高分子反渗透膜材料改性研究进展
- 格式:pdf
- 大小:120.30 KB
- 文档页数:4
高分子膜在重金属污水处理中的应用研究进展[摘要] 随着我国IT 行业、化学、采矿、冶金工业的快速发展,来自电解液、电镀液等含有铅、铜、铬、锌等重金属离子的废水不断增加。
重金属污水不仅影响了生态平衡,也给人类的生存带来了严重的危害,因此研发高效的重金属污水处理技术已迫在眉睫。
膜技术是一种新兴的污水处理技术,能有效的综合治理重金属污水。
本文介绍了高分子膜技术在处理重金属污水中应用的研究现状,并对未来的研究趋势和发展前景进行了展望。
[关键词] 膜技术重金属污水污水处理1 引言地球表面70%被水覆盖,30%是陆地。
水资源的总量达14亿立方公里,但是海洋的咸水占97.2%,淡水仅占2.8%,储存量37亿立方米,其中绝大部分蕴藏在南极冰原和北极冰上,人类生产和生活能利用的地表淡水仅为105万亿立方米。
虽然我国的河流径流总量排名世界第6位,人口基数大导致我国的人均水资源占有量只有世界平均水平的1/4,仅排名世界88位,由此可以看出我国是水资源严重匮乏的国家[1]。
水资源短缺、污染严重、浪费惊人已成为我国水环境形势面临的三大挑战。
我国的长江口、黄河、浈水河、太湖、巢湖、松花江等江水湖泊的水体都受到了不同程度的重金属污染,其底质的污染率高达80·1%,而且已经开始影响到水体的质量。
2007年,全国废水排放总量556.8亿吨,其中工业废水排放量246.6亿吨,占废水排放总量的44.3%,比上年增加2.7%[2]。
近几十年来,随着我国工业化步伐的加快,化学、IT、电镀、医药、电子以及能源等工业得到了迅速的发展,工业废水中重金属污水排放量在快速增加,据估计,全球每年有高达百万吨的有毒重金属排放到环境中,其中铅34.6万吨、铜14.7万吨,镉3.9万吨,汞1.2万吨[3-4]。
重金属在水体中的存在形式主要有颗粒态和溶解态[5]。
由于重金属污染的不可逆积累性易于富集,不易降解,并能通过食物链传递危害人类键康,这种日益增加的生物圈“重金属胁迫”已给人类社会、环境生态带来了严重的负面影响。
基于新型单体的反渗透与纳滤膜的制备与性能研究一、本文概述随着全球水资源日益紧缺,膜技术在水处理领域的应用越来越广泛,其中反渗透和纳滤技术作为膜技术的核心,对水质净化、海水淡化等领域具有重大意义。
传统的反渗透与纳滤膜材料在性能上仍存在一定的局限性,如通量小、选择性差、稳定性不足等,这些问题限制了其在高效、环保水处理方面的应用。
研发新型高性能的反渗透与纳滤膜材料成为当前研究的热点。
本文旨在通过制备基于新型单体的反渗透与纳滤膜,探索其在水处理领域的应用潜力。
我们将介绍新型单体的设计与合成,阐述膜材料的制备工艺和表征方法,重点分析新型反渗透与纳滤膜的性能特点,包括通量、截留率、稳定性等方面的表现。
我们还将通过对比实验和模拟计算,评估新型膜材料在实际水处理中的应用效果,为膜技术的进一步发展和应用提供理论支持和实践指导。
本文的研究不仅有助于推动膜技术的创新发展,也为解决全球水资源危机提供了新的思路和方法。
我们期待通过这项研究,为未来的水处理领域带来更加高效、环保的解决方案。
二、新型单体的合成与表征为了开发具有优良性能的反渗透与纳滤膜,我们首先设计并合成了一种新型的单体。
该单体结合了高疏水性、高稳定性及良好的成膜性等特点。
合成过程中,我们采用了多步有机合成策略,确保每一步的反应都能精确控制,以获得所需的结构和纯度。
详细的合成步骤如下:我们选择了适当的起始原料,经过酯化、还原、取代等反应,逐步引入所需的官能团。
在每一步反应后,都进行了严格的纯化处理,如重结晶、柱层析等,以确保单体的纯度和结构。
为了验证新型单体的结构和性质,我们进行了多种表征手段。
通过核磁共振(NMR)和质谱(MS)分析,我们确定了单体的精确结构,确保了每一步反应的准确性。
通过热重分析(TGA)和差热分析(DSC),我们研究了单体的热稳定性和相变行为,为其在膜制备中的应用提供了重要依据。
我们还通过傅里叶变换红外光谱(FTIR)和紫外-可见光谱(UV-Vis)等手段,对单体的官能团和光学性质进行了深入研究。
1反渗透膜简介反渗透膜是一种模拟生物半透膜制成的具有一定特性的人工半透膜,它采用醋酸纤维素膜、芳香族聚酰肼膜、芳香族聚酰胺膜等高分子材料制成,表面微孔的直径一般在0.5~10 nm 之间,其透过性大小与膜本身的化学结构有关。
反渗透膜有非对称膜和均相膜两种结构,当前产业领域所使用的膜材料主要有醋酸纤维素和芳香聚酰胺类。
醋酸纤维素膜(CA 膜)为疏松的白色小粒或纤维碎粉状物,无臭、无味、无毒,对光稳定,吸湿性强,是目前研究最多的反渗透膜材料。
缺点:由于其分子链中的-COOR 的存在,使其在较高的温度和酸碱条件下易发生水解,碱式或酸式水解会使乙酰基消失。
因此单纯CA 材料的使用受到一定的限制。
人们采用共混改性和化学改性技术以得到性能更优良的反渗透膜。
芳香族聚酰胺膜(PA 膜)具有物化稳定性,耐强碱、油酯、有机溶剂,机械强度好等优点,因此在膜工业得到了广泛的应用。
缺点:由于PA 膜在pH=6~10 的环境运行时具有带电性,容易使水中颗粒在膜表面沉积,降低使用寿命,为了完善PA 的制膜性能,通常需对其进行改性。
壳聚糖类膜(Cs 膜)由甲壳素分子脱去乙酰基得到的,其来源广泛,带有强的羟基、氨基,成膜性、生物相容性好,易对其进行化学改性,用于反渗透法制纯水由于自身分子结构的特点可与水分子形成较强的氢键, 并且它对碱土金属离子的脱除能力很强,因此较CA 膜和聚酰胺膜更优越,被认为是一种极有潜力的膜材料,在国际上受到广泛的关注。
Cs反渗透膜具有较高的通量和选择性,对二价金属盐有比较好的脱除效果。
由于Cs 膜能耐强碱,交联后又耐酸,不易繁衍微生物,常作为硬水软化的反渗透膜,但耐酸性能差。
聚苯类反渗透膜如聚苯并咪唑(PBI)、聚苯醚(PPO)等因其材料耐高温、耐酸碱等性能,也受到人们的广泛关注,通过改性可获得性能比较优良的膜材料。
反渗透膜组件可应用于纯水制备和水处理行业中的分离、浓缩、纯化等化工单元操作,组件主要分为中空纤维式、卷式、板框式和管式,其中又以中空纤维和卷式膜组件使用最为广泛。
反渗透膜在水处理中的研究进展反渗透膜(Reverse Osmosis Membrane,RO膜)是一种用于水处理的重要分离技术。
它通过施加高压,将水分子从溶液中透过半透膜,从而实现对水中溶质的去除。
RO膜技术在海水淡化、饮用水净化、废水处理等领域有广泛应用。
本文将以反渗透膜在水处理中的研究进展为主线,分述其在海水淡化、饮用水净化和废水处理等方面的应用与创新。
海水淡化是RO膜技术的主要应用领域之一、随着全球人口的增加和水资源的匮乏,海水淡化成为解决饮用水和工业用水供应问题的重要途径。
RO膜在海水淡化中的应用主要面临两个挑战:高能耗和膜污染。
研究者们通过改进膜材料、优化膜结构和设计高效的能源回收系统等方法,努力降低RO膜的能耗。
同时,他们还研究了多种防污染技术,如表面改性、超声波预处理和添加抗粘剂等,以提高RO膜的抗污染性能。
在饮用水净化方面,RO膜已广泛应用于水源水处理和饮用水制备过程中。
RO膜可以有效去除水中的溶解性盐分、有机物和微生物等。
然而,RO膜的高能耗和膜污染问题也限制了其在饮用水净化中的应用。
因此,研究者们致力于开发低压RO膜、高效能源回收系统和新型的膜材料,以提高RO膜的性能和减少能耗。
此外,还有研究关注RO膜的抗污染性能,如表面改性、添加抗菌剂和利用生物技术等,以延长RO膜的使用寿命。
废水处理是RO膜另一个重要的应用领域。
RO膜可以去除废水中的溶解性离子、重金属和有机物等。
在废水处理中,研究者们通常面临废水组分复杂、高浓度的挑战。
为了提高RO膜的抗污染性能和稳定性,研究者们开发了多层膜、空气透气膜和离子交换功能膜等新型膜材料。
此外,他们还研究了膜模块的改进和气液分离技术的创新,以提高废水处理的效率和稳定性。
总之,RO膜技术在海水淡化、饮用水净化和废水处理等方面取得了巨大的进展。
研究者们通过改进膜材料、优化膜结构、设计高效能源回收系统和开发新型的抗污染技术等手段,努力提高RO膜的性能和减少能耗,以应对全球水资源短缺和水污染问题。
反渗透膜生物污染的影响因素及控制方法的研究进展I. 研究背景随着现代水处理技术的不断发展,反渗透膜在水资源处理领域得到了广泛应用。
然而反渗透膜在使用过程中可能会受到生物污染的影响,这不仅会导致水质恶化,还可能影响到反渗透膜的使用寿命和处理效果。
因此研究反渗透膜生物污染的影响因素及控制方法具有重要的理论和实际意义。
近年来国内外学者对反渗透膜生物污染的研究取得了显著的进展。
他们通过实验研究、理论分析等多种手段,揭示了反渗透膜生物污染的形成机制、影响因素以及控制方法。
这些研究成果为提高反渗透膜的处理效果和使用寿命提供了有力的理论支持和技术保障。
首先研究者们发现,微生物是导致反渗透膜生物污染的主要原因之一。
不同类型的微生物在不同的水质条件下会产生不同的污染效应,如细菌、病毒、真菌等。
此外水温、pH值、溶解氧等因素也会影响微生物的生长和繁殖,从而加剧反渗透膜的生物污染问题。
其次研究人员还发现,水中有机物的存在也是导致反渗透膜生物污染的重要因素。
有机污染物可以为微生物提供营养物质和生长环境,促进其在反渗透膜上的附着和繁殖。
此外水中的无机盐类、胶体颗粒等也可能与微生物共存,共同影响反渗透膜的性能。
随着反渗透膜在水处理领域的广泛应用,研究其生物污染的影响因素及控制方法具有重要的理论和实际意义。
未来随着科学技术的不断进步,相信我们能够找到更加有效的方法来解决这一问题,为保护水资源和实现可持续发展做出更大的贡献。
反渗透膜在水处理中的应用随着水资源的日益紧张和水环境污染问题的严重性,反渗透膜作为一种高效、节能、环保的技术手段,在水处理领域得到了广泛的应用。
反渗透膜是一种具有高度选择性的膜分离技术,它能够有效地去除水中的溶解性固体、有机物、胶体物质以及微生物等污染物,从而实现对水质的净化。
目前反渗透膜在饮用水、工业用水、污水处理等领域都有着广泛的应用。
在饮用水处理方面,反渗透膜技术已经成为了一种主流的净水方法。
通过反渗透膜的过滤作用,可以有效地去除水中的硬度离子、色度、异味等污染物,提高水质的透明度和口感。
反渗透膜技术的进展和应用前景一、反渗透膜技术的发展历程1.早期研究早期的反渗透膜技术使用的是最初的半透膜,由于该膜无法耐受高压,相应的处理能力也十分有限。
在1950年代末至60年代初,出现了第一代薄膜反渗透技术。
该技术使用了新型的材料和生产工艺,提高了膜的稳定性和拓扑结构,进一步提高了反渗透膜的性能。
2.中期研究进入20世纪70年代和80年代,随着新技术的不断涌现,反渗透膜技术得以在生产和应用中发挥出更好的性能。
随着反渗透膜技术的成熟,其在海水淡化、污水处理、饮用水净化等方面逐渐被广泛应用。
3.现代研究近年来,反渗透膜技术在材料、膜构成和生产工艺等方面得到了更进一步的改进。
与传统技术相比,现代反渗透膜具有更高的压力、更好的净化效果、更长的使用寿命和更低的成本。
目前,反渗透技术在能源、医疗、食品等领域具有巨大的应用潜力,被广泛关注和研究。
二、反渗透膜的优势1.高效过滤:反渗透膜可以除去水中的离子、微生物等杂质,实现高效过滤。
其过滤效果优于传统的过滤方法,能够过滤掉更小的颗粒,达到更高的过滤效率。
反渗透膜的过滤效果是由其膜孔径大小决定的,该膜孔径通常只有0.0001 微米左右,它可以有效地过滤掉水中的有害离子和微生物,从而实现高效的水净化和污水处理。
2.节约能源:与传统过滤方法相比,反渗透膜不需要大量的能量,可以节约能源。
反渗透技术不需要追加的能源再进行污水的处理,这一过程能够在常温下完成。
同时,反渗透技术还可以利用压力差、重力落差等自然力量,降低能量消耗,实现能源的节约。
3.可靠稳定:反渗透膜的使用寿命长,具有稳定的性能表现,能够长期保持高效过滤效果。
反渗透膜的材料具有良好的化学稳定性和机械特性,在高温、高压等极端环境下依然能够保持正常运行。
此外,反渗透膜的日常维护和保养工作简单、容易,能够为用户节省人力、物力和时间成本。
4.环保节能:反渗透技术对环境污染较小,同时也可以节约水资源和能源消耗。
反渗透技术的应用能够将水净化效果提高到了一个新的水平,从而能够起到防止环境污染的作用。
反渗透膜在水处理中的研究进展反渗透膜在水处理中的研究进展随着人口的增加和工业化的快速发展,全球面临着日益严重的水资源危机。
水的净化和处理成为当今社会中极为紧迫的问题。
反渗透膜作为一种新型的水处理技术,具有高效、节能、无污染等优势,在水处理中的应用日益广泛。
本文将对反渗透膜在水处理中的研究进展进行系统的综述。
反渗透膜是一种半透性膜,其表面具有微细孔隙。
当水通过反渗透膜时,溶质被滤除,纯净的水则通过膜表面,从而实现水的净化。
反渗透膜的主要组成是多层膜材料,其中最内层由聚酰胺构成,提供了良好的截留效果。
而外层膜材料则用于增加膜的机械强度和化学稳定性。
近年来,反渗透膜在水处理中的研究进展取得了显著的突破。
首先,研究者通过改良膜的结构,提高了反渗透膜的截留率和通量。
采用纳米技术,研究者成功地制备出孔径更小的膜材料,有效地过滤了微小溶质。
由于微孔径膜的研究取得了重要进展,反渗透膜在水处理中的应用领域进一步拓展。
其次,研究者通过引入表面改性技术,提高了反渗透膜的抗污染性能。
水中常存在着溶解有机物、金属离子和微生物等污染物,这些污染物容易附着在膜表面并阻塞膜孔。
为了解决这一问题,研究者将表面改性剂引入膜中,形成具有特殊功能的膜表面,从而增强了反渗透膜的抗污染性能。
第三,反渗透膜的节能性能得到了极大的提升。
过去,反渗透膜的过程需要极高的压力,以产生足够的推力将水推过膜。
近年来,研究者通过改良膜材料和优化操作控制手段,降低了反渗透膜操作的压力要求,从而减少了能源消耗。
此外,反渗透膜在水处理中的应用领域也在不断拓宽。
除了用于海水淡化、饮用水净化等常见的水处理领域外,反渗透膜还可以应用于废水处理、工业用水净化等方面。
研究者通过改良膜的材料和结构,使得反渗透膜可以更好地应对复杂的水质和高浓度的污染物。
然而,反渗透膜在水处理中仍然面临一些挑战。
首先,膜材料的制备过程较为复杂,成本较高。
需要进一步降低制备成本,以推广应用。
此外,膜组件的性能稳定性也需要改善,以提高膜的使用寿命和减少维护成本。
反渗透复合膜功能材料论文摘要:水资源短缺已严重制约着我国的经济发展、社会进步和人民生活水平的提高。
海水淡化是解决水资源短缺的有效途径之一,而反渗透技术则是实现海水淡化最有效、最经济的手段。
本文归纳评述了目前反渗透复合膜功能材料的研发现状,并指出了反渗透复合膜今后的研发方向。
关键词:反渗透复合膜功能材料海水淡化1 引言反渗透技术的核心是高性能的反渗透复合膜,作为分离膜技术基础和核心的功能膜材料一直是美、日等发达国家膜技术发展的重点,尤其是对高性能反渗透复合膜的研究更是重中之重。
1978年,美国Cadone等在反渗透复合膜制备技术和功能材料研究方面取得重大突破,研究开发出的复合膜技术具有制作工艺易优化、膜性能优越、制膜用功能材料选择范围广等优点;1980年美国Filmtec公司推出了FT-30高性能反渗透复合膜,实现了反渗透复合膜技术的品化,从而使反渗透复合膜技术取得了划时代的进步;之后又开发成功了常规反渗透复合膜水淡化反渗透复合膜、高通量反渗透复合膜、低压反渗透复合膜等。
目前反渗透膜技术已广泛应用于海水和苦咸水淡化、纯水和超纯水制备、工业用水处理、废水处理与资源化等领域,取得了十分显著的经济和社会效益。
我国反渗透膜技术的研究始于上世纪80年代后期,经过近20年的研究开发,在常规反渗透复合膜材料、膜和膜组件制作、反渗透复合膜的应用等方面取得了较好的结果,反渗透复合膜的性能达到了国外上世纪90年代初的水平,但在关键功能材料和高性能反渗透复合膜等研究方面与国外相比还存在较大差距。
2反渗透膜的发展概况1748年,Nollet发现水能自然地扩散到装有酒精溶液的猪膀胱内,首次揭示了膜渗透现象。
上世纪20年代V粕’t Ho仃和Gibbs建立了完整的稀溶液理论,并揭示了渗透压与其他热力学性能之间的关系,从而为渗透现象的研究奠定了坚实的理论依据。
但是,反渗透膜过程作为一项高新技术从实验室走向工业应用还是上世纪中叶的事。