2019年中考数学专题复习卷 数据的整理与分析(含解析)
- 格式:doc
- 大小:276.50 KB
- 文档页数:15
专题06 数据的分析一、基础知识1.平均数有算术平均数和加权平均数平均数的求法:x=1n(x1+x2+…+x n);加权平均数计算公式为:x=1n(x1f1+x2f2+…+x k f k),其中f1,f2,…,f k代表各数据的权.2.中位数的求法数据从大到小或从小到大排好顺序以后,若为偶数个数,就是最中间的两个数加起来除以2,即两个数的平均数;若为奇数个数,就是中间个数.3.众数:指一组数据中出现次数最多的数.4.极差:用一组数据中的最大值减去最小值所得的差来反映这组数据的变化范围,用这种方法得到的差称为极差,极差=最大值-最小值。
5.方差:用“先平均,再求差,然后平方,最后再平均”得到的结果表示一组数据偏离平均值的情况,这个结果叫方差。
方差公式为:s2=1n[(x1-x)2+(x2-x)2+…+(xn-x)2],方差越小,数据越稳定.二、本专题典型题考法及解析【例题1】在一次数学模拟考试中,小明所在的学习小组7名同学的成绩分别为:129,136,145,136,148,136,150.则这次考试的平均数和众数分别为()A.145,136 B.140,136C.136,148 D.136,145【例题2】近十天每天平均气温(℃)统计如下:24,23,22,24,24,27,30,31,30,29.关于这10个数据下列说法不正确的是()A.众数是24 B.中位数是26C.平均数是26.4 D.极差是9三、数据的分析问题训练题及其答案和解析1.某校在体育健康测试中,有8名男生“引体向上”的成绩(单位:次)分别是:14,12,8,9,16,12,7,这组数据的中位数和众数分别是()A. 10,12 B. 12,11C. 11,12 D. 12,122.如图是成都市某周内最高气温的折线统计图,关于这7天的日最高气温的说法正确的是()A.极差是8℃ B.众数是28℃C.中位数是24℃ D.平均数是26℃3.已知甲、乙两组数据的折线图如图,设甲、乙两组数据的方差分别为S甲2、S乙2,则S甲2S乙2(填“>”、“=”、“<”)4.九年级一班和二班每班选8名同学进行投篮比赛,每名同学投篮10次,对每名同学投中的次数进行统计,甲说:“一班同学投中次数为6个的最多”乙说:“二班同学投中次数最多与最少的相差6个.”上面两名同学的议论能反映出的统计量是()A.平均数和众数 B.众数和极差C.众数和方差 D.中位数和极差5.射击训练中,甲、乙、丙、丁四人每人射击10次,平均环数均为8.7环,方差分别为S甲2=0.51,S乙2=0.41、S丙2=0.62、S丁2=0.45,则四人中成绩最稳定的是()A.甲 B.乙 C.丙 D.丁6.若一组数据4,1,7,x,5的平均数为4,则这组数据的中位数为()A.7 B.5 C.4 D.37.今年3月12日,某学校开展植树活动,某植树小组20名同学的年龄情况如下表:年龄(岁)12 13 14 15 16人数 1 4 3 5 7则这20名同学年龄的众数和中位数分别是()A.15,14 B.15,15 C.16,14 D.16,158.一次招聘活动中,共有8人进入复试,他们的复试成绩(百分制)如下:70,100,90,80,70,90,90,80.对于这组数据,下列说法正确的是()A.平均数是80 B.众数是90 C.中位数是80 D.极差是709.若四个互不相等的正整数中,最大的数是8,中位数是4,则这四个数的和为.10.如图是某地2月18日到23日PM2.5浓度和空气质量指数AQI的统计图(当AQI不大于100时称空气质量为“优良”),由图可得下列说法:①18日的PM2.5浓度最低;②这六天中PM2.5浓度的中位数是112µg/cm2;③这六天中有4天空气质量为“优良”;④空气质量指数AQI与PM2.5浓度有关,其中正确的说法是()A. ①②③B. ①②④C. ①③④D. ②③④11.某中学为开拓学生视野,开展“课外读书周”活动,活动后期随机调查了九年级部分学生一周的课外阅读时间,并将结果绘制成两幅不完整的统计图,请你根据统计图的信息回答下列问题:(1)本次调查的学生总数为人,被调查学生的课外阅读时间的中位数是小时,众数是小时;(2)请你补全条形统计图;(3)在扇形统计图中,课外阅读时间为5小时的扇形的圆心角度数是;(4)若全校九年级共有学生700人,估计九年级一周课外阅读时间为6小时的学生有多少人?。
2019年中考数学真题知识点分类汇总—数据的分析一、选择题1. (2019广东深圳,5,3分)这组数据20,21,22,23,23的中位数和众数分别是()A.20,23 B.21,23 C.21,22 D.22,23【答案】D【解析】数据是从小到大排列的,排在最中间的数据为22,则中位数是22;出现最多的数据是23,即众数是23.故选D.【知识点】中位数;众数2. (2019广西省贵港市,题号3,分值3分)若一组数据为:10,11,9,8,10,9,11,9,则这组数据的众数和中位数分别是()A.9,9 B.10,9 C.9,9.5 D.11,10【答案】C.【解析】解:将数据重新排列为8,9,9,9,10,10,11,11,∴这组数据的众数为9,中位数为9109.52+=,故选:C.【知识点】中位数;众数3. (2019广西河池,T6,F3分)某同学在体育备考训练期间,参加了七次测试,成绩依次为(单位:分)51,53,56,53,56,58,56,这组数据的众数、中位数分别是()A.53,53 B.53,56 C.56,53 D.56,56【答案】D.【解析】解:将数据重新排列为51,53,53,56,56,56,58,所以这组数据的中位数为56,众数为56,故选:D.【知识点】中位数;众数4. (2019贵州省毕节市,题号4,分值3分)在一次爱心义卖活动中,某中学九年级6个班捐献的义卖金额(单位:元)分别为800、820、930、860、820、850,这组数据的众数和中位数分别是()A.820,850 B.820,930 C.930,835 D.820,835【答案】D.【解析】解:将数据重新排列为800、820、820、850、860、930,所以这组数据的众数为820、中位数为=835,故选:D.【知识点】中位数;众数.5.(2019贵州遵义,6,4分)为参加全市中学生足球赛,某中学从全校学生中选拔22名足球运动员组建足球队,这22名运动员的年龄(岁)如右表所示,该足球队队员的平均年龄是(A) 12岁(B) 13岁(C) 14岁(D) 15岁【答案】B【解析】222153141013712⨯+⨯+⨯+⨯=x=13,所以选B【知识点】加权平均数6.(2019湖北十堰,6,3分)一次数学测试,某小组5名同学的成绩统计如下(有两个数据被遮盖):A.80,80 B.81,80 C.80,2 D.81,2【答案】A【解析】解:根据题意,得80×5﹣(81+77+80+82)=80(分),则丙的得分是80分;众数是80,故选:A.【知识点】众数;平均数7.(2019湖北孝感,4,3分)下列说法错误的是()A.在一定条件下,可能发生也可能不发生的事件称为随机事件B.一组数据中出现次数最多的数据称为这组数据的众数C.方差可以刻画数据的波动程度,方差越大,波动越小;方差越小,波动越大D.全面调查和抽样调查是收集数据的两种方式【答案】C【解析】解:A.在一定条件下,可能发生也可能不发生的事件称为随机事件,正确,故选项A不合题意;B.一组数据中出现次数最多的数据称为这组数据的众数,正确,故选项B不合题意;C.方差可以刻画数据的波动程度,方差越大,波动越大;方差越小,波动越小.故选项C符合题意;D.全面调查和抽样调查是收集数据的两种方式,正确,故选项D不合题意.故选:C.【知识点】命题与定理;全面调查与抽样调查;众数;方差;随机事件8.(2019湖南湘西,16,4分)从甲、乙、丙、丁四人中选一人参加射击比赛,经过三轮初赛,他们的平均成绩都是9环,方差分别是s甲2=0.25克,s乙2=0.3,s丙2=0.4,s丁2=0.35,你认为派谁去参赛更合适()A.甲B.乙C.丙D.丁【答案】A【解析】解:因为方差越小成绩越稳定,故选甲.故选:A.【知识点】方差9.(2019内蒙古包头市,3题,3分)一组数据2,3,5,x ,7,4,6,9的众数是4,则这组数据的中位数是( ) A.4B.C.5D.【答案】B. 【解析】解:∵这组数据的众数是4, ∴x =4.∴这组数据从小到大排列为2,3,4,4,5,6,7,8,中间两个数是4和5, 故中位数是(4+5)÷2=4.5 . 故选B.【知识点】众数,中位数.10. (2019宁夏,4,3分)为了解学生课外阅读时间情况,随机收集了30名学生一天课外阅读时间,整理如下表:则本次调查中阅读时间的中位数和众数分别是().A .0.70.7和B .0.90.7和C .10.7和D .0.9 1.1和 【答案】B【解析】由于共有30名学生,所以学生一天课外阅读时间的中位数位于数据排序后的第15和第16个数,由于第15和第16个数均为0.9,所以这组数据的中位数为0.9,因为这30个数据中,阅读时间为0.7的人数最多,也就是0.7的个数最多,所以众数为0.7,故本题正确选项为B . 【知识点】数据分析(求中位数和众数).11. (2019北京市,8题,2分)某校共有200名学生,为了解本学期学生参加公益劳动的情况,收集了他们参加公益劳动时间(单位:小时)等数据,以下是根据数据绘制的统计图表的一部分.下面有四个推断:①这200名学生参加公益劳动时间的平均数一定在24.5-25.5之间 ②这200名学生参加公益劳动时间的中位数在20-30之间③这200名学生中的初中生参加公益劳动时间的中位数一定在20-30之间 ④这200名学生中的高中生参加公益劳动时间的中位数可能在20-30之间 所有合理推断的序号是A .①③B .②④C .①②③D .①②③④【答案】C【解析】①由条形统计图可得男生人均参加公益劳动时间为24.5h ,女生为52.5h ,则平均数一定在24.5——25.5之间,故①正确.②由统计表类别栏计算可得,各时间段人数分别为15,60,51,62,12,则中位数在20——30之间,故②正确.③由统计表类别栏计算可得,初中学生各时间段人数分别为25,36,44,11;共有116人,∴初中生参加公益劳动时间的中位数在对应人数为36的那一栏;即 中位数在20——30之间;故③正确.学生类别5④由统计表类别栏计算可得,高中学段栏各时间段人数分别为15,35,15,18,1;共有84人,∴中位数在对应人数为35人对应的时间栏,即中位数在10——20之间;故④错误.【知识点】条形统计图、统计表、统计量——平均数、中位数.12.阅读【资料】,完成第8、9题【资料】如图,这是根据公开资料整理绘制而成的2004—2018年中美两国国内生产总值(GDP)的直方图及发展趋势线(注:趋势线由Excel系统根据数据自动生成,趋势线中的y表示GDP,x 表示年数)8.(2019年广西柳州市,8,3分)依据【资料】中所提供的信息,2016—2018年中国GDP的平均值大约是()A.12.30 B.14.19 C.19.57 D .19.71【答案】A【解析】从条形统计图中获取2016—2018年中国GDP 的值,则这三年的平均值为11.1912.2413.4612.303++≈,故选A .【知识点】平均数;条形统计图9.(2019年广西柳州市,8,3分)依据【资料】中所提供的信息,可以推算出的GDP 要超过美国,至少要到( ) A .2052 B .2038 C .2037 D .2034 【答案】B【解析】由统计图得:0.86x+0.468>0.53x+11.778,解得x >34,即到2038年GDP 超过美国,因此本题选B . 【知识点】折线统计图;一次函数与一元一次不等式13. (2019黑龙江大庆,7题,3分) 某企业1-6月份利润的变化情况如图所示,以下说法与图中反应的信息相符的是( )A.1-6月份利润的众数是130万元B.1-6月份利润的中位数是130万元C.1-6月份利润的平均数是130万元D.1-6月份利润的极差是40万元第7题图 【答案】D【解析】A.1-6月份利润的众数是120万元,故A 错误;B.1-6月份利润的中位数是125万元,故B 错误;C.1-6月份利润的平均数约是128万元,故C 错误;D.1-6月份利润的极差是40万元,故D 正确.故选D 【知识点】众数,中位数,平均数,极差14. (2019黑龙江省龙东地区,14,3)某班在阳光体育活动中,测试了五位学生的“一分钟跳绳”成绩,得到五个各不相同的数据,在统计时,出现了一处错误:将最低成绩写得更低了,则计算结果不受影响的是( ) A .平均数B .中位数C .方差D .极差【答案】B【解析】将最低成绩写得更低了,平均数变小,方差变大,极差也变大,但中位数不变,故选B. 【知识点】平均数;中位数;方差;极差15. (2019·江苏常州,8,2)随着时代的进步,人们对PM2.5(空气中直径小于等于2.5微米的颗粒)的关注日益密切.某市一天中PM2.5的值y 1(ug/m 3)随着时间t (h )的变化如图所示,设y 2表示0到t 时PM2.5的值的极差(即0时到时PM2.5的最大值与最小值的差),则y 2与t 的函数关系大致是( )ABC .2 D【答案】B【解析】本题考查了极差的意义及函数图像的应用,将一天24小时分成三段:0≤t ≤10、10≤t ≤20、20≤t ≤24,在0≤t ≤10,y 2随t 的增大而增大;在10≤t ≤20,y 2随t 的增大而不变(恒为85-42=43),在20≤t ≤24,y 2随t 的增大而增大,因此本题选B .【知识点】极差的意义;函数图像的应用A .B .C .D .第8题图16.(2019辽宁本溪,8,3分)下列事件属于必然事件的是A.打开电视,正在播出系列专题片“航拍中国”B.若原命题成立,则它的逆命题一定成立C.一组数据的方差越小,则这组数据的波动越小D.在数轴上任取一点,则该点表示的数一定是有理数【答案】C.【思路分析】本题主要考查了随机事件以及必然事件的定义,直接利用随机事件以及必然事件的定义分析得出答案.【解答过程】解:A选项,打开电视,正在播出系列专题片“航拍中国”,是随机事件,不合题意;B选项,若原命题成立,则它的逆命题一定成立,是随机事件,不合题意;C选项,一组数据的方差越小,则这组数据的波动越小,是必然事件,符合题意;D选项,在数轴上任取一点,则该点表示的数一定是有理数,是随机事件,不合题意,故选C.【知识点】方差;随机事件.17. (2019辽宁本溪,5,3分)下表是我市七个县(区)今年某日最高气温(℃)的统计结果:则该日最高气温(℃)的众数和中位数分别是:A. 25,25B.25,26C. 25,23D.24,25【答案】A.【解析】解:∵在这7个数中,25(℃)出现了3次,出现的次数最多,∴该日最高气温(℃)的众数是25;把这组数据按照从小到大的顺序排列位于中间位置的数是25, 则中位数为:25, 故选A .【知识点】中位数;众数.18. (2019广西贺州,3,3分)一组数据2,3,4,x ,6的平均数是4,则x 是( ) A .2 B .3 C .4 D .5【答案】D【解析】解:数据2,3,4,x ,6的平均数是4,∴234645x ++++=,解得5x =,故选:D .【知识点】算术平均数19.(2019广西梧州,10,3分)某校九年级模拟考试中,1班的六名学生的数学成绩如下:96,108,102,110,108,82.下列关于这组数据的描述不正确的是( ) A .众数是108 B .中位数是105 C .平均数是101 D .方差是93【答案】D【解析】解:把六名学生的数学成绩从小到大排列为:82,96,102,108,108,110,∴众数是108,中位数为1021081052+=,平均数为82961021081081101016+++++=, 方差为2222221[(82101)(96101)(102101)(108101)(108101)(110101)]94.3936-+-+-+-+-+-≈≠; 故选:D .【知识点】众数;算术平均数;中位数;方差20.(2019湖北荆州,8,3分)在一次体检中,甲、乙、丙、丁四位同学的平均身高为1.65米,而甲、乙、丙三位同学的平均身高为1.63米,下列说法一定正确的是()A.四位同学身高的中位数一定是其中一位同学的身高B.丁同学的身高一定高于其他三位同学的身高C.丁同学的身高为1.71米D.四位同学身高的众数一定是1.65【答案】C【解析】解:A、四位同学身高的中位数可能是某两个同学身高的平均数,故错误;B、丁同学的身高一定高于其他三位同学的身高,错误;C、丁同学的身高为1.65×4﹣1.63×3=1.71米,正确;D.四位同学身高的众数一定是1.65,错误.故选:C.【知识点】中位数;众数21.(2019湖南邵阳,5,3分)学校举行图书节义卖活动,将所售款项捐给其他贫困学生.在这次义卖活动中,某班级售书情况如表:下列说法正确的是()A.该班级所售图书的总收入是226元B.在该班级所售图书价格组成的一组数据中,中位数是4C.在该班级所售图书价格组成的一纽数据中,众数是15D.在该班级所售图书价格组成的一组数据中,方差是2【答案】A【解析】解:A 、该班级所售图书的总收入为314411*********⨯+⨯+⨯+⨯=,所以A 选项正确; B 、第25个数为4,第26个数为5,所以这组数据的中位数为4.5,所以B 选项错误; C 、这组数据的众数为4,所以C 选项错误; D 、这组数据的平均数为2264.5250x ==,所以这组数据的方差 222221[14(3 4.52)11(4 4.52)10(5 4.52)15(6 4.52)] 1.450S =-+-+-+-≈,所以D 选项错误. 故选:A .【知识点】中位数;众数;方差22. (2019江苏常州,8,2分)随着时代的进步,人们对PM 2.5(空气中直径小于等于2.5微米的颗粒)的关注日益密切.某市一天中PM 2.5的值y 1(ug /m 3)随时间t (h )的变化如图所示,设y 2表示0时到t 时PM 2.5的值的极差(即0时到t 时PM 2.5的最大值与最小值的差),则y 2与t 的函数关系大致是( )【答案】B【解析】解:当t =0时,极差y 2=85﹣85=0,当0<t ≤10时,极差y 2随t 的增大而增大,最大值为43; 当10<t ≤20时,极差y 2随t 的增大保持43不变; 当20<t ≤24时,极差y 2随t 的增大而增大,最大值为98; 故选:B .【知识点】函数的图象;极差23. (2019四川省雅安市,5,3分)已知一组数据5,4,x ,3,9的平均数为5,则这组数据的中位数是( )A.3 B.4 C.5 D.6 【答案】B【解析】根据一组数据5,4,x,3,9的平均数为5得:543955x++++=,得x=4,把这组数据按从小到大的顺序排列为3,4,4,5,9,所以中位数是4,故选B.【知识点】平均数;中位数24.(2019江苏徐州,5,3分)【答案】B【解析】本题解答时要把数据按由小到大的顺序重新排列.解:把数据重新排列为:37,37,38,39,40,40,40,所以它的众数和中位数分别为40,39,故本题选B.【知识点】众数;中位数二、填空题1. (2019广西北部湾,15,3分)甲,乙两人进行飞镖比赛,每人各投6次,甲的成绩(单位:环)为:9,8,9,6,10,6.甲,乙两人平均成绩相等,乙成绩的方差为4,那么成绩较为稳定的是.(填“甲”或“乙”)【答案】甲.【解析】解:甲的平均数x=16(9+8+9+6+10+6)=8,所以甲的方差=16[(9-8)2+(8-8)2+(9-8)2+(6-8)2+(10-8)2+(6-8)2]=73,因为甲的方差比乙的方差小,所以甲的成绩比较稳定. 故答案为甲.【知识点】平均数;方差.2. (2019贵州黔西南州,11,3分)一组数据:2,1,2,5,3,2的众数是 . 【答案】2【解析】解:在数据2,1,2,5,3,2中2出现3次,次数最多,所以众数为2,故答案为:2. 【知识点】众数3. (2019黑龙江绥化,14题,3分)已知一组数据1,3,5,7,9,则这组数据的方差是________. 【答案】8【解析】平均数=(1+3+5+7+9)÷5=5,∴方差=15[(1-5)2+(3-5)2+(5-5)2+(7-5)2+(9-5)2]=8.【知识点】方差4. (2019·湖南张家界,11,3)为了建设“书香校园”,某校七年级的同学积极捐书,下表统计了七(1)班40名学生的捐书情况:该班学生平均每人捐书 本. 【答案】6. 【解析】∵x =354751*********⨯+⨯+⨯+⨯+⨯=24040=6,∴故答案为6.【知识点】统计;加权平均数5.(2019湖南郴州,14,3分)如图是甲、乙两人6次投篮测试(每次投篮10个)成绩的统计图,甲、乙两人测试成绩的方差分别记作s甲2、s乙2,则s甲2s乙2.(填“>”,“=”或“<”)【答案】<【解析】解:由图象可知:乙偏离平均数大,甲偏离平均数小,所以乙波动大,不稳定,方差大,即S甲2<S乙2.故答案为:<.【知识点】折线统计图;方差6.(2019湖南郴州,12,3分)某校举行演讲比赛,七个评委对小明的打分如下:9,8,7,6,9,9,7,这组数据的中位数是.【答案】8【解析】解:把这组数据按照从小到大的顺序排列为:6,7,7,8,9,9,9,故这组数据的中位数是8.故答案为:8.【知识点】中位数7. (2019内蒙古包头市,16题,3分)甲、乙两班举行数学知识竞赛,参赛学生的竞赛得分统计结果如下表:某同学分析上表手得到如下结论:①甲、乙两班学生的平均成绩相同;②乙班优秀的人数少于甲班优秀的人数(竞赛得分≥85分为优秀);③甲班成绩的波动比乙班小.上述结论中正确的是.(填写所有正确结论的序号)【答案】①②③.【解析】解:对于①,表格中两个班级的平均分均为83分,故正确;对于②,甲班中位数是86分,说明优秀人数至少为23人;乙班中位数是84分,说明优秀人数最多为22人,故乙班优秀人数少于甲班优秀的人数,故正确;对于③,甲班方差<乙班方差,说明甲班成绩波动比乙班小.故答案为①②③.【知识点】平均数,中位数,方差.8.(2019宁夏,13,3分)为了解某班学生体育锻炼的用时情况,收集了该班学生一天用于体育锻炼的时间(单位:小时),整理成如图的统计图,则该班学生这天用于体育锻炼的平均时间为小时.【答案】1.15【解析】该班学生这天用于体育锻炼的平均时间为0.58116 1.512241.15816124⨯+⨯+⨯+⨯=+++小时.【知识点】加权平均数的计算.9.(2019山东东营,13,3分)东营市某中学为积极响应“书香东营,全民阅读”活动,助力学生良好阅读习惯的养成,形成浓厚的阅读氛围,随机调查了部分学生平均每天的阅读时间,统计结果如下表所示,则在本次调查中,学生阅读时间的中位数是____________小时.【答案】1【解析】由表格看出,共52个从小到大排列的数据,第26个和第27个数据都是1,故中位数是112+=1. 【知识点】中位数10. (2019北京市,15题,2分) 小天想要计算一组数据92,90,94,86,99,85的方差20s .在计算平均数的过程中,将这组数据中的每一个数都减去90,得到一组新数据2,0,4,-4,9,-5.记这组新数据的方差为21s ,则21s _______20s . (填“>”,“=”或“<”)【答案】=【解析】数据92,90,94,86,99,85的平均数929094869985916x +++++==;新数据2,0,4,-4,9,-5的平均数为()()204495`16x +++-++-==;∴()()()()()()2222222016892919091949186919991859163S ⎡⎤=-+-+-+-+-+-=⎣⎦;()()()()()()2222222116821014141915163S ⎡⎤=-+-+-+--+-+--=⎣⎦;∴2201S S =.事实上由“将一组数据中的每个数加上或减去同一个数后,所得的新数据的方差与原数据的方差相同”易得2201S S =.【知识点】方差的计算和性质、平均数.11. (2019年广西柳州市,18,3分)已知一组数据共有5 个数,它们的方差是0.4,众数、中位数和平均数都是8,最大的数是9,则最小的数是___________.【答案】7【思路分析】根据5个数的平均数是8,可知这5个数的和为40,根据5个数的中位数是8,得出中间的数是8,根据众数是8,得出至少有2个8,再根据5个数的和减去2个8和1个9得出前面2个数的和为15,再根据方差得出前面的2个数为7和8,即可得出结果.【解题过程】∵5个数的平均数是8,∴这5个数的和为40,∵5个数的中位数是8,∴中间的数是8,∵众数是8,∴至少有2个8,∵40﹣8﹣8﹣9=15,由方差是0.4得:前面的2个数的为7和8,∴最小的数是7.【知识点】方差、平均数、中位数、众数12. (2019贵州省安顺市,16,4分)已知一组数据x1,x2,x3,…,x n的方差为2,则另一组数据3x1,3x2,3x3,…,3x n的方差为.【答案】18【思路分析】如果一组数据x1,x2,x3,…,x n的方差是s2,若平均数为x那么数据kx1,kx2,kx3,…,kx n的方差是k2s2(k≠0),依此规律即可得出答案.【解题过程】解:∵一组数据x1,x2,x3,…,x n的方差为2,∴另一组数据3x1,3x2,3x3,…,3x n的方差为32×2=18.故答案为18.【知识点】方差13.(2019·江苏镇江,3,2)一组数据4,3,x,1,5的众数是5,则x=.【答案】5.【解析】本题考查了众数的概念,根据一组数据中出现次数最多的那个数据叫做这组数据的众数,可知“数据4,3,x,1,5的众数是5”,则这组数据中必有两个5,故x=5,因此本题答案为5.【知识点】统计;众数14.(2019广西桂林,14,3分)某班学生经常采用“小组合作学习”的方式进行学习,王老师每周对各小组合作学习的情况进行综合评分.下表是各小组其中一周的得分情况:这组数据的众数是.【答案】90【解析】解:众数是一组数据中出现次数最多的数.90出现了4次,出现的次数最多,则众数是90;故答案为:90【知识点】众数15.(2019江苏镇江,3,2分)一组数据4,3,x,1,5的众数是5,则x=.【答案】5【解析】解:数据4,3,x,1,5的众数是5,5∴=,故答案为:5.x【知识点】众数16.(2019内蒙古赤峰,16,3分)如图是甲、乙两名射击运动员10次射击成绩的统计表和折线统计图.你认为甲、乙两名运动员,的射击成绩更稳定.(填甲或乙)【答案】乙【解析】解:由统计表可知,甲和乙的平均数、中位数和众数都相等,由折线统计图可知,乙的波动小,成绩比较稳定,故答案为:乙.【知识点】折线统计图;算术平均数;中位数;众数;方差17.(2019四川泸州,13,3分)4的算术平方根是.【答案】2【解析】解:4的算术平方根是2.故答案为:2.【知识点】算术平方根三、解答题1. (2019广西北部湾,22,8分)红树林学校在七年级新生中举行了全员参加的“防溺水”安全知识竞赛,试卷题目共10题,每题10分.现分别从三个班中各随机取10名同学的成绩(单位:分),收集数据如下:1班:90,70,80,80,80,80,80,90,80,100;2班:70,80,80,80,60,90,90,90,100,90;3班:90,60,70,80,80,80,80,90,100,100;整理数据:分析数据:根据以上信息回答下列问题:(1)请直接写出表格中a,b,c,d的值;(2)比较这三组样本数据的平均数、中位数和众数,你认为哪个班的成绩比较好?请说明理由;(3)为了让学生重视安全知识的学习,学校将给竞赛成绩满分的同学颁发奖状,该校七年级新生共570人,试估计需要准备多少张奖状?【思路分析】本题主要考查众数、平均数、中位数,用样本估计总体.(1)根据众数和中位数的概念求解可得;(2)分别从平均数、众数和中位数三个方面比较大小即可得;(3)利用样本估计总体思想求解可得.【解题过程】解:(1)由题意知a=4,b=110×(90+60+70+80+80+80+80+90+100+100)=83,2班成绩重新排列为60,70,80,80,80,90,90,90,90,100,∴c=80+902=85,d=90;(2)从平均数上看三个班都一样;从中位数看,1班和3班一样是80,2班最高是85;从众数上看,1班和3班都是80,2班是90;综上所述,2班成绩比较好;(3)570×430=76(张),答:估计需要准备76张奖状.【知识点】用样本估计总体;算术平均数;中位数;众数.2.(2019湖北咸宁,20,8分)某校为了解七、八年级学生一分钟跳绳情况,从这两个年级随机抽取50名学生进行测试,并对测试成绩(一分钟跳绳次数)进行整理、描述和分析,下面给出了部分信息:七、八年级学生一分钟跳绳成绩分析表七年级学生一分钟跳绳成绩(数据分7组:60≤x<80,80≤x<100,…,180≤x<200)在100≤x<120这一组的是:100 101 102 103 105 106 108 109 109 110 110 111 112 113 115 115 115 116 117 119根据以上信息,回答下列问题:(1)表中a=;(2)在这次测试中,七年级甲同学的成绩122次,八年级乙同学的成绩125次,他们的测试成绩,在各自年级所抽取的50名同学中,排名更靠前的是(填“甲”或“乙”),理由是.(3)该校七年级共有500名学生,估计一分钟跳绳不低于116次的有多少人?【思路分析】(1)根据中位数,结合条形统计图及所给数据求解可得;(2)将甲、乙成绩与对应的中位数对比,从俄日得出答案;(3)利用样本估计总体思想求解可得.【解题过程】解:(1)∵七年级50名学生成绩的中位数是第25、26个数据的平均数,而第25、26个数据分别是117、119,∴中位数a118,故答案为:118;(2)∴在各自年级所抽取的50名同学中,排名更靠前的是甲,理由是甲的成绩122超过中位数118,乙的成绩125低于其中位数126,故答案为:甲,甲的成绩122超过中位数118,乙的成绩125低于其中位数126.(3)估计一分钟跳绳不低于116次的有500270(人).【知识点】用样本估计总体;频数(率)分布直方图;:算术平均数;中位数;众数3. (2019黑龙江大庆,23题,7分)某校为了解七年级学生的体重情况,随机抽取了七年级m名学生进行调查,将抽取学生的体重情况绘制如下不完整的频数分布表和扇形统计图.第23题图请根据图表信息回答下列问题:(1)填空:①m =______;②n =______;③在扇形统计图中,C 组所在扇形的圆心角的度数等于______度;(2)若把每组中各个体重值用这组数据的中间值代替(例如:A 组数据的中间值为40千克),则被调查学生的平均体重是多少千克?(3)如果该校七年级有1000名学生,请估算七年级体重低于47.5千克的学生大约有多少人? 【思路分析】(1)20÷20%=100(人),100-10-40-20-10=20(人),40360144100⨯=;(2)总体重除以总人数可得;(3)用样本百分比计算总体中体重低于47.5千克的人数. 【解题过程】(1)①m =100;②n =20;③144度;(2)(10×40+20×45+40×50+20×55+10×60)÷100=50(千克).答:被调查学生的平均体重是50千克. (3)1000×10+20100=300(人),答:七年级体重低于47.5千克的学生大约有300人.【知识点】扇形统计图,总数频数百分比之间的关系,加权平均数,样本估计总体4. (2019吉林长春,19,7分)网上学习越来越受到学生的喜爱.某校信息小组为了解七年级学生网上学习的情况,从该校七年级随机抽取20名学生,进行了每周网上学习的调查.数据如下(单位:时): 3 2.5 0.6 1.5 1 2 2 3.3 2.5 1.8 2.5 2.2 3.5 4 1.5 2.5 3.1 2.8 3.3 2.4 整理上面的数据,得到表格如下:样本数据的平均数、中位数、众数如下表所示:根据以上信息,解答下列问题:(1)上表中的中位数m 的值为 ,众数的值为(2)用样本中的平均数估计该校七年级学生平均每人一学期(按18周计算)网上学习的时间。
2019年福建省中考数学试卷一、选择题(每小题4分,共40分)1.(4分)计算22+(﹣1)0的结果是()A.5B.4C.3D.22.(4分)北京故宫的占地面积约为720000m2,将720000用科学记数法表示为()A.72×104B.7.2×105C.7.2×106D.0.72×106 3.(4分)下列图形中,一定既是轴对称图形又是中心对称图形的是()A.等边三角形B.直角三角形C.平行四边形D.正方形4.(4分)如图是由一个长方体和一个球组成的几何体,它的主视图是()A.B.C.D.5.(4分)已知正多边形的一个外角为36°,则该正多边形的边数为()A.12B.10C.8D.66.(4分)如图是某班甲、乙、丙三位同学最近5次数学成绩及其所在班级相应平均分的折线统计图,则下列判断错误的是()A.甲的数学成绩高于班级平均分,且成绩比较稳定B.乙的数学成绩在班级平均分附近波动,且比丙好C.丙的数学成绩低于班级平均分,但成绩逐次提高D.就甲、乙、丙三个人而言,乙的数学成绩最不稳7.(4分)下列运算正确的是()A.a•a3=a3B.(2a)3=6a3C.a6÷a3=a2D.(a2)3﹣(﹣a3)2=08.(4分)《增删算法统宗》记载:“有个学生资性好,一部孟子三日了,每日增添一倍多,问君每日读多少?”其大意是:有个学生天资聪慧,三天读完一部《孟子》,每天阅读的字数是前一天的两倍,问他每天各读多少个字?已知《孟子》一书共有34685个字,设他第一天读x个字,则下面所列方程正确的是()A.x+2x+4x=34685B.x+2x+3x=34685C.x+2x+2x=34685D.x+x+x=346859.(4分)如图,P A、PB是⊙O切线,A、B为切点,点C在⊙O上,且∠ACB=55°,则∠APB等于()A.55°B.70°C.110°D.125°10.(4分)若二次函数y=|a|x2+bx+c的图象经过A(m,n)、B(0,y1)、C(3﹣m,n)、D(,y2)、E(2,y3),则y1、y2、y3的大小关系是()A.y1<y2<y3B.y1<y3<y2C.y3<y2<y1D.y2<y3<y1二、填空题(每小题4分,共24分)11.(4分)因式分解:x2﹣9=.12.(4分)如图,数轴上A、B两点所表示的数分别是﹣4和2,点C是线段AB的中点,则点C所表示的数是.13.(4分)某校征集校运会会徽,遴选出甲、乙、丙三种图案.为了解何种图案更受欢迎,随机调查了该校100名学生,其中60名同学喜欢甲图案,若该校共有2000人,根据所学的统计知识可以估计该校喜欢甲图案的学生有人.14.(4分)在平面直角坐标系xOy中,▱OABC的三个顶点O(0,0)、A(3,0)、B(4,2),则其第四个顶点是.15.(4分)如图,边长为2的正方形ABCD中心与半径为2的⊙O的圆心重合,E、F分别是AD、BA的延长线与⊙O的交点,则图中阴影部分的面积是.(结果保留π)16.(4分)如图,菱形ABCD顶点A在函数y=(x>0)的图象上,函数y=(k>3,x>0)的图象关于直线AC对称,且经过点B,D两点,若AB=2,∠BAD=30°,则k =.三、解答题(共86分)17.(8分)解方程组.18.(8分)如图,点E、F分别是矩形ABCD的边AB、CD上的一点,且DF=BE.求证:AF=CE.19.(8分)先化简,再求值:(x﹣1)÷(x﹣),其中x=+1.20.(8分)已知△ABC和点A',如图.(1)以点A'为一个顶点作△A'B'C',使△A'B'C'∽△ABC,且△A'B'C'的面积等于△ABC 面积的4倍;(要求:尺规作图,不写作法,保留作图痕迹)(2)设D、E、F分别是△ABC三边AB、BC、AC的中点,D'、E'、F'分别是你所作的△A'B'C'三边A'B'、B'C'、C'A'的中点,求证:△DEF∽△D'E'F'.21.(8分)在Rt△ABC中,∠ABC=90°,∠ACB=30°,将△ABC绕点C顺时针旋转一定的角度α得到△DEC,点A、B的对应点分别是D、E.(1)当点E恰好在AC上时,如图1,求∠ADE的大小;(2)若α=60°时,点F是边AC中点,如图2,求证:四边形BEDF是平行四边形.22.(10分)某工厂为贯彻落实“绿水青山就是金山银山“的发展理念,投资组建了日废水处理量为m吨的废水处理车间,对该厂工业废水进行无害化处理.但随着工厂生产规模的扩大,该车间经常无法完成当天工业废水的处理任务,需要将超出日废水处理量的废水交给第三方企业处理.已知该车间处理废水,每天需固定成本30元,并且每处理一吨废水还需其他费用8元;将废水交给第三方企业处理,每吨需支付12元.根据记录,5月21日,该厂产生工业废水35吨,共花费废水处理费370元.(1)求该车间的日废水处理量m;(2)为实现可持续发展,走绿色发展之路,工厂合理控制了生产规模,使得每天废水处理的平均费用不超过10元/吨,试计算该厂一天产生的工业废水量的范围.23.(10分)某种机器使用期为三年,买方在购进机器时,可以给各台机器分别一次性额外购买若干次维修服务,每次维修服务费为2000元.每台机器在使用期间,如果维修次数未超过购机时购买的维修服务次数,每次实际维修时还需向维修人员支付工时费500元;如果维修次数超过购机时购买的维修服务次数,超出部分每次维修时需支付维修服务费5000元,但无需支付工时费.某公司计划购买1台该种机器,为决策在购买机器时应同时一次性额外购买几次维修服务,搜集并整理了100台这种机器在三年使用期内的维修次数,整理得下表;(1)以这100台机器为样本,估计“1台机器在三年使用期内维修次数不大于10”的概率;(2)试以这100机器维修费用的平均数作为决策依据,说明购买1台该机器的同时应一次性额外购10次还是11次维修服务?24.(12分)如图,四边形ABCD内接于⊙O,AB=AC,AC⊥BD,垂足为E,点F在BD 的延长线上,且DF=DC,连接AF、CF.(1)求证:∠BAC=2∠CAD;(2)若AF=10,BC=4,求tan∠BAD的值.25.(14分)已知抛物线y=ax2+bx+c(b<0)与x轴只有一个公共点.(1)若抛物线与x轴的公共点坐标为(2,0),求a、c满足的关系式;(2)设A为抛物线上的一定点,直线l:y=kx+1﹣k与抛物线交于点B、C,直线BD垂直于直线y=﹣1,垂足为点D.当k=0时,直线l与抛物线的一个交点在y轴上,且△ABC为等腰直角三角形.①求点A的坐标和抛物线的解析式;②证明:对于每个给定的实数k,都有A、D、C三点共线.2019年福建省中考数学试卷答案与解析一、选择题(每小题4分,共40分)1.(4分)计算22+(﹣1)0的结果是()A.5B.4C.3D.2【分析】分别计算平方、零指数幂,然后再进行实数的运算即可.【解答】解:原式=4+1=5故选:A.【点评】此题考查了实数的运算,解答本题关键是掌握零指数幂的运算法则,难度一般.2.(4分)北京故宫的占地面积约为720000m2,将720000用科学记数法表示为()A.72×104B.7.2×105C.7.2×106D.0.72×106【分析】用科学记数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n为整数,据此判断即可.【解答】解:将720000用科学记数法表示为7.2×105.故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(4分)下列图形中,一定既是轴对称图形又是中心对称图形的是()A.等边三角形B.直角三角形C.平行四边形D.正方形【分析】根据轴对称图形和中心对称图形的概念对各选项分析判断即可得解.【解答】解:A、等边三角形是轴对称图形,不是中心对称图形,故本选项错误;B、直角三角形不是轴对称图形,也不是中心对称图形,故本选项错误;C、平行四边形不是轴对称图形,是中心对称图形,故本选项错误;D、正方形既是轴对称图形,又是中心对称图形,故此选项正确.故选:D.【点评】本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合4.(4分)如图是由一个长方体和一个球组成的几何体,它的主视图是()A.B.C.D.【分析】从正面看几何体,确定出主视图即可.【解答】解:几何体的主视图为:故选:C.【点评】此题考查了简单组合体的三视图,主视图即为从正面看几何体得到的视图.5.(4分)已知正多边形的一个外角为36°,则该正多边形的边数为()A.12B.10C.8D.6【分析】利用多边形的外角和是360°,正多边形的每个外角都是36°,即可求出答案.【解答】解:360°÷36°=10,所以这个正多边形是正十边形.故选:B.【点评】本题主要考查了多边形的外角和定理.是需要识记的内容.6.(4分)如图是某班甲、乙、丙三位同学最近5次数学成绩及其所在班级相应平均分的折线统计图,则下列判断错误的是()A.甲的数学成绩高于班级平均分,且成绩比较稳定B.乙的数学成绩在班级平均分附近波动,且比丙好C.丙的数学成绩低于班级平均分,但成绩逐次提高D.就甲、乙、丙三个人而言,乙的数学成绩最不稳【分析】折线图是用一个单位表示一定的数量,根据数量的多少描出各点,然后把各点用线段依次连接起来.以折线的上升或下降来表示统计数量增减变化.方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好【解答】解:A.甲的数学成绩高于班级平均分,且成绩比较稳定,正确;B.乙的数学成绩在班级平均分附近波动,且比丙好,正确;C.丙的数学成绩低于班级平均分,但成绩逐次提高,正确D.就甲、乙、丙三个人而言,丙的数学成绩最不稳,故D错误.故选:D.【点评】本题是折线统计图,要通过坐标轴以及图例等读懂本图,根据图中所示的数量解决问题.7.(4分)下列运算正确的是()A.a•a3=a3B.(2a)3=6a3C.a6÷a3=a2D.(a2)3﹣(﹣a3)2=0【分析】各项计算得到结果,即可作出判断.【解答】解:A、原式=a4,不符合题意;B、原式=8a3,不符合题意;C、原式=a3,不符合题意;D、原式=0,符合题意,故选:D.【点评】此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.8.(4分)《增删算法统宗》记载:“有个学生资性好,一部孟子三日了,每日增添一倍多,问君每日读多少?”其大意是:有个学生天资聪慧,三天读完一部《孟子》,每天阅读的字数是前一天的两倍,问他每天各读多少个字?已知《孟子》一书共有34685个字,设他第一天读x个字,则下面所列方程正确的是()A.x+2x+4x=34685B.x+2x+3x=34685C.x+2x+2x=34685D.x+x+x=34685【分析】设他第一天读x个字,根据题意列出方程解答即可.【解答】解:设他第一天读x个字,根据题意可得:x+2x+4x=34685,故选:A.【点评】此题考查由实际问题抽象出一元一次方程,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程.9.(4分)如图,P A、PB是⊙O切线,A、B为切点,点C在⊙O上,且∠ACB=55°,则∠APB等于()A.55°B.70°C.110°D.125°【分析】根据圆周角定理构造它所对的弧所对的圆心角,即连接OA,OB,求得∠AOB =110°,再根据切线的性质以及四边形的内角和定理即可求解.【解答】解:连接OA,OB,∵P A,PB是⊙O的切线,∴P A⊥OA,PB⊥OB,∵∠ACB=55°,∴∠AOB=110°,∴∠APB=360°﹣90°﹣90°﹣110°=70°.故选:B.【点评】本题考查了多边形的内角和定理,切线的性质,圆周角定理的应用,关键是求出∠AOB的度数.10.(4分)若二次函数y=|a|x2+bx+c的图象经过A(m,n)、B(0,y1)、C(3﹣m,n)、D(,y2)、E(2,y3),则y1、y2、y3的大小关系是()A.y1<y2<y3B.y1<y3<y2C.y3<y2<y1D.y2<y3<y1【分析】由点A(m,n)、C(3﹣m,n)的对称性,可求函数的对称轴为x=,再由B (0,y1)、D(,y2)、E(2,y3)与对称轴的距离,即可判断y1>y3>y2;【解答】解:∵经过A(m,n)、C(3﹣m,n),∴二次函数的对称轴x=,∵B(0,y1)、D(,y2)、E(2,y3)与对称轴的距离B最远,D最近,∵|a|>0,∴y1>y3>y2;故选:D.【点评】本题考查二次函数的图象及性质;熟练掌握函数图象上点的特征是解题的关键.二、填空题(每小题4分,共24分)11.(4分)因式分解:x2﹣9=(x+3)(x﹣3).【分析】原式利用平方差公式分解即可.【解答】解:原式=(x+3)(x﹣3),故答案为:(x+3)(x﹣3).【点评】此题考查了因式分解﹣运用公式法,熟练掌握平方差公式是解本题的关键.12.(4分)如图,数轴上A、B两点所表示的数分别是﹣4和2,点C是线段AB的中点,则点C所表示的数是﹣1.【分析】根据A、B两点所表示的数分别为﹣4和2,利用中点公式求出线段AB的中点所表示的数即可.【解答】解:∵数轴上A,B两点所表示的数分别是﹣4和2,∴线段AB的中点所表示的数=(﹣4+2)=﹣1.即点C所表示的数是﹣1.故答案为:﹣1【点评】本题考查的是数轴,熟知数轴上两点间的距离公式是解答此题的关键.13.(4分)某校征集校运会会徽,遴选出甲、乙、丙三种图案.为了解何种图案更受欢迎,随机调查了该校100名学生,其中60名同学喜欢甲图案,若该校共有2000人,根据所学的统计知识可以估计该校喜欢甲图案的学生有1200人.【分析】用总人数乘以样本中喜欢甲图案的频率即可求得总体中喜欢甲图案的人数.【解答】解:由题意得:2000×=1200人,故答案为:1200.【点评】本题考查了用样本估计总体的知识,解题的关键是求得样本中喜欢甲图案的频率,难度不大.14.(4分)在平面直角坐标系xOy中,▱OABC的三个顶点O(0,0)、A(3,0)、B(4,2),则其第四个顶点是(1,2).【分析】由题意得出OA=3,由平行四边形的性质得出BC∥OA,BC=OA=3,即可得出结果.【解答】解:∵O(0,0)、A(3,0),∴OA=3,∵四边形OABC是平行四边形,∴BC∥OA,BC=OA=3,∵B(4,2),∴点C的坐标为(4﹣3,2),即C(1,2);故答案为:(1,2).【点评】本题考查了平行四边形的性质、坐标与图形性质;熟练掌握平行四边形的性质是解题的关键.15.(4分)如图,边长为2的正方形ABCD中心与半径为2的⊙O的圆心重合,E、F分别是AD、BA的延长线与⊙O的交点,则图中阴影部分的面积是π﹣1.(结果保留π)【分析】延长DC,CB交⊙O于M,N,根据圆和正方形的面积公式即可得到结论.【解答】解:延长DC,CB交⊙O于M,N,则图中阴影部分的面积=×(S圆O﹣S正方形ABCD)=×(4π﹣4)=π﹣1,故答案为:π﹣1.【点评】本题考查了扇形面积的计算,正方形的性质,正确的识别图形是解题的关键.16.(4分)如图,菱形ABCD顶点A在函数y=(x>0)的图象上,函数y=(k>3,x>0)的图象关于直线AC对称,且经过点B,D两点,若AB=2,∠BAD=30°,则k =6+2.【分析】连接OC,AC,过A作AE⊥x轴于点E,延长DA与x轴交于点F,过点D作DG⊥x轴于点G,得O、A、C在第一象限的角平分线上,求得A点坐标,进而求得D 点坐标,便可求得结果.【解答】解:连接OC,AC,过A作AE⊥x轴于点E,延长DA与x轴交于点F,过点D 作DG⊥x轴于点G,∵函数y=(k>3,x>0)的图象关于直线AC对称,∴O,A,C三点在同直线上,且∠COE=45°,∴OE=AE,不妨设OE=AE=a,则A(a,a),∵点A在在反比例函数y=(x>0)的图象上,∴a2=3,∴a=,∴AE=OE=,∵∠BAD=30°,∴∠OAF=∠CAD=∠BAD=15°,∵∠OAE=∠AOE=45°,∴∠EAF=30°,∴AF=,EF=AE tan30°=1,∵AB=AD=2,AE∥DG,∴EF=EG=1,DG=2AE=2,∴OG=OE+EG=+1,∴D(+1,2),故答案为:6+2.【点评】本题是一次函数图象与反比例函数图象的交点问题,主要考查了一次函数与反比例函数的性质,菱形的性质,解直角三角形,关键是确定A点在第一象限的角平分线上.三、解答题(共86分)17.(8分)解方程组.【分析】方程组利用加减消元法求出解即可.【解答】解:,①+②得:3x=9,即x=3,把x=3代入①得:y=﹣2,则方程组的解为.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.18.(8分)如图,点E、F分别是矩形ABCD的边AB、CD上的一点,且DF=BE.求证:AF=CE.【分析】由SAS证明△ADF≌△BCE,即可得出AF=CE.【解答】证明:∵四边形ABCD是矩形,∴∠D=∠B=90°,AD=BC,在△ADF和△BCE中,,∴△ADF≌△BCE(SAS),∴AF=CE.【点评】本题考查了矩形的性质、全等三角形的判定与性质;熟练掌握矩形的性质,证明三角形全等是解题的关键.19.(8分)先化简,再求值:(x﹣1)÷(x﹣),其中x=+1.【分析】先化简分式,然后将x的值代入计算即可.【解答】解:原式=(x﹣1)÷=(x﹣1)•=,当x=+1,原式==1+.【点评】本题考查了分式的化简求值,熟练掌握分式混合运算法则是解题的关键.20.(8分)已知△ABC和点A',如图.(1)以点A'为一个顶点作△A'B'C',使△A'B'C'∽△ABC,且△A'B'C'的面积等于△ABC 面积的4倍;(要求:尺规作图,不写作法,保留作图痕迹)(2)设D、E、F分别是△ABC三边AB、BC、AC的中点,D'、E'、F'分别是你所作的△A'B'C'三边A'B'、B'C'、C'A'的中点,求证:△DEF∽△D'E'F'.【分析】(1)分别作A'C'=2AC、A'B'=2AB、B'C'=2BC得△A'B'C'即可所求.(2)根据中位线定理易得∴△DEF∽△ABC,△D'E'F'∽△A'B'C',故△DEF∽△D'E'F'【解答】解:(1)作线段A'C'=2AC、A'B'=2AB、B'C'=2BC,得△A'B'C'即可所求.证明:∵A'C'=2AC、A'B'=2AB、B'C'=2BC,∴△ABC∽△A′B′C′,∴(2)证明:∵D、E、F分别是△ABC三边AB、BC、AC的中点,∴DE=,,,∴△DEF∽△ABC同理:△D'E'F'∽△A'B'C',由(1)可知:△ABC∽△A′B′C′,∴△DEF∽△D'E'F'.【点评】本题考查了相似三角形的判定和性质及三角形的中位线定理,解答本题的关键是掌握相似三角形的判定方法,本题用到的是三边法.21.(8分)在Rt△ABC中,∠ABC=90°,∠ACB=30°,将△ABC绕点C顺时针旋转一定的角度α得到△DEC,点A、B的对应点分别是D、E.(1)当点E恰好在AC上时,如图1,求∠ADE的大小;(2)若α=60°时,点F是边AC中点,如图2,求证:四边形BEDF是平行四边形.【分析】(1)如图1,利用旋转的性质得CA=CD,∠ECD=∠BCA=30°,∠DEC=∠ABC=90°,再根据等腰三角形的性质和三角形内角和计算出∠CAD,从而利用互余和计算出∠ADE的度数;(2)如图2,利用直角三角形斜边上的中线性质得到BF=AC,利用含30度的直角三角形三边的关系得到AB=AC,则BF=AB,再根据旋转的性质得到∠BCE=∠ACD=60°,CB=CE,DE=AB,从而得到DE=BF,△ACD和△BCE为等边三角形,接着证明△CFD≌△ABC得到DF=BC,然后根据平行四边形的判定方法得到结论.【解答】(1)解:如图1,∵△ABC绕点C顺时针旋转α得到△DEC,点E恰好在AC 上,∴CA=CD,∠ECD=∠BCA=30°,∠DEC=∠ABC=90°,∵CA=CD,∴∠CAD=∠CDA=(180°﹣30°)=75°,∴∠ADE=90°﹣75°=15°;(2)证明:如图2,∵点F是边AC中点,∴BF=AC,∵∠ACB=30°,∴AB=AC,∴BF=AB,∵△ABC绕点C顺时针旋转60得到△DEC,∴∠BCE=∠ACD=60°,CB=CE,DE=AB,∴DE=BF,△ACD和△BCE为等边三角形,∴BE=CB,∵点F为△ACD的边AC的中点,∴DF⊥AC,易证得△CFD≌△ABC,∴DF=BC,∴DF=BE,而BF=DE,∴四边形BEDF是平行四边形.【点评】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了平行四边形的判定.22.(10分)某工厂为贯彻落实“绿水青山就是金山银山“的发展理念,投资组建了日废水处理量为m吨的废水处理车间,对该厂工业废水进行无害化处理.但随着工厂生产规模的扩大,该车间经常无法完成当天工业废水的处理任务,需要将超出日废水处理量的废水交给第三方企业处理.已知该车间处理废水,每天需固定成本30元,并且每处理一吨废水还需其他费用8元;将废水交给第三方企业处理,每吨需支付12元.根据记录,5月21日,该厂产生工业废水35吨,共花费废水处理费370元.(1)求该车间的日废水处理量m;(2)为实现可持续发展,走绿色发展之路,工厂合理控制了生产规模,使得每天废水处理的平均费用不超过10元/吨,试计算该厂一天产生的工业废水量的范围.【分析】(1)求出该车间处理35吨废水所需费用,将其与370比较后可得出m<35,根据废水处理费用=该车间处理m吨废水的费用+第三方处理超出部分废水的费用,即可得出关于m的一元一次方程,解之即可得出结论;(2)设一天产生工业废水x吨,分0<x≤20及x>20两种情况考虑,利用每天废水处理的平均费用不超过10元/吨,可得出关于x的一元一次不等式,解之即可得出结论.【解答】解:(1)∵35×8+30=310(元),310<370,∴m<35.依题意,得:30+8m+12(35﹣m)=370,解得:m=20.答:该车间的日废水处理量为20吨.(2)设一天产生工业废水x吨,当0<x≤20时,8x+30≤10x,解得:15≤x≤20;当x>20时,12(x﹣20)+8×20+30≤10x,解得:20<x≤25.综上所述,该厂一天产生的工业废水量的范围为15≤x≤25.【点评】本题考查了一元一次方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出一元一次方程;(2)根据各数量之间的关系,正确列出一元一次不等式.23.(10分)某种机器使用期为三年,买方在购进机器时,可以给各台机器分别一次性额外购买若干次维修服务,每次维修服务费为2000元.每台机器在使用期间,如果维修次数未超过购机时购买的维修服务次数,每次实际维修时还需向维修人员支付工时费500元;如果维修次数超过购机时购买的维修服务次数,超出部分每次维修时需支付维修服务费5000元,但无需支付工时费.某公司计划购买1台该种机器,为决策在购买机器时应同时一次性额外购买几次维修服务,搜集并整理了100台这种机器在三年使用期内的维修次数,整理得下表;(1)以这100台机器为样本,估计“1台机器在三年使用期内维修次数不大于10”的概率;(2)试以这100机器维修费用的平均数作为决策依据,说明购买1台该机器的同时应一次性额外购10次还是11次维修服务?【分析】(1)利用概率公式计算即可.(2)分别求出购买10次,11次的费用即可判断.【解答】解:(1)“1台机器在三年使用期内维修次数不大于10”的概率==0.6.(2)购买10次时,此时这100台机器维修费用的平均数y1=(24000×10+24500×20+25000×30+30000×30+35000×10)=27300购买11次时,此时这100台机器维修费用的平均数y2=(26000×10+26500×20+27000×30+27500×30+32500×10)=27500,∵27300<27500,所以,选择购买10次维修服务.【点评】本题考查利用频率估计概率,加权平均数,列表法等知识,解题的关键是理解题意,熟练掌握基本知识,属于中考常考题型.24.(12分)如图,四边形ABCD内接于⊙O,AB=AC,AC⊥BD,垂足为E,点F在BD 的延长线上,且DF=DC,连接AF、CF.(1)求证:∠BAC=2∠CAD;(2)若AF=10,BC=4,求tan∠BAD的值.【分析】(1)根据等腰三角形的性质得出∠ABC=∠ACB,根据圆心角、弧、弦的关系得到=,即可得到∠ABC=∠ADB,根据三角形内角和定理得到∠ABC=(180°﹣∠BAC)=90°﹣∠BAC,∠ADB=90°﹣∠CAD,从而得到∠BAC=∠CAD,即可证得结论;(2)易证得BC=CF=4,即可证得AC垂直平分BF,证得AB=AF=10,根据勾股定理求得AE、CE、BE,根据相似三角形的性质求得DE,即可求得BD,然后根据三角形面积公式求得DH,进而求得AH,解直角三角函数求得tan∠BAD的值.【解答】解:(1)∵AB=AC,∴=,∠ABC=∠ACB,∴∠ABC=∠ADB,∠ABC=(180°﹣∠BAC)=90°﹣∠BAC,∵BD⊥AC,∴∠ADB=90°﹣∠CAD,∴∠BAC=∠CAD,∴∠BAC=2∠CAD;(2)解:∵DF=DC,∴∠DFC=∠DCF,∴∠BDC=2∠DFC,∴∠BFC=∠BDC=∠BAC=∠FBC,∴CB=CF,又BD⊥AC,∴AC是线段BF的中垂线,AB=AF=10,AC=10.又BC=4,设AE=x,CE=10﹣x,由AB2﹣AE2=BC2﹣CE2,得100﹣x2=80﹣(10﹣x)2,解得x=6,∴AE=6,BE=8,CE=4,∵∠ACD=∠ABD,∠CED=∠BEA,∴△CED∽△BEA,∴=,∴DE===3,∴BD=BE+DE=3+8=11,作DH⊥AB,垂足为H,∵AB•DH=BD•AE,∴DH===,∴BH==,∴AH=AB﹣BH=10﹣=,∴tan∠BAD===.【点评】本题属于圆综合题,考查了圆周角定理,勾股定理,锐角三角函数,圆心角、弧、弦的关系,等腰三角形的判定和性质等知识,解题的关键是熟练掌握并灵活运用性质定理,属于中考压轴题.25.(14分)已知抛物线y=ax2+bx+c(b<0)与x轴只有一个公共点.(1)若抛物线与x轴的公共点坐标为(2,0),求a、c满足的关系式;(2)设A为抛物线上的一定点,直线l:y=kx+1﹣k与抛物线交于点B、C,直线BD垂直于直线y=﹣1,垂足为点D.当k=0时,直线l与抛物线的一个交点在y轴上,且△ABC为等腰直角三角形.①求点A的坐标和抛物线的解析式;②证明:对于每个给定的实数k,都有A、D、C三点共线.【分析】(1)抛物线与x轴的公共点坐标即为函数顶点坐标,即可求解;(2)①y=kx+1﹣k=k(x﹣1)+1过定点(1,1),且当k=0时,直线l变为y=1平行x轴,与轴的交点为(0,1),即可求解;②计算直线AD表达式中的k值、直线AC表达式中的k值,两个k值相等即可求解.【解答】解:(1)抛物线与x轴的公共点坐标即为函数顶点坐标,故:y=a(x﹣2)2=ax2﹣4ax+4a,则c=4a;(2)y=kx+1﹣k=k(x﹣1)+1过定点(1,1),且当k=0时,直线l变为y=1平行x轴,与y轴的交点为(0,1),又△ABC为等腰直角三角形,∴点A为抛物线的顶点;①c=1,顶点A(1,0),抛物线的解析式:y=x2﹣2x+1,②,x2﹣(2+k)x+k=0,x=(2+k±),x D=x B=(2+k﹣),y D=﹣1;则D,y C=(2+k2+k),C,A(1,0),∴直线AD表达式中的k值为:k AD==,直线AC表达式中的k值为:k AC=,∴k AD=k AC,点A、C、D三点共线.【点评】本题考查的是二次函数综合运用,涉及到一次函数、等腰三角形性质等知识点,本题关键是复杂数据的计算问题,难度不大.。
专题06 数据的分析一、基础知识1.平均数有算术平均数和加权平均数平均数的求法:x=1n(x1+x2+…+x n);加权平均数计算公式为:x=1n(x1f1+x2f2+…+x k f k),其中f1,f2,…,f k代表各数据的权.2.中位数的求法数据从大到小或从小到大排好顺序以后,若为偶数个数,就是最中间的两个数加起来除以2,即两个数的平均数;若为奇数个数,就是中间个数.3.众数:指一组数据中出现次数最多的数.4.极差:用一组数据中的最大值减去最小值所得的差来反映这组数据的变化范围,用这种方法得到的差称为极差,极差=最大值-最小值。
5.方差:用“先平均,再求差,然后平方,最后再平均”得到的结果表示一组数据偏离平均值的情况,这个结果叫方差。
方差公式为:s2=1n[(x1-x)2+(x2-x)2+…+(xn-x)2],方差越小,数据越稳定.二、本专题典型题考法及解析【例题1】在一次数学模拟考试中,小明所在的学习小组7名同学的成绩分别为:129,136,145,136,148,136,150.则这次考试的平均数和众数分别为()A.145,136 B.140,136C.136,148 D.136,145【答案】B【解析】考点是众数和加权平均数..众数是一组数据中出现次数最多的数据,注意众数可以不止一个;再利用平均数的求法得出答案.在这一组数据中136是出现次数最多的,故众数是136;他们的成绩的平均数为:(129+136+145+136+148+136+150)÷7=140.【例题2】近十天每天平均气温(℃)统计如下:24,23,22,24,24,27,30,31,30,29.关于这10个数据下列说法不正确的是()A.众数是24 B.中位数是26C.平均数是26.4 D.极差是9【解析】考点包括极差;加权平均数;中位数;众数.菁优网版权分别计算该组数据的平均数,众数,中位数及极差后找到正确的答案即可.∵数据24出现了三次最多,∴众数为24,故A选项正确;∵数据按从小到大的顺序排列为:22,23,24,24,24,27,29,30,30,31,∴中位数为(24+27)÷2=25.5,故B选项错误;平均数=(22+23+24×3+27+29+30×2+31)÷10=26.4,故C选项正确;极差=31﹣22=9,故D选项正确.三、数据的分析问题训练题及其答案和解析1.某校在体育健康测试中,有8名男生“引体向上”的成绩(单位:次)分别是:14,12,8,9,16,12,7,这组数据的中位数和众数分别是()A. 10,12 B. 12,11C. 11,12 D. 12,12【答案】C【解析】考点有众数和中位数.菁优网版权所有先把原数据按由小到大排列,然后根据中位数和众数的定义求解.原数据按由小到大排列为:7,8,9,10,12,12,14,16,所以这组数据的中位数==11,众数为12.2.如图是成都市某周内最高气温的折线统计图,关于这7天的日最高气温的说法正确的是()A.极差是8℃ B.众数是28℃C.中位数是24℃ D.平均数是26℃【解析】根据折线统计图中的数据可以判断各个选项中的数据是否正确,从而可以解答本题.由图可得,极差是:30﹣20=10℃,故选项A错误,众数是28℃,故选项B正确,这组数按照从小到大排列是:20、22、24、26、28、28、30,故中位数是26℃,故选项C错误,平均数是:=℃,故选项D错误。
2019年福建省中考试卷及解析、选择题1•计算2斗(一 1尸的姑果是(、 A .5B.4C 3D.22•北京故宫的占地面駅约为720 0曲,将了20 00囲科芋记款进表示为(:>. A.72xl04B.7.2xl (pC.7.2«10eD, 0.72^0®3.下列團形申,一定既是抽对蘇團形又逻申心对称困形的是(). A.等过三角形 B 直角三用形C •平行西边形 D.正君形至已知正寥边彫的亠金外角为3护,剧该止多边形鬧边数为().A.12B.10C.ED.66一如图是某班甲、乙、丙三位同学査近弐次数学成绩及其曲在班级相应平均分的折践统计團,則下列 割斷措误的是().I1CXA 甲的敖学成绩為于淮级平均分,且成纷比较穂定 旷B 一乙的戲学咸绩在班圾平均分附近淡动’且比丙好 MC 芮的戟学戒绩低于班綴年均分,但嚴綺連次撮嘉 “D 一就甲r J 丙三个人而言,匸的歡芋成绩戴不穩(7.下列运牡正蹦的爰(>,^.(1<1~ aE_(2出戶亦C. a~^a= d口一(口子一(一J )M )8.《增删算法统宗》记载:“有金学生资性好,一部孟子三日了,琴日墙诟一倍多,问若毎B 读多少?9 其大意是:青金学生天赍廳三天读宪一部《孟子》,每天闻读的字数是前一天的两倨,问他莓 天各读多少个字?已鈕《孟子》-书共有34阴玲字十设他第一天读x 个字,则下西所列方程正璋的 是()-A.A +2X +4尸弭 685B.X +2J +3J X =34 685C. rl-2.r+2v=34 685D. -d —JT + — x=34 6852 49如團,尸八 出是0O 切嬪.,土 B 为切点,点(?在G )O 上, 且ZACB=55^ 则N/V 出等于(). A.55c B.70d CU0& D125c壬视万向(第他10.若二次函敕的圏象经述AQn』)、巩。
莎卜C(3—injt). 0(^2 :刃、E(2:yQ『则y“兀、旳的大小芙系是().A. >i<护卫 E.厘弋邸卫U y3<护月 D. y2<护月二、填空题(每小题4分,共24分)11.____________________ 因式分解:A2-9-■*4 - ~亠亠、、/t C liL2.如图,数轴上仏呂两点所表示的数分别走一4和2, ---- ---------------x——L*_4 u 2点JT是线段川?的中点,則点「所羞示的数是___________ . (第12□ ■某校挺集校运会合徽,遲遶出甲、乙、丙三种图案-为了解轲4+圏案更登欢迎,随机调蚩了该校100名学生,其中60名同学專说甲因案,芝该校共有2000人,權据所学妁统计知识可以倍计该校喜欢1F图案的学生有人.14.中在平面直甬生昏系疋v中.n()ABC的三个顶点0(00)、川30)、0(4,2),则其弟四个顶点是是—・15.如图,边长为2的丘方形ABCD申心与半径为2的0O的国心董合,E、F分别是E1的延悅与0O的交点剧图中阴影部分的面积是 ________ .(结杲保蛰;T)316,如图,菱形ABCD顶点J在例函數尸-(.v>0)的图象上,函数x尸±0tA3, Q0)的图象关于直茨片匚对称#且经过点以D x悶点.若八B=2, ZDAB=30°,则£的值为_______________________ ・三、解答题(共X6分)17-悔小题满分&分)解方旌组;$一2 '|2.r+v = 4(M15 (第1618.准小题满分8分)如因*点&厂分别是拒形ABCD的边皿、CD上的一点+且Dr=BE.求证:AF=CE-19.体小题满分呂分)先化简,再求值:a—i)F&—主二2),其中x-vT+i20*爲小题满分8分)如图,已知△ABC为和点(1)以点/T为顶点求作色AEC气使△片迟Cs^ ABC.(尺规作图,保留作團痕迹,不写作法)(2)设D. E. F分别是卫ABC三边人風BC. AC的中点,D\ E\F分剂是你所作的仏A7TC'三边ATT、B'C\ A r Cr的中点,求证:氐DEFS& D£F・21.界』卜题港分$分)A RtAABC中,ZABC-90Q f Z/?AC-30,J将厶ABC点/!顺时豺旗L轻一定的南更u得到△片E0 点B、C的对应点分别是氐D (I)如图1,書点Q恰好在片厂上甘<求zrnr的度数;Q)如因2,若戊之小时*点尸是边申点,求证:V9z4^ BFDE是平行四边形.22■(本小懸満分10分)某工厂为费彻落实“绿水痛山就是金山锻山叫勺夏最遲念,投资组蹇了日茂贰处理蚩沟加吨的厦爪处邂车间,討该厂工业隕术谨行无害化处理.伸雀盍工厂¥产炖棧的扩丸」该牟间捋常无法完氏当天匚业废氷的处湮倍务,需姜将超出日暖水处理蚤的废水立给第三方企业处理.已知该车间处理厦於,毎天需固定成本⑷元,并且年处理一吨废水还需其他费用&元:将废水交给第三方企业处理,每吨需支付12无.根据记氧5^21 S,该厂产生工业废水笳吨+共花费废水处遽费370乙(1)求该牟间的日废水处理量期;(2)为实现可持渎发展*走綾色发曳之璐,工厂合理控鬣了生产规橫’使殍辛天废水赴理的平均赞用不超过JO元伽打试计算该厂一天产生的工业废水量的范亂2王(本小題满分10分)某种机器使用期为三年*买方在购进机器甘・可臥给各台机券分别一次性额外购买若干次錐修服务* 每次维修服务费为2000元.毎台机器在使用期间,如果维傷次数未超过购机时购买的维修腹务次数,毎次实陥绒修时还需向維修人员支甘工时费500元;如果维修次歎趨辻机时购买的线修服务次數,超出部分每矢雉修时需支付维修服务费MOO元,但无需支ft工时费某小司计划购窝1台该种机送,为决箕在购买机器时应同时一炭性额外购买几次维修服务,喪集并整理了100台这种机需在三年使用期內的维修次数,整理得下表;⑴以这100台机器为样直,佶计"台机器在二车使用取内维修次戟不尢于RT'的慨率;(2)试以这100杠器维修費用的平均數作为决策依据,说明购买1台该机器的同时应一次性额外购10次迁是11次维修狼务?24.宙小题满分12分)如图,四边形ABCD内接于0。
2019年中考数学专题复习卷: 四边形一、选择题1.下列命题正确的是()A.对角线相等的四边形是平行四边形B.对角线相等的四边形是矩形C.对角线互相垂直的平行四边形是菱形D.对角线互相垂直且相等的四边形是正方形2.正十边形的每一个内角的度数为()A. B.C.D.3.在四边形ABCD中,∠A,∠B,∠C,∠D度数之比为1:2:3:3,则∠B的度数为()A. 30°B. 4 0°C. 80°D. 120°4.如图,在▱ABCD中,对角线AC与BD交于点D,若增加一个条件,使▱ABCD成为菱形,下列给出的条件正确的是()A. AB=ADB. AC=BDC. ∠ABC=90° D. ∠ABC=∠ADC5.如图,三角板的直角顶点落在矩形纸片的一边上,若∠1=35°,则∠2的度数是()。
A.35°B.45°C.55°D.65°6.如图,菱形ABCD的对角线AC、BD的长分别为6和8,则这个菱形的周长是()。
A.20B.24C.40D.487.如图,在矩形ACBO中,A(-2,0),B(0,1).若正比例函数y=kx的图像经过点C,则k的取值为()A. -B.C. -2 D. 28.如图,在菱形ABCD中,点E,F,G,H分别是边AB,BC,CD和DA的中点,连接EF,FG,GH和HE,若EH=2EF,则下列结论正确的是()A. AB=EFB. AB=2EF C. AB=EF D. AB=EF9.如图,菱形的对角线,相交于点,,,则菱形的周长为()A. 52 B . 48 C.40 D.2010.如图,将一张含有角的三角形纸片的两个顶点叠放在矩形的两条对边上,若,则的大小为()A. B.C.D.11.已知图2是由图1七巧板拼成的数字“0”,己知正方形ABCD的边长为4,则六边形EFGHMN的周长为()A. B.C.D. 1212.如图,在正方形ABCD外侧,作等边△ADE,AC,BE相交于点F,则∠BFC为()A. 75°B.60° C. 5 5° D. 45°二、填空题13.四边形的外角和是________度.14.如图,在边长为2的菱形ABCD中,∠D=60°,点E、F分别在边AB、BC上.将△BEF沿着直线EF翻折,点B恰好与边AD的中点G重合,则BE的长等于________15.如图,在菱形ABCD中,AC=6cm,BD=8cm,则菱形ABCD的高AE为________cm.16.如图,在▱ABCD中,AB=2,BC=3,∠BAD=120°,AE平分∠BAD,交BC于点E,过点C作CF∥AE,交AD于点F,则四边形AECF的面积为________.17.如图,在平面直角坐标系中,菱形ABCD的顶点A在y轴上,且点A坐标为(0,4),BC在x轴正半轴上,点C在B点右侧,反比例函数(x>0)的图象分别交边AD,CD于E,F,连结BF,已知,BC=k,AE= CF,且S四边形ABFD=20,则k=________.18.如图,在正五边形ABCDE中,AC与BE相交于点F,则AFE的度数为________19. 如图,在平行四边形ABCD中,对角线AC、BD相交于点0,AB=OB,点E、点F分别是OA、OD的中点,连接EF,∠CEF=45°EM⊥BC于点M,EM交BD于点N,FN= ,则线段BC的长为________.20.如图,矩形ABCD中,BC=4,CD=2,以AD为直径的半圆O与BC相切于点E,连接BD,则阴影部分的面积为________.(结果保留π)三、解答题21.如图,,,,在一条直线上,已知,,,连接.求证:四边形是平行四边形.22.如图,等边△AEF的顶点E,F在矩形ABCD的边BC,CD上,且∠CEF=45°。
2019年青海省中考数学试卷一、填空题(本大题共12小题15空,每空2分,共30分)1.(4分)5-的绝对值是 ;278的立方根是 . 2.(4分)分解因式:269ma ma m -+= ;分式方程323x x=-的解为 . 3.(2分)世界科技不断发展,人们制造出的晶体管长度越来越短,某公司研发出长度只有0.000000006米的晶体管,该数用科学记数法表示为 米.4.(2分)某种药品原价每盒60元,由于医疗政策改革,价格经过两次下调后现在售价每盒48.6元,则平均每次下调的百分率为 .5.(2分)如图,P 是反比例函数k y x=图象上的一点,过点P 向x 轴作垂线交于点A ,连接OP .若图中阴影部分的面积是1,则此反比例函数的解析式为 .6.(2分)如图,在直角坐标系中,已知点(3,2)A ,将ABO ∆绕点O 逆时针方向旋转180︒后得到CDO ∆,则点C 的坐标是 .7.(2分)如图是矗立在高速公路边水平地面上的交通警示牌,经过测量得到如下数据:4AM =米,8AB =米,45MAD ∠=︒,30MBC ∠=︒,则CD 的长为 米.(结果保留根号)8.(2分)一只不透明的布袋中有三种珠子(除颜色以外没有任何区别),分别是3个红珠子,4个白珠子和5个黑珠子,每次只摸出一个珠子,观察后均放回搅匀,在连续9次摸出的都是红珠子的情况下,第10次摸出红珠子的概率是.9.(2分)如图是用杠杆撬石头的示意图,C是支点,当用力压杠杆的A端时,杠杆绕C点转动,另一端B向上翘起,石头就被撬动.现有一块石头,要使其滚动,杠杆的B端必须向上翘起10cm,已知杠杆的动力臂AC与阻力臂BC之比为5:1,要使这块石头滚动,至少要将杠杆的A端向下压cm.10.(2分)根据如图所示的程序,计算y的值,若输入x的值是1时,则输出的y值等于.11.(2分)如图在正方形ABCD中,点E是以AB为直径的半圆与对角线AC的交点,若圆的半径等于1,则图中阴影部分的面积为.12.(4分)如图,将图1中的菱形剪开得到图2,图中共有4个菱形;将图2中的一个菱形剪开得到图3,图中共有7个菱形;如此剪下去,第5图中共有个菱形⋯⋯,第n个图中共有个菱形.二、单项选择题(本大题共8小题,每小题3分,共24分,请将正确的选项序号填入下面相应题号的表格内)13.(3分)下面几何体中,俯视图为三角形的是()A.B.C.D.14.(3分)如图,将一副三角板和一张对边平行的纸条按下列方式摆放:两个三角板的一直角边重合,含30︒角的三角板的斜边与纸条一边重合,含45︒角的三角板的一个顶点在纸条的另一边上,则1∠的度数是()A.15︒B.22.5︒C.30︒D.45︒15.(3分)如图所示的两台天平保持平衡,已知每块巧克力的重量相等,且每个果冻的重量也相等,则每块巧克力和每个果冻的重量分别为()A.10g,40g B.15g,35g C.20g,30g D.30g,20g 16.(3分)为了了解某班学生每周做家务劳动的时间,某综合实践活动小组对该班50名学生进行了调查,有关数据如下表,这组数据的中位数和众数为()A .2.5和2.5B .2.25和3C .2.5和3D .10和1317.(3分)如图,小莉从A 点出发,沿直线前进10米后左转20︒,再沿直线前进10米,又向左转20︒,⋯⋯,照这样走下去,她第一次回到出发点A 时,一共走的路程是( )A .150米B .160米C .180米D .200米18.(3分)如图,////AD BE CF ,直线1l 、2l 与这三条平行线分别交于点A 、B 、C 和点D 、E 、F .已知1AB =,3BC =, 1.2DE =,则DF 的长为( )A .3.6B .4.8C .5D .5,219.(3分)如图,在扇形AOB 中,AC 为弦,140AOB ∠=︒,60CAO ∠=︒,6OA =,则BC 的长为( )A .43πB .83πC .D .2π20.(3分)大家知道乌鸦喝水的故事,如图,它看到一个水位较低的瓶子,喝不着水,沉思一会后聪明的乌鸦衔来一个个小石子放入瓶中,水位上升后,乌鸦喝到了水.从乌鸦看到瓶子的那刻起开始计时,设时间变量为x ,水位高度变量为y ,下列图象中最符合故事情景的大致图象是( )A .B .C .D .三、(本大题共3小题,第21题5分,第2题5分,第23题8分,共18分)21.(5分)计算:0111)()1|2cos453-+-+-︒22.(5分)化简求值:2321(2)22m m m m m -++-÷++;其中1m = 23.(8分)如图,在ABC ∆中,90BAC ∠=︒,D 是BC 的中点,E 是AD 的中点,过点A 作//AF BC 交BE 的延长线于点F ,连接CF .(1)求证:AEF DEB ∆≅∆;(2)证明四边形ADCF 是菱形.四、(本大题共3小题,第24题9分,第25题8分,第26题9分,共26分)24.(9分)某市为了提升菜篮子工程质量,计划用大、中型车辆共30辆调拨不超过190吨蔬菜和162吨肉制品补充当地市场.已知一辆大型车可运蔬菜8吨和肉制品5吨;一辆中型车可运蔬菜3吨和肉制品6吨.(1)符合题意的运输方案有几种?请你帮助设计出来;(2)若一辆大型车的运费是900元,一辆中型车的运费为600元,试说明(1)中哪种运输方案费用最低?最低费用是多少元?25.(8分)如图,在O 中,点C 、D 分别是半径OB 、弦AB 的中点,过点A 作AE CD ⊥于点E .(1)求证:AE是O的切线;(2)若2AE=,2sin3ADE∠=,求O的半径.26.(9分)“只要人人献出一点爱,世界将变成美好的人间”.某大学利用“世界献血日”开展自愿义务献血活动,经过检测,献血者血型有“A、B、AB、O”四种类型,随机抽取部分献血结果进行统计,根据结果制作了如图两幅不完整统计图表(表,图):血型统计表(1)本次随机抽取献血者人数为人,图中m=;(2)补全表中的数据;(3)若这次活动中该校有1300人义务献血,估计大约有多少人是A型血?(4)现有4个自愿献血者,2人为O型,1人为A型,1人为B型,若在4人中随机挑选2人,利用树状图或列表法求两人血型均为O型的概率.五、(本大题共2小题,第27题10分,第28题12分,共22分)27.(10分)我国南宋著名数学家秦九韶在他的著作《数书九章》中提出了“三斜求积术”,三斜即指三角形的三条边长,可以用该方法求三角形面积.若改用现代数学语言表示,其形式为:设a,b,c为三角形三边,S为面积,则S=这是中国古代数学的瑰宝之一.而在文明古国古希腊,也有一个数学家海伦给出了求三角形面积的另一个公式,若设2a b c p ++=(周长的一半),则S =②(1)尝试验证.这两个公式在表面上形式很不一致,请你用以5,7,8为三边构成的三角形,分别验证它们的面积值;(2)问题探究.经过验证,你发现公式①和②等价吗?若等价,请给出一个一般性推导过程(可以从①⇒②或者②⇒①);(3)问题引申.三角形的面积是数学中非常重要的一个几何度量值,很多数学家给出了不同形式的计算公式.请你证明如下这个公式:如图,ABC ∆的内切圆半径为r ,三角形三边长为a ,b ,c ,仍记2a b c p ++=,S 为三角形面积,则S pr =.28.(12分)如图1(注:与图2完全相同),在直角坐标系中,抛物线经过点(1,0)A 、(5,0)B 、(0,4)C 三点.(1)求抛物线的解析式和对称轴;(2)P 是抛物线对称轴上的一点,求满足PA PC +的值为最小的点P 坐标(请在图1中探索);(3)在第四象限的抛物线上是否存在点E ,使四边形OEBF 是以OB 为对角线且面积为12的平行四边形?若存在,请求出点E 坐标,若不存在请说明理由(请在图2中探索)2019年青海省中考数学试卷答案与解析一、填空题(本大题共12小题15空,每空2分,共30分)1.(4分)【分析】分别根据绝对值的定义、立方根的定义即可求解.【解答】解:5-的绝对值是5;278的立方根是32. 故答案为:5,32. 【点评】此题主要考查了实数的定义及有关性质,要求学生熟悉立方根、绝对值的相关概念和性质.2.(4分)【分析】原式提取公因式,再利用完全平方公式分解即可;分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.【解答】解:原式22(69)(3)m a a m a =-+=-;去分母得:326x x =-,解得:6x =-,经检验6x =-是分式方程的解.故答案为:2(3)m a -;6x =-【点评】此题考查了解分式方程,以及提公因式法与公式法的综合运用,熟练掌握运算法则是解本题的关键.3.(2分).【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为10n a -⨯,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:90.000000006610-=⨯.故答案为:9610-⨯【点评】本题考查用科学记数法表示较小的数,一般形式为10n a -⨯,其中1||10a <…,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.4.(2分).【分析】设平均每次降价的百分比是x ,则第一次降价后的价格为60(1)x ⨯-元,第二次降价后的价格在第一次降价后的价格的基础上降低的,为60(1)(1)x x ⨯-⨯-元,从而列出方程,然后求解即可.【解答】解:设平均每次降价的百分比是x ,根据题意得:260(1)48.6x -=,解得:10.110%x ==,2 1.9x =(不合题意,舍去),答:平均每次降价的百分比是10%;故答案为:10%.【点评】本题考查了一元二次方程的应用,若设变化前的量为a ,变化后的量为b ,平均变化率为x ,则经过两次变化后的数量关系为2(1)a x b ±=.5.(2分)【分析】根据反比例函数系数k 的几何意义可知,PAO ∆的面积1||2k =,再根据图象所在象限求出k 的值即可.【解答】解:依据比例系数k 的几何意义可得,PAO ∆面积等于1||2k , 即1||12k =, 12k =±, 由于函数图象位于第一、三象限,则12k =, 故答案为:12. 【点评】本题考查反比例系数k 的几何意义,过双曲线上的任意一点分别向两条坐标作垂线,与坐标轴围成的矩形面积就等于||k .该知识点是中考的重要考点,同学们应高度关注.6.(2分)【分析】根据中心对称的性质解决问题即可.【解答】解:由题意A ,C 关于原点对称,(3,2)A ,(3,2)C ∴--,股本答案为(3,2)--.【点评】本题考查中心对称,旋转变换等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.7.(2分)【分析】在Rt CMB ∆中求出CM ,在Rt ADM ∆中求出DM 即可解决问题.【解答】解:在Rt CMB ∆中,90CMB ∠=︒,12MB AM AB =+=米,30MBC ∠=︒,tan3012CM MB ∴=︒== 在Rt ADM ∆中,90AMD ∠=︒,45MAD ∠=︒,45MAD MDA ∴∠=∠=︒,4MD AM ∴==米,4)CD CM DM ∴=-=米,故答案为:4.【点评】本题考查解直角三角形的应用、锐角三角函数等知识,解题的关键是熟练掌握锐角三角函数的定义,属于基础题中考常考题型.8.(2分).【分析】每次只摸出一个珠子时,布袋中共有珠子12个,其中红珠子3个,可以直接应用求概率的公式.【解答】解:因为每次只摸出一个珠子时,布袋中共有珠子12个,其中红珠子3个, 所以第10次摸出红珠子的概率是31124=. 故答案是:14. 【点评】本题考查了概率的意义,是一道列举法求概率的问题,属于基础题,可以直接应用求概率的公式.9.(2分)【分析】首先根据题意构造出相似三角形,然后根据相似三角形的对应边成比例求得端点A向下压的长度.【解答】解:如图;AM 、BN 都与水平线垂直,即//AM BN ; 易知:ACM BCN ∆∆∽;∴AC AMBC BN=, 杠杆的动力臂AC 与阻力臂BC 之比为5:1,∴51AM BN =,即5AM BN =; ∴当10BN cm …时,50AM cm …;故要使这块石头滚动,至少要将杠杆的端点A 向下压50cm . 故答案为:50.【点评】本题考查相似三角形的判定与性质的实际应用,正确的构造相似三角形是解题的关键. 10.(2分)【分析】由题意输入1x =然后平方得2x ,然后再0,乘以1+,可得y 的值.【解答】解:当1x =时,210x =<,(1132y ∴=+=-=-,故答案为:2-.【点评】此题是一道程序题,做题时要按照程序一步一步做,主要考查代数式求值,是一道常考的题型. 11.(2分)【分析】直接利用正方形的性质结合转化思想得出阴影部分面积CEB S ∆=,进而得出答案. 【解答】解:如图所示:连接BE ,可得,AE BE=,90AEB∠=︒,且阴影部分面积111221 244CEB ABC ABCDS S S∆∆====⨯⨯=正方形故答案为1【点评】本题考查正方形的性质,扇形的面积等知识,解题的关键是学会把不规则图形转化为规则图形,属于中考常考题型.12.(4分)【分析】观察图形可知,每剪开一次多出3个菱形,然后写出前4个图形中菱形的个数,根据这一规律写出第n个图形中的菱形的个数的表达式;【解答】解:(1)第1个图形有菱形1个,第2个图形有菱形413=+个,第3个图形有菱形7132=+⨯个,第4个图形有菱形10133=+⨯个,⋯,第n个图形有菱形13(1)(32)n n+-=-个,当5n=时,3213n-=,故答案为:13,(32)n-.【点评】此题考查图形的变化规律,通过观察图形,分析、归纳发现其中的规律,并应用规律解决问题.二、单项选择题(本大题共8小题,每小题3分,共24分,请将正确的选项序号填入下面相应题号的表格内)13.(3分)下面几何体中,俯视图为三角形的是()A.B.C.D.【分析】利用从上面看到的图叫做俯视图判断即可.【解答】解:A、俯视图为矩形;B 、俯视图为圆(带有圆心);C 、俯视图为圆;D 、俯视图为三角形;故选:D .【点评】此题主要考查了简单组合体的三视图,正确把握观察角度得出正确视图是解题关键. 14.(3分)如图,将一副三角板和一张对边平行的纸条按下列方式摆放:两个三角板的一直角边重合,含30︒角的三角板的斜边与纸条一边重合,含45︒角的三角板的一个顶点在纸条的另一边上,则1∠的度数是( )A .15︒B .22.5︒C .30︒D .45︒【分析】过A 点作//AB a ,利用平行线的性质得//AB b ,所以12∠=∠,3430∠=∠=︒,加上2345∠+∠=︒,易得115∠=︒. 【解答】解:如图,过A 点作//AB a ,12∴∠=∠,//a b , //AB b ∴, 3430∴∠=∠=︒,而2345∠+∠=︒, 215∴∠=︒, 115∴∠=︒.故选:A .【点评】本题考查了平行线的性质,解题时注意:两直线平行,内错角相等.15.(3分)如图所示的两台天平保持平衡,已知每块巧克力的重量相等,且每个果冻的重量也相等,则每块巧克力和每个果冻的重量分别为( )A .10g ,40gB .15g ,35gC .20g ,30gD .30g ,20g【分析】根据图可得:3块巧克力的重2=个果冻的重;1块巧克力的重1+个果冻的重50=克,由此可设出未知数,列出方程组.【解答】解:设每块巧克力的重x 克,每个果冻的重y 克,由题意得:3250x yx y =⎧⎨+=⎩, 解得:2030x y =⎧⎨=⎩.故选:C .【点评】此题主要考查了二元一次方程组的应用,关键是弄懂题意,找出题目中的相等关系,列出方程组.16.(3分)为了了解某班学生每周做家务劳动的时间,某综合实践活动小组对该班50名学生进行了调查,有关数据如下表,这组数据的中位数和众数为( )A .2.5和2.5B .2.25和3C .2.5和3D .10和13【分析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不止一个. 【解答】解:表中数据为从小到大排列,第25个,第26个数都是2.5,故中位数是2.5; 数据3小时出现了13次最多为众数. 故选:C .【点评】本题属于基础题,考查了确定一组数据的中位数和众数的能力.注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求.如果是偶数个则找中间两位数的平均数.17.(3分)如图,小莉从A 点出发,沿直线前进10米后左转20︒,再沿直线前进10米,又向左转20︒,⋯⋯,照这样走下去,她第一次回到出发点A 时,一共走的路程是( )A .150米B .160米C .180米D .200米【分析】多边形的外角和为360︒,每一个外角都为20︒,依此可求边数,再求多边形的周长. 【解答】解:多边形的外角和为360︒,而每一个外角为20︒,∴多边形的边数为3602018︒÷︒=, ∴小莉一共走了:1810180⨯=(米).故选:C .【点评】本题考查了多边形的外角与内角,利用多边形外角和除以一个外角得出多边形的边数是解题关键.18.(3分)如图,////AD BE CF ,直线1l 、2l 与这三条平行线分别交于点A 、B 、C 和点D 、E 、F .已知1AB =,3BC =, 1.2DE =,则DF 的长为( )A .3.6B .4.8C .5D .5,2【分析】根据平行线分线段成比例定理即可解决问题. 【解答】解:////AD BE CF ,∴AB DE BC EF =,即1 1.23EF=, 3.6EF ∴=,3.6 1.24.8DF EF DE ∴=+=+=,故选:B .【点评】本题考查平行线分线段成比例定理,解题的关键是熟练掌握基本知识,属于中考常考题型.19.(3分)如图,在扇形AOB 中,AC 为弦,140AOB ∠=︒,60CAO ∠=︒,6OA =,则BC 的长为( )A .43πB .83π C . D .2π【分析】连接OC ,根据等边三角形的性质得到80BOC ∠=︒,根据弧长公式计算即可. 【解答】解:连接OC , OA OC =,60CAO ∠=︒, AOC ∴∆为等边三角形, 60AOC ∴∠=︒,1406080BOC AOB AOC ∴∠=∠-∠=︒-︒=︒,则BC 的长80681803ππ⨯==, 故选:B .【点评】本题考查的是弧长的计算,等边三角形的判定和性质,掌握弧长公式:180n rl π=是解题的关键.20.(3分)大家知道乌鸦喝水的故事,如图,它看到一个水位较低的瓶子,喝不着水,沉思一会后聪明的乌鸦衔来一个个小石子放入瓶中,水位上升后,乌鸦喝到了水.从乌鸦看到瓶子的那刻起开始计时,设时间变量为x ,水位高度变量为y ,下列图象中最符合故事情景的大致图象是( )A .B .C .D .【分析】由于原来水位较低,乌鸦沉思一会后才想出办法,说明将在沉思的这段时间内水位没有变化,乌鸦衔来一个个小石子放入瓶中,水位将会上升,乌鸦喝水后的水位应不低于一开始的水位,由此即可作出判断.【解答】解:乌鸦在沉思的这段时间内水位没有变化,∴排除C ,乌鸦衔来一个个小石子放入瓶中,水位将会上升,∴排除A ,乌鸦喝水后的水位应不低于一开始的水位,∴排除B ,D ∴正确.故选:D .【点评】本题考查动点问题的函数图象问题.注意分析y 随x 的变化而变化的趋势,而不一定要通过求解析式来解决.三、(本大题共3小题,第21题5分,第2题5分,第23题8分,共18分)21.(5分)计算:0111)()1|2cos453-+-+-︒【分析】直接利用零指数幂的性质以及负指数幂的性质、特殊角的三角函数值分别化简得出答案.【解答】解:原式13122=-+-⨯131=-3=-.【点评】此题主要考查了实数运算,正确化简各数是解题关键.22.(5分)化简求值:2321(2)22m m m m m -++-÷++;其中1m = 【分析】先化简分式,然后将m 的值代入求值.【解答】解:原式2234(1)()222m m m m m --=+÷+++ 2(1)(1)22(1)m m m m m +-+=+- 11m m +=-,当1m =时, 原式1==.【点评】本题考查了分式的化简求值,熟练分解因式是解题的关键.23.(8分)如图,在ABC ∆中,90BAC ∠=︒,D 是BC 的中点,E 是AD 的中点,过点A 作//AF BC 交BE 的延长线于点F,连接CF .(1)求证:AEF DEB ∆≅∆; (2)证明四边形ADCF 是菱形.【分析】(1)由“AAS ”可证AFE DBE ∆≅∆;(2)由一组对边平行且相等的四边形是平行四边形,可得四边形ADCF 是平行四边形,由直角三角形的性质可得AD CD =,即可得四边形ADCF 是菱形. 【解答】证明:(1)//AF BC ,AFE DBE ∴∠=∠ABC ∆是直角三角形,AD 是BC 边上的中线,E 是AD 的中点,AE DE ∴=,BD CD =在AFE ∆和DBE ∆中, AFE DBE AEF BED AE DE ∠=∠⎧⎪∠=∠⎨⎪=⎩, ()AFE DBE AAS ∴∆≅∆(2)由(1)知,AF BD =,且BD CD =,AF CD ∴=,且//AF BC ,∴四边形ADCF 是平行四边形90BAC ∠=︒,D 是BC 的中点, 12AD BC CD ∴==, ∴四边形ADCF 是菱形.【点评】本题考查了菱形的判定,全等三角形的判定和性质,直角三角形的性质,证明AD CD =是本题的关系.四、(本大题共3小题,第24题9分,第25题8分,第26题9分,共26分)24.(9分)某市为了提升菜篮子工程质量,计划用大、中型车辆共30辆调拨不超过190吨蔬菜和162吨肉制品补充当地市场.已知一辆大型车可运蔬菜8吨和肉制品5吨;一辆中型车可运蔬菜3吨和肉制品6吨.(1)符合题意的运输方案有几种?请你帮助设计出来;(2)若一辆大型车的运费是900元,一辆中型车的运费为600元,试说明(1)中哪种运输方案费用最低?最低费用是多少元?【分析】(1)设安排x 辆大型车,则安排(30)x -辆中型车,根据30辆车调拨不超过190吨蔬菜和162吨肉制品补充当地市场,即可得出关于x 的一元一次不等式组,解之即可得出x 的取值范围,结合x 为整数即可得出各运输方案;(2)根据总运费=单辆车所需费用⨯租车辆车可分别求出三种租车方案所需费用,比较后即可得出结论.【解答】解:(1)设安排x 辆大型车,则安排(30)x -辆中型车, 依题意,得:83(30)19056(30)162x x x x +-⎧⎨+-⎩……,解得:1820x 剟.x 为整数,18x ∴=,19,20.∴符合题意的运输方案有3种,方案1:安排18辆大型车,12辆中型车;方案2:安排19辆大型车,11辆中型车;方案3:安排20辆大型车,10辆中型车. (2)方案1所需费用为:900186001223400⨯+⨯=(元), 方案2所需费用为:900196001123700⨯+⨯=(元),方案3所需费用为:900206001024000⨯+⨯=(元).234002370024000<<,∴方案1安排18辆大型车,12辆中型车所需费用最低,最低费用是23400元.【点评】本题考查了一元一次不等式组的应用,根据各数量之间的关系,正确列出一元一次不等式组是解题的关键.25.(8分)如图,在O中,点C、D分别是半径OB、弦AB的中点,过点A作AE CD⊥于点E.(1)求证:AE是O的切线;(2)若2AE=,2sin3ADE∠=,求O的半径.【分析】(1)连接OA,如图,利用AOB∆的中位线得到//CD OA.则可判断AO AE⊥,即可证得结论;(2)连接OD,如图,利用垂径定理得到OD AB⊥,再在Rt AED∆中利用正弦定义计算出3AD=,接着证明OAD ADE∠=∠.从而在Rt OAD∆中有2sin3OAD∠=,设2OD x=,则3OA x=,利用勾股定理可计算出AD=3=,然后解方程求出x即可得到O的半径长.【解答】(1)证明:连接OA,如图,点C、D分别是半径OB、弦AB的中点,//DC OA,即//EC OA,AE CD⊥,AE AO∴⊥,AE∴是O的切线;(2)解:连接OD,如图,AD CD=,OD AB∴⊥,90ODA∴∠=︒,在Rt AED∆中,2 sin3AEADEAD∠==,3AD∴=,//CD OA,OAD ADE ∴∠=∠.在Rt OAD∆中,2 sin3OAD∠=,设2OD x=,则3OA x=,AD∴==,3=,解得x=,3OA x∴==即O【点评】本题考查了等腰三角形的性质,平行线的判定和性质,切线的判定和性质,勾股定理的应用以及解直角三角形,熟练掌握性质定理是解题的关键.26.(9分)“只要人人献出一点爱,世界将变成美好的人间”.某大学利用“世界献血日”开展自愿义务献血活动,经过检测,献血者血型有“A、B、AB、O”四种类型,随机抽取部分献血结果进行统计,根据结果制作了如图两幅不完整统计图表(表,图):血型统计表(1)本次随机抽取献血者人数为人,图中m=;(2)补全表中的数据;(3)若这次活动中该校有1300人义务献血,估计大约有多少人是A型血?(4)现有4个自愿献血者,2人为O型,1人为A型,1人为B型,若在4人中随机挑选2人,利用树状图或列表法求两人血型均为O型的概率.【分析】(1)用AB型的人数除以它所占的百分比得到随机抽取的献血者的总人数,然后计算m的值;(2)先计算出O型的人数,再计算出A型人数,从而可补全上表中的数据;(3)用样本中A型的人数除以50得到血型是A型的概率,然后用3000乘以此概率可估计这3000人中是A型血的人数;(4)画出树状图,根据概率公式即可得到结果.【解答】解:(1)这次随机抽取的献血者人数为510%50÷=(人),所以101002050m=⨯=;故答案为50,20;(2)O型献血的人数为46%5023⨯=(人),A型献血的人数为501052312---=(人),故答案为12,23;(3)从献血者人群中任抽取一人,其血型是A型的概率126 5025 ==,6130031225⨯=,估计这1300人中大约有312人是A型血;(4)画树状图如图所示,所以()21126O P ==两个型. 【点评】本题考查了概率公式:随机事件A 的概率P (A )=事件A 可能出现的结果数除以所有可能出现的结果数.也考查了统计图.五、(本大题共2小题,第27题10分,第28题12分,共22分)27.(10分)我国南宋著名数学家秦九韶在他的著作《数书九章》中提出了“三斜求积术”,三斜即指三角形的三条边长,可以用该方法求三角形面积.若改用现代数学语言表示,其形式为:设a ,b ,c 为三角形三边,S 为面积,则S = 这是中国古代数学的瑰宝之一.而在文明古国古希腊,也有一个数学家海伦给出了求三角形面积的另一个公式,若设2a b cp ++=(周长的一半),则S =②(1)尝试验证.这两个公式在表面上形式很不一致,请你用以5,7,8为三边构成的三角形,分别验证它们的面积值;(2)问题探究.经过验证,你发现公式①和②等价吗?若等价,请给出一个一般性推导过程(可以从①⇒②或者②⇒①);(3)问题引申.三角形的面积是数学中非常重要的一个几何度量值,很多数学家给出了不同形式的计算公式.请你证明如下这个公式:如图,ABC ∆的内切圆半径为r ,三角形三边长为a ,b ,c ,仍记2a b cp ++=,S 为三角形面积,则S pr =.【分析】(1)由公式①得:S ==由②得:578102p ++==,S =(2)求出2p a b c =++,把①中根号内的式子可化为:222222111()()()()()()2(22)(22)(22)()()()4221616a b c a b c ab ab a b c a b c c a b c a b p p c p b p a p p a p b p c +-+-+-=+++-+--+=⨯⨯---=---,即可得出结论;(3)连接OA 、OB 、OC ,AOB AOC BOC S S S S ∆∆∆=++,由三角形面积公式即可得出结论.【解答】解:(1)由①得:S 由②得:578102p ++==,S =(2)公式①和②等价;推导过程如下: 2a b cp ++=, 2p a b c ∴=++,①中根号内的式子可化为:2222221()()422a b c a b c ab ab +-+-+- 2222221(2)(2)16ab a b c ab a b c =++---+ 22221[()][()]16a b c c a b =+--- 1()()()()16a b c a b c c a b c a b =+++-+--+ 12(22)(22)(22)16p p c p b p a =⨯⨯--- ()()()p p a p b p c =---,∴=(3)连接OA 、OB 、OC ,如图所示:111()2222AOB AOC BOC a b c S S S S rc rb ra r pr ∆∆∆++=++=++==.【点评】本题考查了三角形的内切圆、数学常识以及三角形面积公式;熟练掌握三角形面积的计算方法是解题的关键.28.(12分)如图1(注:与图2完全相同),在直角坐标系中,抛物线经过点(1,0)A 、(5,0)B 、(0,4)C 三点.(1)求抛物线的解析式和对称轴;(2)P 是抛物线对称轴上的一点,求满足PA PC +的值为最小的点P 坐标(请在图1中探索);(3)在第四象限的抛物线上是否存在点E ,使四边形OEBF 是以OB 为对角线且面积为12的平行四边形?若存在,请求出点E 坐标,若不存在请说明理由(请在图2中探索) 【分析】(1)将点A 、B 的坐标代入二次函数表达式得:2(1)(5)(65)y a x x a x x =--=-+,即可求解;(2)连接B 、C 交对称轴于点P ,此时PA PC +的值为最小,即可求解;(3)512E E OEBF S OB y y =⨯=⨯=四边形,则125E y =,将该坐标代入二次函数表达式即可求解. 【解答】解:(1)将点A 、B 的坐标代入二次函数表达式得:2(1)(5)(65)y a x x a x x =--=-+, 则54a =,解得:45a =, 抛物线的表达式为:224424(65)4555y x x x x =-+=-+,函数的对称轴为:3x =,顶点坐标为16(3,)5-; (2)连接B 、C 交对称轴于点P ,此时PA PC +的值为最小,将点B 、C 的坐标代入一次函数表达式:y kx b =+得:054k bb =+⎧⎨=⎩,解得:454k b ⎧=-⎪⎨⎪=⎩,直线BC 的表达式为:445y x =-+,当3x =时,85y =, 故点8(3,)5P ;(3)存在,理由:四边形OEBF 是以OB 为对角线且面积为12的平行四边形, 则512E E OEBF S OB y y =⨯=⨯=四边形, 则125E y =,将该坐标代入二次函数表达式得: 2412(65)55y x x =-+=,解得:3x =±, 故点E的坐标为(3,12)5或(3+12)5. 【点评】本题考查的是二次函数综合运用,涉及到一次函数、平行四边形性质、图形的面积计算等,其中(2),求线段和的最小值,采取用的是点的对称性求解,这也是此类题目的一般解法。
2019中考数学最新重点汇编21-数据的整理与分析【一】选择题1、〔2018年浙江五模〕某户家庭今年1-5月的用电量分别是:72,66,52,58,68,这组数据的中位数是()A、52B、58C、66D、68答案:C2、〔广东省2018初中学业水平模拟三〕一组数据为:5,8,3,8,7,那么这组数据的中位数是,众数是、A、7,8B、8,7C、8,8D、3,8答案:A3、(2018广西钦州市模拟)一组数据3,5,7,9,11的方差是〔A〕7〔B〕8〔C〕9〔D〕10答案:B4、〔2018年山东东营一模〕为了调查某小区居民的用水情况,随机抽查了10户家庭的月用那么关于这10户家庭的月用水量,以下说法错误的选项是......〔〕A、中位数是5吨B、众数是5吨C、极差是3吨D、平均数是5.3吨答案:C5、〔2018北京昌平初三一模〕一名警察在高速公路上随机观察了6辆汽车的车速,记录如那么这6辆车车速的众数和中位数是〔〕A、84,90B、85,82C、82,86D、82,83答案:D6、〔2018年北京门头沟一模〕某班7名同学在一次“1分钟仰卧起坐”测试中,成绩分别为〔单位:次〕:39,39,45,42,37,41,39、这组数据的众数、中位数分别是〔〕A、42,37B、39,40C、39,41D.39,39答案:D7、〔2018北京市密云初三一模〕在50,20,50,30,50,25,35这组数据中,众数和中位数分别是〔〕A、50,20B、50,30C、50,35D、35,50答案:C8、〔2018北京市石景山区初三一模〕七名学生在一分钟内的跳绳个数分别是:150、140、100、110、130、110、120,设这组数据的平均数是a,中位数是b,众数是c,那么有〔〕A、a>D、cc>ab>a>c>C、bc>bb>>B、a答案:D9、〔2018江苏江阴青阳片九年级下期中检测,3,3分〕某市6月上旬前5天的最高气温如下〔单位:℃〕:28,29,31,29,32、对这组数据,以下说法正确的选项是〔〕A、平均数为30B、众数为29C、中位数为31D、极差为5答案:B10、一组数据4,5,6,7,7,8的中位数和众数分别是〔▲〕A、7,7B、7,6.5C、5.5,7D、6.5,7答案:D11.A、中位数B、平均数C、众数D、方差答案:C12.有一组数据3,4,2,1,9,4,那么以下说法正确的选项是〔〕A、众数和平均数都是4B、中位数和平均数都是4C、极差是8,中位数是3.5D、众数和中位数都是4答案:C【二】填空题1、〔2018年浙江绍兴八校自测模拟〕如果x1与x2的平均数是4,那么x1+1与x2+5的平均数是、答案:72、〔2018年浙江绍兴县一模〕为参加2017年“北京市初中毕业生升学体育考试”,小静同学进行了刻苦的练习,在测仰卧起坐时,记录下5次的成绩〔单位:个〕分别为:40,45,45,46,48、这组数据的众数、中位数依次是____与_____.答案:45,453、〔2018年重庆外国语学校九年级第二学期期中〕2018年3月17日,2018重庆国际马拉松赛将在重庆市南岸区南滨路开赛,抽得其中10名选手的成绩如下〔单位:分钟〕157、161、148、152、134、148、156、171、163、154那么该样本数据的众数是_________. 答案:1484、〔保沙中学2018二模〕一组数据2,4,x,2,3,4的众数是2,那么x=_______________________、答案:25、〔福建省泉州第三中学一模〕一组数据2,1,-1,0,3,那么这组数据的极差是.答案:46、〔2018江苏省靖江市适应性〕对于样本数据1,2,3,2,2,以下判断:①平均数为2;②中位数为2;③众数为2;④极差为2;⑤方差为2.正确的序号有▲.〔只要求填序号〕答案:①②③④7、(2018年河北一模)某地区连续5天的最高气温〔单位:℃〕分别是:30,33,24,29,24、这组数据的中位数是〔〕A、29B、28C、24D、30答案:A8、(2018年河北一模)中国男篮〔CBA〕2017赛季甲、乙两名篮球运动员12场比赛得分情况用图表示如下:对这两名运动员的成绩进行比较,以下四个结论中,不.正确的选项是......〔〕〔A〕甲运动员得分的极差大于乙运动员得分的极差〔B〕甲运动员得分的的中位数大于乙运动员得分的的中位数〔C〕甲运动员的得分平均数大于乙运动员的得分平均数〔D〕甲运动员的成绩比乙运动员的成绩稳定答案:D9、〔2018年周口二模〕一组数据为1,5,3,4,5,6,这组数据的极差、众数、中位数分别为〔〕A、5,4,5B、5,5,4.5C、5,5,4D、5,3,2答案:B10、〔2018年孝感模拟〕某人今年1至5月的电话费数据如下〔单位:元〕:60,68,78,66,80,这组数据的中位数是〔〕A、66B、67C、68D、78答案:C11、(2018年江阴模拟)一次数学测试后,随机抽取6名学生成绩如下:86,85,88,80,88,95,关于这组数据说法错误的选项是〔〕A、极差是15B、众数是88C、中位数是86D、平均数是87答案:C12、〔2018南京江宁区九年级调研卷〕我市2018年4月1日~10日十天的空气污染指数的数据如下〔主要污染物为可吸入颗粒物〕:61,82,80,70,56,82,91,92,75,82,那么该组数据的众数和中位数分别是▲、▲、答案:82,8113、〔2018江苏江阴华士片九年级下期中检测,12,2分〕中央电视台“情系玉树”赈灾晚会共筹得善款2975000000元,这个数据用科学记数法可表示为元、答案:2.975×10914、(2018江苏江阴青阳九年级下期中检测,13,2分)大量事实证明,治理垃圾污染刻不容缓、据统计,全球每分钟约有8500000吨污水排入江河湖海,这个排污量用科学记数法表示是吨.答案:15、〔2018江苏如东中考上适应性模拟测试,11,3分〕2018年3月12日,国家财政部公布全国公共财政收入情况,1-2月累计,全国财政收入20918.28亿元,这个数据用科学记数法表示并保留两个有效数字........为亿元答案:、2.1×10416、〔2018江苏如东中考上适应性模拟测试,12,3分〕甲、乙两同学参加跳远训练,在相同条件下各跳了6次,统计两人的成绩得;平均数x甲=x乙,方差S2甲<S2乙,那么成绩较稳定的是、〔填甲或乙〕、答案:甲17、〔2018内蒙古呼伦贝尔一摸〕一组数据2,4,x ,2,3,4的众数是2,那么x =_______________________、 答案:2 18、〔2018江苏省无锡市期中〕一组数据:3,3,4,5,5,6,6,6、这组数据的众数是、 答案:6 19、(2018宁德市一摸)某校广播体操比赛,六位评委对九年〔2〕班的打分如下〔单位:分〕:9.5,9.3,9.1,9.5,9.4,9.3、假设规定去掉一个最高分和一个最低分,余下分数的平均值作为班级的最后得分,那么九年〔2〕班的最后得分是________分、〔结果精确到0.1分〕 答案:9.4 20、〔2018江苏省盐城市一摸〕甲乙两个女舞蹈队的平均身高都是1.65米,甲队身高的方差是2甲S =1.5,乙队身高的方差是2乙S =2.4,那么两队中身高更整齐的是-队(填“甲”或“乙”)答案:甲21、在一个不透明的布袋中装有红色、白色玻璃球共40个,除颜色外其他完全相同、小明通过多次摸球试验后发现,其中摸到红色球的频率稳定在15%左右,那么口袋中红色球可能有★个、答案:622、今年4月份某周,我市每天的最高气温〔单位:℃〕分别为:19,21,25,22,19,22,21,那么这组数据的中位数是 .答案:21【三】解答题1、〔2018年浙江五模〕某市教育局为了解九年级学生每天体育锻炼是否超过1小时及未超过1小时的原因〔分“不喜欢”、“没时间”及“其它”三类〕,随机抽查了部分九年级学生,绘制成如下的二份统计图、请根据图中信息,回答以下问题: (1)该教育局共抽查了多少名学生?(2)2017年这个地区初中毕业生约为2.8万人,按此调查,请估计2017年该地区初中毕业生中每天锻炼超过1小时的学生人数、答案:(1)600人(4分)(2)=⨯28000417000人(4分)2、〔2018年浙江一模〕为了解某校九年级学生体育测试成绩情况,现从中随机抽取部分学生的体育成绩统计如右表: 根据上面提供的信息,回答以下问题: 〔1〕求随机抽取学生的人数; 〔2〕统计表中b =;〔3〕该校九年级共有500名学生,如果体育成绩达28分以上〔含28分〕为优秀,请估计该校九年级学生体育成绩达到优秀的总人数、 答案:〔每题为2+3+4分,共8分〕 〔1〕50; 〔2〕10;〔3〕()50030%20%10%=300⨯++、3、〔2018年浙江金华模拟〕某校部分男生分3组进行引体向 上训练,对训练前后的成绩进行统计 分析,相应数据的统计图如下、 ⑴求训练后第二组平均成绩比训练前 增长的百分数;⑵小明在分析了图表后,声称他发现 了一个错误:“训练后第二组男生引体 向上个数没有变化的人数占该组人数的50%,所以第二组的平均数不可能提高3个这么多、”你同意小明的观点吗?请说明理由; 答案:(1)50%3分(2)不同意,设第二组人数为x 人,那么3%205%206%108=⨯⨯+⨯⨯+⨯⨯xxx x ,所以可以提高3个。
数据的整理与分析一、选择题1.一组数据2,1,2,5,3,2的众数是()A. 1B. 2C. 3D. 5【答案】B【解析】:“2”出现3次,出现次数最多,∴众数是2.故答案为:B.【分析】一组数据中出现次数最多的数据是众数.这组数据中一共有6个数,数据“2”出现次数最多.2.为调查某大型企业员工对企业的满意程度,以下样本最具代表性的是()A. 企业男员工B. 企业年满50岁及以上的员工C. 用企业人员名册,随机抽取三分之一的员工D. 企业新进员工【答案】C【解析】A、调查对象只涉及到男性员工,选取的样本不具有代表性质;B、调查对象只涉及到即将退休的员工,选取的样本不具有代表性质;C、用企业人员名册,随机抽取三分之一的员工,选取的样本具有代表性;D调查对象只涉及到新进员工,选取的样本不具有代表性,故答案为:C.【分析】为调查某大型企业员工对企业的满意程度,那么做抽样调查的对象必须具有代表性而且调查对象的数量必须要达到一定的量,一个企业的所有员工中,它是包括男女老少,故可得出最具代表性样本。
3.若一组数据3、4、5、x、6、7的平均数是5,则x的值是()。
A.4B.5C.6D.7【答案】B【解析】:∵一组数据3、4、5、x、6、7的平均数是5,∴3+4+5+x+6+7=6×5,∴x=5.故答案为:B.【分析】根据平均数的定义和公式即可得出答案.4.下列说法正确的是()A. 了解“孝感市初中生每天课外阅读书籍时间的情况”最适合的调查方式是全面调查 B. 甲乙两人跳绳各10次,其成绩的平均数相等,,则甲的成绩比乙稳定C. 三张分别画有菱形,等边三角形,圆的卡片,从中随机抽取一张,恰好抽到中心对称图形卡片的概率是 D. “任意画一个三角形,其内角和是”这一事件是不可能事件【答案】D【解析】:A、了解“孝感市初中生每天课外阅读书籍时间的情况”最适合的调查方式是抽样调查,不符合题意;B、甲乙两人跳绳各10次,其成绩的平均数相等,S甲2>S乙2,则乙的成绩比甲稳定,不符合题意;C、三张分别画有菱形,等边三角形,圆的卡片,从中随机抽取一张,恰好抽到中心对称图形卡片的概率是,不符合题意;D、“任意画一个三角形,其内角和是360°”这一事件是不可能事件,符合题意.故答案为:D.【分析】根据全面调查及抽样调查适用的条件;根据方差越大数据的波动越大;根据中心对称图形,轴对称图形的概念,三角形的内角和;一一判断即可。
5.如果一组数据6、7、x、9、5的平均数是2x,那么这组数据的方差为()A. 4B. 3C. 2D. 1【答案】A【解析】:根据题意,得:=2x解得:x=3,则这组数据为6、7、3、9、5,其平均数是6,所以这组数据的方差为[(6﹣6)2+(7﹣6)2+(3﹣6)2+(9﹣6)2+(5﹣6)2]=4,故答案为:A.【分析】根据这组数据的平均数,列出方程,求解得出x的值,进而得出这组数据的平均数,再根据方差公式即可得出这组数据的方差。
6.为了了解内江市2018年中考数学学科各分数段成绩分布情况,从中抽取400名考生的中考数学成绩进行统计分析在这个问题中,样本是指()A.400B.被抽取的400名考生C.被抽取的400名考生的中考数学成绩D.内江市2018年中考数学成绩【答案】C【解析】∵从中抽取400名考生的中考数学成绩进行统计分析∴样本是指被抽取的400名考生的中考数学成绩故答案为:C【分析】根据样本的定义,即可解答。
7.已知一组数据:6,2,8,,7,它们的平均数是6.则这组数据的中位数是()A. 7B. 6C. 5D. 4【答案】A【解析】:由题意得:5+2+8+x+7=6×5,解得:x=8,这组数据按照从小到大的顺序排列为:2,5,7,8,8,则中位数为7.故答案为:A.【分析】首先根据平均数为6求出x的值,然后根据中位数的概念这组数据按照从小到大的顺序排列,这组数据共有5个处于最中间位置的是7,从而得出答案。
8.某排球队名场上队员的身高(单位:)是:,,,,,.现用一名身高为的队员换下场上身高为的队员,与换人前相比,场上队员的身高()A. 平均数变小,方差变小 B. 平均数变小,方差变大C. 平均数变大,方差变小 D. 平均数变大,方差变大【答案】A【解析】:换人前6名队员身高的平均数为= =188,方差为S2== ;换人后6名队员身高的平均数为= =187,方差为S2==∵188>187,>,∴平均数变小,方差变小,故答案为:A.【分析】观察四个答案,都是围着平均数和方差进行的,所以分别算出换人前后的平均数和方差,再比较即可得出答案。
9.甲、乙、丙、丁四名同学在一次投掷实心球训练中,在相同条件下各投掷10次,他们成绩的平均数与方差如下表:(米)若要选一名成绩好且发挥稳定的同学参加比赛,则应该选择()A. 甲B . 乙 C.丙 D.丁【答案】A【解析】从平均数看,成绩好的同学有甲、乙,从方差看,甲、乙中,甲方差小,甲发挥稳定.故答案为:A.【分析】观察表中的相关数据,平均数看,成绩好的同学有甲、乙,再从方差分析,可得出甲发挥稳定.。
10.为考察两名实习工人的工作情况,质检部将他们工作第一周每天生产合格产品的个数整理成甲,乙两组数据,如下表:类于以上数据,说法正确的是()A. 甲、乙的众数相同B. 甲、乙的中位数相同C. 甲的平均数小于乙的平均数 D. 甲的方差小于乙的方差【答案】D【解析】甲:数据7出现了2次,次数最多,所以众数为7,排序后最中间的数是7,所以中位数是7,,=4,乙:数据8出现了2次,次数最多,所以众数为8,排序后最中间的数是4,所以中位数是4,,=6.4,所以只有D符合题意,故答案为:D.【分析】根据众数是一组数据中出现次数最多的数,可对A作出判断;根据中位数的定义,分别求出甲乙两组数据的中位数,可对B作出判断;利用平均数公式分别计算出甲乙的平均数,可对C作出判断;分别求出甲乙两组数据的方差,比较大小,可对D作出判断;从而可得出答案。
11.2018年1-4月我国新能源乘用车的月销量情况如图所示,则下列说法错误的是()A. 1月份销量为2.2万辆 B. 从2月到3月的月销量增长最快C. 4月份销量比3月份增加了1万辆D. 1-4月新能源乘用车销量逐月增加【答案】D【解析】:A、显然正确,故A不符合题意;B、2月份到3月份的线段最陡,所以2月到3月的月销量增长最快,说法正确,故B不符合题意;C、4月份销量为4.3万辆,3月份销量为3.3万量,4.3-3.3=1(万辆),说法正确,故不符合题意;D、1月到2月是减少的,说法错误,故D符合题意;故答案为D【分析】A、正确读取1月份的数据,即可知;B、根据折线统计图看增长快慢,只需要看各线段的陡的程度,线段越陡,则越快;C、正确读取4月、3月的数据,即可知;D、观察折线的趋势,逐月增加的应该是上升的折线,而图中有下降。
12.下列说法正确的是()A. 一组数据2,2,3,4,这组数据的中位数是2B. 了解一批灯泡的使用寿命的情况,适合抽样调查C. 小明的三次数学成绩是126分,130分,136分,则小明这三次成绩的平均数是131分 D. 某日最高气温是,最低气温是,则该日气温的极差是【答案】B【解析】:A、一组数据2,2,3,4,这组数据的中位数是2.5,不符合题意;B、了解一批灯泡的使用寿命的情况,适合抽样调查,符合题意;C、小明的三次数学成绩是126分,130分,136分,则小明这三次成绩的平均数是130 分,不符合题意;D、某日最高气温是7℃,最低气温是-2℃,则改日气温的极差是7-(-2)=9℃,不符合题意;故答案为:B.【分析】根据中位数的定义,一组数据从小到大排列后,处于最中间位置的数就是中位数,如果这组数据的个数是偶数个,则处于中间位置的两个数的平均数就是该组数据的中位数;抽样调查适合于要求的数据不是那么精准,具有破坏性,等的调查;根据平均数的计算方法,把该组数据的总和除以该组数据的个数即可得出该组数据的平均数;求一天温差就是用当天的最高温度减去最低温度,根据有理数的减法法则即可得出答案。
二、填空题13.如图是我国2013~2017年国内生产总值增长速度统计图,则这5年增长速度的众数是________.【答案】6.9%【解析】:这组数据是:7.8%,7.3%,6.9%,6.7%,6.9%,6.9%出现了两次最多,故众数是6.9%。
故答案为:6.9%【分析】众数是指的是一组数所中出现次数最多的那个数或多个数。
要求的众数是图中每个点旁边的数据中出现最多的次数。
14.数据5,5,4,2,3,7,6的中位数是________·【答案】5【解析】:从小到大排列为:2、3、4、5、5、6、7一共7个数,处于最中间的是第4个,∴这组数据的中位数为:5故答案为:5【分析】把数据先按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数;根据中位数的求法,即可求解。
15.一组数据1,3,2,7,,2,3的平均数是3,则该组数据的众数为________.【答案】3【解析】:1+3+2+7+x+2+3=3×7解得:x=3,这组数据中出现次数最多的是3,故该组数据的众数为3.故答案为:3.【分析】首先根据这组数据的总和等于各个数据之和,或等于这组数据的平均数乘以这组数据的个数,列出方程,得出x的值,再根据众数的概念,这组数据中出现次数最多的是3,从而得出答案。
16.春节期间,重庆某著名旅游景点成为热门景点,大量游客慕名前往,市旅游局统计了春节期间5天的游客数量,绘制了如图所示的折线统计图,则这五天游客数量的中位数为________.【答案】23.4【解析】从图中看出,五天的游客数量从小到大依次为21.9,22.4,23.4,24.9,25.4,则中位数应为23.4,故答案为:23.4.【分析】通过折线统计图,读出五天的游客人数,根据中位数的定义,将这五天的游客数从小到大排列起来,处于最中间位置的数就是中位数,即可得出答案。
17.一组数据:2,5,3,1,6,则这组数据的中位数是________.【答案】3【解析】:将数据从小到大排列:1,2,3,5,6,∴中位数为:3.故答案为:3.【分析】将此组数据从小到大或从大到小排列,正好是奇数个,处于中间的那个数即为这组数据的中位数;由此即可得出答案.18.某校拟招聘一名优秀数学教师,现有甲、乙、丙三名教师入围,三名教师笔试、面试成绩如下表所示.综合成绩按照笔试占60%、面试占40%进行计算,学校录取综合成绩得分最高者,则被录取教师的综合成绩为________分.【答案】78.8【解析】:甲的综合成绩为80×60%+76×40%=78.4(分),乙的综合成绩为82×60%+74×40%=78.8(分),丙的综合成绩为78×60%+78×40%=78(分),其中78.8>78.4>78,乙的综合成绩最高,∴被录取的教师为乙,其综合成绩为78.8分,故答案为:78.8【分析】计算加权平均数时,每类所占的比重需要乘以该类得数才算进综合得数里.19.某鞋厂调查了商场一个月内不同尺码男鞋的销量,在平均数、中位数、众数和方差等统计量中,该鞋厂最关注的是________.【答案】众数【解析】:∵某鞋厂调查了商场一个月内不同尺码男鞋的销量,∴该鞋厂最关注的是众数。