒子的波动性较弱,而粒子性较强,由于宏观世界的物体质量普遍很大,因而波动性极弱,显现出来的都是粒子性,这种波粒二象性,从某种子意义来说,只有在微观世界才能显现。
量⼦⼒学第⼀章习题答案第⼀章1.1 由⿊体辐射公式导出维恩位移定律:能量密度极⼤值所对应的波长λm 与温度T 成反⽐,即λm T = b (常量);并近似计算b 的数值,准确到两位有效数字。
解:⿊体辐射的普朗克公式为:)1(833-=kT h e c h νννπρ∵ v=c/λ∴ dv/dλ= -c/λ2⼜∵ρv dv= -ρλdλ∴ρλ=-ρv dv/dλ=8πhc/[λ5(ehc/λkT-1)] 令x=hc/λkT ,则ρλ=8πhc(kT/hc)5x 5/(e x -1)求ρλ极⼤值,即令dρλ(x)/dx=0,得:5(e x -1)=xe x可得: x≈4.965∴ b=λm T=hc/kx≈6.626 *10-34*3*108/(4.965*1.381*10-23)≈2.9*10-3(m K )1.2√. 在0 K 附近,钠的价电⼦能量约为3电⼦伏,求其德布罗意波长。
解: h = 6.626×10-34 J ·s , m e = 9.1×10-31 Kg,, 1 eV = 1.6×10-19 J故其德布罗意波长为:07.0727A λ=== 或λ= h/2mE = 6.626×10-34/(2×9.1×10-31×3×1.6×10-19)1/2 ≈ 7.08 ?1.3 √.氦原⼦的动能是E=32KT (K B 为波尔兹曼常数),求T=1 K 时,氦原⼦的德布罗意波长。
解:h = 6.626×10-34 J ·s , 氦原⼦的质量约为=-26-2711.993104=6.641012kg , 波尔兹曼常数K B =1.381×10-23 J/K故其德布罗意波长为:λ= 6.626×10-34/ (2×-276.6410?×1.5×1.381×10-23×1)1/2≈01.2706A或λ= ⽽KT E 23=601.270610A λ-==?1.4利⽤玻尔-索末菲量⼦化条件,求:a )⼀维谐振⼦的能量:b )在均匀磁场作圆周运动的电⼦轨道的可能半径。
第一章量子力学的诞生1.1设质量为m 的粒子在谐振子势2221)(x m x V ω=中运动,用量子化条件求粒子能量E 的可能取值。
提示:利用 )]([2,,2,1,x V E m p n nh x d p -===⋅⎰)(x V解:能量为E 的粒子在谐振子势中的活动范围为 a x ≤ (1) 其中a 由下式决定:2221)(a m x V E a x ω===。
a - 0 a x 由此得 2/2ωm E a =, (2)a x ±=即为粒子运动的转折点。
有量子化条件h n a m a m dx x a m dx x m E m dx p aaaa==⋅=-=-=⋅⎰⎰⎰+-+-222222222)21(22πωπωωω得ωωπm nm nh a 22==(3) 代入(2),解出 ,3,2,1,==n n E n ω (4)积分公式:c au a u a u du u a ++-=-⎰arcsin 22222221.2设粒子限制在长、宽、高分别为c b a ,,的箱内运动,试用量子化条件求粒子能量的可能取值。
解:除了与箱壁碰撞外,粒子在箱内作自由运动。
假设粒子与箱壁碰撞不引起内部激发,则碰撞为弹性碰撞。
动量大小不改变,仅方向反向。
选箱的长、宽、高三个方向为z y x ,,轴方向,把粒子沿z y x ,,轴三个方向的运动分开处理。
利用量子化条件,对于x 方向,有()⎰==⋅ ,3,2,1,x x xn h n dx p即 h n a p x x =⋅2 (a 2:一来一回为一个周期)a h n p x x 2/=∴,同理可得, b h n p y y 2/=, c h n p z z 2/=,,3,2,1,,=z y x n n n粒子能量⎪⎪⎭⎫ ⎝⎛++=++=222222222222)(21c n b n a n mp p p m E zy x z y x n n n zy x π ,3,2,1,,=z y x n n n1.3设一个平面转子的转动惯量为I ,求能量的可能取值。
第一章量子力学基础第八组:070601337刘婷婷 070601339黄丽英 070601340李丽芳 070601341林丽云070601350陈辉辉 070601351唐枋北【1.1】经典物理学在研究黑体辐射、光电效应与氢光谱时遇到了哪些困难?什么叫旧量子论?如何评价旧量子论?[解]:困难:(1)黑体辐射问题。
黑体就是理论上不反射任何电磁波的物体,黑体辐射是指这类物体的电磁波辐射,由于这类物体不反射,所以由它释放出来的电磁波都来自辐射,实验中在不同的能量区间对黑体辐射规律给出了不同的函数,然而这两个函数无法兼容,是完全不同的,而事实上黑体辐射本该遵循某个唯一的规律。
况且经典理论还无法说明这两个函数中的任意一个.这个问题研究的是辐射与周围物体处于平衡状态时的能量按波长(或频率)的分布。
实验得出的结论是:热平衡时辐射能量密度按波长分布的曲线,其形状和位置只与黑体的绝对温度有关,而与空腔的形状及组成的物质无关。
这一结果用经典理论无法解释。
(2)光电效应。
光照射到金属上时,有电子从金属中逸出。
实验得出的光电效应的有关规律同样用经典理论无法解释。
(3)按照经典电动力学,由于核外电子作加速运动,原子必然坍缩。
经典物理学不能解释原子的稳定性问题。
原子光谱是线状结构的,而按照经典电动力学,作加速运动的电子所辐射的电磁波的频率是连续分布的,这与原子光谱的线状分布不符。
定义:从1900年普朗克提出振子能量量子化开始,人们力图以某些物理量必须量子化的假定来修正经典力学,用于解释某些宏观现象,并且给出其微观机制。
这种在量子力学建立以前形成的量子理论称为旧量子论。
评价:旧量子论冲破了经典物理学能量连续变化的框框。
对于黑体辐射、光电效应与氢光谱等现象的解释取得了成功。
但是,旧量子论是一个以连续为特征的经典力学加上以分立为特征的量子化条件的自相矛盾的体系,本质上还是属于经典力学的范畴。
由于把微观粒子当作经典粒子,并把经典力学的运动规律应用于微观粒子,因而必然遭到严重的困难。
第一章 量子力学的物理基础§1.1 ,实验基础1, 第一组实验 —— 光的粒子性实验:黑体辐射、光电效应、Compton 散射能量分立、辐射场量子化的概念,实验揭示了光的粒子性质。
《黑体辐射谱问题》黑体辐射谱的Wien 经验公式(1894年):考虑黑体空腔中单位体积的辐射场,令其中频率在ννν→+d 间的能量密度为dE d νεν=((1.1)这里c 1、c 2β=1/kT 间内与实验符合,但在中、低频区,特别是低频区与实验差别很大。
Rayleigh-Jeans 公式(1900,Rayleigh ;1905,Jeans ):将腔中黑体辐射场看成大量电磁波驻波振子集合,利用能量连续分布的经典观念和Maxwell - Boltzmann 分布律,导出黑体辐射谱的另一个表达式——。
若记ενενν()=N ,这里N ν是腔中辐射场单位体积内频率ν附近单位频率间隔内电磁驻波振子数目(自由度数目),它为823πνc。
下面来简单推算出它: 00:222ikx ikxx x LL e e n kL n k k L L πππ==→==→=→Δ= 于是,在单位体积辐射场中,波数在3k k d k →+v v 内的自由度数目(22k c c ππνωλ===v )为 22332233232312428882L k d k k d k d kd d c cL ππννπννππππ=⋅====⎛⎞⎜⎟⎝⎠v v v v 而εν是频率为ν的驻波振子的平均能量, 由M -B 分布律得kT d e d e ==∫∫∞−∞−00εεεεεβεβν于是得到 (1.2)这个与Wien但在高频波段不但不符合,出现黑体辐射能量密度随频率增大趋于无穷大的荒谬结果。
这就是著名的所谓“紫外灾难”,是经典物理学最早显露的困难之一。
1900年Planck 用一种崭新的观念来计算平均能量εν。
他引入了“能量子”的概念,即,假设黑体辐射空腔中振子的振动能量并不象经典理论所主张的那样和振幅平方成正比并呈连续变化,而是和振子的频率ν成正比并且只能取分立值, ......,3,2,,0νννh h h这里的正比系数h 就是后来所称的Planck 常数。