第25章概率初步
- 格式:doc
- 大小:153.00 KB
- 文档页数:2
2024九年级数学上册“第二十五章概率初步”必背知识点一、随机事件与概率1. 随机事件定义:在一定条件下,可能发生也可能不发生的事件,称为随机事件。
对比:与随机事件相对的是确定事件,确定事件又分为必然事件和不可能事件。
必然事件是事先能肯定它一定会发生的事件;不可能事件是事先能肯定它一定不会发生的事件。
2. 概率的定义一般定义:在大量重复实验中,如果事件A发生的频率m/n稳定在某个常数p附近,那么这个常数p就叫做事件A的概率,记为P(A)=p。
取值范围:概率的取值范围是0≤p≤1。
特别地,P(必然事件)=1,P(不可能事件)=0。
二、概率的计算方法1. 理论概率在一次试验中,如果包含n种可能的结果,并且它们发生的可能性都相等,事件A包含其中的m种结果,那么事件A发生的概率P(A)=m/n。
2. 列举法求概率列表法:当试验中存在两个元素且出现的所有可能的结果较多时,常用列表法列出所有可能的结果,再求出概率。
树状图法:当试验涉及三个或更多元素时,为不重不漏地列出所有可能的结果,通常采用树状图法。
三、用频率估计概率原理:在大量重复试验中,如果事件A发生的频率m/n 稳定于某一个常数p,那么可以认为事件A发生的概率为p。
即,频率可以作为概率的近似值,随着试验次数的增加,频率会越来越接近概率。
四、概率的应用与理解1. 概率的意义概率是对事件发生可能性大小的量的表现,它反映了随机事件的稳定性和规律性。
2. 游戏公平性判断游戏公平性需要计算每个事件的概率,并比较它们是否相等。
如果概率相等,则游戏公平;否则,游戏不公平。
五、综合应用概率知识在解决实际问题中的应用:如抽奖、天气预测、投资决策等领域的概率计算和分析。
示例题目1. 理论概率计算例题:从一副扑克牌中随机抽取一张,求抽到红桃的概率。
解析:一副扑克牌共有54张 (包括大王和小王),其中红桃有13张。
因此,抽到红桃的概率为P=13/54。
2. 列举法求概率例题:一个不透明的袋子中装有3个红球和2个白球,每个球除颜色外都相同。
第二十五章概率初步25.1随机事件与概率第1课时随机事件(一)一.课前预习:1.自学导航阅读教材128127—P内容,思考下列问题:(1)什么是随机事件?(2)确定性事件包括_________和________事件. 2.诊断检测:(1)现实世界中的事件分、、、三类.其中与是确定性事件.(2)确定事件的特点是;随机事件的特点是.(3)“一只不透明的袋子共装有3个小球,它们的标号分别为1,2,3,从中摸出1个小球,标号为“4”,这个事件是.(填“必然事件”、“不可能事件”或“随机事件”)(4)下列问题中是必然事件的有;是不可能事件的有;是随机事件的有(填序号即可).(1)如果a>b,那么a-b>0;(2)a2+b2=-1(其中a,b都是实数);(3)一元二次方程x2+2x+3=0无实数解;(4)2010年2月有29天;(5)相等的圆心角所对的弧相等;(6)随机抛掷一枚骰子,出现朝上一面是6.二.例题解析例1.小明掷一个质地均匀的正方形骰子,骰子的六个面分别有1至6的点数.请思考:掷一次骰子,观察向上的一面:(1)出现的点数是7,可能吗?这是什么事件?(2)出现的点数大于2,可能吗?这是什么事件?(3)出现的点数是6,可能吗?这是什么事件?(4)你能列举与(3)相似的事件吗?例2. 袋子中装有4个黑球和2个白球,这些球的形状、大小、质地等完全相同,在看不到球的条件下,随机地从袋子中摸出三个球.下列事件:A.摸出的三个球中至少有一个球是黑球;B.摸出的三个球都是白球;C.摸出的三个球都是黑球;D.摸出的三个球中有两个球是白球.其中是不可能事件的为(填序号);是必然事件的为;是随机事件的为.三.小结提炼.四.巩固训练1.下列事件:A.袋中只有5个红球,能摸到红球;B.袋中有3个红球,2个白球,能摸到红球;C.袋中有2个红球,3个白球,能摸到红球;D.袋中只有5个白球,能摸到红球.上述事件中,是必然事件的有;是随机事件的有;是不可能事有.2.下列语句中是必然事件的是()A.两个分数相加和一定是整数B.两个分数相乘积一定是整数C.两个互为相反数的和为0D.两个互为相反数的积为03.下列说法正确的是()A.可能性很小的事件在一次实验中一定不会发生B.可能性很小的事件在一次实验中一定发生C.可能性很小的事件在一次实验中有可能发生D.不可能事件在一次实验中也可能发生4. 小红花2元钱买了一张彩票,你认为小红中大奖的事件是()A.必然事件B.随机事件C.不可能事件D.确定事件5.下列事件你认为是必然事件的是()A.中秋节的晚上总能看到圆圆的月亮;B.明天是晴天C.打开电视机,正在播广告;D.两数相乘,同号得正,异号得负五.拓展提升1.下列成语故事所描述事件为必然发生的是()A.水中捞月B.拔苗助长C.守株待兔D.水涨船高2.“清明时节雨纷纷”是事件(填“必然”、“不可能”、“随机”)第2课时随机事件的可能性大小一、课前预习:1.自学导航阅读教材129128—P内容,思考下列问题:(1)必然事件发生的可能性是_______;不可能事件发生的可能性是_______;随机事件发生的可能性在_______之间.(2)正确区分描述事件发生的可能性大小的关键词,如“一定”、“很可能”、“可能”、“不太可能”等词语,对事件发生可能性作出评价和预测.2.诊断检测:(1).如图,有甲、乙、丙3个转盘,这3个转盘在转动过程中指针停在黑色区域的可能性()A.甲转盘最大B.B.乙转盘最大C.丙转盘最大D.甲、乙、丙转盘一样大(2)从一副扑克牌中任意抽出一张,则下列事件中可能性最大的是()A.抽出一张红心B.抽出一张红色KC.抽出一张梅花JD.抽出一张不是Q的牌(3)某班有65名同学,把他们按1到65进行编号,并把编号写在同样的卡片上,洗匀后,随机抽取一张,则抽到1~10号同学的可能性抽到5的倍数的可能性;抽到奇数号码同学的可能性抽到偶数同学的可能性.(填﹥、﹤或=) (4)我校某小班,有男生14人,女生16人.其中男生11人住校,女生13住校.现随机抽取一名学生.则:a.抽到一名住校女生;b.抽到一名住校男生;c.抽到一名男生.其中可能性由小到大排列正确的是()A.cbaB.acbC.cabD.bca二.例题解析例1.判断下列事件中,哪些事件发生的可能性是一样的?哪些不是?为什么?(1)掷一枚骰子,出现2点朝下或5点朝上的机会;(2)从一副扑克牌中任取一张,取到大王或红心6的可能性;(3)掷两次骰子,出现点数和是6或2的可能性;(4)从装有3个红球和5个白球中任取一球,取到红球或白球的可能性;(5)从编号为1—10的10张卡片中任取一张,取到偶数或3的倍数的编号的可能性.例2..一个不透明的口袋里有5个除颜色外都相同的球,其中有2个红球,3个黄球.(1)若从中随意摸出一个球,求摸出红球的可能性;(2)若要使从中随意摸出一个球是红球的可能性为,求袋子中需再加入几个红球?三.小结提炼.四.巩固训练1.从一副扑克牌中,任意抽取一张,抽到的可能性较小的是()A.红心B.黑桃C.梅花D.小王2.我班语文科代表在期末考试中的语文成绩为150分,你认为这个事件的可能性()A.一定B.很可能C.可能D.不大可能25-1-13.分别向如图所示的四个区域随机掷一枚石子,石子落在阴影部分可能性最小的是()A.B.C.D.4.一个袋中装有6个红球、4个黄球、3个白球,每个球除颜色外完全相同,从袋中任意摸出一个球,那么摸出的可能性最小.5.有五张不透明卡片,分别写有实数,﹣1,,,π,除正面的数不同外其余都相同,将它们背面朝上洗匀后,从中任取一张卡片,取到的数是无理数的可能性大小是.五.拓展提升1.下列事件中不是必然事件的是()A.对顶角相等;B.同位角相等;C.四边形的内角和是360o;D.等腰梯形是轴对称图形.2.有4条线段,长度分别为2,3,5,7,从中任取三条,所得三条线段能构成三角形的可能性多大?第3课时概率一.课前预习:1.自学导航阅读教材134130—P的内容,思考下列问题:(1)概率的意义:.(2)概率的计算:当A是必然事件时,P(A)= ;当A是不可能事件时,P(A)= ;任一事件A的概率P(A)的范围是.2.诊断检测:(1) 下列说法错误的是()A.必然事件发生的概率为1;B.不可能事件发生的概率为0;C.不确定事件发生的概率为0;D.随机事件发生的概率介于0和1之间.(2)下列说法正确的是()A.不可能事件发生的概率为0B.随机事件发生的概率为C.概率很小的事件不可能发生D.投掷一枚质地均匀的硬币1000次,正面朝上的次数一定是500次.(3)从1—10这10个数中随机取出一个数,取出的数是3的倍数的概率是()A.21B.51C.31D.103二.例题解析例1.掷一个各面分别标有1,2,3,4,5,6的正六面体骰子,观察向上一面的点数,求下列事件的概率:(1)点数为1;(2)点数为偶数;(3)点数大于0且不大于4.例2. 一个不透明口袋中装有6个红球,9个黄球,3个白球,这些球除颜色外没有任何其他区别,现从中任意摸出一个球.(1)计算摸到的是白球的概率;(2)若要使摸到白球的概率为41,则需要在里边再放入多少个白球?例3.见课本132页例2.三.小结提炼.四.巩固训练1.从分别写有-4,-3,-2,-1,0,1,2,3,4的九张一样的卡片中,任意抽取一张卡片,则所抽取的卡片数字的绝对值小于2的概率是.2.十字路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,当你抬头看信号灯恰好是绿灯的概率是 .3.在围棋盒中有6颗黑色棋子和n 颗白色棋子,随机的取出一颗棋子,如果它是黑色棋子的概率为53,则n = .4.在半径为2的圆形木板中有一个内接正方形,现随机的往圆内投以飞镖,落在正方形的概率为 .(注:π取3) 5.请你用除颜色外都相同的6个小球设计满足下列条件的游戏:摸到白球的概率为21,摸到红球的概率为31,摸到黄球的概率为61,则应放 个白球, 个黄球. 6.商场举行摸奖促销活动,对于“抽到一等奖的概率为0.1”.下列说法正确的是( ) A .抽10次奖必有一次抽到一等奖 B .抽一次不可能抽到一等奖 C .抽10次也可能没有抽到一等奖 D .抽了9次如果没有抽到一等奖,那么再抽一次肯定抽到一等奖7. 从-3,-2,6这三个数中任取两个不同的数作为点的坐标,该点在第四象限的概率是 .五.拓展提升1.从数﹣2,﹣,0,4中任取一个数记为m ,再从余下的三个数中,任取一个数记为n ,若k =mn ,则正比例函数y =kx 的图象经过第三、第一象限的概率是 .2.如图25-1-3是两个完全相同的正方形木板重叠的.其中一个正方形的顶点恰好落在另一个正方形的中心处,现有一只小狗在上面走动,则小狗恰好走在重叠区域的概率是 .25.2 用列举法求概率第4课时 用列举法求概率(一)一.课前预习: 1.自学导航 阅读教材137136—P 的内容,思考下列问题:(1)列举法求概率的前提条件是试验中的每一个结果是___________发生的.(2)对某个试验进行两次操作时,可利用________法或________法求出概率. 2.诊断检测: (1)一个袋中装有2个红球和1个黄球,从中任意摸出两个个球,则摸出的两个球都是红球的概率为 . (2)将一枚质地均匀的硬币先后抛掷两次,则至少出现一次正面向上的概率为( ) A . B . C . D .(3)一个不透明的口袋中有四个完全相同的小球,把它们分别标号为1,2,3,4,随机摸出一个小球后放回搅匀....后.,再从中随机摸出一个小球,则两次摸出的小球标号之和等于5的概率为( )A .B .C .D . (4)一个不透明的口袋中有四个完全相同的小球,把它们分别标号为1,2,3,4,随机摸出一个小球后不放回...,再随机摸出一个小球,则两次摸出的小球标号之和等于5的概率为( ) A .B .C .D .二.例题解析例1.口袋中装有10个小球,其中2个红球,3个黄球,其余的都是白球,请计算从口袋中任意摸出一个球是下列情况的概率分别是多少? (1)红球 (2)黄球(3)不是白球 (4)不是黄球例2. 端午节当天,小明带了四个粽子(除味道不同外,其它均相同),其中两个是大枣味的,另外两个是火腿味的,准备按数量平均分给小红和小刚两个好朋友.(1)请你用树状图或列表的方法表示小红拿到的两个粽子的所有可能性.(2)请你计算小红拿到的两个粽子刚好是同一味道的概率.三.小结提炼. 四.巩固训练1.某校高一年级今年计划招四个班的新生,并采取随机摇号的方法分班,小明和小红既是该校的高一新生,又是好朋友,那么小明和小红分在同一个班的机会是( ) A .B .C .D .2.从1,-2,3三个数中,随机抽取两个数相乘,乘积是正数的概率为( )A.0B.31 C. 1 D.32 3.从8,18,12,42中随机抽取一个根式与2是同类二次根式的概率是 .4.哥哥与弟弟玩游戏:三张大小、质地相同的卡片上分别标有数字1、2、3,将标有数字的一面朝下,哥哥从中任意抽取一张,记下数字后放回洗匀,然后弟弟从中任意抽取一张,计算抽得的两数之和,如果和为奇数,则弟弟胜;和为偶数,则哥哥胜.该游戏对双方 .(填“公平”或“不公平”)5. 两个正四面体骰子的各面上分别标明数字1,2,3,4,如同时投掷这两个正四面体骰子,则着地的面所得的点数之和等于5的概率为( ) A .B. C . D. 6.在一个不透明的盒子中,共有“一白三黑”四个围棋子,其除颜色外无其他区别.(1)随机地从盒子中提出1子,则提出的是白子的概率是多少?(2)随机地从盒子中提出1子,不放回再提出第二子,请用列表的方法表示出所有可能的结果,并求出恰好提出“一黑一白”的概率是多少?五.拓展提升1.点P 的坐标是(a ,b ),从﹣2,﹣1,0,1,2这五个数中任取一个数作为a 的值,再从余下的四个数中任取一个数作为b 的值,则点P (a ,b )在平面直角坐标系中第二象限内的概率是 .2. 某商店举办有奖销售活动,办法如下:凡购货满100元者获兑奖卷1张,多够多得.每10000张奖券为一个开奖单位,设特等奖一个,奖金10000元,一等奖10个,奖金各1000元,二等奖100个,奖金各100元.①一张兑奖卷中一等奖的概率是多少?中奖的概率是多少?②这种促销办法与商品价格打九五折相比,哪一个方法向顾客让利更多?③得两张兑奖卷都不中奖的概率是多少?④通过计算,你会选择摸奖,还是打折,为什么?3.一枚均匀的正方体骰子,六个面分别标有数字1,2,3,4,5,6,连续抛掷两次,朝上的数字分别是m ,n ,若把m ,n 作为点A 的横、纵坐标,那么点A (m ,n )在函数y =2x 的图像上的概率是多少?第5课时 用列举法求概率(二)一.课前预习: 1.自学导航阅读教材139138—P 的内容,思考下列问题:411634383(1)对某个试验进行三次或三次以上操作时,可利用_______________法求出概率.(2)概率等于所求事件结果数与总结果数之比.即.______)( A P2.诊断检测:(1)有5张卡片分别写有数字1、1、2、2、3,它们的背面相同,现将它们洗匀背面朝上,从中任取一张是数字2的概率是( ) A.51 B.52 C.32 D.21 (2)一个不透明的盒子中装有2个白球,5个红球和8个黄球,这些球除颜色外,没有任何其他区别,现从这个盒子中随机摸出一个球,摸到红球的概率为( ) A .518 B.13 C.215D.115(3)掷两枚普通硬币,落地出现一个正面,一个反面的概率是 .(4)有6张卡片上分别写着从1到6的一个自然数,从中任取2张,则两张卡片数字之和为偶数的概率是 .(5)盒子里分别放有3张写有整式a +1,a +2,2的卡片,从中随机抽取2张卡片上的整式分别作为分子和分母,则能组成分式的概率是 . 二.例题解析例1.甲、乙两个不透明的口袋,甲口袋中装有3个分别标有数字1,2,3的小球,乙口袋中装有2个分别标有数字4,5的小球,它们的形状、大小完全相同,现随机从甲口袋中摸出一个小球记下数字,再从乙口袋中摸出一个小球记下数字.(1)请用列表或树状图的方法(只选其中一种),表示出两次所得数字可能出现的所有结果; (2)求出两个数字之和能被3整除的概率.例2.某校为了解本校九年级学生足球训练情况,随机抽查该年级若干名学生进行测试,然后把测试结果分为4个等级:A 、B 、C 、D ,并将统计结果绘制成两幅不完整的统计图.请根据图中的信息解答下列问题:(1)补全条形统计图(2)该年级共有700人,估计该年级足球测试成绩为D 等的人数为 人;(3)在此次测试中,有甲、乙、丙、丁四个班的学生表现突出,现决定从这四个班中随机选取两个班在全校举行一场足球友谊赛.请用画树状图或列表的方法,求恰好选到甲、乙两个班的概率.三.小结提炼. 四.巩固训练1. 在一个不透明的口袋中,装有5个红球3个白球,它们除颜色外都相同,从中任意摸出一个球,摸到红球的概率为( ) A .B .C .D . 2.安排三辆车,组织九年级学生团员去敬老院参加学雷锋活动,其中小王与小菲都可以从这三辆车中任选一辆搭乘,则小王与小菲同车的概率为( ) A .13 B .19 C .12 D .233. 从A ,B ,C ,D 四人中用抽签的方法,任选2人去打扫公共场地,选中A 的概率是 . 4.从1,2,-3,4四个数中,随机抽取两个数相加,和是正数的概率是 . 5. 一签筒内有四支签,分别标记号码1、2、3、4.每次取一支且取后不放回,再取第二支签,若每一种结果发生的机会都相同,则这两支签的号码数总和是奇数的机率为.151358386. 在不透明的口袋中,有四个形状、大小、质地完全相同的小球,四个小球上分别标有数字,2,4,,现从口袋中任取一个小球,并将该小球上的数字作为平面直角坐标系中点P的横坐标,且点P 在22x y =的图像上,则点P 落在正比例函数图象上方的概率是 . 7.本校为了解九年级男同学的体育考试准备情况,随机抽取部分男同学进行了1000米跑步测试.按照成绩分为优秀、良好、合格与不合格四个等级,学校绘制了如下不完整的统计图.(1)根据给出的信息,补全两幅统计图;(2)该校九年级有600名男生,请估计成绩未达到良好有多少名?(3)某班甲、乙两位成绩优秀的同学被选中参加即将举行的学校运动会1000米比赛.预赛分别为A 、B 、C 三组进行,选手由抽签确定分组,请利用画树状图或列表的方法,求甲、乙两人恰好分在同一组的概率是多少?五.拓展提升1.从﹣32,﹣1,0,1这四个数中,任取一个数作为m 的值,恰好使得关于x ,y 的二元一次方程组22x y mx y -=-⎧⎨-=⎩有整数解,且使以x 为自变量的一次函数y =(m +1)x +3m ﹣3的图象不经过第二象限,则取到满足条件的m 值的概率为 . 2.甲、乙两个盒子中装有质地、大小相同的小球,甲盒中有2个白球,1个黄球和1个蓝球;乙盒中有1个白球,2个黄球和若干个蓝球.从乙盒中任意摸取一球为蓝球的概率是从甲盒中任意摸取一球为蓝球的概率的2倍. (1)求乙盒中蓝球的个数; (2)从甲、乙两盒中分别任意摸取一球,求这两球均为蓝球的概率.第6课时 用列举法求概率(三)一.课前预习: 诊断检测: (1)某市中考体育男生抽测项目规则是:从立定跳远、实心球、引体向上中随机抽取一项;从50米、25×8米、100米中随机抽取一项.恰好抽中实心球和50米的概率是 . (2)随机掷一枚质地均匀的硬币三次,至少有一次正面朝上的概率是 . (3)一个不透明的袋子中装有3个小球,它们除分别标有的数字1,3,5不同外,其他完全相同.任意从袋子中摸出一球后放回,再任意摸出一球,则两次摸出的球所标数字之和为6的概率是 . (3)我校为提高教师业务素质,扎实开展了“课内比教学”活动.在一次数学讲课比赛中,每个参赛选手都从两个分别标有“A”、“B”内容的签中,随机抽取一个作为自己的讲课内容,本期有三个青年教师参加这次讲课比赛,则有两个抽中内容“A”,一个抽2131-xy =中内容“B”的概率是.(4)学生甲与学生乙玩一种转盘游戏.如图25-2-2是两个完全相同的转盘,每个转盘被分成面积相等的四个区域,分别用数字“1”、“2”、“3”、“4”表示.固定指针,同时转动两个转盘,任其自由停止,若两指针所指数字的积为奇数,则甲获胜;若两指针所指数字的积为偶数,则乙获胜;若指针指向扇形的分界线,则都重转一次.在该游戏中乙获胜的概率是()A. B. C. D.二.例题解析例1、一个袋子中装有3个红球和2个黄球,这些球的形状、大小.质地完全相同,在看不到球的条件下,随机从袋子里同时摸出2个球,其中2个球的颜色相同的概率是多少?例2.从1,2,3,4这四个数字中任取3个数,组成无重复数字的三位数;请画出树状图并写出所有可能得到的三位数例3.重庆某中学组织七、八、九年级学生参加“直辖20年,点赞新重庆”作文比赛,该校将收到的参赛作文进行分年级统计,绘制了如图1和如图2两幅不完整的统计图,根据图中提供的信息完成以下问题.(1)扇形统计图中九年级参赛作文篇数对应的圆心角是度,并补全条形统计图;(2)经过评审,全校有4篇作文荣获特等奖,其中有一篇来自七年级,学校准备从特等奖作文中任选两篇刊登在校刊上,请利用画树状图或列表的方法求出七年级特等奖作文被选登在校刊上的概率.三.小结提炼.四.巩固训练1. 从-2,-1,2这三个数中任取两个不同的数作为点的坐标,该点在第四象限的概率是.2.抛掷一枚硬币三次,出现“一正两反”的概率是.3.小明、小芳、小飞在一起做游戏,需要确定做游戏的先后顺序,他们约定用“石头、剪子、布”的方式确定,则在一回合中,三人都出“石头”的概率是.4.三个袋中各装有2个球,其中第一个和第二个袋中各有一个红球和一个黄球,第三个袋中有一个黄球和一个黑球,现从三个袋中个摸出一个球,则摸出2个黄球和一个红球的概率为.5.A、B、C、D四人做相互传花球游戏,第一次A 传给其他三人中的一人,第二次由拿到花球的人再传给其他三人中的一人,第三次由拿到花球的人再传给其他三人中的一人,请用树形图分析第三次花1 4123456球传回A的概率.6.中央电视台的“中国诗词大赛”节目文化品位高,内容丰富,某校初二年级模拟开展“中国诗词大赛”比赛,对全年级同学成绩进行统计后分为“优秀”、“良好”、“一般”、“较差”四个等级,并根据成绩绘制成如下两幅不完整的统计图,请结合统计图中的信息,回答下列问题:(1)扇形统计图中“优秀”所对应的扇形的圆心角为度,并将条形统计图补充完整.(2)此次比赛有四名同学获得满分,分别是甲、乙、丙、丁,现从这四名同学中挑选两名同学参加学校举行的“中国诗词大赛”比赛,请用列表法或画树状图法,求出选中的两名同学恰好是甲、丁的概率.五.拓展提升1.从﹣2,﹣1,﹣23,0,1,2这六个数字中,随机抽取一个数记为a,则使得关于x的方程213axx+=-的解为非负数,且满足关于x的不等式组321x ax->⎧⎨-+≤⎩只有三个整数解的概率是.2.在一个不透明的口袋里装有四个分别标有1、2、3、4的小球,它们的形状、大小等完全相同.小明先从口袋里随机不放回地取出一个小球,记下数字为x;小红在剩下有三个小球中随机取出一个小球,记下数字y. (1)计算由x、y确定的点(x,y)在函数y=-x+5图象上的概率;(2)小明、小红约定做一个游戏,其规则是:若x、y满足xy>6,则小明胜;若x、y满足xy<6,则小红胜.这个游戏规则公平吗?说明理由;若不公平,怎样修改游戏规则才对双方公平?第7课时用列举法求概率(四)一.课前预习:1.“上升数”是指在一个数中,右边的数字比左边的数字大的自然数(如:12,567,2368等).任取一个两位数,是“上升数”的概率为 . 2.从1---9这9个自然数中任取一个,时货的倍数的概率是 .3.在一个不透明的口袋中,装有若干个除颜色外其余都相同的球,如果口袋中有5个红球且摸到红球的概率是31,则口袋中球的总数为 . 4.随机掷一枚硬币两次,落地后至多有一次反面朝上的概率是 .5.经过十字路口的汽车,它可能继续直行,也可能左转或右转,如果这三种可能性大小相同,则有三辆车经过该十字路口时,至少有两辆车直行的概率为 . 二.例题解析例1.小明与小亮玩游戏,他们将牌面数字分别是2,3,4的三张扑克牌充分洗匀后,背面朝上放在桌面上.规定游戏规则如下:先从中随机抽出一张牌,将牌面数字作为十位上的数字,然后将该牌放回并重新洗匀,再从中随机抽出一张牌,将牌面数字作为个位上的数字.如果组成的两位数恰好是2的倍数.则小明胜;如果组成的两位数恰好是3的倍数.则小亮胜.你认为这个游戏规则对双方公平吗?请用画数状图或列表的方法说明理由.例2.有人说连续抛掷一枚硬币3次,出现三个正面和先掷出2个正面再掷出一个反面的机会是一样的.你同意这种说法吗?变式:有人说连续抛掷一枚硬币3次,出现三个反面和先掷出2个反面和一个正面的机会是一样的吗?例3.为贯彻政府报告中“全民创新,万众创业”的精神,某镇对辖区内所有的小微企业按年利润w (万元)的多少分为以下四个类型:A 类(w <10),B 类(10≤w <20),C 类(20≤w <30),D 类(w ≥30),该镇政府对辖区内所有小微企业的相关信息进行统计后,绘制成以下条形统计图和扇形统计图,请你结合图中信息解答下列问题:(1)该镇本次统计的小微企业总个数是 ,扇形统计图中B 类所对应扇形圆心角的度数为 度,请补全条形统计图;(2)为了进一步解决小微企业在发展中的问题,该镇政府准备召开一次座谈会,每个企业派一名代表参会.计划从D 类企业的4个参会代表中随机抽取2个发言,D 类企业的4个参会代表中有2个来自高新区,另2个来自开发区.请用列表或画树状图的方法求出所抽取的2个发言代表都来自高新区的概率.三.小结提炼. 四.巩固训练2.一张圆桌旁有四个座位,A 先坐在如图25-2-4所示的位置上,B ,C ,D 三人随机坐到其他位置上,那么A 与B 不相邻的概率是 .3.小明随机地在如图25-2-5所示的正三角形及其内部区域投针,则针扎到其内切圆(阴影)区域的概率为( )。
第二十五章概率初步1.了解必然事件、不可能事件和随机事件的概念.2.在具体情境中了解概率的意义,体会概率是描述不确定现象发生可能性大小的数学概念,理解概率的取值范围的意义.3.能够运用列举法(包括列表、画树状图)计算简单随机试验中事件发生的概率.4.能够通过随机试验,获得事件发生的频率;知道通过大量重复试验,可以用频率估计概率,了解频率与概率的区别与联系.5.通过实例进一步丰富对概率的认识,并能解决一些简单的实际问题.经历试验、列表、统计、运算、设计等活动,学生在具体情境中分析事件,计算其发生的概率.渗透数形结合,分类讨论,由特殊到一般的思想,提高分析问题和解决问题的能力.在合作探究学习过程中,激发学生学习的好奇心与求知欲,体验数学的价值与学习的乐趣.通过概率意义和计算教学,渗透辩证思想教育.“概率初步”是“统计与概率”领域的重要内容,在日常生活和生产中有广泛的应用,它与“统计”有关知识联系紧密,同时也是以后学习更深的“概率与统计”知识的基础,对概率的意义、求法及应用的学习与探究可以发展思维能力,有效改善学习方式,掌握认识事物的一般规律,对社会生活中的一些现象作出预测.概率是初中数学的重要内容,从数量上刻画了某个事件发生的可能性的大小,在我们日常生活中有着重要的意义.本章的主要内容包括事件的类型,概率的意义、计算方法、应用以及用频率或通过模拟试验来估计概率的大小.具体内容有概率的意义、用列举法求概率、利用频率估计概率、统计与概率的实际应用.概率问题是近年中考的热点之一,由单一的选择题、填空题延伸到分值较高的解答和应用题,甚至可以设计成开放探索题.本章内容不论在基础知识和数学思想方法上,还是在对能力培养上都非常重要.【重点】运用列表法或树状图法计算事件的概率.【难点】能根据不同情况选择恰当的方法进行列举,解决较复杂事件概率的计算问题.1.通过实例让学生感受事件发生的可能性的大小及概率的意义.2.用列举法求概率时,首先要让学生准确判断在事件中每一种情况发生的可能性是相同的,较简单的可以直接利用公式P(A)=来求,需要两步或两步以上试验操作时,可以借助“树状图”来计算.3.要注意利用试验与估测的方法来理解概率和频率,尽管随机事件在每次试验中发生与否具有不稳定性,但只要试验的条件不变,这一事件出现的频率会随着试验次数的增加而趋于稳定,这个稳定的值就可以作为该事件发生的概率.4.通过对具体问题的模拟试验,感受通过统计数据推测的合理性,进一步体会统计与概率的关系.25.1随机事件与概率1.了解必然事件、不可能事件和随机事件的概念,知道随机事件发生有可能性大小之分.2.了解概率的意义.学生经历体验、操作、观察、归纳、总结的过程,发展学生从纷繁复杂的表象中,提炼出本质特征并加以抽象概括的能力.在合作探究学习过程中,激发学生的好奇心与求知欲,体验数学的价值与学习的乐趣.通过概率意义教学,渗透辩证思想教育.【重点】会判断现实生活中哪些事件是随机事件.【难点】随机事件的特点、概率的意义.25.1.1随机事件了解必然发生的事件、不可能发生的事件、随机事件的特点,会判断哪些事件是必然事件、不可能事件、随机事件,知道随机事件发生有可能性大小之分.经历试验操作、观察、思考和总结,归纳出三种事件的各自的本质属性,并抽象成数学概念.体验从事物的表象到本质的探究过程,感受到数学的科学性及生活中丰富的数学现象.【重点】随机事件的特点,会判断现实生活中哪些事件是随机事件.【难点】随机事件的概念.【教师准备】多媒体课件1~4,装有乒乓球的不透明袋子.【学生准备】复习小学学过的分数和初中学过的整式.导入一:播放一段天气预报,引出一句古语:“天有不测风云”.【课件1】请说明下列事件是否一定发生.(1)太阳从西边下山;(2)某人的体温是100 ℃;(3)a2+b2=-1(其中a,b都是实数);(4)水往低处流;(5)酸和碱反应生成盐和水;(6)一元二次方程x2+2x+3=0有实数解.教师给出上述问题并问“上述结果是确定的吗”.学生阅读、观察、思考、回答问题.[设计意图]首先,这几个事件都是学生能熟知的生活常识和学科知识,通过这些生动的、有趣的实例,自然地引出必然事件和不可能事件;其次,必然事件和不可能事件相对于随机事件来说,特征比较明显,学生容易判断,提出这些问题符合由浅入深的理念,容易激发学生学习的积极性.导入二:同学们,今天我们先来玩一个摸球游戏.三个不透明的袋子中均装有10个乒乓球,挑选多名同学来参加游戏.游戏规则:每人每次从自己选择的袋子中摸出一球,记录下颜色,放回,搅匀,重复前面的试验,每人摸球5次.按照摸出黄色球的次数排序,次数最多的为第一名,其次为第二名,最少的为第三名.教师事先准备的三个袋子中分别装有10个白色的乒乓球;5个白色的乒乓球和5个黄色的乒乓球;10个黄色的乒乓球.学生积极参加游戏,通过操作和观察,归纳猜测出在第1个袋子中摸出黄色球是不可能的,在第2个袋子中能否摸出黄色球是不确定的,在第3个袋子中摸出黄色球是必然的.教师适时引导学生归纳出必然发生的事件、随机事件、不可能发生的事件的特点.[设计意图]通过生动、活泼的游戏,自然而然地引出必然发生的事件、随机事件和不可能发生的事件,不仅能够激发学生的学习兴趣,并且有利于学生理解,能够巧妙地实现从实践认识到理性认识的过渡.一、认识必然事件、不可能事件、随机事件思路一在学生讨论、归纳的基础上,教师板书必然事件、不可能事件的定义:在一定条件下必然会发生的事件称为必然事件;必然不会发生的事件称为不可能事件,必然事件和不可能事件统称为确定性事件.【课件2】5名同学参加演讲比赛,以抽签方式决定每个人的出场顺序.签筒中有5根形状、大小均相同的纸签,上面分别标有出场的序号1,2,3,4,5.小军首先抽签,他在看不到纸签上的数字的情况下从签筒中随机(任意)地取一根纸签.请考虑以下问题:(1)抽到的序号是0,可能吗?这是什么事件?(2)抽到的序号小于6,可能吗?这是什么事件?(3)抽到的序号是1,可能吗?这是什么事件?(4)你能列举出与事件(3)相似的事件吗?提出问题,探索概念:(1)上述活动中的必然事件和不可能事件的区别在哪里?(2)怎样的事件称为随机事件呢?结合问题,师生总结随机事件的特点:可能发生也可能不发生.思路二请同学们把下面的事件根据发生的可能性进行分类.【课件3】(1)通常加热到100 ℃时,水沸腾;(2)姚明在罚球线上投篮一次,命中;(3)掷一次骰子,向上的一面是6点;(4)度量三角形的内角和,结果是360°;(5) 经过城市中某一有交通信号灯的路口,遇到红灯;(6)某射击运动员射击一次,命中靶心;(7)太阳东升西落;(8)人离开水可以正常生活100天;(9)正月十五雪打灯;(10)宇宙飞船的速度比飞机快.学生根据自己的观察,说出上述事件分三类:(1)(7)(10)、(4)(8)、(2)(3)(5)(6)(9).教师追问:各类事件各有什么特点?请同学们自己总结一下.学生思考后说:(1)(7)(10)是必然发生的事件;(4)(8)是不可能发生的事件;(2)(3)(5)(6)(9)是可能发生也可能不发生的事件.引导学生归纳必然事件、不可能事件、随机事件的定义.[设计意图]学生积极思考,回答问题,进一步夯实必然发生的事件、随机事件和不可能发生的事件的特点.在充分比较后,达到加深理解的目的.二、随机事件发生的可能性大小组织学生进行摸球试验:袋中装有4个黑球,2个白球,这些球的形状、大小、质地等完全相同,在看不到球的条件下,随机地从袋子中摸出一个球.教师提出问题:我们把“摸到白球”记为事件A,把“摸到黑球”记为事件B,(1)事件A和事件B是随机事件吗?(2)哪个事件发生的可能性大?教师提出要求:学生通过试验观察结果,思考并阐述自己得出的结论及理解.教师进一步引导学生试验,归纳得出结论:一般地,随机事件发生的可能性有大有小,不同的随机事件发生的可能性的大小有可能不同.[设计意图]“摸球”试验操作方便、简单且可重复,又为学生所熟知,学生做起来感觉亲切、有趣,并且容易依据生活经验猜到正确结论,这样易于激发学生的学习热情.三、例题讲解【课件4】在200件产品中,有192件一级品,8件二级品,则下列事件:①在这200件产品中任意选出9件,全部是一级品;②在这200件产品中任意选出9件,全部是二级品;③在这200件产品中任意选出9件,不全是一级品;④在这200件产品中任意选出9件,至少一件是一级品.其中,是必然事件;是不可能事件;是随机事件.在这200件产品中任意选出1件,级品的可能性大.(如果没有请填“无”)教师引导学生理解题意,尝试答题.学生完成解答过程:其中,④是必然事件;②是不可能事件;①③是随机事件.在这200件产品中任意选出1件,一级品的可能性大.[设计意图]学生利用所学内容进行解答,在巩固知识的同时,把随机事件和随机事件的可能性大小结合在一起.[知识拓展]必然事件是指一定能发生的事件,其发生的可能性是100%;不可能事件是指一定不能发生的事件,其发生的可能性是0;随机事件发生的可能性在0~1之间.1.在一定条件下,必然会发生的事件称为必然事件;必然不会发生的事件称为不可能事件,必然事件和不可能事件统称为确定性事件;可能发生也可能不发生的事件称为随机事件.2.一般地,随机事件发生的可能性有大有小,不同的随机事件发生的可能性的大小有可能不同.1.下列事件中,是必然事件的为 ()A.抛掷一枚质地均匀的硬币,落地后正面朝上B.江汉平原7月份某一天的最低气温是-2 ℃C.通常加热到100 ℃时,水沸腾D.打开电视,正在播放节目《男生女生向前冲》解析:选项A和D是随机事件;选项B是不可能事件;选项C是必然事件.故选C.2.下列说法正确的是()A.如果一件事情发生的机会只有十万分之一,那么它就不可能发生B.如果一件事情发生的可能性是100%,那么它就一定会发生C.买彩票的中奖率是1%,那么买100张彩票,就有一张中奖D.一个口袋中有10个质地均匀的小球,其中9个白球,只有一个红球,那么从中任取一个球,一定是白球解析:选项A中事件发生的可能性虽然很小,但也有可能发生;选项B中的事件是必然事件,所以它一定会发生;选项C中买彩票的中奖率是1%,说明中奖的可能性小,有时买100张彩票也可能不中奖;选项D中的事件是随机事件.故选B.3.下列事件:①在足球赛中,弱队战胜强队;②任意取两个有理数,这两个数的和为正数;③任取两个正整数,其和大于1;④长分别为3,5,9厘米的三条线段能围成一个三角形.其中确定性事件的个数是()A.1个B.2个C.3个D.4个解析:①在足球赛中,弱队战胜强队,此事件为随机事件.②两个有理数的和有可能是正数、负数或零,此事件为随机事件.③任取两个正整数,其和大于1,此事件为确定性事件中的必然事件.④长分别为3,5,9厘米的三条线段能围成一个三角形,此事件为确定性事件中的不可能事件.故确定性事件为③和④,一共有2个确定性事件.故选B.4.一个小球在如图所示的地面上随意滚动,小球“停在黑色方块上”与“停在白色方块上”的可能性哪个大?(方块的大小、质地均相同)解:图中有9块黑色方块,15块白色方块,所以停在白色方块上的可能性大.25.1.1 随机事件一、认识必然事件、不可能事件、随机事件二、随机事件发生的可能性大小三、例题讲解一、教材作业【必做题】教材第128页的练习,教材第129页练习的1~3题.【选做题】教材第135页习题25.1的7题.二、课后作业【基础巩固】1.在一个质地均匀的正方体的六个面上,分别标有1,2,3,4,5,6,“抛出正方体,落地后朝上的一面标有6”这一事件是()A.必然事件B.随机事件C.不可能事件D.以上都不对2.下列事件是不可能事件的是 ()A.某个数的绝对值小于0B.0的相反数为0C.某两个数的和为0D.某两个负数的积为正数3.某次国际乒乓球比赛中,只有甲、乙两名中国选手进入最后决赛,那么下列事件为必然事件的是 ()A.冠军属于甲B.冠军属于乙C.冠军属于中国人D.冠军属于外国人【能力提升】4.袋子中装有4个黑球和2个白球,这些球的形状、大小、质地等完全相同,在看不到球的条件下,随机地从袋子中摸出三个球.下列事件是必然事件的是 ()A.摸出的三个球中至少有一个球是黑球B.摸出的三个球中至少有一个球是白球C.摸出的三个球中至少有两个球是黑球D.摸出的三个球中至少有两个球是白球5.下列是随机事件的是 ()A.角平分线上的点到角两边的距离相等B.三角形任意两边之和大于第三边C.面积相等的两个三角形全等D.三角形内心到三边距离相等6.随意从一副扑克牌中抽到Q和K的可能性大小是 ()A.抽到Q的可能性大B.抽到K的可能性大C.抽到Q和K的可能性一样大D.无法确定7.如果一件事情不发生的可能性为99.99%,那么它()A.必然发生B.不可能发生C.很有可能发生D.不太可能发生8.在某校艺体节的乒乓球比赛中,李东同学顺利进入总决赛,且个人技艺高超,有同学预测“李东夺冠的可能性是80%”,对该同学的说法理解正确的是 ()A.李东夺冠的可能性比较小B.李东和他的对手比赛10局,他一定赢8局C.李东夺冠的可能性比较大D.李东肯定赢9.一个袋子中装有除颜色外都相同的6个红球和4个黄球,从袋子中任意摸出一个球,则:(1)“摸出的球是白球”是什么事件?(2)“摸出的球是红球”是什么事件?(3)“摸出的球不是绿球”是什么事件?(4)摸出哪种颜色球的可能性大?【拓展探究】10.如图所示,第一列表示各盒中球的颜色、个数情况,第二列表示摸到红球的可能性大小,请你用线把它们连接起来.【答案与解析】1.B(解析:抛掷一个质地均匀的正方体,落地后朝上的那一面有可能标有1,也有可能标有2,3,4,5,6,所以“抛出正方体,落地后朝上的一面标有6”是随机事件.)2.A(解析:任何实数的绝对值都不小于0,所以选项A是不可能事件;选项B 是必然事件;选项C是随机事件;选项D是必然事件.)3.C(解析:因为进入决赛的都是中国人,所以冠军一定属于中国人,即“冠军属于中国人”是必然事件.)4.A(解析:由于袋子中装有4个黑球和2个白球,摸出的三个球的情况有如下三种:两个白球和一个黑球,一个白球和两个黑球,三个黑球,因此摸出的三个球中至少有一个球是黑球,所以“摸出的三个球中至少有一个球是黑球”是必然事件.)5.C(解析:“角平分线上的点到角两边的距离相等”是必然事件;“三角形任意两边之和大于第三边”是必然事件;“三角形内心到三边距离相等”是必然事件;面积相等的两个三角形不一定全等,所以选项C是随机事件.)6.C(解析:因为在一副扑克牌中,Q和K的数量相同,所以抽到它们的可能性相同.)7.D(解析:一件事情不发生的可能性为99.99%,说明这个事件是随机事件,这个事件发生的可能性不大,即不太可能发生.)8.C(解析:李东夺冠的可能性是80%,只能说明李东夺冠的可能性较大,不能说明比赛10局,李东一定赢8局,也不能说明李东一定赢.)9.解:(1)“摸出的球是白球”是不可能事件. (2)“摸出的球是红球”是随机事件. (3)“摸出的球不是绿球”是必然事件. (4)摸出红球的可能性大.10.解:由题意知各盒中总球数都是10,所以摸到红球的可能性大小与每个盒中红球的个数有关.①中不可能摸到红球;②中不太可能摸到红球;③中可能摸到红球;④中很可能摸到红球;⑤中一定能摸到红球.连线如下图所示.本节课的设计旨在遵循从具体到抽象、从感性到理性的渐进认识规律,以学生感兴趣的摸球游戏、抽签、掷骰子游戏引导学生分清什么是必然事件,什么是不可能事件,什么是随机事件,增加学生的学习兴趣.学生分组讨论的质量不佳、活动的时间把握不够好,以致后面学生的练习量不足,对学生的易错点发现得不够,关注学生的学习过程不够全面.指导学生联系生活实际,思考事件发生的可能性.练习(教材第128页)解:(1)是必然事件;(4)是不可能事件;(2)(3)(5)(6)是随机事件.练习(教材第129页)1.解:“落在海洋里”的可能性更大.2.解:(1)不能. (2)抽到黑桃的可能性大. (3)增加一张红桃或减少一张黑桃,使黑桃与红桃张数相同,可使可能性大小相同.3.解:例如:明天会下雪;经过一个十字路口碰到红灯;买一张彩票中大奖等都是随机事件.在写有0,1,2,…,9的这十张卡片上,任取一张,得到一个大于10的数是不可能事件,得到一个小于10的数是必然事件.(答案不唯一)实施新课标以来,在数学教学中应该注意数学来源于生活又服务于生活的原则,为学生创设情境,使学生置身于这些情境中不知不觉地学习数学知识,并在学习过程中始终关注学生情感态度的变化和发展,以教师为引导,学生为主体来开展教学,在这样的背景下,教师组织教学就有更高的要求.当然,如果教师能时刻关注学生,运用人性化、充满灵性、悟性的教学,那么学生就更能感受到数学无处不在的魅力.在小学阶段,学生已经了解了随机现象发生的可能性,本节课主要是在此基础上对随机事件进行进一步的研究.本节课的重点为随机事件的特点,难点为判断现实生活中哪些事件是随机事件.为了能突破这一重难点,本节课设计了多个游戏,让学生真正地参与到活动中去,在参与中消化知识.(2014·南平中考)一个袋中只装有3个红球,从中随机摸出一个是红球.下列说法中正确的是()A.可能性为3B.属于不可能事件C.属于随机事件D.属于必然事件〔解析〕本题考查了事件可能性的判断,解题的关键是紧扣定义.因为袋子中只装有红球,所以摸出一个球是红球属于必然事件,并且必然事件的概率,即可能性大小为1.故选D.25.1.2概率1.在具体情境中了解概率的意义,体会事件发生的可能性大小与概率的值的关系.2.理解概率的定义及计算公式P(A)=.经历试验操作、观察、思考和总结,理解随机事件的概率的定义,掌握概率的求法.理解概率的意义,渗透辩证思想,感受数学与现实生活的联系,体会数学在现实生活中的应用价值.【重点】随机事件的概率的定义;“事件A发生的概率是P(A)=(在一次试验中有n种等可能的结果,其中事件A包含m种)”的求概率的方法及运用.【难点】了解概率的定义,理解概率计算的两个前提条件.【教师准备】多媒体课件1~8.【学生准备】1枚质地均匀的硬币.导入一:老师有一个小麻烦,请大家一起来想想办法.【课件1】周末市体育场有一场精彩的篮球比赛,老师手中只有一张球票,小强与小明都是班里的篮球迷,两人都想去.我很为难,真不知该把球票给谁.请大家帮我想个办法来决定把球票给谁.学生制订方案:抓阄、抽签、猜拳、投硬币……教师对学生的较好想法予以肯定.追问:为什么要用抓阄、投硬币的方法呢?由学生讨论:这样做公平,能保证小强与小明得到球票的可能性一样大.在学生讨论发言后,教师给予评价并归纳总结.[设计意图]提供的问题情境贴近学生生活,不仅能提高学生参与的积极性,而且让学生在潜意识中开始接触概率.导入二:同学们,我们一起玩一个游戏好不好?【课件2】抛出你手中的硬币,记录抛出结果.抛掷硬币向上一面的结果有几种可能?正面和背面朝上的可能性大小是多少?学生抛掷硬币、回答,教师引导学生注意到因为硬币质地均匀,所以每个面朝上的可能性大小相等.[设计意图]以学生熟悉的抛掷硬币为例,让学生初步体会用数值刻画随机事件发生的可能性大小,以及用数值刻画的合理性,从定性分析到定量刻画.一、概率的意义思路一在学生观察、归纳的基础上,教师板书概率定义:一般地,对于一个随机事件A,我们把刻画其发生可能性大小的数值,称为随机事件A发生的概率,记为P(A).思路二进行试验:抛掷一枚质地均匀的骰子,向上一面的点数有几种可能?每种点数出现的可能性大小是多少?学生思考、回答,教师引导学生注意到因为骰子形状规则、质地均匀,又是随机掷出,所以点数出现的可能性大小相等,我们用表示每一种点数6出现的可能性大小.刻画了试验中随机事件发生的可能性大小.一般地,对于一教师指出:6个随机事件A,我们把刻画其发生可能性大小的数值,称为随机事件A发生的概率,记为P(A).[设计意图]给出概率的定义,让学生通过抽签、掷骰子的实例初步了解概率的意义.二、求概率的方法【课件3】掷骰子、抛硬币等试验有哪些共同特点?学生思考、交流,教师适当引导,启发学生注意到,以上试验有两个共同特点:①每一次试验中,可能出现的结果只有有限种;②每一次试验中,各种结果出现的可能性相等.【课件4】从分别写有数字1,2,3,4,5的五个纸团中随机抽取一个,你能求出“抽到偶数”“抽到奇数”这两个事件的概率吗?学生思考、交流,教师适当引导,启发学生注意到对于具有上述特点的试验,用事件所包含的各种可能的结果数在全部可能的结果总数中所占的比,表示事件发生的概率.学生回答问题,教师进行纠正点拨.“抽到偶数”这个事件包含抽到2,4这两种可能的结果,在全部5种可能的结果中所占的比为.于是“抽到偶数”的概率P(抽到偶数)=;同理,“抽到奇数”的概率P(抽到奇数)=3.教师追问:对于具有上述特点的试验,如何求某事件的概率?师生归纳结论:一般地,如果在一次试验中,有n种可能的结果,并且它们发生的可能性都相等,事件A包含其中m种结果,那么事件A发生的概率P(A)=.【课件5】根据上述求概率的方法,事件A发生的概率P(A)的取值范围是怎样的?。
25.1随机事件与概率25.1.1随机事件一、教学目标【知识与技能】1.理解必然发生的事件,不可能发生的事件,随机事件的概念,掌握判断随机事件的方法.2.了解随机事件发生的可能性有大有小,并会对随机事件发生的可能性大小做出判断.【过程与方法】通过本节课的学习,会根据经验判断一个简单事件是属于必然事件,不可能事件还是随机事件.【情感态度与价值观】感受数学与现实生活的联系,积极参与对数学问题的探讨,利用数学的思维方式解决现实问题.二、课型新授课三、课时1课时。
四、教学重难点【教学重点】随机事件的特点,会判断现实生活中的随机事件.【教学难点】判断现实生活中哪些事件是随机事件.五、课前准备课件、图片等.六、教学过程(一)导入新课你能确定明天是什么天气吗?(出示课件2)解决这个问题要研究随机事件.(板书课题)(二)探索新知探究一必然事件、不可能事件和随机事件出示课件4,5:活动1掷骰子掷一枚质地均匀的骰子,骰子的六个面上分别刻有1到6的点数.请思考以下问题:掷一次骰子,则骰子向上的一面:教师问:可能出现哪些点数?学生答:1点、2点、3点、4点、5点、6点.教师问:出现的点数是7,可能发生吗?学生答:不可能发生.教师问:出现的点数大于0,可能发生吗?学生答:一定会发生.教师问:出现的点数是4,可能发生吗?学生答:可能发生,也可能不发生.出示课件6-8:活动2摸球游戏教师问:小明从盒中任意摸出一球,一定能摸到红球吗?学生答:不一定.教师问:小麦从盒中摸出的球一定是白球吗?学生答:一定.教师问:小米从盒中摸出的球一定是红球吗?学生答:一定.教师问:三人每次都能摸到红球吗?学生答:小明不一定;小麦一定不能;小米一定能.出示课件9:“从如下一堆牌中任意抽一张牌,可以事先知道抽到红牌的发生情况”吗?学生交流,回答问题:第一组一定会发生;第二组一定不会发生;第三组有可能发生,也可能不发生.教师归纳:(出示课件10,11)在一定条件下,有些事件必然会发生,这样的事件称为必然事件.有些事件必然不会发生,这样的事件称为不可能事件.在一定条件下,可能发生也可能不发生的事件称为随机事件.教师强调:事件一般用大写字母A,B,C···表示.出示课件12:例判断下列事件是必然事件、不可能事件和随机事件:(1)乘公交车到十字路口,遇到红灯;(2)把铁块扔进水中,铁块浮起;(3)任选13人,至少有两人的出生月份相同;(4)从上海到北京的D314次动车明天正点到达北京.学生思考交流后,教师抽查学生口答:⑴随机事件;⑵不可能事件;⑶必然事件;⑷随机事件.巩固练习:(出示课件13)下列现象哪些是必然发生的,哪些是不可能发生的?学生独立思考后口答:必然事件;必然事件;不可能事件;不可能事件;必然事件;必然事件;不可能事件;不可能事件.探究二随机事件发生的可能性大小出示课件15-17:活动3:摸球袋中装有4个黑球,2个白球,这些球的形状、大小、质地等完全相同,在看不到球的条件下,随机地从袋子中摸出一个球.教师问:这个球是白球还是黑球?学生答:可能是白球也可能是黑球.教师问:如果两种球都有可能被摸出,那么摸出黑球和摸出白球的可能性一样大吗?学生答:摸出黑球的可能性大.由于两种球的数量不等,所以“摸出黑球”和“摸出白球”的可能性的大小是不一样的,且“摸出黑球”的可能性大于“摸出白球”的可能性.教师问:能否通过改变袋子中某种颜色的球的数量,使“摸出黑球”和“摸出白球”的可能性大小相同?学生答:可以.白球个数不变,拿出两个黑球或黑球个数不变,加入2个白球.出示课件18:教师归纳:随机事件的特点:一般地,⑴随机事件发生的可能性是有大小的;⑵不同的随机事件发生的可能性的大小有可能不同.出示课件19:例1有一个转盘(如图所示),被分成6个相等的扇形,颜色分为红、绿、黄三种,指针的位置固定,转动转盘后任其自由停止,其中的某个扇形会恰好停在指针所指的位置(指针指向两个扇形的交线时,重新转动).下列事件:①指针指向红色;②指针指向绿色;③指针指向黄色;④指针不指向黄色.估计各事件的可能性大小,完成下列问题:(1)可能性最大的事件是_____,可能性最小的事件是_____(填写序号);(2)将这些事件的序号按发生的可能性从小到大的顺序排列:____________.学生观察交流后,师生共同解答.⑴④;②;⑵②<③<①<④.巩固练习:(出示课件20,21)1.随意从一副扑克牌中抽到Q和K的可能性大小是()A.抽到Q的可能性大B.抽到K的可能性大C.抽到Q和K的可能性一样大D.无法确定2.如果一件事情不发生的可能性为99.99%,那么它()A.必然发生B.不可能发生C.很有可能发生D.不太可能发生学生思考后独立解答:1.C解析:因为在一副扑克牌中,Q和K的数量相同,所以它们的可能性相同.2.D解析:一件事情不发生的可能性为99.99%,说明这个事件是随机事件,这个事件发生的可能性不大,即不太可能发生.出示课件22:例2一个不透明的口袋中有7个红球,5个黄球,4个绿球,这些球除颜色外没有其他区别,现从中任意摸出一球,如果要使摸到绿球的可能性最大,需要在这个口袋中至少再放入多少个绿球?请简要说明理由.师生共同解答.解:至少再放入4个绿球.理由:袋中有绿球4个,再至少放入4个绿球后,袋中有不少于8个绿球,即绿球的数量最多,这样摸到绿球的可能性最大.巩固练习:(出示课件23,24)甲口袋中放着22个红球和8个黑球,乙口袋中则放着200个红球、8个黑球和2个白球,这三种球除了颜色以外没有任何区别,两袋中的球都各自搅匀,蒙上眼睛从口袋中取一个球,如果你想取一个红球,你选哪个口袋成功的机会大?小红认为选甲较好,因为里面的球较少,容易摸到红球;小明认为选乙较好,因为里面的球较多,成功的机会越大;小亮认为都一样,因为只摸一次,谁也无法预测会取出什么颜色的球.你觉得他们说的有道理吗?学生交流后口答.解:他们的说法都没有道理.因为摸到一个红球的可能性的大小和袋子中球的总数量没关系,而是取决于红球占总数量的比例.在甲口袋中取一个红球的可能性为2230,在乙口袋中取一个红球的可能性为200 210,即2021,因为2021>2230,所以在乙口袋中取一个红球的可能性大.(三)课堂练习(出示课件25-30)1.下列说法正确的是()A.任意掷一枚质地均匀的硬币10次,一定有5次正面向上B.天气预报说“明天的降水概率为40%”,表示明天有40%的时间都在降雨C.“篮球队员在罚球线上投篮一次,投中”为随机事件D.“a是实数,|a|≥0”是不可能事件2.下列事件中,是必然事件的是()A.任意买一张电影票,座位号是2的倍数B.13个人中至少有两个人生肖相同C.车辆随机到达一个路口,遇到红灯D.明天一定会下雨3.下列事件是必然事件,不可能事件还是随机事件?(1)太阳从东边升起.(2)篮球明星林书豪投10次篮球,次次命中.(3)打开电视正在播中国新航母舰载机训练的新闻片.(4)一个三角形的内角和为181度.4.如果袋子中有4个黑球和x个白球,从袋子中随机摸出一个,“摸出白球”与“摸出黑球”的可能性相同,则x=______.5.已知地球表面陆地面积与海洋面积的比约为3:7,如果宇宙中飞来一块陨石落在地球上,“落在海洋里”发生的可能性()“落在陆地上”的可能性.A.大于B.等于C.小于D.三种情况都有可能6.桌上扣着背面图案相同的5张扑克牌,其中3张黑桃、2张红桃.从中随机抽取1张扑克牌.(1)能够事先确定抽取的扑克牌的花色吗?(2)你认为抽到哪种花色扑克牌的可能性大?(3)能否通过改变某种花色的扑克牌的数量,使“抽到黑桃”和“抽到红桃”的可能性大小相同?7.你能说出几个与必然事件、随机事件、不可能事件相联系的成语吗?数量不限.参考答案:1.C2.B3.解:⑴必然事件;⑵随机事件;⑶随机事件;⑷不可能事件.4.45.A6.解:⑴不能确定;⑵黑桃;⑶可以,去掉一张黑桃或增加一张红桃.7.解:必然事件:种瓜得瓜,种豆得豆;黑白分明.随机事件:海市蜃楼,守株待兔.不可能事件:海枯石烂,画饼充饥,拔苗助长.(四)课堂小结本节课你学到了哪些数学知识和数学方法?请与同伴交流.(五)课前预习预习下节课(24.2.2第1课时)的相关内容.七、课后作业1.教材129页练习1,2.2.配套练习册内容八、板书设计:九、教学反思:通过这些生动的、有趣的实例,自然地引出必然事件和不可能事件;其次,必然事件和不可能事件相对于随机事件来说,特征比较明显,学生容易判断,把它们首先提出来,符合由浅入深的理念,容易激发学生的学习积极性.。
人教版九年级上册数学第二十五章概率初步含答案一、单选题(共15题,共计45分)1、一个质地均匀的小正方体,六个面分别标有数字1、2、2、3、3、3,掷小正方体后,向上一面的数字,出现“ 2 ”的概率是()A. B. C. D.2、如图所示,在平行四边形纸片上作随机扎针实验,针头扎在阴影区域内的概率为()A. B. C. D.3、报纸上刊登了一则新闻,标题为“保健食品合格率80%”,下列说法中,正确的是()①这则新闻是否说明市面上所有的保健食品中恰好有20%为不合格产品;②你认为这则消息来源于抽样调查;③这则消息来源于普查④已知在这次质量监督中各项指标合格的商品有96种,则可以知道有120种保健品接受了本次检查.A.①②B.①③C.③④D.②④4、下列说法中,正确的是()A.“射击运动员射击一次,命中靶心”是必然事件B.不可能事件发生的概率为0C.随机事件发生的概率为D.投掷一枚质地均匀的硬币100次,正面朝上的次数一定为50次5、“上升数”是一个数中右边数字比左边数字大的自然数(如:34,568,2469等).任取一个两位数,是“上升数”的概率是()A. B. C. D.6、下列说法正确的是()A.经过有交通信号灯的路口,遇到绿灯是必然事件B.抛掷一枚均匀的硬币,10次都是正面朝上是随机事件C.“明天下雨的概率是40%”就是说“明天有40%的时间都在下雨”D.从装有3个红球和4个黑球的袋子里摸出一个球是红球的概率是7、在一个不透明的盒子里装有3个黑球和1个白球,每个球除颜色外都相同,从中任意摸出2个球,下列事件中,不可能事件是()A.摸出的2个球都是白球B.摸出的2个球有一个是白球C.摸出的2个球都是黑球D.摸出的2个球有一个黑球8、下列说法:①“从13张黑桃扑g牌中随机抽取一张,抽出的牌上点数小于5的概率是”;②“从装有无差别的5个红球,3个绿球的不透明袋子中抽出4个球,一定抽出3个绿球”;③“射击运动员射击一次,命中靶心的概率是0.5”,其中不正确的个数是( )A. B.1 C.2 D.39、下列说法正确的是()A.在同一年出生的400人中至少有两人的生日相同B.投掷一粒骰子,连投两次点数相同的概率与连投两次点数都为1的概率是相等C.从一副完整的扑g牌中随机抽取一张牌恰好是红桃K,这是必然事件D.一个袋中装有3个红球,5个白球,任意摸出一个球是红球的概率是10、下列事件中,属于必然事件是()A.水中捞月B.拔苗助长C.守株待兔D.瓮中捉鳖11、黑色不透明袋子里有3个红球和两个白球.这些球除颜色有区别外,其他特征相同.随机从袋子中取出两个球的颜色相同的概率是()A. B. C. D.12、若从长度分别为3、5、6、9的四条线段中任取三条,则能组成三角形的概率为( )A. B. C. D.13、下列说法正确的是( )A.为了检测一批电池使用时间的长短,应该采用全面调查的方法;B.方差反映了一组数据的波动大小,方差越大,波动越大;C.打开电视一定有新闻节目;D.为了解某校学生的身高情况,从八年级学生中随机抽取50名学生的身高情况作为总体的一个样本.14、在如图的四个转盘中,C,D转盘被分成8等份,若让转盘自由转动一次,停止后,指针落在阴影区域内的概率最大的转盘是()A. B. C. D.15、有五张正面分别写有数字﹣3,﹣2,1,2,3的卡片,它们的背面完全相同,现将这五张卡片背面朝上洗匀后随机抽取一张,以其正面的数字作为a的值,然后再从剩余的四张卡片中随机抽取一张,以其正面的数字作为b的值,则点(a,b)在第二象限的概率是()A. B. C. D.二、填空题(共10题,共计30分)16、一个盒子装有除颜色外其它均相同的2个红球和3个白球,现从中任取2个球,则取到的是一个红球、一个白球的概率为________.17、如图所示为概率活动课上制作的一个转盘,盘面被均分为3个扇形,依次标注有数字,,.现转动转盘两次,记录下转盘停止后指针所对的数字(指针指向分界线时重新转),则两次记录的数字均为有理数的概率为________.18、已知三角形的两边分别是2cm和3cm,现从长度分别为1cm、2cm、3cm、4cm、5cm、6cm六根小木棒中随机抽一根,抽到的木棒能作为该三角形第三边的概率是________.19、抛掷一枚均匀的硬币,前次都正面朝上,则抛掷第次正面朝上的概率是________.20、如图所示,在两个同心圆中,三条直径把大圆分成六等份,若在这个圆面上均匀地撒一把豆子,则豆子落在阴影部分的概率是________.21、现有五张正面分别标有数字,,,,的不透明卡片,它们除数字外其余完全相同,将它们背面朝上洗均匀,随机抽取一张,记下数字后放回,背面朝上洗均匀,再随机抽取一张记下数字,前后两次抽取的数字分别记为,.则点在第四象限的概率为________.22、掷一枚质地均匀的硬币,前9次都是反面朝上,则掷第10次时反面朝上的概率是________.23、如果甲邀请乙玩一个同时抛掷两枚硬币的游戏。
第二十五章概率初步25.1随机事件与概率25.随机事件1.了解必然发生的事件、不可能发生的事件、随机事件的特点.2.能根据随机事件的特点,辨别哪些事件是随机事件.3.有对随机事件发生的可能性大小作定性分析的能力,了解影响随机事件发生的可能性大小的因素.重点:对生活中的随机事件作出准确判断,对随机事件发生的可能性大小作定性分析.难点:对生活中的随机事件作出准确判断,理解大量重复试验的必要性.一、自学指导.(10分钟)自学:阅读教材P127~129.归纳:在一定条件下必然发生的事件,叫做__必然事件__;在一定条件下不可能发生的事件,叫做__不可能事件__;在一定条件下可能发生也可能不发生的事件,叫做__随机事件__.二、自学检测:学生自主完成,小组内展示,点评,教师巡视.(5分钟)1.下列问题哪些是必然发生的?哪些是不可能发生的?(1)太阳从西边落下;(2)某人的体温是100℃;(3)a2+b2=-1(其中a,b都是实数);(4)自然条件下,水往低处流;(5)三个人性别各不相同;(6)一元二次方程x2+2x+3=0无实数解.解:(1)(4)(6)是必然发生的;(2)(3)(5)是不可能发生的.2.在一个不透明的箱子里放有除颜色外,其余都相同的4个小球,其中红球3个、白球1个.搅匀后,从中随机摸出1个小球,请你写出这个摸球活动中的一个随机事件:__摸出红球__.3.一副去掉大小王的扑克牌(共52张),洗匀后,摸到红桃的可能性__>__摸到J,Q,K的可能性.(填“>”“<”或“=”)4.从一副扑克牌中任意抽出一张,则下列事件中可能性最大的是( D)A.抽出一张红桃B.抽出一张红桃KC.抽出一张梅花J D.抽出一张不是Q的牌5.某学校的七年级(1)班,有男生23人,女生23人.其中男生有18人住宿,女生有20人住宿.现随机抽一名学生,则:a.抽到一名住宿女生;b.抽到一名住宿男生;c.抽到一名男生.其中可能性由大到小排列正确的是( A)A.cab B.acb C.bca D.cba点拨精讲:一般的,随机事件发生的可能性是有大小的,不同的随机事件发生的可能性的大小有可能不同.一、小组合作:小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(8分钟)1.小伟掷一个质地均匀的正方形骰子,骰子的六个面上分别刻有1至6的点数.请考虑以下问题,掷一次骰子,观察骰子向上的一面:(1)出现的点数是7,可能吗?这是什么事件?(2)出现的点数大于0,可能吗?这是什么事件?(3)出现的点数是4,可能吗?这是什么事件?(4)你能列举与事件(3)相似的事件吗?点拨精讲:必然事件和不可能事件统称为确定事件.事先不能确定发生与否的事件为随机事件.2.袋中装有4个黑球,2个白球,这些球的形状、大小、质地等完全相同,在看不到球的条件下,随机地从袋子中摸出一个球.我们把“摸到白球”记为事件A,把“摸到黑球”记为事件B.(1)事件A和事件B是随机事件吗?哪个事件发生的可能性大?(2)20个小组进行“10次摸球”的试验中,事件A发生的可能性大约有几组?“20次摸球”的试验中呢?你认为哪种试验更能获得较正确结论呢?(3)如果把刚才各小组的20次“摸球”合并在一起是否等同于400次“摸球”?这样做会不会影响试验的正确性?(4)通过上述试验,你认为,要判断同一试验中哪个事件发生的可能性较大、必须怎么做?点拨精讲:(4)进行大量的、重复的试验.二、跟踪练习:学生独立确定解题思路,小组内交流,上台展示并讲解思路.(10分钟)1.下列事件中是必然事件的是( A)A.早晨的太阳一定从东方升起B.中秋节晚上一定能看到月亮C.打开电视机正在播少儿节目D.小红今年14岁了,她一定是初中生2.一个鸡蛋在没有任何防护的情况下,从六层楼的阳台上掉下来砸在水泥地面上没摔破( B)A.可能性很小B.绝对不可能C.有可能D.不太可能3.下列说法正确的是( C)A.可能性很小的事件在一次试验中一定不会发生B.可能性很小的事件在一次试验中一定发生C.可能性很小的事件在一次试验中有可能发生D.不可能事件在一次试验中也可能发生4.20张卡片分别写着1,2,3,…,20,从中任意抽出一张,号码是2的倍数与号码是3的倍数的可能性哪个大?解:号码是2的倍数的可能性大.5.指出下列事件中,哪些是必然事件,哪些是不可能事件,哪些是随机事件.(1)两直线平行,内错角相等;(2)刘翔再次打破110米跨栏的世界纪录;(3)打靶命中靶心;(4)掷一次骰子,向上一面是3点;(5)13个人中,至少有两个人出生的月份相同;(6)经过有信号灯的十字路口,遇见红灯;(7)在装有3个球的布袋里摸出4个球; (8)物体在重力的作用下自由下落; (9)抛掷一千枚硬币,全部正面朝上.解:必然事件:(1)(5);随机事件:(2)(3)(4)(6)(8)(9);不可能事件:(7).6.已知地球表面陆地面积与海洋面积的比值为3∶7.如果宇宙中飞来一块陨石落在地球上,“落在海洋里”与“落在陆地上”哪个可能性更大?解:“落在海洋里”可能性更大.学生总结本堂课的收获与困惑.(2分钟)1.必然事件、随机事件、不可能事件的特点. 2.对随机事件发生的可能性大小进行定性分析. 3.理解大量重复试验的必要性.学习至此,请使用本课时对应训练部分.(10分钟)25. 概率(1)1.了解从数量上刻画一个事件发生的可能性的大小.2.理解P(A)=mn(在一次试验中有 n 种可能的结果,其中 A 包含 m 种)的意义.重点:对概率意义的正确理解.难点:对P(A)=mn(在一次试验中有 n 种可能的结果,其中 A 包含 m 种)的正确理解.一、自学指导.(10分钟)自学:阅读教材第130至132页. 归纳:1.当A 是必然事件时,P(A)=__1__;当A 是不可能事件时,P(A)=__0__;任一事件A 的概率P(A)的范围是__0≤P(A)≤1__.2.事件发生的可能性越大,则它的概率越接近__1__;反之,事件发生的可能性越小,则它的概率越接近__0__.3.一般地,在一次试验中,如果事件A 发生的可能性大小为__m n __,那么这个常数mn 就叫做事件A 的概率,记作__P(A)__.4.在上面的定义中,m ,n 各代表什么含义?mn的范围如何?为什么?点拨精讲:(1)刻画事件A 发生的可能性大小的数值称为事件A 的概率.(2)__必然__事件的概率为1,__不可能__事件的概率为0,如果A 为__随机__事件,那么0<P(A)<1.二、自学检测:学生自主完成,小组内展示,点评,教师巡视.(5分钟)1.在抛掷一枚普通正六面体骰子的过程中,出现点数为2的概率是__16__.2.十字路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,当你抬头看信号灯恰是黄灯亮的概率为__112__.3.袋中有5个黑球,3个白球和2个红球,它们除颜色外,其余都相同.摸出后再放回,在连续摸9次且9次摸出的都是黑球的情况下,第10次摸出红球的概率为__15__.一、小组合作:小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(6分钟)1.掷一个骰子,观察向上一面的点数,求下列事件的概率: (1)点数为2;(2)点数为奇数; (3)点数大于2小于5. 解:(1)16;(2)12;(3)13.2.一个桶里有60个弹珠,其中一些是红色的,一些是蓝色的,一些是白色的.拿出红色弹珠的概率是35%,拿出蓝色弹珠的概率是25%.桶里每种颜色的弹珠各有多少?解:红:21;蓝:15;白:24.二、跟踪练习:学生独立确定解题思路,小组内交流,上台展示并讲解思路.(12分钟) 1.袋子中装有24个和黑球2个白球,这些球的形状、大小、质地等完全相同,在看不到球的条件下,随机地从袋中摸出一个球,摸到黑球的概率大,还是摸到白球的概率大一些呢?说明理由,并说明你能得到什么结论?解:摸到黑球的概率大.摸到黑球的可能性为1213,摸到白球的可能性为113,1213>113,故摸到黑球的概率大.(结论略)点拨精讲:要判断哪一个概率大,只要看哪一个可能性大.学生总结本堂课的收获与困惑.(2分钟)一般地,如果在一次试验中,有n 种可能的结果,并且它们发生的可能性都相等,事件A 包含其中的m 种结果,那么事件A 发生的概率为P(A)=__mn__且 __0__≤P(A)≤__1__.学习至此,请使用本课时对应训练部分.(10分钟)25. 概率(2)1. 进一步在具体情境中了解概率的意义;能够运用列举法计算简单事件发生的概率,并阐明理由.2.运用P(A)=mn解决一些实际问题.重点:运用P(A)=mn解决实际问题.难点:运用列举法计算简单事件发生的概率.一、自学指导.(10分钟) 自学:阅读教材P 133.二、自学检测:学生自主完成,小组内展示,点评,教师巡视.(5分钟)1.从分别标有1,2,3,4,5号的5根纸签中随机地抽取一根.抽出的号码有多少种?抽到1的概率为多少?解:5种;15.2.掷一个骰子,向上一面的点数有多少种可能?向上一面的点数是1的概率是多少? 解:6种;16.3.如图所示,有一个转盘,转盘分成4个相同的扇形,颜色分为红、绿、黄三种颜色,指针的位置固定,转动转盘后任其自由停止.指针恰好指向其中的某个扇形(指针指向两个扇形的交线时,当作指向右边的扇形),求下列事件的概率.(1)指针指向绿色;(2)指针指向红色或黄色;(3)指针不指向红色.解:(1)14;(2)34;(3)12.点拨精讲:转一次转盘,它的可能结果有4种——有限个,并且各种结果发生的可能性相等.因此,它可以运用“P(A)=mn”,即“列举法”求概率.一、小组合作:小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(10分钟)1.如图是计算机中“扫雷”游戏的画面,在一个有9×9个小方格的正方形雷区中,随机埋藏着3颗地雷,每个小方格内最多只能埋藏1颗地雷.小王在游戏开始时随机地踩中一个方格,踩中后出现了如图所示的情况,我们把与标号3的方格相邻的方格记为A 区域(划线部分),A 区域外的部分记为B 区域,数字3表示在A 区域中有3颗地雷,每个小方格中最多只能藏一颗.那么,第二步应该踩在A 区域还是B 区域?思考:如果小王在游戏开始时踩中的第一个方格上出现了标号1,则下一步踩在哪个区域比较安全?2.(1)掷一枚质地均匀的硬币的试验有几种可能的结果?它们的可能性相等吗?由此怎样确定“正面朝上”的概率?(2)掷两枚硬币,求下列事件的概率: A .两枚硬币全部正面朝上;B .两枚硬币全部反面朝上;C .一枚硬币正面朝上,一枚硬币反面朝上.思考:“同时掷两枚硬币”与“先后两次掷一枚硬币”,这两种试验的所有可能结果一样吗?点拨精讲:“同时掷两枚硬币”与“先后两次掷一枚硬币”,两种试验的所有可能结果一样.二、跟踪练习:学生独立确定解题思路,小组内交流,上台展示并讲解思路.(8分钟) 1.中国象棋红方棋子按兵种不同分布如下:1个帅,5个兵,“士、象、马、车、炮”各2个,将所有棋子反面朝上放在棋盘中,任取一个不是兵和帅的概率是( D )A .116B .516C .38D .582.冰柜中装有4瓶饮料、5瓶特种可乐、12瓶普通可乐、9瓶桔子水、6瓶啤酒,其中可乐是含有咖啡因的饮料,那么从冰柜中随机取一瓶饮料,该饮料含有咖啡因的概率是( D )A .536B .38C .1536D .17363.从8,12,18,32中随机抽取一个,与2是同类二次根式的概率为__34__.4.小李手里有红桃1,2,3,4,5,6,从中任抽取一张牌,观察其牌上的数字.求下列事件的概率:(1)牌上的数字为3;(2)牌上的数字为奇数;(3)牌上的数字大于3且小于6.解:(1)16;(2)12;(3)13.学生总结本堂课的收获与困惑.(2分钟)当一次试验要涉及两个因素并且可能出现的结果数目较多时,为不重不漏的列出所有可能的结果,通常采用列举法.学习至此,请使用本课时对应训练部分.(10分钟)25.2 用列举法求概率1. 会用列表法求出简单事件的概率.2. 会用树状图法求出一次试验中涉及3个或更多个因素时,不重不漏地求出所有可能的结果,从而正确地计算问题的概率.重点:运用列表法或树状图法计算简单事件的概率. 难点:用树状图法求出所有可能的结果.一、自学指导.(10分钟) 自学:阅读教材P 136~139.二、自学检测:学生自主完成,小组内展示,点评,教师巡视.(5分钟)1.一个布袋中有两个白球和两个黄球,质地和大小无区别,每次摸出1个球,共有几种可能的结果?解:两种结果:白球、黄球.2.一个布袋中有两个白球和两个黄球,质地和大小无区别,每次摸出2个球,这样共有几种可能的结果?解:三种结果:两白球、一白一黄两球、两黄球.3.一个盒子里有4个除颜色外其余都相同的玻璃球,一个红色,一个绿色,两个白色,现随机从盒子里一次取出两个球,则这两个球都是白球的概率是__16__.4.同时抛掷两枚正方体骰子,所得点数之和为7的概率是__16__.点拨精讲:这里2,3,4题均为两次试验(或一次两项),可直接采用树状图法或列表法.一、小组合作:小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(10分钟)1.同时掷两个质地均匀的骰子,计算下列事件的概率: (1)两个骰子的点数相同; (2)两个骰子点数的和是9; (3)至少有一个骰子的点数为2.讨论:(1)上述问题中一次试验涉及到几个因素?你是用什么方法不重不漏地列出了所有可能的结果,从而解决了上述问题?(2)能找到一种将所有可能的结果不重不漏地列举出来的方法吗?(介绍列表法求概率,让学生重新利用此法做上题).(3)如果把上例中的“同时掷两个骰子”改为“把一个骰子掷两次”,所得到的结果有变化吗?点拨精讲:当一次试验要涉及两个因素并且可能出现的结果数目较多时,为不重不漏的列出所有可能的结果,通常采用列表法. 列表法是将两个步骤分别列在表头中,所有可能性写在表格中,再把组合情况填在表内各空格中.2.甲口袋中装有2个相同的小球,他们分别写有A 和B ;乙口袋中装有3个相同的小球,分别写有C ,D 和E ;丙口袋中装有2个相同的小球,他们分别写有H 和I .从3个口袋中各随机取出1个小球.(1)取出的3个小球上恰好有1个、2个、3个元音字母的概率分别是多少? (2)取出3个小球上全是辅音字母的概率是多少?点拨:A ,E ,I 是元音字母;B ,C ,D ,H 是辅音字母.分析:弄清题意后,先让学生思考从3个口袋中每次各随机地取出一个球,共3个球,这就是说每一次试验涉及到3个因素,这样的取法共有多少种呢?打算用什么方法求得?点拨精讲:第一步可能产生的结果会是什么?——(A 和B ),两者出现的可能性相同吗?分不分先后?写在第一行.第二步可能产生的结果是什么?——(C ,D 和E ),三者出现的可能性相同吗?分不分先后?从A 和B 分别画出三个分支,在分支下的第二行分别写上C ,D 和E .第三步可能产生的结果有几个?——是什么?——(H 和I ),两者出现的可能性相同吗?分不分先后?从C ,D 和E 分别画出两个分支,在分支下的第三行分别写上H 和I .(如果有更多的步骤可依上继续)第四步按竖向把各种可能的结果竖着写在下面,就得到了所有可能的结果的总数.再找出符合要求的种数,就可计算概率了.合作完成树状图.二、跟踪练习:学生独立确定解题思路,小组内交流,上台展示并讲解思路.(8分钟) 1.将一个转盘分成6等份,分别是红、黄、蓝、绿、白、黑,转动转盘两次,两次能配成“紫色”(提示:只有红色和蓝色可配成紫色)的概率是__118__.2.抛掷两枚普通的骰子,出现数字之积为奇数的概率是__14__,出现数字之积为偶数的概率是__34__.3.第一盒乒乓球中有4个白球2个黄球,第二盒乒乓球中有3个白球3个黄球,分别从每个盒中随机的取出一个球,求下列事件的概率:(1)取出的两个球都是黄球;(2)取出的两个球中有一个白球一个黄球.解:16;12.4.在六张卡片上分别写有1~6的整数,随机地抽取一张后放回,再随机的抽取一张,那么第二次取出的数字能够整除第一次取出的数字的概率是多少?解:718.点拨精讲:这里第4题中如果抽取一张后不放回,则第二次的结果不再是6,而是5. 5.小明和小刚用如图的两个转盘做游戏,游戏规则如下:分别旋转两个转盘,当两个转盘所转到的数字之积为奇数时,小明得2分;当所转到的数字之积为偶数时,小刚得1分.这个游戏对双方公平吗?若公平,说明理由;若不公平,如何修改规则才能使游戏对双方公平?解:P(积为奇数)=13,P(积为偶数)=23.1 2 3 1 1 2 3 224613×2=1×23.∴这个游戏对双方公平. 学生总结本堂课的收获与困惑.(2分钟)1. 一次试验中可能出现的结果是有限多个,各种结果发生的可能性是相等的.通常可用列表法和树状图法求得各种可能的结果.2.注意第二次放回与不放回的区别.3.一次试验中涉及3个或更多个因素时,不重不漏地求出所有可能的结果,通常采用树状图法.学习至此,请使用本课时对应训练部分.(10分钟)25.3用频率估计概率1. 理解当试验的可能结果不是有限个,或各种结果发生的可能性不相等时,一般用统计频率的方法来估计概率.2. 了解用频率估计概率的方法与列举法求概率的区别,并能够通过对事件发生频率的分析,估计事件发生的概率.重点:了解用频率估计概率的必要性和合理性.难点:大量重复试验得到频率稳定值的分析,对频率与概率之间关系的理解.一、自学指导.(20分钟)自学:阅读教材P142~146.归纳:对于一般的随机事件,在做大量重复试验时,随着试验次数的增加,一个事件出现的频率,总在一个固定数的附近摆动,显示出一定的稳定性.当重复试验的次数大量增加时,事件发生的频率就稳定在相应的概率附近,因此,可以通过大量重复试验,用一个事件发生的频率来估计这一事件发生的概率.二、自学检测:学生自主完成,小组内展示,点评,教师巡视.(2分钟)1.小强连续投篮75次,共投进45个球,则小强进球的频率是____.2.抛掷两枚硬币,当抛掷次数很多以后,出现“一正一反”这个不确定事件的频率值将稳定在__左右.一、小组合作:小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(5分钟)红星养猪场400其中数据不在分点上.组别频数频率46 ~ 50 4051 ~ 55 8056 ~ 60 16061 ~ 65 8066 ~ 70 3071~ 75 10从中任选一头猪,质量在65 以上的概率是__ .二、跟踪练习:学生独立确定解题思路,小组内交流,上台展示并讲解思路.(6分钟)某商场设立了一个可以自由转动的转盘(如图),并规定:顾客购物10元以上能获得一次转动转盘的机会,当转盘停止时,指针落在哪一区域就可以获得相应的奖品,下表是活动进行中的一组统计数据:转动转盘的次数n 100 150 200 500 800 1000 落在“铅笔”的次数m 68 111 136 345 546 701落在“铅笔”的频率错误!(2)请估计,当次数很大时,频率将会接近多少?(3)转动该转盘一次,获得铅笔的概率约是多少?(4)在该转盘中,标有“铅笔”区域的扇形的圆心角大约是多少?(精确到1°)【答案】:(2)0.69;(3)0.69;(4)0.69×360°≈248°.学生总结本堂课的收获与困惑.(2分钟)尽管随机事件在每次试验中发生与否具有不确定性,但只要保持试验条件不变,那么这一事件出现的频率就会随着试验次数的增大而趋于稳定,这个稳定值就可以作为该事件发生概率的估计值.学习至此,请使用本课时对应训练部分.(10分钟)。
第25章概率初步学情分析与教材分析(一)学情分析:“概率初步”是《课程标准》“统计与概率”的重要内容. 本章是学生在已经了解了统计知识的相关知识,掌握了方差、频率等知识的基础上继续学习概率的相关知识. 由于学生初学概率,面对概率意义的描述,学生容易产生困惑:概率是什么?概率是否就是频率?何时用列表法,何时用树状图等等问题都有待师生一起去探索. 因此,学生对这部分内容学习是一大难点. 但这部分内容在人们的生活和生产建设中有着广泛的应用,也是今后运用概率知识解决实际问题的预备知识,所以它在教材中处于非常重要的地位.本章共包含三部分内容,分别是:随机事件与概率、用列举法求概率、用频率估计概率. 本章既有理论知识,又有实验研究,内容丰富. 本章的教学,无论是在知识上,还是对学生能力的培养上,都有着十分重要的作用.须注意的是,本学段的概率内容还处在一个比较初级的水平,就《课程标准》来看,这个阶段的学生并没有学习概率中的乘法,所以他们还只能用列表法和树形图法计算一些简单的概率问题.因此,如果问题超过3步的难度,学生完成起来就会非常吃力.所以一般来说,不宜将问题的难度超过3步.(二)教材分析:1.核心素养在随机事件的学习中,通过抽样体会样本及估计结果的随机性,培养学生的随机观念;在用概率解决日常生活中遇到的问题时(如抽奖等),培养学生的概率思想;通过用列表和画树状图求概率,提高学生用枚举的数学思想方法解决问题的能力;通过频率估计概率,进一步培养学生“用样本估计总体”的统计思想.2.本章学习目标(1)了解必然事件、不可能事件和随机事件的概念;(2)在具体情境中了解概率的意义,体会概率是描述不确定现象发生可能性大小的数学概念,理解概率的取值范围的意义;(3)能够运用列举法(包括列表、画树状图)计算简单随机试验中事件发生的概率;(4)能够通过随机试验,获得事件发生的频率;知道通过大量重复试验,可以用频率估计概率,了解频率与概率的区别与联系;(5)通过实例进一步丰富对概率的认识,并能解决一些简单的实际问题.3.课时安排本章教学时间约需6课时,具体分配如下(仅供参考):25.1 随机事件与概率2课时25.2 用列举法求概率 2课时25.3 用频率估计概率1课时章末回顾+检测题1课时4.本章重点(1)随机事件的特点;(2)在具体情境中了解概率意义;(3)运用列表法或树状图法计算事件的概率.5.本章难点(1)对生活中的随机事件作出准确判断;(2)对频率与概率关系的初步理解;(3)能根据不同情况选择恰当的方法进行列举,解决较复杂的事件概率的计算问题.。
1
第二十五章 概率初步
(时间:100分钟 分数100分)
班级: 姓名: 得分:
一、选择题(本大题有10个小题,每小题3分,共30分.) 1、下列事件是必然事件的是( )
A .打开电视机,正在播放动画片
B .2012年奥运会刘翔一定能夺得110米跨栏冠军
C .某彩票中奖率是1%,买100张一定会中奖
D .在只装有5个红球的袋中摸出1球,是红球 2、随机掷一枚质地均匀的正方体骰子,骰子的六个面上分别刻有1到6的点数,则这个骰子向上的一面点数是奇数的概率为( ) A .12 B .31 C . 41 D .51
3、书架上有数学书3本,英语书2本,语文书5本,从中任意抽取一本是数学书的概率是( ) A .101 B .53 C .103 D .5
1
4、在一个暗箱里放有a 个除颜色外其它完全相同的球,这a 个球中红球只有3个.每次将球搅拌均匀后,任意摸出一个球记下颜色再放回暗箱.通过大量重复摸球实验后发现,摸到红球的频率稳定在25%,那么可以推算出a 大约是( ) A .12 B .9 C .4 D .3
5、小晃用一枚质地均匀的硬币做抛掷试验,前9次掷的结果都是正面向上,如果下一次掷 得的正面向上的概率为P(A),则( ) A.P(A)=1 B .P(A)=12 C. P(A)>12 D. P(A)<1
2
6、小刚与小亮一起玩一种转盘游戏.如果是两个完全相同的转盘,每个转盘分成面积相等的三个区域,分别用“1”、“2”、“3”表示.固定指针,同时转动两个转盘,任其自由停止.
率是( ) A .2
1 B 、9
4 C 、9
5 D 、3
2 7、在李咏主持的“幸运52”栏目中,曾有一种竞猜游戏,游戏规则是:在20个商标牌中,有5个商标牌的背面注明了一定的奖金,其余商标牌的背面是一张“哭脸”,若翻到“哭脸”就不获奖,参与这个游戏的观众有三次翻牌的机会,且翻过的牌不能再翻.有一位观众已翻牌两次,一次获奖,一次不获奖,那么这位观众第三次翻牌获奖的概率是( ) A .1
5 B .2
9 C .14
D .
518
8、十字路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒当你抬头看信号灯时,是黄灯的概率是( ) A.112 B .13 C.512 D.1
2
9、将三粒均匀的分别标有1,2,3,4,5,6的正六面体骰子同时掷出,出现的数字分别为a, b, c ,则a, b, c ,正好是直角三角形三边长的概率是( )
A.
1216
B.
172
C.
136
D.
112
10.口袋中装有一红二黄二蓝共5个小球,它们大小、形状等完全一样,每次摸出两个小球恰为一黄一蓝的机会为( ) A.45 B.35 C.15 D.25
二、填空题(每小题3分,共18分) 11.小明与父母从广州乘火车回梅州参观叶帅纪念馆,他们买到的火车票是同一排相邻的三个座位,那么小明恰好坐在父母中间的概率是 .
12.在一次抽奖活动中,中奖概率是0.12,则不中奖的概率是 . 13.如图,每一个标有数字的方块均是可以翻动的木牌,其中只有两块木牌的背面贴有中奖标志,则随机翻动一块木牌中奖的概率为_______
14.一盒子内放有3个红球、6个白球和5个黑球,它们除颜色外都相同,
搅匀后任意摸出1个球是白球的概率为 . 15.如图,电路上有编号为①②③④⑤⑥共6个开关和一个小灯泡, 闭合开关①或同时闭台开关②③或同时闭合开关④⑤⑥都可以使 小灯泡发光,问任意闭合电路上其中的两个开关,小灯泡发光的 概率为____________.
16.如图所示.小李和小陈做转陀螺游戏.他们同时分别转动一个陀螺, 当两个陀螺都停下来时,与桌面相接触的边上的数字都是奇数
的概率是_____________.
三、解答题(52分)
17.(本题满分5分)在“妙手推推推”的游戏中,主持人出示了一个9位数,让参加者猜商品价格.被猜的价格是一个4位数,也就是这个9位中从左到右连在一起的某4个数字。
如果参与者不知道商品的价格,从这些连在一起的所有4位数中,任意..猜一个,求他猜中该商品价格的概率.
18. (本题满分5分)不透明的口袋里装有红、黄、蓝三种颜色的小球若干个(除颜色外其余都相同),其中红球2个(分别标有1号、2号),篮球1个.若从中任意摸出一个球,它是篮球的概率为
14
. (1)求袋中黄球的个数;
(2)第一次任意摸出一个球(不放回),第二次再摸出一个球,请用画树状图或列表格的方法,求两次摸到不同颜色球的概率.
第14题图
19.(本题满分5分)有五条线段,长度分别为1、3、5、7、9,从中任取三条线段,一定能构成三角形吗?能构成三角形的概率是多少?
20.(本题满分6分)一枚均匀的正方体骰子,六个面分别标有数字1、2、3、4、5、6,连续抛掷两次,朝上的数字分别是m、n,若把m、n作为点的横、纵坐标,那么点A(m,n)在函数y = 12
x
的图象上的概率是多少?
21. (本题满分6分)甲、乙两队进行拔河比赛,裁判员让两队队长用“石头、剪子、布”的手势方式选择场地位置.规则是:石头胜剪子,剪子胜布,布胜石头,手势相同再决胜负.请你说明裁判员的这种作法对甲、乙双方是否公平,为什么?(用树状图或列表法解答)
22.(本题满分6分)在学校举办的游艺活动中,数学俱乐部办了个掷骰子的游戏,玩这个游戏要花四枚5角钱的硬币,一个游戏者掷一次骰子,如果掷到点数6,游戏者得到奖品, 每个奖品要花费俱乐部8元,俱乐部能指望从这个游戏中赢利吗? 请说明理由.
23、(本题满分6分)某电脑公司现有A、B、C三种型号的甲品牌电脑和D、E•两种型号的乙品牌电脑.希望中学要从甲、乙两种品牌电脑中各选购一种型号的电脑.电脑单价A 型:6000元;B型:4000元;C型:2500元;D型:4000元;E型:2000元;
(1)写出所有选购方案(利用树状图或列表方法表示);
(2)如果(1)中各种选购方案被选中的可能性相同,则A型号电脑被选中的概率是多少?(3)现知希望中学购买甲、乙两种品牌电脑共36台,恰好用了10万元人民币,其中甲品牌电脑为A型号电脑,求购买的A型号电脑有几台.
24. (本题满分6分)小颖和小红两位同学在学习“概率”时,做投掷骰子(质地均匀的
正方体)实验,他们共做了60次实验,实验的结果如下:
朝上的点数 1 2 3 4 5 6
出现的次数7 9 6 8 20 10 (1)计算“3点朝上”的频率和“5点朝上”的频率.
(2)小颖说:“根据实验,一次实验中出现5点朝上的概率最大”;小红说:“如果投掷600次,那么出现6点朝上的次数正好是100次.”小颖和小红的说法正确吗?为什么?
(3)小颖和小红各投掷一枚骰子,用列表或画树状图的方法求出两枚骰子朝上的点数之和为3的倍数的概率.
25. (本题满分7分)有一枚均匀的正四面体,四个面上分别标有数字l,2,3,4,小红
随机地抛掷一次,把着地一面的数字记为x;另有三张背面完全相同,正面上分别写有数字一2,一l,1的卡片,小亮将其混合后,正面朝下放置在桌面上,并从中随机地抽取一张,把卡片正面上的数字记为y;然后他们计算出S=x+y的值.
(1)用树状图或列表法表示出S的所有可能情况;
(2)分别求出当S=0和S<2时的概率.
2。