九年级数学综合练习卷
- 格式:doc
- 大小:418.61 KB
- 文档页数:9
九年级数学期末综合练习1班级 学号 姓名 成绩一、填空题:1、如图,已知方格纸中是4个相同的正方形,则∠1+∠2+∠3= 。
2、一根蜡烛在凸透镜下成一实像,物距u ,像距v 和凸透镜的焦距f 满足关系式:111u v f+=。
若f =6cm ,v =8cm ,则物距u = 厘米。
3、正方形ABCD 内接于⊙O ,E 为DC 的中点,如果⊙O 2,则O 点到直线BE 的距离为______。
4、关于x 的方程2210x k x +-=有两个不相等的实数根,则k 的取值范围是 。
5、顶点为(-2,-5)且过点(1,-14)的抛物线的解析式为 。
6、将抛物线22(3)5y x =---向左平移2个单位,再向上平移3个单位,则其顶点为 。
二、选择题:7、如图,图中的两个转盘分别被均匀地分成5个和4个扇形,每个扇形上都标有数字,同时自由转动两个转盘,转盘停止后,指针都落在奇数上的概率是( ) A 、0.4 B 、0.3 C 、0.2 D 、0.158、抛物线24y x x c =-++的顶点在x 轴上,则c 的值为( ) A 、16 B 、-16 C 、4 D 、-49、已知21,x x 是方程22310x x --=的两个根,那么2111x x +等于( ) A 、3 B 、3- C 、31 D 、 31- 10、一个圆锥的侧面展开图是一个半径为6cm 的半圆,则此圆锥的底面半径是( ) A 、23cm B 、2cm C 、3cm D 、6cm. 11、在ΔABC 中,∠A=30º,∠B=60º,AC=6,则ΔABC 的外接圆的半径为( ) A 、23 B 、33 C 、3 D 、 312、如果两圆半径为R 、r ,圆心距为d ,且R 、r 、d 满足关系式2222R d Rd r +=+,则两123453489123圆位置关系是( ) A 、外切 B 、内切 C 、相切 D 、相交 三、解答题: 13、先化简后求值:)252(23--+÷--x x x x ,其中22x = 14、如图,在□ABCD 中,点E 、F 在BD 上,且BF =DE 。
人教版九年级数学(上下全册)综合测试卷(附带参考答案)(考试时长:100分钟;总分:120分)学校:___________班级:___________姓名:___________考号:___________一、单选题 1.方程2269x x -=的二次项系数、一次项系数、常数项分别为( ) A .6,2,9 B .2,-6,9 C .-2,-6,9 D .2,-6,-92.下列方程中,属于一元二次方程的是( )A .233x x =-;B .5(1)(51)2x x x x +=-+;C .()2333y x -=;D .21210x x -+=.3.一元二次方程2410x x --=的根的情况是( )A .没有实数根B .只有一个实根C .有两个相等的实数D .有两个不相等的实数根4.把二次函数2243y x x =--+用配方法化成()2y a x h k =-+的形式( )A .()2215y x =-++B .()2215y x =--+C .()2215y x =++D .()2215y x =-+5.下图是由几个相同的小正方体搭成的一个几何体,它的主视图是( )A .B .C .D .6.关于x 的一元二次方程x 2+kx ﹣2=0(k 为实数)根的情况是( )A .没有实数根B .有两个相等的实数根C .有两个不相等的实数根D .不能确定7.若a ,b 为一元二次方程2710x x --=的两个实数根,则33842a ab b a ++-值是()A .-52B .-46C .60D .668.如图所示,在坐标系中放置一菱形OABC ,已知60ABC ∠=︒,OA=1,先将菱形OABC 沿x 轴的正方向无滑动翻转,每次翻转60︒,连续翻转2020次,点B 的落点一次为123,,B B B ……则2020B 的坐标为( )A .(1346,3)B .(1346,0)C .(1346,23)D .(1347,3)9.将一副三角板如下图摆放在一起,连结AD ,则∠ADB 的正切值为( )A .31-B .21-C .312+D .312- 10.如图,一名滑雪运动员沿着倾斜角为34°的斜坡,从A 滑行至B ,已知AB=500米,则这名滑雪运动员的高度下降了__米.(sin34°≈0.56,cos34°≈0.83,tan34°≈0.67) ( )A .415B .280C .335D .25011.二次函数y =x 2+4x −5的图象的对称轴为( )A .x =−4B .x =4C .x =−2D .x =212.如图,在平面直角坐标系中,O 为原点35OA OB ==,点C 为平面内一动点32BC =,连接AC ,点M 是线段AC 上的一点,且满足:1:2CM MA =.当线段OM 取最大值时,点M 的坐标是( )A .36,55⎛⎫ ⎪⎝⎭B .365,555⎛⎫ ⎪⎝⎭C .612,55⎛⎫ ⎪⎝⎭D .6125,555⎛⎫ ⎪⎝⎭ 二、填空题 13.芜湖宣州机场(Wuhu Xuanzhou Airport ,IATA :WHA ,ICAO :ZSWA ),简称“芜宣机场”,位于中国安徽省芜湖市湾沚区湾沚镇和宣城市宣州区养贤乡,为4C 级国内支线机场、芜湖市与宣城市共建共用机场,如图是芜宣机场部分出港航班信息表,从表中随机选择一个航班,所选航班飞行时长超过2小时的概率为 .航程 航班号 起飞时间 到达时间 飞行时长芜宣-贵阳 C54501 9:15 11:552h40m 芜宣-南宁 G54701 9:15 11:55 2h40m 芜宣-沈阳 G54517 9:20 11:502h30m 芜宣-济南 JD5339 10:15 11:451h30m 芜宣-重庆 3U8072 12:35 14:552h20m 芜宣-北京 KN5870 14:00 16:152h15m 芜宣-长沙 G52817 14:20 16:001h40 m 芜宣-青岛 DZ6253 16:30 18:201h50m 芜宣-三亚 TD5340 17:5521:10 3h15m 14.抛物线()2318y x =-+的对称轴是: .15.如图,在O 中,AB 切O 于点A ,连接OB 交O 于点C ,点D 在O 上,连接CD 、AD ,若50B ∠=︒,则D ∠为 .16.直角三角形一条直角边和斜边的长分别是一元二次方程的两个实数根,该三角形的面积为 . 17.写出一个开口向下、且经过点(-1,2)的二次函数的表达式 ;18.如图,将ABC 绕点A 顺时针旋转85︒,得到ADE ,若点E 恰好在CB 的延长线上,则BED ∠= .19.甲袋里有红、白两球,乙袋里有红、红、白三球,两袋的球除颜色不同外其他都相同,分别从两袋里任摸一球,同时摸到红球的概率是 .20.如图,点A ,B 的坐标分别为()()4004A B ,,,,C 为坐标平面内一点,2BC =,点M 为线段AC 的中点,连接OM OM ,的最大值为 .21.如图,在Rt△ABC 中,∠ACB =90°,AB =5,BC =3,将△ABC 绕点B 顺时针旋转得到△A′B C′,其中点A ,C 的对应点分别为点,A C ''连接,AA CC '',直线CC '交AA '于点D ,点E 为AC 的中点,连接DE .则DE 的最小值为22.如图,在平面直角坐标系中,ACE ∆是以菱形ABCD 的对角线AC 为边的等边三角形23AC =点C 与点E 关于x 轴对称,则过点C 的反比例函数的表达式是 .23.若粮仓顶部是圆锥形,且这个圆锥的高为2m ,母线长为2.5m ,为防雨需在粮仓顶部铺上油毡,则这块油毡的面积是 m 2.(结果保留π)24.如图,在矩形ABCD 中,4,6,AB BC E ==是AB 的中点,F 是BC 边上一动点,将BEF △沿着EF 翻折,使得点B 落在点B '处,矩形内有一动点,P 连接,,,PB PC PD '则PB PC PD '++的最小值为 .(21题图) (22题图) (24题图)三、解答题25.计算:(﹣2)3+16﹣2sin30°+(2016﹣π)0.26.(1)计算:112cos30|32|()44-︒+---.(2)如图是一个几何体的三视图(单位:cm ).①这个几何体的名称是 ;②根据图上的数据计算这个几何体的表面积是 (结果保留π)27.水务部门为加强防汛工作,决定对马边河上某电站大坝进行加固.原大坝的横断面是梯形ABCD ,如图所示,已知迎水面AB 的长为20米,∠B =60°,背水面DC 的长度为203米,加固后大坝的横断面为梯形ABED.若CE的长为5米.(1)已知需加固的大坝长为100米,求需要填方多少立方米;(2)求新大坝背水面DE的坡度.(计算结果保留根号).28.某校举行了“防溺水”知识竞赛.八年级两个班各选派10名同学参加预赛,依据各参赛选手的成绩(均为整数)绘制了统计表和折线统计图(如图所示).班级八(1)班八(2)班最高分100 99众数a98中位数96 b平均数c94.8(1)统计表中,=a_______,b=_________,c=_______;(2)若从两个班的预赛选手中选四名学生参加决赛,其中两个班的第一名直接进入决赛,另外两个名额在成绩为98分的学生中任选两个,求另外两个决赛名额落在不同班级的概率.29.某口罩生产厂生产的口罩1月份平均日产量为18000个,1月底市场对口罩需求量大增,为满足市场需求,工厂决定从2月份起扩大产量,3月份平均日产量达到21780个.(1)求口罩日产量的月平均增长率;(2)按照这个增长率,预计4月份平均日产量为多少?30.阳阳超市以每件10元的价格购进了一批玩具,定价为20元时,平均每天可售出80个.经调查发现,玩具的单价每降1元,每天可多售出40个;玩具的单价每涨1元,每天要少售出5个.如何定价才能使每天的利润最大?求出此时的最大利润.31.(1)一个矩形的长比宽大2cm,面积是168cm?.求该矩形的长和宽.(2)如图,两个圆都以点O为圆心.求证:AC BD.32.国庆与中秋双节期间,小林一家计划在焦作市内以下知名景区选择一部分去游玩.5A级景区四处:a.云台山景区,b.青天河景区,c.神农山景区;d.峰林峡景区;4A级景区六处:e.影视城景区,f.陈家沟景区,g.嘉应观景区,h.圆融寺景区,i.老家莫沟景区,j.大沙河公园;(1)若小林一家在以上这些景区随机选择一处,则选到5A级景区的概率是.(2)若小林一家选择了“a.云台山景区”,此外,他们决定再从b,c,d,e四处景区中任选两处景区去游玩,用画树状图或列表的方法求恰好选到b,e两处景区的概率.33.综合与探究问题情境:某商店购进一种冬季取暖的“小太阳”取暖器,每台进价为40元,这种取暖器的销售价为每台52元时,每周可售出180台.探究发现:①销售定价每增加1元时,每周的销售量将减少10台;②销售定价每降低1元时,每周的销售量将增多10台.问题解决:若商店准备把这种取暖器销售价定为每台x元,每周销售获利为y元.(1)当54x 时,这周的“小太阳”取暖器的销售量为______台,每周销售获利y为______元.(2)求y与x的函数关系式(不必写出x的取值范围),并求出销售价定为多少时,这周销售“小太阳”取暖器获利最大,最大利润是多少?(3)若该商店在某周销售这种“小太阳”取暖器获利2000元,求x的值.答案:1.D 2.A 3.D 4.A 5.C 6.C 7.C 8.B 9.D 10.B 11.C 12.D 13.2314.直线1x=15.20︒16.24.17.23y x=-+(答案不唯一).18.95︒19.92520.122+/221+21.122.23yx=23.154π.24.423+25.-4.26.(1)4-;(2)①圆锥;②几何体的表面积为220cmπ27.(1)需要填方25003立方米;(2)新大坝背水面DE的坡度为237.28.(1)96;96;94.5;(2)3529.(1)口罩日产量的月平均增长率为10% (2)预计4月份平均日产量为23958个30.当定价为16元时,每天的利润最大,最大利润是1440元31.(1)矩形的长为14cm,宽为12cm32.(1)25(2)1633.(1)160,2240;(2)当销售定价为55元时,利润最大,最大为2250元;(3)当x为60或50时,每周获利可达2000元.。
DCA九年级(下)数学第一、二章综合检测试卷一、选择题(10×3=30分)1. 在△ABC 中,∠C =90O ,∠B =2∠A ,则CosA 等于( ) A.23 B. 21C. 3D.332.在△ABC 中,∠C =90O ,BC :CA =3:4,那么SinA 等于( ) A .43 B.34 C.53 D.54 3.二次函数y =(X -1)2+2的最小值是( ) A .-2 B.2 C.1 D.-14.二次函数y =ax 2+bx +c 的图像如图所示,根据图像可得a ,b ,c 与0的大小关系是( ) A. a>0,b<0,c<0 B. a>0,b>0,c>0 C. a<0,b<0,c<0 D. a<0,b>0,c<0 5.已知∠A 为锐角,且COSA≤21,那么( ) A .00<A≤600 B.600≤A<900 C.00<A<300 D.300≤A<900 6.函数y =ax 2-a 与y =xa(a≠0)在同一直角坐标系中的图像可能是图中的( )7.已知二次函数y =x 2+(2a +1)x +a 2-1的最小值为O ,则a 的值是( ) A .43 B.43- C.45 D.45- 8.如图在等腰三角形ABC 中,∠C =900,AC =6,D 是AC 上一点, 若tan ∠DBA =51,则AD 的长为( ) A.2 B.2 C.1 D.229.将进货单价为70元的某种商品按零售价100元一个售出时,每天能卖出20个,若这种商品在一定范围内每降价1元,每日销量就增加1个,为了获得最大利润,则应该降价( )A.5元B.10元C.15元D.20元10.某二元方程的解是21x m y m m =⎧⎨=++⎩,若把x 看作平面直角坐标系中点的横坐标,y 看作是纵坐标,下面说法正确的是( )A.点(x,y )一定不在第一象限B.点(x,y )一定不是坐标原点C.y 随x 的增大而增大D.y 随x 的增大而减小二、填空题:(8×3=24分)11.∠A 和∠B 是一直角三角形的两锐角,则tan2BA +=_________. 12.如图,某中学生推铅球,铅球在点A 处出手,在点B 处落地,它的运行路线满足y =-121x 2+32x +35,则这个学生推铅球的成绩是_______米.13.把抛物线y =ax 2+bx+c 的图像向右平移3个单位,再向下平移2个单位,得到图像解析式为y=x 2-4x+5,则有a=______ b=_______ c=_______.14.已知等腰三角形腰长为2cm ,面积为1cm ,则这个等腰三角形的顶角为_______度。
人教版初中数学九年级(下)期末综合测试卷及答案(一)一、选择题(每题3分,共30分)1.在双曲线y =1-3mx上有两点A (x 1,y 1),B (x 2,y 2),x 1<0<x 2,y 1<y 2,则m 的取值范围是( ) A .m >13B .m <13C .m ≥13D .m ≤132.若△ABC ∽△A ′B ′C ′,其相似比为3:2,则△ABC 与△A ′B ′C ′的面积比为( ) A .3:2B .9:4C .2:3D .4:93.在Rt △ABC 中,∠C =90°,sin A =23,则tan A 的值为( )A .53B .52 C .32 D .2554.反比例函数y =-m 2-5x的图象位于( )A .第一、三象限B .第二、三象限C .第二、四象限D .无法判断5.如图,电灯P 在横杆AB 的正上方,AB 在灯光下的影子为CD ,AB =1 m ,CD =4 m ,点P 到CD 的距离是2 m ,则点P 到AB 的距离是( ) A .13mB .12m C .23m D .1 m6.如图,反比例函数y 1=k 1x和正比例函数y 2=k 2x 的图象交于A (-1,-3),B (1,3)两点,若k 1x>k 2x ,则x 的取值范围是( ) A .-1<x <0B .-1<x <1C .x <-1或0<x <1D .-1<x <0或x >17.如图,放映幻灯片时,通过光源,把幻灯片上的图形放大到屏幕上,若光源到幻灯片的距离为20 cm ,到屏幕的距离为60 cm ,且幻灯片中的图形的高度为6 cm ,则屏幕上图形的高度为( ) A .6 cmB .12 cmC .18 cmD .24 cm8.如图,在▱ABCD 中,E 为CD 上一点,连接AE ,BD ,且AE ,BD 交于点F ,S △DEF :S △ABF =4:25,则DE EC =( )A .2:3B .2:5C .3:5D .3:29.如图,在一笔直的海岸线l 上有A ,B 两个观测站,AB =2 km.从A 站测得船C 在北偏东45°的方向,从B 站测得船C 在北偏东22.5°的方向,则船C 离海岸线l 的距离(即CD 的长)为( )A .4 kmB .(2+2)kmC .22kmD .(4-2)km10.如图,边长为1的正方形ABCD 中,点E 在CB 的延长线上,连接ED 交AB 于点F ,AF =x (0.2≤x ≤0.8),EC =y .则在下面函数图象中,大致能反映y 与x 之间函数关系的是( )二、填空题(每题3分,共30分)11.写出一个反比例函数y =k x(k ≠0),使它的图象在每个象限内,y 的值随x 值的增大而减小,这个函数的解析式为____________.12.在△ABC 中,∠B =45°,cos A =12,则∠C 的度数是________.13.如图,AB ∥CD ,AD =3AO ,则OB OC=________.14.在某一时刻,测得一根高为2 m 的竹竿的影长为1 m ,同时测得一栋建筑物的影长为12m ,那么这栋建筑物的高度为________m.15.活动楼梯如图所示,∠B =90°,斜坡AC 的坡度为1:1,斜坡AC 的坡面长度为8 m ,则走这个活动楼梯从A 点到C 点上升的高度BC 为________.16.如图是由一些完全相同的小正方体搭成的几何体的俯视图和左视图,组成这个几何体的小正方体的个数是________.17.如图,在△ABC 中,DE ∥BC ,分别交AB ,AC 于点D ,E .若AD =1,DB =2,则△ADE 的面积与△ABC 的面积的比是________.18.如图,正方形ABCD 的边长是4,点P 是CD 的中点,点Q 是线段BC 上一点,当CQ =________时,以Q ,C ,P 三点为顶点的三角形与△ADP 相似.19.如图,在平面直角坐标系中,一次函数y =ax +b (a ≠0)的图象与反比例函数y =k x(k ≠0)的图象交于第二、四象限的A ,B 两点,与x 轴交于C 点.已知A (-2,m ),B (n ,-2),tan ∠BOC =25,则此一次函数的解析式为________________.20.如图,在矩形纸片ABCD 中,AB =6,BC =10,点E 在CD 上,将△BCE 沿BE 折叠,点C恰好落在边AD 上的点F 处;点G 在AF 上,将△ABG 沿BG 折叠,点A 恰好落在线段BF 上的点H 处,有下列结论:①∠EBG =45°;②△DEF ∽△ABG ;③S △ABG =32S △FGH ;④AG+DF =FG .其中正确的是________(把所有正确结论的序号都填上).三、解答题(21题4分,22题8分,23题10分,26题14分,其余每题12分,共60分) 21.计算:2cos 245°-(tan 60°-2)2-(sin 60°-1)0+(sin 30°)-2.22.如图所示是某几何体的表面展开图.(1)这个几何体的名称是 ________; (2)画出这个几何体的三视图; (3)求这个几何体的体积.(π≈3.14)23.如图,在平面直角坐标系中,▱OABC 的顶点A ,C 的坐标分别为(2,0),(-1,2),反比例函数y =k x(k ≠0)的图象经过点B . (1)求k 的值;(2)将▱OABC 沿x 轴翻折,点C 落在点C ′处,判断点C ′是否在反比例函数y =kx(k ≠0)的图象上,请通过计算说明理由.24.如图,一棵大树在一次强台风中折断倒下,未折断树干AB 与地面仍保持垂直的关系,而折断部分AC 与未折断树干AB 形成53°的夹角.树干AB 旁有一座与地面垂直的铁塔DE ,测得BE =6 m ,塔高DE =9 m .在某一时刻太阳光的照射下,未折断树干AB 落在地面的影子FB 长为4 m ,且点F ,B ,C ,E 在同一条直线上,点F ,A ,D 也在同一条直线上.求这棵大树没有折断前的高度.(结果精确到0.1 m ,参考数据:sin 53°≈0.798 6,cos 53°≈0.601 8,tan 53°≈1.327 0)25.如图①,AB 为半圆的直径,O 为圆心,C 为圆弧上一点,AD 垂直于过C 点的切线,垂足为D ,AB 的延长线交直线CD 于点E . (1)求证:AC 平分∠DAB ;(2)若AB =4,B 为OE 的中点,CF ⊥AB ,垂足为点F ,求CF 的长;(3)如图②,连接OD 交AC 于点G ,若CG GA =34,求sin E 的值.26.已知矩形ABCD 的一条边AD =8,将矩形ABCD 折叠,使得点B 落在CD 边上的点P 处.(1)如图①,已知折痕与边BC 交于点O ,连接AP ,OP ,O A . ① 求证:△OCP ∽△PDA ;② 若△OCP 与△PDA 的面积比为1:4,求边AB 的长.(2)如图②,在(1)的条件下,擦去AO 和OP ,连接BP .动点M 在线段AP 上(点M 不与点P ,A 重合),动点N 在线段AB 的延长线上,且BN =PM ,连接MN 交PB 于点F ,作ME⊥BP 于点E .试问动点M ,N 在移动的过程中,线段EF 的长度是否发生变化?若不变,求出线段EF 的长度;若变化,请说明理由.答案一、1.B 2.B 3.D 4.C 5.B 6.C 7.C 8.A 9.B 10.C 二、11.y =3x (答案不唯一) 12.75° 13.1214.24 15.4 2 m 16.6或7或8 17.1918.1或4 点拨:设CQ =x .∵四边形ABCD 为正方形,∴∠C =∠D =90°.∵点P 为CD 的中点,∴CP =DP =2.当CQ PD =CP AD 时,△QCP ∽△PDA ,此时x 2=24,∴x =1.当CQ AD =CPPD时,△QCP ∽△ADP ,此时x 4=22,∴x =4.19.y =-x +320.①③④ 点拨:∵△BCE 沿BE 折叠,点C 恰好落在边AD 上的点F 处,∴∠1=∠2,CE =FE ,BF =BC =10.在Rt △ABF 中,∵AB =6,BF =10,∴AF =102-62=8,∴DF =AD -AF =10-8=2.设EF =x ,则CE =x ,DE =CD -CE =6-x .在Rt △DEF 中,∵DE 2+DF 2=EF 2,∴(6-x )2+22=x 2,解得x =103,∴DE =83.∵△ABG 沿BG 折叠,点A 恰好落在线段BF 上的点H 处,∴∠BHG =∠A =90°,∠3=∠4,BH =BA =6,AG =HG ,∴∠EBG =∠2+∠3=12∠ABC =45°,∴①正确;HF =BF -BH =10-6=4,设AG =y ,则GH =y ,GF =8-y .在Rt △HGF 中,∵GH 2+HF 2=GF 2,∴y 2+42=(8-y )2,解得y =3,∴AG =GH =3,GF =5.∵∠A =∠D ,AB DE =94,AG DF =32,∴AB DE ≠AG DF ,∴△ABG 与△DEF 不相似,∴②错误;∵S △ABG =12AB ·AG =12×6×3=9,S △FGH =12GH ·HF =12×3×4=6,∴S △ABG =32S △FGH ,∴③正确;∵AG +DF =3+2=5,而GF =5,∴AG +DF =GF ,∴④正确.三、21.解:原式=2×⎝ ⎛⎭⎪⎫222-(2-3)-1+⎝ ⎛⎭⎪⎫12-2=1-(2-3)-1+4=3+2.22.解:(1)圆柱 (2)如图所示.(3)这个几何体的体积为πr 2h ≈3.14×⎝ ⎛⎭⎪⎫1022×20=1 570. 23.解:(1)∵四边形OABC 是平行四边形, ∴OA ∥BC ,OA =BC . 又A (2,0),C (-1,2), ∴点B 的坐标为(1,2). 将(1,2)代入y =k x,得k =2.(2)点C ′在反比例函数y =2x的图象上.理由如下:∵将▱OABC 沿x 轴翻折,点C 落在点C ′处,C (-1,2), ∴点C ′的坐标是(-1,-2).由(1)知,反比例函数的解析式为y =2x.令x =-1,则y =2-1=-2.故点C ′在反比例函数y =2x的图象上.24.解:根据题意,得AB ⊥EF ,DE ⊥EF , ∴∠ABC =90°,AB ∥DE ,∴△ABF ∽△DEF ,∴AB DE =BF EF ,即AB 9=44+6,解得AB =3.6 m. 在Rt △ABC 中,∵cos ∠BAC =AB AC, ∴AC =ABcos 53°≈5.98(m),∴AB +AC ≈3.6+5.98≈9.6(m).答:这棵大树没有折断前的高度约为9.6 m. 25.(1)证明:连接OC ,如图①. ∵DC 切半圆O 于C ,∴OC ⊥DC , 又AD ⊥CD .∴OC ∥AD .∴∠OCA =∠DAC . ∵OC =OA ,∴∠OAC =∠OCA . ∴∠DAC =∠OAC ,即AC 平分∠DAB .(2)解:∵AB =4,∴OC =2.在Rt △OCE 中,∵OC =OB =12OE ,∴∠E =30°.∴∠COF =60°.∴在Rt △OCF 中,CF =OC ·sin60°=2×32= 3. (3)解:连接OC ,如图②.∵CO ∥AD ,∴△CGO ∽△AGD .∴CG GA =CO AD =34.不妨设CO =AO =3k ,则AD =4k .又易知△COE ∽△DAE ,∴CO AD =EO AE =34=EO3k +EO .∴EO =9k .在Rt △COE 中,sin E =CO EO =3k 9k =13.26.(1)①证明:如图①,∵四边形ABCD 是矩形, ∴∠C =∠D =∠B =90°,∴∠1+∠3=90°. 由折叠可得∠APO =∠B =90°, ∴∠1+∠2=90°.∴∠3=∠2. 又∵∠C =∠D ,∴△OCP ∽△PDA .②解:∵△OCP 与△PDA 的面积比为1:4,且△OCP ∽△PDA ,∴OP PA =CP DA =12.∴CP =12AD =4. 设OP =x ,则易得CO =8-x . 在Rt △PCO 中,∠C =90°, 由勾股定理得 x 2=(8-x )2+42.解得x =5.即OP =5.∴AB =AP =2OP =10.(2)解:线段EF 的长度不发生变化.作MQ ∥AN ,交PB 于点Q ,如图②. ∵AP =AB ,MQ ∥AN ,∴∠APB =∠ABP =∠MQP . ∴MP =MQ .又BN =PM ,∴BN =QM .∵MQ ∥AN ,∴∠QMF =∠BNF ,∠MQF =∠FBN , ∴△MFQ ≌△NFB .∴QF =FB .∴QF =12QB .∵MP =MQ ,ME ⊥PQ ,∴EQ =12PQ .∴EF =EQ +QF =12PQ +12QB =12PB .由(1)中可得PC =4,又∵BC =AD =8,∠C =90°. ∴PB =82+42=45,∴EF =12PB =2 5.∴在(1)的条件下,点M ,N 在移动的过程中,线段EF 的长度不变,它的长度恒为2 5.人教版初中数学九年级(下)期末综合测试卷及答案(二)一、选择题(每题3分,共30分)1.已知反比例函数y =k x的图象经过点P (-1,2),则这个函数的图象位于( )A .第二、三象限B .第一、三象限C .第三、四象限D .第二、四象限2.下列几何体是由4个相同的小正方体搭成的,其中左视图与俯视图相同的是( )3.若Rt △ABC 中,∠C =90°,sin A =23,则tan A 的值为( )A.53B.52C.32D.2554.在双曲线y =1-3mx上有两点A (x 1,y 1),B (x 2,y 2),x 1<0<x 2,y 1<y 2,则m 的取值范围是( ) A .m >13B .m <13C .m ≥13D .m ≤135.如图,在等边三角形ABC 中,点D ,E 分别在AB ,AC 边上,如果△ADE ∽△ABC ,AD ∶AB=1∶4,BC =8 cm ,那么△ADE 的周长等于( ) A .2 cmB .3 cmC .6 cmD .12 cm(第5题) (第7题) (第8题)6.小芳和爸爸在阳光下散步,爸爸身高1.8 m ,他在地面上的影长为2.1 m .小芳比爸爸矮0.3 m ,她的影长为( ) A .1.3 mB .1.65 mC .1.75 mD .1.8 m7.一次函数y 1=k 1x +b 和反比例函数y 2=k 2x(k 1k 2≠0)的图象如图所示,若y 1>y 2,则x 的取值范围是( ) A .-2<x <0或x >1B .-2<x <1C .x <-2或x >1D .x <-2或0<x <18.如图,△ABO 缩小后变为△A ′B ′O ,其中A ,B 的对应点分别为A ′,B ′,点A ,B ,A ′,B ′均在图中格点上,若线段AB 上有一点P (m ,n ),则点P 在A ′B ′上的对应点P ′的坐标为( )A.⎝ ⎛⎭⎪⎫m2,n B .(m ,n )C.⎝ ⎛⎭⎪⎫m ,n 2 D.⎝ ⎛⎭⎪⎫m 2,n2 9.如图,在两建筑物之间有一旗杆GE ,高15 m ,从A 点经过旗杆顶点恰好看到矮建筑物的墙脚C 点,且俯角α为60°,又从A 点测得D 点的俯角β为30°,若旗杆底部点G 为BC 的中点,则矮建筑物的高CD 为( ) A .20 mB .10 3 mC .15 3 mD .5 6 m(第9题) (第10题)10.如图,已知第一象限内的点A 在反比例函数y =3x的图象上,第二象限内的点B 在反比例函数y =k x 的图象上,且OA ⊥OB ,cos A =33,则k 的值为( ) A .-3B .-6C .- 3D .-2 3二、填空题(每题3分,共24分)11.计算:2cos 245°-(tan 60°-2)2=________.12.如图,山坡的坡度为i =1∶3,小辰从山脚A 出发,沿山坡向上走了200 m 到达点B ,则他上升了________m.(第12题) (第13题) (第14题) (第15题)13.如图,在△ABC 中,DE ∥BC ,DE BC =23,△ADE 的面积是8,则△ABC 的面积为________.14.如图,⊙O 是△ABC 的外接圆,AD 是⊙O 的直径,若⊙O 的半径为32,AC =2,则sin B的值是__________.15.如图,一艘轮船在小岛A 的北偏东60°方向距小岛80 n mile 的B 处,沿正西方向航行3 h 后到达小岛A 的北偏西45°方向的C 处,则该船行驶的速度为__________n mile/h.16.如图是一个几何体的三视图,若这个几何体的体积是48,则它的表面积是________.(第16题) (第17题) (第18题)17.如图,点A 在双曲线y =1x 上,点B 在双曲线y =3x上,点C ,D 在x 轴上,若四边形ABCD为矩形,则它的面积为________.18.如图,正方形ABCD 的边长为62,过点A 作AE ⊥AC ,AE =3,连接BE ,则tan E =________. 三、解答题(19~21题每题8分,22~24题每题10分,25题12分,共66分)19.如图,△ABC 三个顶点的坐标分别为A (4,6),B (2,2),C (6,4),请在第一象限内,画出一个以原点O 为位似中心,与△ABC 的相似比为12的位似图形△A 1B 1C 1,并写出△A 1B 1C 1各个顶点的坐标.(第19题)20.由几个棱长为1的小立方块搭成的几何体的俯视图如图所示,小正方形中的数字表示在该位置小立方块的个数.(第20题)(1)请在方格纸中分别画出该几何体的主视图和左视图;(2)根据三视图,这个几何体的表面积为________个平方单位(包括底面积).21.如图,一棵大树在一次强台风中折断倒下,未折断树干AB与地面仍保持垂直的关系,而折断部分AC与未折断树干AB形成53°的夹角.树干AB旁有一座与地面垂直的铁塔DE,测得BE=6 m,塔高DE=9 m.在某一时刻太阳光的照射下,未折断树干AB落在地面的影子FB长为4 m,且点F,B,C,E在同一条直线上,点F,A,D也在同一条直线上.求这棵大树没有折断前的高度(结果精确到0.1 m,参考数据:sin 53°≈0.798 6,cos 53°≈0.601 8,tan 53°≈1.327 0).(第21题)22.如图,在平面直角坐标系xOy 中,一次函数y =3x +2的图象与y 轴交于点A ,与反比例函数y =kx()k ≠0在第一象限内的图象交于点B ,且点B 的横坐标为1,过点A 作AC ⊥y 轴,交反比例函数y =k x(k ≠0)的图象于点C ,连接BC .求:(第22题)(1)反比例函数的解析式; (2)△ABC 的面积.23.如图,AB 是⊙O 的直径,过点A 作⊙O 的切线并在其上取一点C ,连接OC 交⊙O 于点D ,BD 的延长线交AC 于点E ,连接AD .(第23题)(1)求证△CDE ∽△CAD ;(2)若AB =2,AC =22,求AE 的长.24.如图,将矩形ABCD 沿AE 折叠得到△AFE ,且点F 恰好落在DC 上.(第24题)(1)求证△ADF ∽△FCE ;(2)若tan ∠CEF =2,求tan ∠AEB 的值.25.如图,直线y =2x +2与y 轴交于点A ,与反比例函数y =kx(x >0)的图象交于点M ,过点M 作MH ⊥x 轴于点H ,且tan ∠AHO =2. (1)求k 的值.(2)在y 轴上是否存在点B ,使以点B ,A ,H ,M 为顶点的四边形是平行四边形?如果存在,求出点B 的坐标;如果不存在,请说明理由.(3)点N (a ,1)是反比例函数y =k x(x >0)图象上的点,在x 轴上有一点P ,使得PM +PN 最小,请求出点P 的坐标.(第25题)答案一、1.D 2.C 3.D 4.B 5.C 6.C7.A 8.D9.A 点拨:∵点G是BC的中点,EG∥AB,∴EG是△ABC的中位线.∴AB=2EG=30.在Rt△ABC中,∠CAB=30°,则BC=AB·tan∠BAC=30×33=10 3.延长CD至F,使DF⊥AF.在Rt△AFD中,AF=BC=103,∠FAD=30°,则FD=AF·tan∠FAD=103×33=10.∴CD=AB-FD=30-10=20(m).10.B 点拨:∵cos A=33,∴可设OA=3a,AB=3a(a>0).∴OB=(3a)2-(3a)2=6a.过点A作AE⊥x轴于点E,过点B作BF⊥x轴于点F.∵点A 在反比例函数y =3x的图象上,∴可设点A 的坐标为⎝ ⎛⎭⎪⎫m ,3m .∴OE =m ,AE =3m .易知△AOE ∽△OBF ,∴AE OF =OA OB ,即3m OF =3a 6a,∴OF =32m.同理,BF =2m ,∴点B 的坐标为⎝⎛⎭⎪⎫-32m,2m .把B ⎝⎛⎭⎪⎫-32m,2m 的坐标代入y =k x,得k =-6. 二、11.3-1 12.100 13.18 14.2315.40+403316.88 点拨:由题中的三视图可以判断,该几何体是一个长方体.从主视图可以看出,该长方体的长为6, 从左视图可以看出,该长方体的宽为2. 根据体积公式可知,该长方体的高为486×2=4,∴该长方体的表面积是2×(6×2+6×4+2×4)=88.17.2 点拨:如图,延长BA 交y 轴于点E ,则四边形AEOD ,BEOC 均为矩形.由点A 在双曲线y =1x 上,得矩形AEOD 的面积为1;由点B 在双曲线y =3x上,得矩形BEOC 的面积为3,故矩形ABCD 的面积为3-1=2.(第17题)18.23点拨:∵正方形ABCD 的边长为62,∴AC =12. 过点B 作BF ⊥AC 于点F ,则CF =BF =AF =6.设AC 与BE 交于点M ,∵BF ⊥AC ,AE ⊥AC ,∴AE ∥BF .∴△AEM ∽△FBM . ∴AM FM =AE FB =36=12.∴AM AF =13. ∴AM =13AF =13×6=2.∴tan E =AM AE =23.三、19.解:画出的△A 1B 1C 1如图所示.(第19题)△A 1B 1C 1的三个顶点的坐标分别为A 1(2,3),B 1(1,1),C 1(3,2). 20.解:(1)如图所示.(第20题) (2)2421.解:根据题意,得AB ⊥EF ,DE ⊥EF ,∴∠ABC =90°,AB ∥DE . ∴△ABF ∽△DEF . ∴AB DE =BF EF ,即AB 9=44+6, 解得AB =3.6.在Rt △ABC 中,∵cos ∠BAC =AB AC, ∴AC =ABcos 53°≈5.98.∴AB +AC ≈3.6+5.98≈9.6(m).答:这棵大树没有折断前的高度约为9.6 m.22.解:(1)∵点B 在一次函数y =3x +2的图象上,且点B 的横坐标为1,∴y =3×1+2=5. ∴点B 的坐标为(1,5).∵点B 在反比例函数y =k x (k ≠0)的图象上,∴5=k1,则k =5.∴反比例函数的解析式为y =5x.(2)∵一次函数y =3x +2的图象与y 轴交于点A ,当x =0时,y =2, ∴点A 的坐标为(0,2).∵AC ⊥y 轴, ∴点C 的纵坐标为2.∵点C 在反比例函数y =5x的图象上,当y =2时,2=5x ,x =52, ∴AC =52.过点B 作BD ⊥AC 于点D , ∴BD =y B -y C =5-2=3.∴S △ABC =12AC ·BD =12×52×3=154.23.(1)证明:∵AB 是⊙O 的直径,∴∠ADB =90°. ∴∠ABD +∠BAD =90°. 又∵AC 是⊙O 的切线, ∴AB ⊥AC ,即∠BAC =90°. ∴∠CAD +∠BAD =90°. ∴∠ABD =∠CAD . ∵OB =OD ,∴∠ABD =∠BDO =∠CDE . ∴∠CAD =∠CDE . 又∵∠C =∠C , ∴△CDE ∽△CAD . (2)解:∵AB =2, ∴OA =OD =1.在Rt △OAC 中,∠OAC =90°, ∴OA 2+AC 2=OC 2, 即12+(22)2=OC 2. ∴OC =3,则CD =2. 又由△CDE ∽△CAD ,得CD CE =CACD, 即2CE =222,∴CE = 2. ∴AE =AC -CE =22-2= 2. 24.(1)证明:∵四边形ABCD 是矩形,∴∠B =∠C =∠D =90°.∵矩形ABCD 沿AE 折叠得到△AFE ,且点F 在DC 上, ∴∠AFE =∠B =90°.∴∠AFD +∠CFE =180°-∠AFE =90°. 又∵∠AFD +∠DAF =90°, ∴∠DAF =∠CFE . ∴△ADF ∽△FCE .(2)解:在Rt △CEF 中,tan ∠CEF =CF CE=2,设CE =a ,CF =2a (a >0), 则EF =CF 2+CE 2=5a .∵矩形ABCD 沿AE 折叠得到△AFE ,且点F 在DC 上, ∴BE =EF =5a ,BC =BE +CE =(5+1)a ,∠AEB =∠AEF . ∴AD =BC =(5+1)a . ∵△ADF ∽△FCE , ∴AF FE =AD CF =(5+1)a 2a =5+12. ∴tan ∠AEF =AFFE=5+12. ∴tan ∠AEB =tan ∠AEF =5+12. 25.解:(1)由y =2x +2可知A (0,2),即OA =2.∵tan ∠AHO =2,∴OH =1. ∵MH ⊥x 轴,∴点M 的横坐标为1. ∵点M 在直线y =2x +2上, ∴点M 的纵坐标为4.∴M (1,4).∵点M 在反比例函数y =k x(x >0)的图象上,∴k =1×4=4. (2)存在.如图所示.[第25(2)题]当四边形B 1AHM 为平行四边形时,B 1A =MH =4, ∴OB 1=B 1A +AO =4+2=6,即B 1(0,6). 当四边形AB 2HM 为平行四边形时,AB 2=MH =4, ∴OB 2=AB 2-OA =4-2=2, 此时B 2(0,-2).综上,存在满足条件的点B ,且点B 的坐标为(0,6)或(0,-2). (3)∵点N (a ,1)在反比例函数y =4x(x >0)的图象上,∴a =4,即点N 的坐标为(4,1).如图,作N 关于x 轴的对称点N 1,连接MN 1,交x 轴于点P ,连接PN ,此时PM +PN 最小.[第25(3)题]∵N 与N 1关于x 轴对称,N 点坐标为(4,1), ∴N 1的坐标为(4,-1).设直线MN 1对应的函数解析式为y =k ′x +b (k ′≠0), 由⎩⎪⎨⎪⎧4=k ′+b ,-1=4k ′+b ,解得⎩⎪⎨⎪⎧k ′=-53,b =173. ∴直线MN 1对应的函数解析式为y =-53x +173.令y =0,得x =175,∴点P 的坐标为⎝ ⎛⎭⎪⎫175,0.人教版初中数学九年级(下)期末综合测试卷及答案(三)一、选择题(每题3分,共30分)1.下列四个几何体中,主视图为三角形的是( )2.【教材P 6练习T 2变式】反比例函数y =-m 2-5x的图象位于( )A .第一、三象限B .第二、三象限C .第二、四象限D .第一、四象限3.若△ABC ∽△A ′B ′C ′,其相似比为32,则△ABC 与△A ′B ′C ′的周长比为( )A .3∶2B .9∶4C .2∶3D .4∶94.在Rt △ABC 中,∠C =90°,sin A =23,则tan A 的值为( )A .53B .52C .32D .2555.如图,电灯P 在横杆AB 的正上方,AB 在灯光下的影子为CD ,AB =1 m ,CD =4 m ,点P到CD 的距离是2 m ,则点P 到AB 的距离是( )A .13mB .12mC .23mD .1 m6.【教材P 22复习题T 10改编】如图,反比例函数y 1=k 1x和正比例函数y 2=k 2x 的图象交于A (-1,-3),B (1,3)两点,若k 1x>k 2x ,则x 的取值范围是( )A.-1<x<0 B.-1<x<1C.x<-1或0<x<1 D.-1<x<0或x>17.如图,放映幻灯片时,通过光源,把幻灯片上的图形放大到屏幕上,若光源到幻灯片的距离为20 cm,到屏幕的距离为60 cm,且幻灯片中的图形的高度为6 cm,则屏幕上图形的高度为( )A.6 cm B.12 cm C.18 cm D.24 cm8.如图,在▱ABCD中,E为CD上一点,连接AE,BD,且AE,BD交于点F,S△DEF∶S△ABF=4∶25,则DE∶EC=( )A.2∶3 B.2∶5 C.3∶5 D.3∶29.如图,在一笔直的海岸线l上有A,B两个观测站,AB=2 km.从A站测得船C在北偏东45°的方向,从B站测得船C在北偏东22.5°的方向,则船C离海岸线l的距离(即CD 的长)为( )A.4 km B.(2+2)km C.22km D.(4-2)km10.如图,边长为1的正方形ABCD中,点E在CB的延长线上,连接ED交AB于点F,AF=x (0.2≤x ≤0.8),EC =y ,则在下面函数图象中,大致能反映y 与x 之间函数关系的是( )二、填空题(每题3分,共24分)11.写出一个反比例函数y =kx(k ≠0),使它的图象在每个象限内,y 的值随x 值的增大而减小,这个函数的解析式为____________.12.在△ABC 中,∠B =45°,cos A =12,则∠C 的度数是________.13.如图,AB ∥CD ,AD =3AO ,则OB OC=________.14.【教材P 41练习T 1变式】在某一时刻,测得一根高为2 m 的竹竿的影长为1 m ,同时测得一栋建筑物的影长为12 m ,那么这栋建筑物的高度为________m. 15.活动楼梯如图所示,∠B =90°,斜坡AC 的坡度为1∶1,斜坡AC 的坡面长度为8 m ,则走这个活动楼梯从A 点到C 点上升的高度BC 为________.16.【教材P 102习题T 5变式】如图是由一些完全相同的小正方体搭成的几何体的俯视图和左视图,组成这个几何体的小正方体的个数是________.17.如图,在平面直角坐标系中,一次函数y =ax +b (a ≠0)的图象与反比例函数y =kx(k ≠0)的图象交于第二、四象限的A ,B 两点,与x 轴交于C 点.已知A(-2,m ),B (n ,-2),tan ∠BOC =25,则此一次函数的解析式为____________.18.如图,正方形ABCD 的边长是4,点P 是CD 的中点,点Q 是线段BC 上一点,当CQ =________时,以Q ,C ,P 三点为顶点的三角形与△ADP 相似.三、解答题(19题6分,20题10分,24题14分,其余每题12分,共66分) 19.计算:3tan30°+cos 245°-(sin30°-1)0.20.【教材P 110复习题T 6变式】如图所示的是某几何体的表面展开图.(1)这个几何体的名称是 ________; (2)画出这个几何体的三视图; (3)求这个几何体的体积.(π≈3.14)21.如图,在平面直角坐标系中,▱OABC 的顶点A ,C 的坐标分别为(2,0),(-1,2),反比例函数y =kx(k ≠0)的图象经过点B . (1)求k 的值;(2)将▱OABC 沿x 轴翻折,点C 落在点C ′处,判断点C ′是否在反比例函数y =k x(k ≠0)的图象上,请通过计算说明理由.22.如图,一棵大树在一次强台风中折断倒下,未折断树干AB 与地面仍保持垂直的关系,而折断部分AC 与未折断树干AB 形成53°的夹角.树干AB 旁有一座与地面垂直的铁塔DE ,测得BE =6 m ,塔高DE =9 m .在某一时刻太阳光的照射下,未折断树干AB 落在地面的影子FB 长为4 m ,且点F ,B ,C ,E 在同一条直线上,点F ,A ,D 也在同一条直线上.求这棵大树没有折断前的高度.(结果精确到0.1 m ,参考数据: sin 53°≈0.798 6, cos 53°≈0.601 8,tan 53°≈1.327 0)23.如图,AB 为⊙O 的直径,C 为⊙O 上一点,AD ⊥CE ,垂足为D ,AC 平分∠DAB .(1)求证:CE 是⊙O 的切线;(2)若AD =4,cos ∠CAB =45,求AB 的长.24.【教材P 85复习题T 11拓展】已知矩形ABCD 的一条边AD =8,将矩形ABCD 折叠,使得点B落在CD 边上的点P 处,然后展开.(1)如图①,已知折痕与边BC 交于点O ,连接AP ,OP ,OA .① 求证:△OCP ∽△PDA ;② 若△OCP 与△PDA 的面积比为1∶4,求边AB 的长.(2)如图②,在(1)的条件下,擦去AO 和OP ,连接BP .动点M 在线段AP 上(点M 不与点P ,A 重合),动点N 在线段AB 的延长线上,且BN =PM ,连接MN 交PB 于点F ,作ME ⊥BP 于点E .试问动点M ,N 在移动的过程中,线段EF 的长度是否发生变化?若不变,求出线段EF 的长度;若变化,请说明理由.答案一、1.A 2.C 3.A 4.D 5.B 6.C 7.C 8.A 9.B 10.C 二、11.y =3x (答案不唯一) 12.75° 13.1214.24 15.4 2 m 16.6或7或8 17.y =-x +318.1或4 点拨:设CQ =x .∵四边形ABCD 为正方形,∴∠C =∠D =90°.∵点P 为CD 的中点,∴CP =DP =2.当CQ PD =CP AD 时,△QCP ∽△PDA ,此时x 2=24,∴x =1.当CQ AD =CPPD 时,△QCP∽△ADP ,此时x 4=22,∴x =4.三、19.解:原式=3×33+⎝ ⎛⎭⎪⎫222-1=12. 20.解:(1)圆柱(2)如图所示.(3)这个几何体的体积为πr 2h ≈3.14×⎝ ⎛⎭⎪⎫1022×20=1 570.21.解:(1)∵四边形OABC 是平行四边形,∴OA ∥BC ,OA =BC . 又A (2,0),C (-1,2), ∴点B 的坐标为(1,2).将点B (1,2)的坐标代入y =k x,得k =2.(2)点C ′在反比例函数y =2x的图象上.理由如下:∵将▱OABC 沿x 轴翻折,点C 落在点C ′处,C (-1,2), ∴点C ′的坐标是(-1,-2). 由(1)知,反比例函数的解析式为y =2x.令x =-1,则y =2-1=-2.故点C ′在反比例函数y =2x的图象上.22.解:根据题意,得AB ⊥EF ,DE ⊥EF ,∴∠ABC =90°,AB ∥DE , ∴△ABF ∽△DEF , ∴AB DE =BF EF ,即AB 9=44+6, 解得AB =3.6 m.在Rt △ABC 中,∵cos ∠BAC =AB AC,∠BAC =53°, ∴AC =ABcos 53°≈5.98(m),∴AB +AC ≈3.6+5.98≈9.6(m).答:这棵大树没有折断前的高度约为9.6 m. 23.(1)证明:连接OC .∵AC 平分∠DAB ,∴∠DAC =∠BAC . ∵OA =OC ,∴∠BAC =∠OCA , ∴∠DAC =∠OCA ,∴AD ∥OC , 又∵AD ⊥CE ,∴OC ⊥CE .又∵OC 是⊙O 的半径,∴CE 是⊙O 的切线.(2)解:连接BC .在Rt △ADC 中,cos ∠DAC =cos ∠CAB =45=AD AC =4AC ,∴AC =5,∵AB 为⊙O 的直径,∴∠ACB =90°. 在Rt △ABC 中,cos ∠CAB =AC AB =5AB =45,∴AB =254. 24.(1)①证明:如图①,∵四边形ABCD 是矩形,∴∠C =∠D =∠B =90°,∴∠1+∠3=90°. 由折叠可得∠APO =∠B =90°, ∴∠1+∠2=90°.∴∠3=∠2. 又∵∠C =∠D ,∴△OCP ∽△PDA .②解:∵△OCP 与△PDA 的面积比为1∶4,且△OCP ∽△PDA , ∴OP PA =CP DA =12.∴CP =12AD =4. 设OP =x ,则易得CO =8-x . 在Rt △PCO 中,∠C =90°, 由勾股定理得 x 2=(8-x )2+42.解得x =5,即OP =5.∴AB =AP =2OP =10.(2)解:线段EF 的长度不发生变化.作MQ ∥AN ,交PB 于点Q ,如图②. ∵AP =AB ,MQ ∥AN ,∴∠APB =∠ABP =∠MQP . ∴MP =MQ .又BN =PM ,∴BN =QM .∵MQ ∥AN ,∴∠QMF =∠BNF ,∠MQF =∠FBN , ∴△MFQ ≌△NFB .∴QF =FB .∴QF =12QB .∵MP =MQ ,ME ⊥PQ ,∴EQ =12PQ .∴EF =EQ +QF =12PQ +12QB =12PB .∵BC =AD =8,∠C =90°,PC =4. ∴PB =82+42=45,∴EF =12PB =2 5.∴在(1)的条件下,动点M ,N 在移动的过程中,线段EF 的长度不变,它的长度恒为2 5.人教版初中数学九年级(下)期末综合测试卷(四)一、选择题:本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的。
白银市2024年九年级毕业会考综合练习数学试卷注意事项:1.全卷满分150分,答题时间为120分钟.2.请将各题答案填写在答题卡上.一、选择题:本大题共10小题,每小题3分,共30分.每小题只有一个正确选项.1. 4的算术平方根是( )A. 2B. 4C.D.【答案】A解析:4的算术平方根是2,故选:A.2. 下列图形中,既是轴对称图形又是中心对称图形的是()A. B. C. D.【答案】C解析:解:A.是轴对称图形,不是中心对称图形,故此选项不符合题意;B.是轴对称图形,不是中心对称图形,故此选项不符合题意.C.既是轴对称图形,又是中心对称图形,故此选项符合题意;D.是轴对称图形,不是中心对称图形,故此选项不符合题意;故选:C.3. 已知是方程组的解,则a﹣b的值是()A. B. C. D.【答案】D解析:∵是方程组的解,∴.两个方程相减,得a﹣b=4.故选:D.4. 若3x=4,3y=6,则3x-2y的值是( )A. B. 9 C. D. 3【答案】A解析:∵3x=4,3y=6,∴3x-2y=3x÷(3y)2=4÷62=.故选A.5. 把不等式组中每个不等式的解集在同一条数轴上表示出来,正确的为( )A. B. C. D.【答案】B解析:解不等式x+1≥3,得:x≥2,解不等式﹣2x﹣6>﹣4,得:x<﹣1,将两不等式解集表示在数轴上如下:故选B.6. 若关于x的一元二次方程(k-1)x2+4x+1=0有两个不相等的实数根,则k的取值范围是( )A. k<5B. k<5,且k≠1C. k≤5,且k≠1D. k>5【答案】B解析:∵关于x的一元二次方程方程有两个不相等的实数根,∴,即,解得:k<5且k≠1.故选:B.7. 某公司10名职工3月份的工资如下表所示,则这10名职工3月份工资的中位数是()工资/元5000520054005600人数/人1342A. 5200元B. 5300元C. 5400元D. 5500元【答案】C解析:这组数据按照从小到大的顺序排列为:5000,5200,5200,5200,5400,5400,5400,5400,5600,5600,则中位数为:.故选:C.8. 如图,2条宽为1的带子以α角交叉重叠,则重叠部分(阴影部分)的面积为( )A. sinαB.C.D.【答案】B解析:过点A作AE⊥BC于点E,过点D作DF⊥AB于点F,如下图所示:由已知得:AB∥CD,AD∥BC,AE=DF=1,∴∠DAF=∠ABE,四边形ABCD为平行四边形,又∵∠DFA=∠AEB,∴△ABE≌△DAF(AAS),∴AB=AD,即四边形ABCD为菱形.在直角△ABE中,,∴,∴重叠部分的面积即阴影部分的面积.故选:B.9. 如图,为的直径,点C、D在上,且,,则的长为()A. B. C. D.【答案】C解析:解:∵为的直径,,∴∠ACB=90°,,连接OD,∵,∴∠DOB=60°,∵OD=OB,∴△OBD为等边三角形,∴,故选:C.10. 如图①,在正方形ABCD中,点E是AB的中点,点P是对角线AC上一动点,设PC=x,PE+PB=y,图②是y关于x的函数图象,且图象上最低点Q的坐标为(4,3),则正方形ABCD的边( )A. 6B. 3C. 4D. 4【答案】A解析:解:如图,点D是点B关于直线AC的对称点,连接DE交AC于点P,则此时y取得最小值,根据点对称性,PB=PD,则y=PE+PB=PD+PE=DE为最小,故ED=3,设正方形的边长为x,则AE=x,在Rt△ADE中,由勾股定理得:DE2=AD2+AE2,即x2+(x)2=(3)2,解得:x=6(负值已舍去),故选:A.二、填空题:本大题共6小题,每小题4分,共24分.11. 分解因式:3a2﹣12=___.【答案】3(a+2)(a﹣2)解析:3a2﹣12=3(a2﹣4)=3(a+2)(a﹣2).12. 已知一个正多边形的内角为,这个多边形的条数为________.【答案】9解析:∵一个正多边形的内角为,∴每个外角为:,∴这个多边形的条数为,故答案为:.13. 某品牌酸奶外包装上标明“净含量:”,现随机抽取四种口味的这种酸奶,它们的净含量如下表所示,其中,净含量不合格的是__________口味的酸奶.种类原味草莓味香草味巧克力味净含量/mL175180190185【答案】香草味解析:由题意可得:合格酸奶净含量的最小值为:,合格酸奶净含量的最大值为:,∴合格酸奶的重量范围为,则净含量不合格的是香草味,故答案为:香草味.14. 某校在劳动周组织学生到校园周边种植甲、乙两种树苗,已知购买3棵甲种树苗、2棵乙种树苗共需12元;购买1棵甲种树苗、3棵乙种树苗共需11元.那么每棵甲种树苗的价格为__________元.【答案】2解析:解:设每棵甲种树苗元,每棵乙种树苗元解得;∴每棵甲种树苗2元,每棵乙种树苗3元,故答案为:2.15. 如图,在中,,分别是,的中点,是延长线上一点,,交于点,且,则__________.【答案】2解析:解:∵D、E分别是AB和AC的中点∴DE∥BC,DE=BC,∴∠EDG=∠F,∵EG=CG, ∠DGE=∠FGC,∴△GED≌△GCF∴DE=CF=1∴CF=BC∴BC=2故答案为2.16. 在某公园内,牡丹按正方形形状种植,芍药种植在它的周围,下图反映了牡丹的列数(n)和芍药的数量规律,那么当时,芍药的数量为__________株.【答案】800解析:解:由图可得,当时,芍药的数量为:,当时,芍药的数量为:,当时,芍药的数量为:,当时,芍药的数量为:,……故芍药的数量为:,当时,芍药的数量为:,故答案为:800.三、解答题:本大题共6小题,共46分.解答时,应写出必要的文字说明、证明过程或演算步骤.17. 计算:.【答案】解析:解:.18. 如图,扇形的圆心角是为,四边形是边长为1的正方形,点,分别在,,在弧上,求图中阴影部分的面积.(结果保留π)【答案】解析:解:四边形是边长为1的正方形,,图中阴影部分的面积.∴图中阴影部分的面积为.19. 先化简,再从中选择一个合适的x的值代入求值【答案】,当时,解析:解:,要使分式有意义,必须,且,即不能为,0,2,取,当时,原式.20. 如图,已知锐角三角形,.(1)尺规作图:①作的垂直平分线l;②作的平分线,且交于点M.(2)若l与交于点P,,求的度数.【答案】(1)①作图见解析,②作图见解析,(2)解析:解:(1)①如图直线l为所求作的图形;②射线为所求作图形.(2)∵BC的垂直平分线为l,∴PB=PC,∴∠PBC=∠PCB=32°,∵BM平分∠ABC,∠ABP=∠CBP=32°,∵∠A=60°,∴.21. 小华利用假期的时间到甘肃旅游,众多的旅游景点让小华难以抉择,于是小华将扑克牌中“A”的四种花色分别记为莫高窟(红桃A),嘉峪关(梅花A),敦煌雅丹国家地质公园(方片A),崆峒山(黑桃A),随后将这四张扑克牌正面朝下,从中随机抽取一张,作为自己的第一站旅游地点.(1)小华抽中敦煌雅丹国家地质公园的概率为________;(2)小华发现他的朋友也正在甘肃旅游,且他的朋友明天将会从莫高窟、嘉峪关、敦煌雅丹国家地质公园这三个景点中任意选择一个游览.若他们按照各自的旅游线路进行游览,请用列表或画树状图的方法,求小华和他的朋友明天去同一个景点的概率.【答案】(1)(2)【小问1解析】P(抽中敦煌雅丹国家地质公园).【小问2解析】列表如下:红桃梅花方片红(红桃,红桃)(红桃,梅花)(红桃,方片)桃梅(梅花,红桃)(梅花,梅花)(梅花,方片)花方(方片,红桃)(方片,梅花)(方片,方片)片黑(黑桃,红桃)(黑桃,梅花)(黑桃,方片)桃由列表可得,共有12种等可能的结果,其中抽到相同景点的结果有3种,∴P(小华和他的朋友明天去同一个景点).22. 如图,某校教学楼的前面有一建筑物,在距离正前方10米的观测点M处,以的仰角测得建筑物的顶端C恰好挡住教学楼顶端A,而在建筑物上距离地面4米高的E处,测得教学楼的顶端A的仰角为,求教学楼的高度.(参考数据:,)【答案】教学楼的高度为18.1米.解析:解:如图,过点E作于点F,,,,,米,四边形是矩形设米,则米,米,米,,,,(米),答:教学楼的高度约为18.1米.23. 学校随机抽取部分学生就“你是否喜欢网课”进行问卷调查,并将调查结果进行统计后,绘制成如下的统计表和扇形统计图.调查结果统计表态度非常喜欢喜欢一般不喜欢频数90b3010频率a0.350.20请你根据统计图、表提供的信息解答下列问题:(1)该校随机抽取了________名同学参加问卷调查;(2)确定统计表中a、b的值,a=________,b=________;(3)在统计图中“喜欢”部分扇形所对应的圆心角是________度;(4)若该校共有1000名学生,估计全校态度为“非常喜欢”的学生有多少人.【答案】(1)200,(2)0.45,70,(3)126,(4)450人解析:解:(1)抽查的学生总数:(30+10)÷0.20=200(名),故答案:200(2)a==0.45,b=200×0.35=70,故答案为:0.45;70;(3)“喜欢”网课所对应扇形的圆心角度数:360°×=126°;故答案为:126.(4)1000×=450(人),答:该校“非常喜欢”网课的学生约有450人.24. 如图,反比例函数的图象与直线相交于点C,过直线上的点作轴于点B,交反比例函数的图象于点D,且.(1)求反比例函数的解析式;(2)求四边形的面积.【答案】(1);(2).【小问1解析】解:点在直线上,∴,,∴轴,,,点D在反比例函数的图象上,.反比例函数的解析式为.【小问2解析】由,解得或(舍去),,.25. 如图,是的直径,与相交于点.过点的圆O的切线,交的延长线于点,.(1)求的度数;(2)若,求的半径.【答案】(1)(2)【小问1解析】如图,连接.为的切线,.,.,.,.小问2解析】如图,连接,,,.,,且,,,即,,,即半径为.26. 【问题情境】在数学活动课上,老师让同学们以“矩形的折叠”为主题开展数学活动,如图,在矩形纸片中,点M,N分别是、的中点,点E,F分别在、上,且.【动手操作】将沿折叠,点A的对应点为点P,将沿折叠,点C的对应点为点Q,点P,Q均落在矩形的内部,连接,.【问题解决】(1)求证:四边形是平行四边形.(2)若,四边形为菱形,求的长.【答案】(1)证明见解析;(2)解析:解:(1)证明:如图1,延长交的延长线于.四边形是矩形,,,点M,N分别是,的中点,,.又,,,,.,,,,四边形是平行四边形(2)如图2,连接,交于点,延长交于,延长交于.图2四边形是菱形,,,,,,,,,,.27. 如图,在平面直角坐标系中,的边在x轴上,,以A为顶点的抛物线经过点,交y轴于点,动点P在对称轴上.(1)求抛物线的解析式.(2)若点P从A点出发,沿方向以1个单位长度/秒的速度匀速运动到点B停止,设运动时间为t 秒,过点P作交于点D,过点D且平行于y轴的直线l交抛物线于点Q,连接,当t为何值时,的面积最大?最大值是多少?(3)抛物线上是否存在点M,使得以点P,M,E,C为顶点的四边形是平行四边形?若存在,请求出点M 的坐标;若不存在,请说明理由.【答案】(1)(2)当时,的面积最大,最大值为1;.【小问1解析】解:∵抛物线经过点,交y轴于点,∴把点,代入,得:,解得,,∴抛物线的解析式为:;小问2解析】∵∴抛物线的顶点A的坐标为,设直线的解析式为:把,代入得:,解得,,∴直线的解析式为:设点,对于当时,,∴,对于,当时,,∴,∴,∴∵∴有最大值,当时,最大值为1;【小问3解析】①若为平行四边形的对角线时,设点,,又,,∴的中点坐标的横坐标为,也是中点坐标的横坐标,∴∴把代入,得∴;②若为边时,将向下平移m个单位,再向左平移2个单位到点P,此时点M的坐标为,若点在抛物线上时,则有:∴;③若为对角线时,点E向下平移n个单位,再向右平移1个单位,则点C也向下平移n个单位,向右平移1个单位,则有,∴∴.综上所述,存在点M,使得以点P,M,E,C为顶点的四边形是平行四边形,点M的坐标为或.。
门头沟区2024年初三年级综合练习(一)数学考生须知:1.本试卷共10页,共三道大题,28个小题.满分100分.考试时间120分钟.2.在试卷和答题卡上准确填写学校和姓名,并将条形码粘贴在答题卡相应位置处.3.试题答案一律填涂或书写在答题卡上,在试卷上作答无效.4.在答题卡上,选择题、作图题用2B 铅笔作答,其它试题用黑色字迹签字笔作答.5.考试结束,将试卷、答题卡和草稿纸一并交回.一、选择题(本题共16分,每小题2分)第1-8题均有四个选项,符合题意的选项只有一个.1. 下列几何体中,俯视图是三角形的是( )A. B. C. D.2. 近几年全国各省市都在发展旅游业,让游客充分感受地域文化,据统计,某市2023年的游客接待量为210000000人次,将210000000用科学记数法表示为( )A. B. C. D. 3. 下图是手机的一些手势密码图形,其中既是轴对称图形又是中心对称图形的是( )A. B. C. D.4. 一个正n 边形的每一个外角都是60°,则这个正n 边形是( )A 正四边形 B. 正五边形 C. 正六边形 D. 正七边形5. 数轴上的两点所表示的数分别为a ,b ,且满足,下列结论正确的是( )A. B. C. D. 6. 如图,,平分交于点,,则().72.110⨯82.110⨯92.110⨯102.110⨯·0,0a b a b >+<0,0a b >>0,0a b <<0,0a b ><0,0a b <>AB CD AD BAC ∠CD D 130∠=︒CAB ∠=A. B. C. D. 7. 同时掷两枚质地均匀的骰子,朝上的一面点数之和为整数的平方的概率为( )A. B. C. D. 8. 如图,在等边三角形中,有一点P ,连接、、,将绕点B 逆时针旋转得到,连接、,有如下结论:①;②是等边三角形;③如果,那么.以上结论正确的是( )A. ①②B. ①③C. ②③D. ①②③二、填空题(本题共16分,每小题2分)9.的取值范围是__________.10 因式分解:______.11. 如图所示,为了验证某个机械零件的截面是个半圆,某同学用三角板放在了如下位置,通过实际操作可以得出结论,该机械零件的截面是半圆,其中蕴含的数学道理是_______.12. 在中,,,,点P 在线段上(不与B 、C 两点重合),如果的长度是个无理数,则的长度可以是______.(写出一个即可).30︒45︒60︒90︒16736142936ABC PA PB PC BP 60︒BD PD AD BPC BDA ≌ BDP △150BPC ∠=︒²²²PA PB PC =+x 22mx mx m -+=ABC 90C ∠=︒3AB =2AC =BC AP AP13. 已知一元二次方程,有两个根,两根之和为正数,两根之积是负数,写出一组符合条件的a、b的值_________.14. “洞门初开,佳景自来”,园林建筑中的门洞设计有很多数学中的图形元素,如图中的门洞造型,由四个相同的半圆构成,且半圆的直径围成了正方形,如果半圆的直径为米,则该门洞的通过面积为_______平方米.15. 下面是某小区随机抽取的50户家庭的某月用电量情况统计表:月用电量x(千瓦时/户/月)户数(户)61511144已如月用电量第三档的标准为大于240小于等于400,如果该小区有500户家庭,估计用电量在第三档的家庭有______户.16. 5月20日是中国学生营养日,青少年合理膳食是社会公共卫生关注的问题之一.某食堂为了均衡学生的营养,特设置如下菜单,每种菜品所含的热量,脂肪和蛋白质如下:编号菜名类别热量/千焦脂肪/g蛋白质/g1宫保鸡丁荤菜1033187 2炸鸡排荤菜12541920 3糖醋鱼块荤菜211218144土豆炖牛肉荤菜109523165香菇油菜素菜911117 20x ax b++=1240x≤240300x<≤300350x<≤350400x<≤400x>6家常豆腐素菜102016137清炒冬瓜素菜564718韭菜炒豆芽素菜491239米饭主食3601810紫菜鸡蛋汤汤10058学校规定每份午餐由1份荤菜,2份素菜,1份汤和1碗米饭搭配.小明想要搭配一份营养午餐,那么他摄入的脂肪最低量是____________g .(12岁岁的青少年男生午餐营养标准:摄入热量为2450千焦,摄入蛋白质为65g ,蛋白质越接近标准越营养)三、解答题(本题共68分,第17~21题每小题5分,第22~24题每小题6分,第25题5分,第26题6分,第27~28题每小题7分)解答应写出文字说明、证明过程或演算步骤.17. .18. .19. 已知,求代数式的值.20. 如图所示,在长为11、宽为10矩形内部,沿平行于矩形各边的方向割出三个完全相同的小矩形,求每个小矩形的面积.21. 如图,在四边形中,,,,点E 为中点,射线交的延长线于点F ,连接.的14-011(2021)22sin 45()3π---+︒-()2131242x x x x ⎧+>-⎪⎨-<+⎪⎩23210x x +-=22(1)(2)(2)3x x x x +-+-+ABCD AD BC ∥90A ∠=︒BD BC =CD BE AD CF(1)求证:四边形是菱形;(2)若,,求的长.22. 在平面直角坐标系中,一次函数的图象由的图象向上平移2个单位得到,反比例函数 的图象过点.(1)求一次函数表达式及m 的值;(2)过点平行于x 轴的直线,分别与反比例函数一次函数的图象相交于点M 、N ,当时,画出示意图并直接写出n 的值.23. 某市统计局为研究我国省会及以上城市发展水平与人均之间关系,收集了年个城市的人均数据(单位:万元)以及城市排名,进行了相关的数据分析,下面给出了部分信息..城市的人均的频数分布直方图(数据分成组:,,,,):频数(城市个数)的BCFD 1AD =2CF =BF xOy ()0y kx b k =+≠1y x =()20m y m x=≠()14A ,()0P n ,2m y x =y kx b =+PM MN =GDP 202331GDP GDP a GDP 558x <≤811x <≤1114x <≤1417x <≤1720x <≤.城市的人均(万元)的数值在这一组的是:;.以下是个城市年的人均(万元)和城市排名情况散点图:根据以上信息,回答下列问题(1)某城市的人均为万元,该城市排名全国第_____;(2)在个城市年的人均和城市排名情况散点图中,请用“”画出城市排名的中位数所表示的点;(3)观察散点图,请你写出一条正确结论.24. 如图,在中,,的平分线交于点,过点作交于点.(1)求证:直线是以点为圆心,为半径的的切线;(2)如果:,,求的半径.25. 如图是某跳台滑雪场的横截面示意图,一名运动员经过助滑、起跳从地面上点O 的正上方4米处的A 点滑出,滑出后的路径形状可以看作是抛物线的一部分,通过测量运动员第一次滑下时,在距所在直线水平距离为d 米的地点,运动员距离地面高度为h 米.获得如下数据:水平距离d /米02468垂直高度h /米488的b GDP 1114x <≤12.313.213.613.8,,,c 312023GD GDP GDP 13.8GDP 312023GDP GDP GDP ABC 90C ∠=︒CAB ∠CB D D OD CB ⊥AB O CD O OA O 3sin 5CAB ∠=3BC =O OA 132172请解决以下问题:(1)在网格中建立适当的平面直角坐标系,根据已知数据描点,并用平滑的曲线连接;(2)结合表中所给数据或所画图象,直接写出运动员滑行过程中距离地面的最大高度为_____米;(3)求h 关 于d 的函数表达式;(4)运动员第二次滑下时路径形状可表示为:,当第一次和第二次距离所在直线的水平距离分别为、,且时能成功完成空中动作,则该运动员_________(填写“能”或“不能”)完成空中动作.26. 在平面直角坐标系中,点,在抛物线上,设抛物线的对称轴为直线.(1)如果抛物线经过点,求的值;2C 215463h d d =-++OA 1d 2d 1223d d ≤≤-xoy ()1,A x m ()2,B x n ()240y ax bx a =++>x h =()2,4h(2)如果对于,,都有,求取值范围;(3)如果对于,或,存在,直接写出的取值范围.27. 如图,,,点在射线上,且,点在上且,连接,取的中点,连接并延长至,使,连接.(1)如图1,当点在线段上时.①用等式表示与的数量关系;②连接,,直接写出,的数量关系和位置关系;(2)如图2,当点在线段的延长线上时,依题意补全图形2,猜想②中的结论是否还成立,并证明.28. 在平面直角坐标系中,的半径为2,点P 、Q 是平面内的点,如果点P 关于点Q 的中心对称点在上,我们称圆上的点为点P 关于点Q 的“等距点”.(1)已知如图1点.①如图1,在点 中,上存在点P 关于点Q 的“等距点”的是________;②如图2,点 ,上存在点P 关于点Q 的“等距点”,则m 的取值范围是________;(2)如图3,已知点,点P 在的图象上,若上存在点P 关于点Q 的“等距点”,14x h =-23x h =m n >h 142h x h -≤≤+21x ≤212x ≥m n >h AB BC =90ABC ∠=︒P AB 90CEP ∠=︒F EP EF EC =AF AF G EG H GH GE =AH P AB AH CE BH BE BH BE P AB xOy O O 40(,)P ()()()12330,2,1,1,1Q Q Q -,O (),Q m n O ()1,1Q y x b =-+O求b的取值范围.。
人教版九年级数学上册第二十五章综合测试卷一、选择题(本题有10小题,每小题3分,共30分)1.下列事件中,是必然事件的是()A.五个人分成四组,这四组中有一组有两人B.任意买一张电影票,座位号是单号C.掷一次骰子,向上一面的点数是3D.打开手机就有未接电话2.(2023河北)有7张扑克牌如图所示,将其打乱顺序后,背面朝上放在桌面上,若从中随机抽取一张,则抽到的花色可能性最大的是()3.(2023娄底)从367,3.141 592 6,3.3·,4,5,-38,39中随机抽取一个数,此数是无理数的概率是()A.27 B.37 C.47 D.574.一个不透明的袋子中装有仅颜色不同的2个红球和2个白球,两个人依次从袋子中随机摸出一个小球不放回,则第一个人摸到红球且第二个人摸到白球的概率是()A.13 B.12 C.14 D.165.如图,四张卡片除正面标有的数字不同外,其余完全相同,将四张卡片背面朝上,事件“从A,B,C三张卡片中先抽取一张记下数字后放回,洗匀后再抽取一张记下数字,两张卡片数字之和为正数”的概率为P1,事件“从A,B,C,D四张卡片中抽取一张,卡片数字为奇数”的概率为P2,则P1与P2的大小关系为()A.P1>P2B.P1<P2C.P1=P2D.无法确定(第5题)(第6题)6.如图,正方形ABCD是一块绿化带,其中四边形EOFB,四边形GHMN(阴影部分)都是正方形的花圃,已知自由飞翔的小鸟将随机落在这块绿化带上,则小鸟落在花圃上的概率为()A.1732 B.12 C.1736 D.17387.随着信息化的发展,二维码已经走进我们的日常生活,其图案主要由黑、白两种小正方形组成.现对由三个小正方形组成的“”进行涂色,每个小正方形随机涂成黑色或白色,“”恰好是两个黑色小正方形和一个白色小正方形的概率为()A.13 B.38 C.12 D.238.(2024成都月考)小明和小亮在一次大量重复试验中,统计了某一结果出现的频率,绘制出如图所示的统计图,符合这一结果的试验可能是()A.掷一枚质地均匀的骰子,朝上的一面是3点B.掷一枚质地均匀的硬币,正面朝上C.从分别标有1,1,2,2,3,3的6张纸条中,随机抽出一张纸条上的数字是偶数D.从一道单项选择题的四个备选答案中随机选一个答案,选中正确答案(第8题)(第10题)9.(2023随州一模)看了《田忌赛马》故事后,小杨用数学模型来分析:齐王与田忌的上、中、下三个等级的三匹马综合指标数如表,每匹马只赛一场,两综合指标数相比,大数为胜,三场两胜则赢,已知齐王的三匹马的出场顺序为6,4,2.若田忌的三匹马随机出场,则田忌能赢得比赛的概率为() 马匹等级下等马中等马上等马齐王 2 4 6田忌 1 3 5A.13 B.16 C.19 D.11210.向上抛掷质地均匀的骰子(如图),落地时向上的面点数为a(a的可能取值为1,2,3,4,5和6),则关于x的不等式1-ax3-x>2有不大于2的整数解的概率为()A.23 B.12 C.13 D.16二、填空题(本题有5小题,每小题4分,共20分)11.“八月十五云遮月,正月十五雪打灯”是一句谚语,意思是说如果八月十五晚上阴天的话,正月十五晚上就下雪,你认为谚语描述的事件是____________(填“必然事件”“不可能事件”或“随机事件”).12.周末期间,小燕在学习之余与妈妈要玩一次转盘游戏,选项与所占比例如图所示,则小燕不看电视的可能性为________.(第12题)13.(2023济南)围棋起源于中国,棋子分黑白两色.一个不透明的盒子中装有3个黑色棋子和若干个白色棋子,每个棋子除颜色外都相同,任意摸出一个棋子,摸到黑色棋子的概率是14,则盒中棋子的总个数是________个.14.用图中两个可自由转动的转盘做“配紫色”游戏:转盘A红色区域对应的圆心角度数为120°,转盘B被分成面积相等的四个扇形,分别转动两个转盘,若其中一个转出红色,另一个转出蓝色即可配成紫色(若指针停在分割线上,则重新转动转盘),那么可配成紫色的概率是________.15.(2023菏泽)用数字0,1,2,3组成个位数字与十位数字不同的两位数,该两位数是偶数的概率为________.三、解答题(本题有5小题,共70分,各小题都必须写出解答过程)16.(12分)(2024淮安月考)某运动员进行打靶练习,对该名运动员打靶正中靶心的情况进行统计,并绘制成了如图所示的统计图,请根据图中信息回答问题:(1)该名运动员正中靶心的频率在________附近摆动,他正中靶心的概率估计值为________.(2)如果一次练习时他一共打了150枪.①试估计他正中靶心的枪数.②如果他想要在这次练习中打中靶心160枪,请计算出他还需要打大约多少枪?17.(14分)甲、乙两名同学准备参加种植蔬菜的劳动实践活动,各自随机选择种植辣椒、种植茄子、种植西红柿三种中的一种,记种植辣椒为A,种植茄子为B,种植西红柿为C.假设这两名同学选择种植哪种蔬菜不受任何因素影响,且每一种蔬菜被选到的可能性相等.记甲同学的选择为x,乙同学的选择为y.(1)请用列表法或画树状图法中的一种方法,求(x,y)所有可能出现的结果总数;(2)求甲、乙两名同学选择种植同一种蔬菜的概率P.18.(14分)某市今年中考理、化实验操作考试,采用学生抽签决定自己的考试内容的方式.规定:每名考生必须在三个物理实验(用纸签A,B,C表示)和三个化学实验(用纸签D,E,F表示)中各抽取一个进行考试.小刚在看不到纸签的情况下,分别从中各随机抽取一个.(1)用列表法或画树状图法表示所有可能出现的结果.(2)小刚物理实验B和化学实验F不会做,那么他这两个实验一个也抽不到(记作事件M)的概率是多少?19.(15分)如图,A,B两个带指针的转盘分别被分成三个面积相等的扇形,转盘A上的数字分别是-6,-1,5,转盘B上的数字分别是6,-7,4(两个转盘除表面数字不同外,其他完全相同).小聪和小明同时转动A,B两个转盘,使之旋转(规定:指针恰好停留在分界线上,则重新转一次).(1)转动转盘,转盘A指针指向正数的概率是________;(2)若同时转动两个转盘,转盘A指针所指的数字记为a,转盘B指针所指的数字记为b,若a+b>0,则小聪获胜;若a+b<0,则小明获胜.请用列表法或画树状图法说明这个游戏是否公平.20.(15分)某校计划成立五个兴趣活动小组(每名学生只能参加一个活动小组):A.音乐;B.美术;C.体育;D.阅读;E.人工智能.为了解学生对以上兴趣活动的参与情况,随机抽取了部分学生进行调查统计,并根据统计结果,绘制成了如图所示的两幅不完整的统计图.根据图中信息,完成下列问题:(1)①补全条形统计图(要求在条形图上方注明人数);②扇形统计图中的圆心角α的度数为________;(2)若该校有3 600名学生,估计该校参加E组(人工智能)的学生人数;(3)该学校从E组中挑选出了表现最好的两名男生和两名女生,计划从这四名同学中随机抽取两名同学参加市青少年人工智能竞赛,请用画树状图或列表的方法求出恰好抽到一名男生和一名女生的概率.答案一、1.A 2.B 3.A 4.A 5.B 6.C7.B8.C9.B点拨:当田忌的三匹马随机出场时,双方马的对阵情况如下表:齐王的马6,4,2 6,4,2 6,4,2 6,4,2 6,4,2 6,4,2 田忌的马5,3,1 5,1,3 3,5,1 3,1,5 1,5,3 1,3,5 共有6种等可能的对阵情况,只有一种对阵情况田忌能赢,∴田忌能赢得比赛的概率为16.故选B.10.A点思路:将a为1,2,3,4,5和6分别代入不等式中,求出对应不等式的解集,判断是否有不大于2的整数解即可.二、11.随机事件12.85%13.1214.5 1215.59三、16.解:(1)0.8;0.8(2)①150×0.8=120(枪).∴估计他正中靶心的枪数为120枪.②160÷0.8=200(枪),200-150=50(枪).∴他还需要打大约50枪.17.解:(1)画树状图如下.共有9种等可能的结果,分别为(A,A),(A,B),(A,C),(B,A),(B,B),(B,C),(C,A),(C,B),(C,C).(2)由(1)可知,共有9种等可能的结果,其中甲、乙两名同学选择种植同一种蔬菜的结果有3种,∴甲、乙两名同学选择种植同一种蔬菜的概率P=39=13.18.解:(1)画树状图如下.共有9种等可能的结果,分别是AD,AE,AF,BD,BE,BF,CD,CE,CF.(2)从树状图可以看出,共有9种等可能的结果,其中物理实验B和化学实验F一个也抽不到的结果有4种,所以物理实验B和化学实验F一个也抽不到的概率P(M)=4 9.19.解:(1)1 3(2)列表如下.-6 -1 56 0 5 11-7 -13 -8 -24 -2 3 9由表格可知,一共有9种等可能的结果,其中a+b>0的结果有4种,a+b<0的结果有4种,∴P(小聪获胜)=49,P(小明获胜)=49.∴P(小聪获胜)=P(小明获胜).∴这个游戏公平.20.解:(1)①补全条形统计图如图.②120°(2)易知被调查的学生有300名.3 600×60300=720(名).∴估计该校参加E组(人工智能)的学生有720名.(3)画树状图如下.由树状图知,共有12种等可能的结果,其中抽到一名男生和一名女生的结果有8种,所以恰好抽到一名男生和一名女生的概率为812=23.。
慧学云教育九 年 级 数 学 试 题(图形与证明二)一.选择题 1、顺次连接任意四边形各边中点所得到的四边形一定是( )A 平行四边形B 菱形C 矩形D 正方形2、 国家级历史文化名城——金华, 风光秀丽,花木葱茏.某广场上一个形状是平行四边形的花坛(如图),分别种有红、黄、蓝、绿、橙、紫6种颜色的花.如果有 AB ∥ EF ∥ DC,BC ∥ GH ∥ AD,那么下列说法中正确的是()A ED紫 绿 A .红花、绿花种植面积一定相等红GHB .绿花、黄花种植面积一定相等黄橙蓝C .红花、蓝花种植面积一定相等 BCFD .蓝花、紫花种植面积一定相等3.如图,直线 l 1 ∥ l 2 ,若 155 , 2 65 ,则 3为()3A 50B55C 60D65l 121l 2第3 题4、若等腰三角形的一个底角为 50°,则顶角为( )A .50°B . 100°C .80°D .65°()5、如图 1, □ABCD 的周长是28 ㎝,△ ABC 的周长是22 ㎝,则的长为ACA . 14 ㎝B. 12 ㎝C. 10 ㎝ D. 8 ㎝AADBDAFEBCCBDC1236、下列命题中,真命题是()A.两条对角线相等的四边形是矩形B.两条对角线互相垂直的四边形是菱形C.两条对角线互相垂直且相等的四边形是正方形 D.两条对角线互相平分的四边形是平行四边形7、已知菱形的两条对角线长分别为 6 和 8,则菱形的周长为( )A .20B .30C . 40D . 108、如图 2,在菱形 ABCD 中,不一定成立的是( )A .四边形 ABCD 是平行四边形B .AC ⊥BDC.△ ABD 是等边三角形D.∠ CAB=∠ CAD9、如图 3,在△ ABC 中,点 E,D,F 分别在边AB,BC,CA上,且 DE ∥ CA ,DF ∥ BA .下列四个判断中,不正确的是()...A.四边形 AEDF 是平行四边形oC.如果 AD 平分BAC ,那么四边形AEDF是菱形D.如果 AD BC 且 AB AC ,那么四边形AEDF是正方形10.如图,正方形 ABCD 的边长为 2,点△AFC 的面积为 S,则()E 在AB 边上,四边形EFGB 也为正方形,设A .S=2 B. S=4 C. S=2.4 D. S 与 BE 长度有关二.填空题11.已知平行四边形 ABCD中, AB=14cm,BC=16cm,则此平行四边形的周长为_____cm. 12.矩形的两条对角线的夹角为600, 较短的边长为12cm,则对角线长为cm.13.如下图(1),在平行四边形ABCD 中,CE ⊥AB ,E 为垂足.如果∠A 125o,则∠ BCE14.在四边形 ABCD中,已知 AB ∥CD ,请补充一个条件:,使得四边形 ABCD是平行四边形。
九年级中考数学综合复习训练卷(9)一、选择题(本大题共12小题,每小题3分,共36分)1.-5的相反数是( )A.15B.15C.5 D.-52.下列各数是有理数的是()A.﹣B.C.D.π3.如果4x2﹣ax+9是一个完全平方式,则a的值是()A.±6 B. 6 C. 12 D.±124.一个不透明的口袋里装有除颜色外都相同的5个白球和若干个红球,在不允许将球倒出来数的前提下,小亮为了估计其中的红球数,采用如下方法:先将口袋中的球摇匀,再从口袋中随机摸出一球,记下颜色,然后把它放回口袋中.不断重复上述过程.小亮共摸了100次,其中有10次摸到白球.因此小亮估计口袋中的红球大约有()个.A.45 B.48 C.50 D.555.一个几何体的主视图、左视图、俯视图都是长方形,这个几何体可能是()A.长方体B.四棱锥C.三棱锥D.圆锥6.某校调查了20名男生某一周参加篮球运动的次数,调查结果如表所示,那么这20名男生该周参加篮球运动次数的平均数是()次数 2 3 4 5人数 2 2 10 6A.3次B.3.5次C.4次D.4.5次7.若圆柱的底面半径为3cm,母线长为4cm,则这个圆柱的侧面积为()A.12cm2B.24cm2C.12πcm2D.24πcm28.如图,已知△ABC(AC<BC),用尺规在BC上确定一点P,使PA+PC=BC,则符合要求的作图痕迹是()A .B .C .D .9.已知是方程的解,则的值为( ) A .2 B .4 C .6 D .1010.江堤的横断面如图,堤高BC =10米,迎水坡AB 的坡比是1∶3,则堤脚AC 的长是( )C BAA .20米B .203米C .1033米D .103米 11.如图在△ABC 中,P 、Q 分别是BC 、AC 上的点,作PR ⊥AB ,PS ⊥AC ,垂足分别是R 、S ,若AQ=PQ ,PR=PS ,下面三个结论:①AS=AR ;②PQ ∥AB ;③△BRP ≌△CSP ,其中正确的是( )A .①②B .②③C .①③D .①②③ 12.如图,等边三角形的边长为4,点是△的中心,.绕点旋转,分别交线段于两点,连接,给出下列四个结论:①;②;③四边形的面积始终等于;④△周长的最小值为6,上述结论中正确的个数是( ) A . 1 B . 2 C . 3 D . 4二、填空题(本大题共6小题,每小题3分,共18分)13.计算:=_____.14.分解因式:x 2y ﹣y= .15.不等式组的解集是 .16.如图,四边形ABCD为⊙O的内接四边形,∠A=100°,则∠DCE的度数为_______;17.如图,在四边形ABCD中,已知AB=CD,再添加一个条件(写出一个即可),则四边形ABCD是平行四边形.(图形中不再添加18.如图,在平面直角坐标系中,菱形OABC的面积为12,点B在y轴上,点C在反比例函数y=的图象上,则k的值为.三、解答题(本大题共8小题,共66分)19.计算:1﹣(+)÷.20.(1)计算:2sin30°+4cos30°•tan60°﹣cos245°;(2)抛物线y=ax2+bx+c经过点(0,0),(6,0),且抛物线最高点的纵坐标为3,求这条抛物线的解析式.21.如图是某地6月1日至6月7日每天最高、最低气温的折线统计图。
九年级(上)数学综合练习题(二)数学选择题(本题共32分,每小题4分)1、如果两个相似三角形的相似比是1:2,那么这两个相似三角形的周长比是 A .2:1B.C . 1:4D .1:22、若将抛物线y=12x 2先向左平移2个单位,再向下平移1个单位得到新的抛物线,则新抛物线的解析式是A .21(2)12y x =+- B .21(2)12y x =-- C .2(2)1y x =+- D . 21(2)12y x =--3、在a 2□4a □4的空格□中,任意填上“+”或“-”,在所有得到的代数式中,能构成完全平方式的概率是A .14 B . 13 C .12 D . 1 4、如图4×4的正方形网格中,△MNP 绕某点旋转一定的角度,得到△M 1N 1P 1,则其旋转中心可能是A .点AB .点BC .点CD .点D5、如图,⊙B 的半径为4cm , 60=∠MBN ,点A ,C 分别是射线BM ,BN 上的动点,且直线BN AC ⊥.当AC 平移到与⊙B 相切时,AB 的长度是A .8cmB .6cmC .4cmD .2cm6、如图,每个小正方形边长均为1,则下列图中的三角形(阴影部分)与左图中ABC △相似的是7、两圆的圆心距为3,两圆半径分别是方程2430x x -+=的两根,则两圆的位置关系是 A .内切 B . 相交 C .外切 D . 外离A .B .C .D .ABC8、如图,,,,A B C D O 为的四等分点,动点P 从圆心O 出发,沿O C D O ---路线作匀速运动.设运动时间为(),()t s APB y ∠=︒,则下列图象中表示y 与t 之间函数关系最恰当的是二、填空题(本题共16分,每小题4分)9、边长为a 的正三角形的外接圆的半径为 .10、如图,,A C B D C D E A B E⊥⊥于点于点,且68AB DB ==,,则:ABC DBE S S =△△ .11、关于x 的一元二次方程01)1(22=-++-a x x a 的一个根是0,则a 的值为 .12、已知点A 的坐标为()a b ,,O 为坐标原点,连结OA ,将线段OA 绕点O 按逆时针方向旋转90°得1OA ,则点1A 的坐标为 . 三、解答题(本题共25分,每小题5分) 13、解方程:2326x x -=14、如图,在ABC △中,90C =∠,在AB 边上取一点D ,使BD BC =,过D 作DE AB ⊥交AC 于E ,86AC BC ==,.求DE 的长.15、如图,已知⊙O 是△ABC 的外接圆,AB 为直径,若PA ⊥AB ,PO 过AC 的中点M ,求证:PC 是⊙O 的切线.ED C B A16、如图,从一个半径为1m 的圆形铁皮中剪出一个圆心角为90︒的扇形,并将剪下来的扇形围成一个圆锥,求此圆锥的底面圆的半径.17、如图,一条河的两岸有一段是平行的,在河的南岸边每隔5米有一棵树,在北岸边每隔50米有一根电线杆.小丽站在离南岸边15米的点P 处看北岸,发现北岸相邻的两根电线杆A 、B ,恰好被南岸的两棵树C 、D 遮住,并且在这两棵树之间还有三棵树,求河的宽度.四、解答题(本题共10分,每小题5分)18、关x 的一元二次方程(x -2)( x -3)= m 有两个实数根x 1、x 2, (1)求m 的取值范围;(2)若x 1、x 2满足等式x 1x 2-x 1-x 2+1=0,求m 的值.19、如图,AB 为O 的直径,CD 是弦,且AB ⊥CD于点E .连接AC 、OC 、BC . (1)求证:∠ACO =∠BCD .(2)若EB =8cm ,CD =24cm ,求O 的直径.五、解答题(本题共10分,每小题5分)20、某校有A 、B 两个餐厅,甲、乙、丙三名学生各自随机选择其中的一个餐厅用餐. (1)请用列表或画树形图的方法求甲、乙、丙三名学生在同一个餐厅用餐的概率; (2)求甲、乙、丙三名学生中至少有一人在B 餐厅用餐的概率.21、如图,已知二次函数221y x x =--的图象的顶点为A .二次函数2y ax bx =+的图象与x 轴交于原点O 及另一点C ,它的顶点B 在函数221y x x =--的图象的对称轴上. (1)求点A 与点C 的坐标;(2)当四边形AOBC 为菱形时,求函数2y ax bx =+的关系式.COEDCB A六、解答题(本题共6分)22、阅读材料:为解方程()()22215140x x ---+=,我们可以将21x -视为一个整体,设21x y -=,则原方程可化为2540y y -+=,① 解得11y =,24y =.当1y =时,211x -=,22x ∴=即x = 当4y =时,214x -=,25x ∴=即x =.∴原方程的解为1x =2x =3x =4x =根据以上材料,解答下列问题.⑴填空:在原方程得到方程①的过程中,利用换元法达到降次的目的,体现了_____的数学思想.⑵解方程4260x x --=七、解答题(本题共21分,每小题7分) 23、如图,P 为正方形ABCD 内一点,若P A =a ,PB =2a ,PC =3a (a >0).(1) 求∠APB 的度数;(2) 求正方形ABCD 的面积.24、一开口向上的抛物线与x 轴交于A ,B 两点,C (m ,2-)为抛物线顶点,且AC ⊥BC . (1)若m 是常数,求抛物线的解析式; (2)设抛物线交y 轴正半轴于D 点,抛物线的对称轴交x 轴于E 点。
九年级数学综合练习卷及参考答案考生须知:1.本试题卷共8页,有三个大题,全卷150分,考试时间120分钟.2.答案必须写在答题纸相应的位置上,写在本试题卷、草稿纸上均无效.3.答题前,认真阅读答题纸上的“注意事项”,按规定答题.参考公式:抛物线)0(2≠++=acbxaxy的顶点坐标是⎪⎪⎭⎫⎝⎛--abacab44,22卷Ⅰ(选择题,共40分)一、选择题(本大题有10小题,每小题4分,共40分,请选出每小题中一个最符合的选项,不选、多选、错选,均不给分)1.-2的相反数是()A.2 B.-2 C.12D.-122.李克强总理在2015年3月5日的《政府工作报告》中表示,2015年铁路将投资8000亿元.将8000亿元用科学记数法表示为()A.8×1011元B.80×1010元C.8000×108元D.8×103元3.下列等式一定成立的是()A.错误!未找到引用源。
错误!未找到引用源。
22a a a⋅=B.22=÷aaC.22423a a a+=D.()33aa-=-4.由5个相同的立方体搭成的几何体如图,则它的主视图是()5.绍兴某一周的PM2.5(大气中直径小于等于2.5微米的颗粒物,也称可入肺颗粒物)指数如下表,则该周PM2.5指数的众数和中位数分别是()A.150,150 B.150,155 C.155,150 D.150,152.56.如图,DE∥BC,BD,CE相交于O,13EOOC=,3AE=,则EB=()A.6 B.9 C.12 D.157.如图,AB是⊙O的弦,半径2OA=,2sin3A=,则弦AB的长为()A B C D(第10题)A. B.C .4 D8.如图,将一个半径为2 的圆等分成四段弧,再将这四段弧围成星形,则该图形的面积与原来圆的面积之比为( ) A .ππ-4 B .π2C .ππ1- D .π39.如图所示,已知Rt △A B C 中,∠B =90°,AB =3,BC =4,D 、F 分别 为AB 、AC 的中点,E 是BC 上动点,则△DEF 周长的最小值为( )A .2+10B .2+13C .13D .610.如图,已知抛物线2+23y x x =-,把此抛物线沿y 轴向上平移,平移后的抛物线和原抛物线及直线2x =,2x =-所围成的阴影部分的面积为S ,平移的距离为m ,则下列图象中,能表示S 与m 的函数关系的图象大致是( )卷Ⅱ(非选择题,共110分)二、填空题(本大题有6小题,每小题5分,共30分)11.分解因式:24x y y -=________________.12.关于x 的一元二次方程kx 2+2x +1 =0有两个实数根,则k 的取值范围是 . 13.如图,在△ABC 中,G 是重心,点D 是BC 的中点,若△ABC 的面积为6cm 2,则△CGD 的面积为 cm 2.14.如图,正六边形ABCDEF 的边长为2 3 cm ,点P 为六边形内任一点.则点P 到各边所在直线距离之和为 cm .15.如图(1)将△ABC 绕点A 按逆时针方向旋转θ度,并使各边长变为原来的n 倍得△AB ′C ′ ,∠BAB ′ =θ,AB B C AC n AB BC AC''''===,我们将这种变换记为[θ,n ] .如图(2),在△DEF 中,∠DFE =90°,将 △DEF 绕点D 旋转,作变换[60°,n ]得△DE ′F ′,如果点E 、F 、F '恰好在同一直线上,那么n = . 16.如图,点P 是反比例函数y =x34 (x >0)图象上的动点, 在y 轴上取点Q ,使得以P ,O ,Q 为顶点的三角形是一个含有 30°的直角三角形,则符合条件的点Q 的坐标是 .三、解答题(本大题有8小题,第17~20小题每小题8分,第21小题10分,第22,23小题每小题12分,第24小题14分,共80分。
解答题写出必要的文字说明、演算步骤或证明过程) 17.(1)计算:131()12015(60tan 212---+︒-(2)化简:111111a a a a ⎛⎫+÷+ ⎪+-+⎝⎭.18.如图,跷跷板AB 的一端B 碰到地面时,AB 与地面的夹角为18°,且OA =OB =3m .(1)求此时另一端A 离地面的距离(结果精确到0.1);(2)跷动AB ,使端点A 碰到地面,请画出点A 运动的路线(保留画图痕迹),并求出点A运动路线的长.(结果保留π)(参考数据:sin18°≈0.31,cos18°≈0.95,tan18°≈0.32)19.“端午节”是我国的传统佳节,民间历来有吃“粽子”的习俗.我市某食品厂为了解市民对去年销量较好的肉馅粽、豆沙馅粽、红枣馅粽、蛋黄馅粽(以下分别用A 、B 、C 、D 表示)这四种不同口味粽子的喜爱情况,在节前对某居民区市民进行了抽样调查,并将调查情况绘制成如下两幅统计图(尚不完整). 请根据以上信息回答:(1)本次参加抽样调查的居民有多少人? (2)将两幅不完整的图补充完整;(3)若居民区有8000人,请估计爱吃D 粽的人数;(4)若有外型完全相同的A 、B 、C 、D 粽各一个,煮熟后,小王吃了两个.用列表或画树状图的方法,求他第二个吃到的恰好是C 粽的概率.20.甲、乙两名运动员进行长跑训练,两人距终点的路程y (米)与跑步时间x (分)之间的函数关系如图所示,根据图象所提供的信息解答问题:(1)他们在进行 米的长跑训练,在0<x <15的时间内,速度较快的人是 (填“甲”或“乙”);(2)求乙距终点的路程y (米)与跑步时间x (分)之间的函数关系式; (3)当x =15时,两人相距多少米?(4)在15<x <20的时间段内,求两人速度之差.21.如图,以O 为圆心的度数为60°,∠BOE =45°,DA ⊥OB ,EB ⊥OB .(1)BEDA的值为 ;(2)若OE 与交于点M ,OC 平分∠BOE ,连接CM .求证:CM 为⊙O 的切线;(3)在(2)的条件下,若BC =1,求tan ∠BCO 的值.22.(1)如图1,直线a //b //c //d ,且a 与b ,c 与d 之间的距离均为1,b 与c 之间的距离为2,现将正方形ABCD 如图放置,使其四个顶点分别在四条直线上,求正方形的边长; (2)在(1)的条件下,探究:将正方形ABCD 改为菱形ABCD ,如图2,当120DCB ∠=︒时,求菱形的边长.为等腰三角形时,求参考答案一、选择题(本题有10小题,每小题4分,共40分)答案(0,2),(0,8),(0,217.(1)原式=13-…………3分 =-2…………1分(2)原式=211(1)(1)a a a a a+⨯++-…………3分 =11a a +-…………1分18.(1)6sin1860.31 1.9⨯︒=⨯= …………3分(2)画图…………2分33361805ππ⨯⨯=…………3分19. (1)60÷10%=600(人).…………1分(2)如图2;…………3分(3)8000×40%=3200(人).…………2分 (4)如图3;…………1分图2开始A B C DB C D A C D A B D A B C图3P (C 粽)=3=1.答:他第二个吃到的恰好是C 粽的概率是1. …………1分20.(1)5000…………1分甲…………1分(2)2005000(015)4008000(1520)x x y x x -+<<⎧=⎨-+≤≤⎩…………3分(3)750米…………1分(4)150米/分…………2分21.(1)…………………2分(2)证明90=︒…………………4分(3)1…………………4分22.(1)如图,过B ,D 分别作直线d 的垂线,垂足分别为P ,Q ,证⊿CBP ≌⊿CDQ ……2分由⊿CBP ≌⊿CDQ 得出CP=DQ=1, …………2分又BP=3,所以CB =2分(2)如图,过B ,D 分别作直线d 的垂线,垂足分别为M ,N ,作∠BPC=∠DQC=120°,P ,Q 在直线d 上,证明⊿BPC ≌⊿DQC ,⊿BMP ~⊿DQN ,再利用30°直角三角形边的关系及相似三角形,全等三角形的性质,及勾股定理求出BC =6分23.(1)关联…………1分理由:∵21(1)2y x =+-,22(1)2y x =--+ 又∵222(11)2,2(11)2-=---+=+-成立∴22122121y x x y x x =+-=-+-与关联…………4分 (2)∵P 在直线2y =上∴顶点M (-1,-2)绕点旋转180度后,其顶点纵坐标为6,且18a =- ∴所求2C 解析式为21()68y x b =-++…………3分 ∵12C C 与关联把(-1,-2)代入21()68y x b =-++得b=9或-7∴2C 的解析式为21(9)68y x =-++或21(7)68y x =--+…………4分24(1)()4,3D ;…………4分(2)13 2, 2P ⎛⎫⎪⎝⎭,212896,2525P⎛⎫⎪⎝⎭;…………6分(3)∠OQP=90°时,5115436a=或…………2分∠OPQ=90°时,492545a=或…………2分。