2015届高考数学(理)二轮复习专题讲解讲义:专题一 第三讲 基本初等函数、函数与方程及函数的应用
- 格式:doc
- 大小:982.00 KB
- 文档页数:11
(新课标)2015高考数学二轮复习-第二章-函数的概念与基本初等函数I-函数及其表示-理(含2014试题)【科学备考】(新课标)2015高考数学二轮复习第二章函数的概念与基本初等函数I 函数及其表示理(含2014试题)理数1. (2014大纲全国,12,5分)函数y=f(x)的图象与函数y=g(x)的图象关于直线x+y=0对称,则y=f(x)的反函数是()A.y=g(x)B.y=g(-x)C.y=-g(x)D.y=-g(-x)[答案] 1.D[解析] 1.∵y=g(x)关于x+y=0对称的函数为-x=g(-y),即y=-g-1(-x),∴y=f(x)=-g-1(-x),对换x,y 位置关系得:x=-y-1(-y),反解该函数得y=-g(-x),所以y=f(x)的反函数为y=-g(-x).2. (2014四川,9,5分)已知f(x)=ln(1+x)-ln(1-x),x∈(-1,1).现有下列命题:①f(-x)=-f(x);②f=2f(x);③|f(x)|≥2|x|.其中的所有正确命题的序号是()A.①②③B.②③C.①③D.①②[答案] 2.A[解析] 2.f(-x)=ln(1-x)-ln(1+x)=-[ln(1+x)-ln(1-x)]=-f( x),①正确.4.(2014山东,3,5分)函数f(x)=的定义域为()A. B.(2,+∞) C.∪(2,+∞)D.∪[2,+∞)[答案] 4.C[解析] 4.要使函数f(x)有意义,需使(log2x)2-1>0,即(log2x)2>1,∴log2x>1或log2x<-1.解之得x>2或0<x<.故f(x)的定义域为∪(2,+∞).5. (2014山西太原高三模拟考试(一),1) 已知U={y|}, P={y|}, 则CUP=( )[答案] 5. A[解析] 5. U={y|}=, P={y|}=, 所以6.(2014安徽合肥高三第二次质量检测,5) 为了得到函数的图像,可将函数的图像()A. 向左平移B. 向右平移C. 向左平移D. 向右平移[答案] 6. C[解析] 6.因为,把其图象平移个单位长得函数图象,所以,解得,故可将函数的图像向左平移得函数的图像.7. (2014河北石家庄高中毕业班复习教学质量检测(二),11) 已知函数其中为自然对数的底数,若关于的方程有且只有一个实数解,则实数的取值范围为( )A. B. C. D.[答案] 7. B[解析] 7. 先令,则,所以,从而方程只有一个解,即的图像与的图像只有一个交点. 由数形结合可知:当时,应满足;当时交点有且只有一个;综上所述,实数的取值范围为.选B.8. (2014广东广州高三调研测试,8) 对于实数和,定义运算“*” :*设*,且关于的方程为恰有三个互不相等的实数根,,,则的取值范围是()A.B.C.D.[答案] 8.A[解析] 8. 由已知可得,作出的图像,不妨设,由图像可得,且,由重要不等式。
专题03 基本初等函数1.【2017北京,理5】已知函数1()3()3x xf x =-,则()f x(A )是奇函数,且在R 上是增函数 (B )是偶函数,且在R 上是增函数(C )是奇函数,且在R 上是减函数 (D )是偶函数,且在R 上是减函数 【答案】A 【解析】试题分析:()()113333x xxx f x f x --⎛⎫⎛⎫-=-=-=- ⎪ ⎪⎝⎭⎝⎭,所以函数是奇函数,并且3x 是增函数,13x⎛⎫ ⎪⎝⎭是减函数,根据增函数-减函数=增函数,所以函数是增函数,故选A.【考点】函数的性质2.【2017北京,理8】根据有关资料,围棋状态空间复杂度的上限M 约为3361,而可观测宇宙中普通物质的原子总数N 约为1080.则下列各数中与M N最接近的是(参考数据:lg3≈0.48) (A )1033(B )1053 (C )1073(D )1093 【答案】D 【解析】 试题分析:设36180310M x N ==,两边取对数,36136180803lg lg lg3lg10361lg38093.2810x ==-=⨯-=,所以93.2810x =,即M N 最接近9310,故选D.【考点】对数运算【名师点睛】本题考查了转化与化归能力,本题以实际问题的形式给出,但本质就是对数的运算关系,以及指数与对数运算的关系,难点是36180310x =时,两边取对数,对数运算公式包含log log log a a a M N MN +=,log log log a a a MM N N-=,log log n a a M n M =. 3.【2016课标3理数】已知432a =,254b =,1325c =,则( )(A )b a c <<(B )a b c <<(C )b c a <<(D )c a b << 【答案】A 【解析】试题分析:因为422335244a b ==>=,1223332554c a ==>=,所以b a c <<,故选A . 考点:幂函数的图象与性质.4. 【2015高考山东,理10】设函数()31,1,2,1xx x f x x -<⎧=⎨≥⎩则满足()()()2f a f f a =的取值范围是( )(A )2,13⎡⎤⎢⎥⎣⎦(B )[]0,1 (C )2,3⎡⎫+∞⎪⎢⎣⎭(D )[)1,+∞【答案】C【解析】当1a ≥时,()21af a =>,所以,()()()2f aff a =,即1a >符合题意.当1a <时,()31f a a =-,若()()()2f aff a =,则()1f a ≥,即:2311,3a a -≥≥,所以213a ≤<适合题意综上,的取值范围是2,3⎡⎫+∞⎪⎢⎣⎭,故选C. 【考点定位】1、分段函数;2、指数函数.【名师点睛】本题以分段函数为切入点,深入考查了学生对函数概念的理解与掌握,同时也考查了学生对指数函数性质的理解与运用,渗透着对不等式的考查,是一个多知识点的综合题. 5.【2015高考新课标2,理5】设函数211l o g (2),1,()2,1,x x x f x x -+-<⎧=⎨≥⎩,2(2)(log 12)f f -+=( )A .3B .6C .9D .12 【答案】C【解析】由已知得2(2)1log 43f -=+=,又2l o g 121>,所以22log 121log 62(log 12)226f -===,故2(2)(log 12)9f f -+=,故选C .【考点定位】分段函数.【名师点睛】本题考查分段函数求值,要明确自变量属于哪个区间以及熟练掌握对数运算法则,属于基础题.6.【2015高考天津,理7】已知定义在R 上的函数()21x mf x -=-(m 为实数)为偶函数,记()()0.52(log 3),log 5,2a f b f c f m ===,则,,a b c 的大小关系为( ) (A )a b c <<(B )a c b <<(C )c a b <<(D )c b a << 【答案】C【解析】因为函数()21x mf x -=-为偶函数,所以0m =,即()21xf x =-,所以221log log 330.521(log 3)log 2121312,3a f f ⎛⎫===-=-=-= ⎪⎝⎭()()2log 502log 5214,2(0)210b f c f m f ==-====-=所以c a b <<,故选C.【考点定位】1.函数奇偶性;2.指数式、对数式的运算.7.【2017天津,理6】已知奇函数()f x 在R 上是增函数,()()g x xf x =.若2(log 5.1)a g =-,0.8(2)b g =,(3)c g =,则a ,b ,c 的大小关系为 (A )a b c << (B )c b a <<(C )b a c <<(D )b c a <<【答案】C【解析】因为()f x 是奇函数且在R 上是增函数,所以在0x >时,()0f x >, 从而()()g x xf x =是R 上的偶函数,且在[0,)+∞上是增函数,22(log 5.1)(log 5.1)a g g =-=,0.822<,又4 5.18<<,则22log 5.13<<,所以即0.8202log 5.13<<<,0.82(2)(log 5.1)(3)g g g <<,所以b a c <<,故选C .【考点】指数、对数、函数的单调性 【名师点睛】比较大小是高考常见题,指数式、对数式的比较大小要结合指数函数、对数函数,借助指数函数和对数函数的图象,利用函数的单调性进行比较大小,特别是灵活利用函数的奇偶性和单调性数形结合不仅能比较大小,还可以解不等式.8. 【2015高考浙江,理10】已知函数223,1()lg(1),1x x f x xx x ⎧+-≥⎪=⎨⎪+<⎩,则((3))f f -=,()f x 的最小值是.【答案】,3-22.【解析】0)1())3((==-f f f ,当1≥x 时,322)(-≥x f ,当且仅当2=x 时,等号成立,当1<x 时,0)(≥x f ,当且仅当0=x 时,等号成立,故)(x f 最小值为322-.【考点定位】分段函数9.【2016高考江苏卷】设()f x 是定义在R 上且周期为2的函数,在区间[1,1)-上,,10,()2,01,5x a x f x x x +-≤<⎧⎪=⎨-≤<⎪⎩其中.a ∈R 若59()()22f f -=,则(5)f a 的值是. 【答案】25-【解析】51911123()()()()22222255f f f f a a -=-==⇒-+=-⇒=, 因此32(5)(3)(1)(1)155f a f f f ===-=-+=-考点:分段函数,周期性质【名师点睛】分段函数的考查方向注重对应性,即必须明确不同的自变量所对应的函数解析式是什么.函数周期性质可以将未知区间上的自变量转化到已知区间上.解决此类问题时,要注意区间端点是否取到及其所对应的函数值,尤其是分段函数结合点处函数值. 10.【2016高考江苏卷】函数y. 【答案】[]3,1-【解析】试题分析:要使函数有意义,必须2320x x --≥,即2230x x +-≤,31x ∴-≤≤.故答案应填:[]3,1-,考点:函数定义域 【名师点睛】函数定义域的考查,一般是多知识点综合考查,先列,后解是常规思路.列式主要从分母不为零、偶次根式下被开方数非负、对数中真数大于零等出发,而解则与一元二次不等式、指对数不等式、三角不等式联系在一起.11.【2016年高考北京理数】设函数33,()2,x x x af x x x a⎧-≤=⎨->⎩.①若0a =,则()f x 的最大值为______________; ②若()f x 无最大值,则实数的取值范围是________. 【答案】,(,1)-∞-. 【解析】考点:1.分段函数求最值;2.数形结合的数学思想.【名师点睛】1.分段函数的函数值时,应首先确定所给自变量的取值属于哪一个范围,然后选取相应的对应关系.若自变量值为较大的正整数,一般可考虑先求函数的周期.若给出函数值求自变量值,应根据每一段函数的解析式分别求解,但要注意检验所求自变量的值是否属于相应段自变量的范围;2.在研究函数的单调性时,常需要先将函数化简,转化为讨论一些熟知的函数的单调性,因此掌握一次函数、二次函数、幂函数、对数函数等的单调性,将大大缩短我们的判断过程.12.【2015高考福建,理14】若函数()6,2,3log ,2,a x x f x x x -+≤⎧=⎨+>⎩(0a >且1a ≠)的值域是[)4,+∞,则实数的取值范围是.【答案】(1,2]【解析】当2x ≤,故64x -+≥,要使得函数()f x 的值域为[)4,+∞,只需1()3log a f x x =+(2x >)的值域包含于[)4,+∞,故1a >,所以1()3log 2a f x >+,所以3log 24a +≥,解得12a <≤,所以实数的取值范围是(1,2]. 【考点定位】分段函数求值域.13. 【2015高考山东,理14】已知函数()(0,1)x f x a b a a =+>≠ 的定义域和值域都是[]1,0- ,则a b +=.【答案】32-【解析】若1a > ,则()f x 在[]1,0-上为增函数,所以1110a b b -⎧+=-⎨+=⎩ ,此方程组无解;若01a << ,则()f x 在[]1,0-上为减函数,所以1011a b b -⎧+=⎨+=-⎩ ,解得122a b ⎧=⎪⎨⎪=-⎩ ,所以32a b +=-. 【考点定位】指数函数的性质.【名师点睛】本题考查了函数的有关概念与性质,重点考查学生对指数函数的性质的理解与应用,利用方程的思想解决参数的取值问题,注意分类讨论思想方法的应用.14.【2015高考浙江,理18】已知函数2()(,)f x x ax b a b R =++∈,记(,)M a b 是|()|f x 在区间[1,1]-上的最大值.(1)证明:当||2a ≥时,(,)2M a b ≥;(2)当,满足(,)2M a b ≤,求||||a b +的最大值. 【答案】(1)详见解析;(2).试题分析:(1)分析题意可知()f x 在[1,1]-上单调,从而可知(,)max{|(1)|,|(1)|}M a b f f =-,分类讨论的取值范围即可求解.;(2)分析题意可知 ||,0||||||,0a b ab a b a b ab +≥⎧+=⎨-<⎩,再由(,)2M a b ≤可得|1||(1)|2a b f ++=≤, |1||(1)|2a b f -+=-≤,即可得证.试题解析:(1)由22()()24a a f x x b =++-,得对称轴为直线2ax =-,由||2a ≥,得||12a-≥,故()f x 在[1,1]-上单调,∴(,)max{|(1)|,|(1)|}M a b f f =-,当2a ≥时,由 (1)(1)24f f a --=≥,得max{(1),(1)}2f f -≥,即(,)2M a b ≥,当2a ≤-时,由 (1)(1)24f f a --=-≥,得max{(1),(1)}2f f --≥,即(,)2M a b ≥,综上,当||2a ≥时,(,)2M a b ≥;(2)由(,)2M a b ≤得|1||(1)|2a b f ++=≤,|1||(1)|2a b f -+=-≤,故||3a b +≤,||3a b -≤,由||,0||||||,0a b a b a b a b ab +≥⎧+=⎨-<⎩,得||||3a b +≤,当2a =,1b =-时,||||3a b +=,且2|21|x x +-在[1,1]-上的最大值为,即(2,1)2M -=,∴||||a b +的最大值为..【考点定位】1.二次函数的性质;2.分类讨论的数学思想.。
§2.5 指数与指数函数1.分数指数幂(1)规定:正数的正分数指数幂的意义是a m n=na m (a >0,m ,n ∈N *,且n >1);正数的负分数指数幂的意义是a -m n =1na m (a >0,m ,n ∈N *,且n >1);0的正分数指数幂等于0;0的负分数指数幂没有意义.(2)有理指数幂的运算性质:a r a s =a r +s ,(a r )s =a rs ,(ab )r =a r b r ,其中a >0,b >0,r ,s ∈Q . 2.指数函数的图象与性质1.判断下面结论是否正确(请在括号中打“√”或“×”) (1)(4(-4))4=-4.( × ) (2)(-1)24=(-1)12=-1.( × ) (3)函数y =a -x 是R 上的增函数.( × ) (4)函数y =ax 2+1(a >1)的值域是(0,+∞). ( × ) (5)函数y =2x-1是指数函数.( × )(6)函数y =(14)1-x 的值域是(0,+∞).( √ ) 2.若a =(2+3)-1,b =(2-3)-1,则(a +1)-2+(b +1)-2的值是( )A .1 B.14 C.22D.23答案 D解析 a =(2+3)-1=2-3,b =(2-3)-1=2+3, ∴(a +1)-2+(b +1)-2=(3-3)-2+(3+3)-2=112-63+112+63=23. 3.设函数f (x )=a-|x |(a >0,且a ≠1),f (2)=4,则( )A .f (-2)>f (-1)B .f (-1)>f (-2)C .f (1)>f (2)D .f (-2)>f (2)答案 A解析 ∵f (x )=a -|x |(a >0,且a ≠1),f (2)=4,∴a -2=4,∴a =12,∴f (x )=⎝⎛⎭⎫12-|x |=2|x |,∴f (-2)>f (-1).4.若函数y =(a 2-1)x 在(-∞,+∞)上为减函数,则实数a 的取值范围是__________. 答案 (-2,-1)∪(1,2)解析 由y =(a 2-1)x 在(-∞,+∞)上为减函数,得0<a 2-1<1,∴1<a 2<2,即1<a <2或-2<a <-1.5.已知0≤x ≤2,则y =4x -12-3·2x +5的最大值为________.答案 52解析 令t =2x ,∵0≤x ≤2,∴1≤t ≤4,又y =22x -1-3·2x +5,∴y =12t 2-3t +5=12(t -3)2+12, ∵1≤t ≤4,∴t =1时,y max =52.题型一 指数幂的运算例1 化简:(2)(-278)32-+(0.002)21--10(5-2)-1+(2-3)0.思维启迪 运算中可先将根式化成分数指数幂,再按照指数幂的运算性质进行运算.思维升华 (1)指数幂的运算首先将根式、分数指数幂统一为分数指数幂,以便利用法则计算,但应注意:①必须同底数幂相乘,指数才能相加;②运算的先后顺序. (2)当底数是负数时,先确定符号,再把底数化为正数.(3)运算结果不能同时含有根号和分数指数,也不能既有分母又含有负指数.(1)化简416x 8y 4(x <0,y <0)得( )A .2x 2yB .2xyC .4x 2yD .-2x 2y答案 (1)D (2)85题型二 指数函数的图象、性质 例2 (1)函数f (x )=a x-b的图象如图所示,其中a ,b 为常数,则下列结论正确的是( )A .a >1,b <0B .a >1,b >0C .0<a <1,b >0D .0<a <1,b <0(2)若函数f (x )=e -(x -μ)2 (e 是自然对数的底数)的最大值是m ,且f (x )是偶函数,则m +μ=________.思维启迪 对于和指数函数的图象、性质有关的问题,可以通过探求已知函数和指数函数的关系入手. 答案 (1)D (2)1解析 (1)由f (x )=a x -b 的图象可以观察出函数f (x )=a x -b 在定义域上单调递减,所以0<a <1.函数f (x )=a x -b 的图象是在f (x )=a x 的基础上向左平移得到的,所以b <0. (2)由于f (x )是偶函数,所以f (-x )=f (x ),即e -(-x -μ)2=e -(x -μ)2,∴(x +μ)2=(x -μ)2,∴μ=0, ∴f (x )=e -x 2.又y =e x 是R 上的增函数,而-x 2≤0, ∴f (x )的最大值为e 0=1=m ,∴m +μ=1.思维升华 (1)与指数函数有关的函数的图象的研究,往往利用相应指数函数的图象,通过平移、对称变换得到其图象.(2)对复合函数的性质进行讨论时,要搞清复合而成的两个函数,然后对两层函数分别进行研究.(1)函数y =e x +e -xe x -e-x 的图象大致为( )(2)若函数f (x )=a x -1(a >0且a ≠1)的定义域和值域都是[0,2],则实数a =________. 答案 (1)A (2) 3解析 (1)y =e x +e -x e x -e -x =1+2e 2x -1,当x >0时,e 2x -1>0,且随着x 的增大而增大,故y =1+2e 2x -1>1随着x 的增大而减小,即函数y 在(0,+∞)上恒大于1且单调递减.又函数y 是奇函数,故只有A 正确.(2)当a >1时,x ∈[0,2],y ∈[0,a 2-1],∴a 2-1=2,即a = 3.当0<a <1时,x ∈[0,2],y ∈[a 2-1,0],此时定义域与值域不一致,无解. 综上,a = 3. 题型三 指数函数的应用例3 (1)k 为何值时,方程|3x -1|=k 无解?有一解?有两解?(2)已知定义在R 上的函数f (x )=2x -12|x |.①若f (x )=32,求x 的值;②若2t f (2t )+mf (t )≥0对于t ∈[1,2]恒成立,求实数m 的取值范围.思维启迪 方程的解的问题可转为函数图象的交点问题;恒成立可以通过分离参数求最值或值域来解决.解 (1) 函数y =|3x -1|的图象是由函数y =3x 的图象向下平移一个单位后,再把位于x 轴下方的图象沿x 轴翻折到x 轴上方得到的,函数图象如图所示. 当k <0时,直线y =k 与函数y =|3x -1|的图象无交点,即方程无解;当k =0或k ≥1时,直线y =k 与函数y =|3x -1|的图象有唯一的交点,所以方程有一解;当0<k <1时,直线y =k 与函数y =|3x -1|的图象有两个不同的交点,所以方程有两解. (2)①当x <0时,f (x )=0,无解;当x ≥0时,f (x )=2x -12x ,由2x -12x =32,得2·22x -3·2x -2=0,看成关于2x 的一元二次方程,解得2x =2或-12,∵2x >0,∴x =1.②当t ∈[1,2]时,2t ⎝⎛⎭⎫22t -122t +m ⎝⎛⎭⎫2t -12t ≥0, 即m (22t -1)≥-(24t -1),∵22t -1>0,∴m ≥-(22t +1), ∵t ∈[1,2],∴-(22t +1)∈[-17,-5], 故m 的取值范围是[-5,+∞).思维升华 对指数函数的图象进行变换是利用图象的前提,方程f (x )=g (x )解的个数即为函数y =f (x )和y =g (x )图象交点的个数;有关复合函数问题的关键是通过换元得到两个新的函数,搞清复合函数的结构.设函数f (x )=ka x -a -x (a >0且a ≠1)是定义域为R 的奇函数.(1)若f (1)>0,试求不等式f (x 2+2x )+f (x -4)>0的解集;(2)若f (1)=32,且g (x )=a 2x +a -2x -4f (x ),求g (x )在[1,+∞)上的最小值.解 因为f (x )是定义域为R 的奇函数, 所以f (0)=0,所以k -1=0,即k =1.(1)因为f (1)>0,所以a -1a >0,又a >0且a ≠1,所以a >1.因为f ′(x )=a x ln a +a -x ln a =(a x +a -x )ln a >0,所以f (x )在R 上为增函数,原不等式可化为f (x 2+2x )>f (4-x ), 所以x 2+2x >4-x ,即x 2+3x -4>0, 所以x >1或x <-4.所以不等式的解集为{x |x >1或x <-4}.(2)因为f (1)=32,所以a -1a =32,即2a 2-3a -2=0,所以a =2或a =-12(舍去).所以g (x )=22x +2-2x -4(2x -2-x )=(2x -2-x )2-4(2x -2-x )+2. 令t (x )=2x -2-x (x ≥1),则t (x )在(1,+∞)为增函数(由(1)可知),即t (x )≥t (1)=32,所以原函数为ω(t )=t 2-4t +2=(t -2)2-2,所以当t =2时,ω(t )min =-2,此时x =log 2(1+2). 即g (x )在x =log 2(1+2)时取得最小值-2.换元法解决与指数函数有关的值域问题典例:(10分)(1)函数y =(12)x 2+2x -1的值域是( )A .(-∞,4)B .(0,+∞)C .(0,4]D .[4,+∞) (2)函数y =(14)x -(12)x +1在x ∈[-3,2]上的值域是________.解析 (1)设t =x 2+2x -1,则y =(12)t .因为t =(x +1)2-2≥-2,y =(12)t 为关于t 的减函数,所以0<y =(12)t ≤(12)-2=4,故所求函数的值域为(0,4].(2)因为x ∈[-3,2],若令t =(12)x ,则t ∈[14,8].则y =t 2-t +1=(t -12)2+34.当t =12时,y min =34;当t =8时,y max =57.所以所求函数值域为[34,57].答案 (1)C (2)[34,57]温馨提醒 和指数函数有关的值域或最值问题,通常利用换元法,将其转化为两个基本初等函数的单调性或值域问题,注意换元过程中“元”的取值范围的变化.方法与技巧1.判断指数函数图象上底数大小的问题,可以先通过令x =1得到底数的值再进行比较. 2.指数函数y =a x (a >0,a ≠1)的性质和a 的取值有关,一定要分清a >1与0<a <1.3.对和复合函数有关的问题,要弄清复合函数由哪些基本初等函数复合而成. 失误与防范1.恒成立问题一般与函数最值有关,要与方程有解区别开来. 2.复合函数的问题,一定要注意函数的定义域.3.对可化为a 2x +b ·a x +c =0或a 2x +b ·a x +c ≥0 (≤0)形式的方程或不等式,常借助换元法解决,但应注意换元后“新元”的范围.A 组 专项基础训练一、选择题1.函数y =a x -a (a >0,且a ≠1)的图象可能是( )答案 C解析 当x =1时,y =0,故函数y =a x -a (a >0,且a ≠1)的图象必过点(1,0),显然只有C 符合. 2.已知a =5-12,函数f (x )=a x ,若实数m 、n 满足f (m )>f (n ),则m 、n 的关系为( ) A .m +n <0 B .m +n >0 C .m >nD .m <n答案 D 解析 ∵0<5-12<1,∴f (x )=a x =(5-12)x , 且f (x )在R 上单调递减, 又∵f (m )>f (n ),∴m <n ,故选D.3.若函数f (x )=a |2x -4|(a >0,a ≠1),满足f (1)=19,则f (x )的单调递减区间是( )A .(-∞,2]B .[2,+∞)C .[-2,+∞)D .(-∞,-2]答案 B解析 由f (1)=19得a 2=19,∴a =13(a =-13舍去),即f (x )=(13)|2x -4|.由于y =|2x -4|在(-∞,2]上递减,在[2,+∞)上递增, 所以f (x )在(-∞,2]上递增,在[2,+∞)上递减.故选B.4.若存在负实数使得方程2x -a =1x -1成立,则实数a 的取值范围是( )A .(2,+∞)B .(0,+∞)C .(0,2)D .(0,1)答案 C解析 在同一坐标系内分别作出函数y =1x -1和y =2x -a 的图象知,当a ∈(0,2)时符合要求.5.已知实数a ,b 满足等式2 014a =2 015b ,下列五个关系式:①0<b <a ;②a <b <0;③0<a <b ;④b <a <0;⑤a =b .其中不可能成立的关系式有( )A .1个B .2个C .3个D .4个答案 B解析 设2 014a =2 015b =t ,如图所示,由函数图象,可得 (1)若t >1,则有a >b >0; (2)若t =1,则有a =b =0; (3)若0<t <1,则有a <b <0.故①②⑤可能成立,而③④不可能成立. 二、填空题7.若指数函数y =a x 在[-1,1]上的最大值与最小值的差是1,则底数a =________.答案 5±12解析 若0<a <1,则a -1-a =1,即a 2+a -1=0,解得a =-1+52或a =-1-52(舍去).若a >1,则a -a -1=1,即a 2-a -1=0, 解得a =1+52或a =1-52(舍去).综上所述a =5±12.8.若函数f (x )=a x -x -a (a >0,且a ≠1)有两个零点,则实数a 的取值范围是________.答案 (1,+∞)解析 令a x -x -a =0即a x =x +a ,若0<a <1,显然y =a x 与y =x +a 的图象只有一个公共点;若a >1,y =a x 与y =x +a 的图象如图所示有两个公共点.三、解答题9.已知函数f (x )=b ·a x (其中a ,b 为常量且a >0,a ≠1)的图象经过点A (1,6),B (3,24). (1)试确定f (x );(2)若不等式(1a )x +(1b )x -m ≥0在x ∈(-∞,1]上恒成立,求实数m 的取值范围.解 (1)∵f (x )=b ·a x 的图象过点A (1,6),B (3,24),∴⎩⎪⎨⎪⎧b ·a =6, ①b ·a 3=24, ②②÷①得a 2=4,又a >0且a ≠1,∴a =2,b =3,∴f (x )=3·2x .(2)由(1)知(1a )x +(1b )x -m ≥0在(-∞,1]上恒成立化为m ≤(12)x +(13)x 在(-∞,1]上恒成立.令g (x )=(12)x +(13)x ,则g (x )在(-∞,1]上单调递减,∴m ≤g (x )min =g (1)=12+13=56,故所求实数m 的取值范围是(-∞,56].10.设a >0且a ≠1,函数y =a 2x +2a x -1在[-1,1]上的最大值是14,求a 的值. 解 令t =a x (a >0且a ≠1), 则原函数化为y =(t +1)2-2 (t >0).①当0<a <1时,x ∈[-1,1],t =a x ∈⎣⎡⎦⎤a ,1a , 此时f (t )在⎣⎡⎦⎤a ,1a 上为增函数. 所以f (t )max =f ⎝⎛⎭⎫1a =⎝⎛⎭⎫1a +12-2=14. 所以⎝⎛⎭⎫1a +12=16,所以a =-15或a =13. 又因为a >0,所以a =13.②当a >1时,x ∈[-1,1],t =a x ∈⎣⎡⎦⎤1a ,a ,此时f (t )在⎣⎡⎦⎤1a ,a 上为增函数. 所以f (t )max =f (a )=(a +1)2-2=14, 解得a =3(a =-5舍去).综上得a =13或3.B 组 专项能力提升1.设函数f (x )=⎩⎪⎨⎪⎧1x (x >0),e x (x ≤0),若F (x )=f (x )+x ,x ∈R ,则F (x )的值域为( )A .(-∞,1]B .[2,+∞)C .(-∞,1]∪[2,+∞)D .(-∞,1)∪(2,+∞)答案 C解析 当x >0时,F (x )=1x+x ≥2;当x ≤0时,F (x )=e x +x ,根据指数函数与一次函数的单调性,F (x )是单调递增函数,F (x )≤F (0)=1,所以F (x )的值域为(-∞,1]∪[2,+∞).2.若关于x 的方程|a x -1|=2a (a >0且a ≠1)有两个不等实根,则a 的取值范围是( ) A .(0,1)∪(1,+∞) B .(0,1)C .(1,+∞)D.⎝⎛⎭⎫0,12 答案 D解析 方程|a x -1|=2a (a >0且a ≠1)有两个实数根转化为函数y =|a x -1|与y =2a 有两个交点.①当0<a <1时,如图(1),∴0<2a <1,即0<a <12.②当a >1时,如图(2),而y =2a >1不符合要求.图(1) 图(2)综上,0<a <12.3.关于x 的方程⎝⎛⎭⎫32x =2+3a5-a 有负数根,则实数a 的取值范围为__________.答案 ⎝⎛⎭⎫-23,34 解析 由题意,得x <0,所以0<⎝⎛⎭⎫32x<1, 从而0<2+3a 5-a<1,解得-23<a <34.4.已知f (x )=(1a x -1+12)x 3(a >0且a ≠1).(1)讨论f (x )的奇偶性;(2)求a 的取值范围,使f (x )>0在定义域上恒成立. 解 (1)由于a x -1≠0,则a x ≠1,得x ≠0, 所以函数f (x )的定义域为{x |x ∈R ,且x ≠0}.对于定义域内的任意x ,有f (-x )=(1a -x -1+12)(-x )3 =(a x 1-a x +12)(-x )3 =(-1-1a x -1+12)(-x )3 =(1a x -1+12)x 3=f (x ). ∴f (x )是偶函数.(2)方法一 当a >1时,对x >0,由指数函数的性质知a x >1,∴a x -1>0,1a x -1+12>0. 又x >0时,x 3>0,∴x 3(1a x -1+12)>0,即当x >0时,f (x )>0. 又由(1)知,f (x )为偶函数,故f (-x )=f (x ),当x <0时,-x >0,有f (x )=f (-x )>0.综上知当a >1时,f (x )>0在定义域内恒成立.当0<a <1时,f (x )=(a x +1)x 32(a x -1). 当x >0时,1>a x >0,a x +1>0,a x -1<0,x 3>0,此时f (x )<0,不满足题意;又f (x )为偶函数,所以当x <0时,-x >0,f (x )=f (-x )<0,也不满足题意.综上可知,a 的取值范围是a >1.方法二 由(1)知f (x )为偶函数,∴只需讨论x >0时的情况.当x >0时,要使f (x )>0,即(1a x -1+12)x 3>0, 即1a x -1+12>0,即a x +12(a x -1)>0, 即a x -1>0,a x >1,a x >a 0.又∵x >0,∴a >1.∴当a >1时,f (x )>0.故a 的取值范围是a >1.5.已知定义在实数集R 上的奇函数f (x )有最小正周期2,且当x ∈(0,1)时,f (x )=2x4x +1. (1)求函数f (x )在(-1,1)上的解析式;(2)判断f (x )在(0,1)上的单调性;(3)当λ取何值时,方程f (x )=λ在(-1,1)上有实数解?解 (1)∵f (x )是x ∈R 上的奇函数,∴f (0)=0.设x ∈(-1,0),则-x ∈(0,1),f (-x )=2-x4-x +1=2x4x +1=-f (x ), ∴f (x )=-2x4x +1, ∴f (x )=⎩⎪⎨⎪⎧ -2x 4x +1, x ∈(-1,0),0, x =0,2x4x +1, x ∈(0,1).(2)设0<x 1<x 2<1,f (x 1)-f (x 2)=(2x 1-2x 2)+(2x 1+2x 2-2x 2+2x 1)(4x 1+1)(4x 2+1)=(2x 1-2x 2)(1-2x 1+x 2)(4x 1+1)(4x 2+1), ∵0<x 1<x 2<1,∴2x 1<2x 2, 2x 1+x 2>20=1,∴f (x 1)-f (x 2)>0,∴f (x )在(0,1)上为减函数.(3)∵f (x )在(0,1)上为减函数,∴2141+1<f (x )<2040+1,即f (x )∈(25,12). 同理,f (x )在(-1,0)上时,f (x )∈(-12,-25). 又f (0)=0,当λ∈(-12,-25)∪(25,12), 或λ=0时,方程f (x )=λ在x ∈(-1,1)上有实数解.。
§2.8函数与方程1.函数的零点(1)函数零点的定义对于函数y=f(x) (x∈D),把使f(x)=0的实数x叫做函数y=f(x) (x∈D)的零点.(2)几个等价关系方程f(x)=0有实数根⇔函数y=f(x)的图象与x轴有交点⇔函数y=f(x)有零点.(3)函数零点的判定(零点存在性定理)如果函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,并且有f(a)·f(b)<0,那么,函数y=f(x)在区间(a,b)内有零点,即存在c∈(a,b),使得f(c)=0,这个__c__也就是方程f(x)=0的根.2.二次函数y=ax2+bx+c (a>0)的图象与零点的关系3.二分法(1)定义:对于在区间[a,b]上连续不断且f(a)·f(b)<0的函数y=f(x),通过不断地把函数f(x)的零点所在的区间一分为二,使区间的两个端点逐步逼近零点,进而得到零点近似值的方法叫做二分法.(2)给定精确度ε,用二分法求函数f(x)零点近似值的步骤如下:①确定区间[a,b],验证f(a)·f(b)<0,给定精确度ε;②求区间(a,b)的中点c;③计算f(c);(ⅰ)若f(c)=0,则c就是函数的零点;(ⅱ)若f (a )·f (c )<0,则令b =c (此时零点x 0∈(a ,c )); (ⅲ)若f (c )·f (b )<0,则令a =c (此时零点x 0∈(c ,b )).④判断是否达到精确度ε:即若|a -b |<ε,则得到零点近似值a (或b );否则重复②③④.1.判断下面结论是否正确(请在括号中打“√”或“×”) (1)函数的零点就是函数的图象与x 轴的交点.( × )(2)函数y =f (x )在区间(a ,b )内有零点(函数图象连续不断),则f (a )·f (b )<0. ( × ) (3)二次函数y =ax 2+bx +c (a ≠0)在b 2-4ac <0时没有零点. ( √ ) (4)只要函数有零点,我们就可以用二分法求出零点的近似值. ( × ) (5)函数y =2sin x -1的零点有无数多个.( √ ) (6)函数f (x )=kx +1在[1,2]上有零点,则-1<k <-12.( × ) 2.(2013·天津)函数f (x )=2x |log 0.5 x |-1的零点个数为( )A .1B .2C .3D .4答案 B解析 当0<x <1时,f (x )=2x log 0.5x -1,令f (x )=0,则log 0.5x =⎝⎛⎭⎫12x由y =log 0.5x ,y =⎝⎛⎭⎫12x 的图象知,在(0,1)内有一个交点,即f (x )在(0,1)上有一个零点. 当x >1时,f (x )=-2x log 0.5x -1=2x log 2x -1,令f (x )=0得log 2x =⎝⎛⎭⎫12x,由y =log 2x ,y =⎝⎛⎭⎫12x的图象知在(1,+∞)上有一个交点,即f (x )在(1,+∞)上有一个零点,故选B.3.(2013·重庆)若a <b <c ,则函数f (x )=(x -a )(x -b )+(x -b )(x -c )+(x -c )(x -a )的两个零点分别位于区间( )A .(a ,b )和(b ,c )内B .(-∞,a )和(a ,b )内C .(b ,c )和(c ,+∞)内D .(-∞,a )和(c ,+∞)内答案 A解析 由于a <b <c ,所以f (a )=0+(a -b )(a -c )+0>0,f (b )=(b -c )(b -a )<0,f (c )=(c -a )(c -b )>0.因此有f (a )·f (b )<0,f (b )·f (c )<0,又因f (x )是关于x 的二次函数,函数的图象是连续不断的曲线,因此函数f (x )的两零点分别位于区间(a ,b )和(b ,c )内,故选A. 4.在下列区间中,函数f (x )=e x +4x -3的零点所在的区间为( )A .(-14,0)B .(0,14)C .(14,12)D .(12,34)答案 C解析 ∵f (x )=e x +4x -3,∴f ′(x )=e x +4>0. ∴f (x )在其定义域上是严格单调递增函数.∵f (-14)=e 41-4<0,f (0)=e 0+4×0-3=-2<0,f (14)=e 41-2<0,f (12)=e 21-1>0, ∴f (14)·f (12)<0.5.已知函数f (x )=ln x -x +2有一个零点所在的区间为(k ,k +1) (k ∈N *),则k 的值为________. 答案 3解析 由题意知,当x >1时,f (x )单调递减,因为f (3)=ln 3-1>0,f (4)=ln 4-2<0,所以该函数的零点在区间(3,4)内,所以k =3.题型一 函数零点的判断和求解例1 (1)(2012·湖北)函数f (x )=x cos x 2在区间[0,4]上的零点个数为( )A .4B .5C .6D .7(2)设函数f (x )=x 2+2x (x ≠0).当a >1时,方程f (x )=f (a )的实根个数为________.思维启迪 (1)函数零点的确定问题;(2)f (x )=f (a )的实根个数转化为函数g (x )=f (x )-f (a )的零点个数. 答案 (1)C (2)3解析 (1)当x =0时,f (x )=0.又因为x ∈[0,4],所以0≤x 2≤16.因为5π<16<11π2,所以函数y =cos x 2在x 2取π2,3π2,5π2,7π2,9π2时为0,此时f (x )=0,所以f (x )=x cos x 2在区间[0,4]上的零点个数为6. (2)令g (x )=f (x )-f (a ),即g (x )=x 2+2x -a 2-2a ,整理得:g (x )=1ax (x -a )(ax 2+a 2x -2).显然g (a )=0,令h (x )=ax 2+a 2x -2. ∵h (0)=-2<0,h (a )=2(a 3-1)>0,∴h (x )在区间(-∞,0)和(0,a )各有一个零点.因此,g (x )有三个零点,即方程f (x )=f (a )有三个实数解.思维升华 函数零点的确定问题,常见的有①函数零点值大致存在区间的确定,②零点个数的确定,③两函数图象交点的横坐标或有几个交点的确定.解决这类问题的常用方法有解方程法、利用零点存在的判断或数形结合法.(1)函数f (x )=2x +3x 的零点所在的一个区间是( )A .(-2,-1)B .(-1,0)C .(0,1)D .(1,2)(2)若定义在R 上的偶函数f (x )满足f (x +2)=f (x ),且当x ∈[0,1]时,f (x )=x ,则函数y =f (x )-log 3|x |的零点个数是( )A .多于4个B .4个C .3个D .2个答案 (1)B (2)B解析 (1)∵f ′(x )=2x ln 2+3>0, ∴f (x )=2x +3x 在R 上是增函数. 而f (-2)=2-2-6<0,f (-1)=2-1-3<0,f (0)=20=1>0,f (1)=2+3=5>0,f (2)=22+6=10>0, ∴f (-1)·f (0)<0.故函数f (x )在区间(-1,0)上有零点. (2)由题意知,f (x )是周期为2的偶函数.在同一坐标系内作出函数y =f (x )及y =log 3|x |的图象,如下:观察图象可以发现它们有4个交点, 即函数y =f (x )-log 3|x |有4个零点. 题型二 二次函数的零点问题例2 是否存在这样的实数a ,使函数f (x )=x 2+(3a -2)x +a -1在区间[-1,3]上恒有一个零点,且只有一个零点?若存在,求出a 的取值范围;若不存在,说明理由.思维启迪 可将问题转化为f (x )=0在[-1,3]上有且只有一个实数根,结合二次函数的图象特征转化题中条件.解 令f (x )=0,则Δ=(3a -2)2-4(a -1)=9a 2-16a +8=9(a -89)2+89>0,即f (x )=0有两个不相等的实数根,∴若实数a 满足条件,则只需f (-1)·f (3)≤0即可.f (-1)·f (3)=(1-3a +2+a -1)·(9+9a -6+a -1)=4(1-a )(5a +1)≤0, ∴a ≤-15或a ≥1.检验:(1)当f (-1)=0时,a =1,所以f (x )=x 2+x . 令f (x )=0,即x 2+x =0,得x =0或x =-1.方程在[-1,3]上有两个实数根,不合题意,故a ≠1.(2)当f (3)=0时,a =-15,此时f (x )=x 2-135x -65.令f (x )=0,即x 2-135x -65=0,解得x =-25或x =3.方程在[-1,3]上有两个实数根,不合题意,故a ≠-15.综上所述,a <-15或a >1.思维升华 解决二次函数的零点问题:(1)可利用一元二次方程的求根公式; (2)可用一元二次方程的判别式及根与系数之间的关系; (3)利用二次函数的图象列不等式组.已知f (x )=x 2+(a 2-1)x +(a -2)的一个零点比1大,一个零点比1小,求实数a的取值范围.解 方法一 设方程x 2+(a 2-1)x +(a -2)=0的两根分别为x 1,x 2(x 1<x 2),则(x 1-1)(x 2-1)<0,∴x 1x 2-(x 1+x 2)+1<0, 由根与系数的关系, 得(a -2)+(a 2-1)+1<0, 即a 2+a -2<0,∴-2<a <1.方法二 函数图象大致如图,则有f (1)<0, 即1+(a 2-1)+a -2<0,∴-2<a <1. 题型三 函数零点的应用例3 若关于x 的方程22x +2x a +a +1=0有实根,求实数a 的取值范围.思维启迪 方程的根也就是与方程对应的函数零点,判断方程的根是否存在,可以通过构造相应的函数,将其转化为函数零点的存在性问题求解,也可直接通过分离参数,转化为函数的值域问题求解. 解 方法一 (换元法)设t =2x (t >0),则原方程可变为t 2+at +a +1=0,(*) 原方程有实根,即方程(*)有正根. 令f (t )=t 2+at +a +1.①若方程(*)有两个正实根t 1,t 2,则⎩⎪⎨⎪⎧Δ=a 2-4(a +1)≥0,t 1+t 2=-a >0,t 1·t 2=a +1>0,解得-1<a ≤2-22;②若方程(*)有一个正实根和一个负实根(负实根,不合题意,舍去),则f (0)=a +1<0,解得a <-1;③当a =-1时,t =1,x =0符合题意. 综上,a 的取值范围是(-∞,2-22]. 方法二 (分离变量法)由方程,解得a =-22x +12x +1,设t =2x (t >0),则a =-t 2+1t +1=-⎝ ⎛⎭⎪⎫t +2t +1-1 =2-⎣⎢⎡⎦⎥⎤(t +1)+2t +1,其中t +1>1,由基本不等式,得(t +1)+2t +1≥22,当且仅当t =2-1时取等号,故a ≤2-2 2.思维升华 对于“a =f (x )有解”型问题,可以通过求函数y =f (x )的值域来解决.已知定义在R 上的函数y =f (x )满足f (x +2)=f (x ),当-1<x ≤1时,f (x )=x 3,若函数g (x )=f (x )-log a |x |至少有5个零点,则a 的取值范围是( )A .(1,5)B .(0,15)∪[5,+∞)C .(0,15]∪[5,+∞)D .[15,1]∪(1,5]答案 B解析 依题意知函数f (x )的周期为2,在坐标平面内画出函数y =f (x )与函数y =log a |x |的图象,如图所示,结合图象,可知要使函数g (x )=f (x )-log a |x |至少有5个零点,则有0<a <15或a ≥5,即实数a 的取值范围是(0,15)∪[5,+∞).函数与方程思想的应用典例:(12分)已知函数f (x )=-x 2+2e x +m -1,g (x )=x +e 2x(x >0). (1)若y =g (x )-m 有零点,求m 的取值范围;(2)确定m 的取值范围,使得g (x )-f (x )=0有两个相异实根.思维启迪 (1)y =g (x )-m 有零点即y =g (x )与y =m 的图象有交点,所以可以结合图象求解;(2)g (x )-f (x )=0有两个相异实根⇔y =f (x )与y =g (x )的图象有两个不同交点,所以可利用它们的图象求解. 规范解答解 (1)方法一 ∵g (x )=x +e 2x ≥2e 2=2e ,等号成立的条件是x =e , 故g (x )的值域是[2e ,+∞),[3分]因而只需m ≥2e ,则y =g (x )-m 就有零点.[6分]方法二 作出g (x )=x +e 2x (x >0)的大致图象如图.[3分]可知若使y =g (x )-m 有零点,则只需m ≥2e.[6分](2)若g (x )-f (x )=0有两个相异实根,即g (x )与f (x )的图象有两个不同的交点,作出g (x )=x +e 2x (x >0)的大致图象如图.[8分]∵f (x )=-x 2+2e x +m -1=-(x -e)2+m -1+e 2. ∴其图象的对称轴为x =e ,开口向下, 最大值为m -1+e 2.[10分]故当m -1+e 2>2e ,即m >-e 2+2e +1时,g (x )与f (x )有两个交点,即g (x )-f (x )=0有两个相异实根.∴m 的取值范围是(-e 2+2e +1,+∞).[12分]温馨提醒 (1)求函数零点的值,判断函数零点的范围及零点的个数以及已知函数零点求参数范围等问题,都可利用方程来求解,但当方程不易甚至不可能解出时,可构造两个函数,利用数形结合的方法进行求解.(2)本题的易错点是确定g (x )的最小值和f (x )的最大值时易错.要注意函数最值的求法.方法与技巧1.函数零点的判定常用的方法有(1)零点存在性定理;(2)数形结合;(3)解方程f (x )=0.2.研究方程f (x )=g (x )的解,实质就是研究G (x )=f (x )-g (x )的零点.3.转化思想:方程解的个数问题可转化为两个函数图象交点的个数问题;已知方程有解求参数范围问题可转化为函数值域问题. 失误与防范1.函数f (x )的零点是一个实数,是方程f (x )=0的根,也是函数y =f (x )的图象与x 轴交点的横坐标.2.函数零点存在性定理是零点存在的一个充分条件,而不是必要条件;判断零点个数还要根据函数的单调性、对称性或结合函数图象.A 组 专项基础训练一、选择题1.方程log 3x +x -3=0的解所在的区间是( )A .(0,1)B .(1,2)C .(2,3)D .(3,4)答案 C解析 设f (x )=log 3x +x -3,则f (2)=log 32-1<0, f (3)=log 33+3-3=1>0, ∴f (x )=0在(2,3)有零点,又f (x )为增函数,∴f (x )=0的零点在(2,3)内. 2.方程|x 2-2x |=a 2+1(a >0)的解的个数是( )A .1B .2C .3D .4答案 B解析 (数形结合法) ∵a >0,∴a 2+1>1. 而y =|x 2-2x |的图象如图,∴y =|x 2-2x |的图象与y =a 2+1的图象总有两个交点.3.若关于x 的方程x 2+mx +1=0有两个不相等的实数根,则实数m 的取值范围是( ) A .(-1,1)B .(-2,2)C .(-∞,-2)∪(2,+∞)D .(-∞,-1)∪(1,+∞)答案 C解析 ∵方程x 2+mx +1=0有两个不相等的实数根, ∴Δ=m 2-4>0,∴m >2或m <-2.4.已知三个函数f (x )=2x +x ,g (x )=x -2,h (x )=log 2x +x 的零点依次为a ,b ,c ,则( ) A .a <b <c B .a <c <b C .b <a <cD .c <a <b答案 B解析 由于f (-1)=12-1=-12<0,f (0)=1>0,且f (x )为单调递增函数.故f (x )=2x +x 的零点a ∈(-1,0). ∵g (2)=0,∴g (x )的零点b =2;∵h ⎝⎛⎭⎫12=-1+12=-12<0,h (1)=1>0,且h (x )为单调递增函数,∴h (x )的零点c ∈⎝⎛⎭⎫12,1,因此a <c <b .5.已知x 0是函数f (x )=11-x +ln x 的一个零点,若x 1∈(1,x 0),x 2∈(x 0,+∞),则( )A .f (x 1)<0,f (x 2)<0B .f (x 1)>0,f (x 2)>0C .f (x 1)>0,f (x 2)<0D .f (x 1)<0,f (x 2)>0答案 D解析 令f (x )=11-x +ln x =0.从而有ln x =1x -1,此方程的解即为函数f (x )的零点.在同一坐标系中作出函数y =ln x 与y =1x -1的图象如图所示.由图象易知,1x 1-1>ln x 1,从而ln x 1-1x 1-1<0,故ln x 1+11-x 1<0,即f (x 1)<0.同理f (x 2)>0.二、填空题6.定义在R 上的奇函数f (x )满足:当x >0时,f (x )=2 015x +log 2 015x ,则在R 上,函数f (x )零点的个数为________. 答案 3解析 函数f (x )为R 上的奇函数,因此f (0)=0,当x >0时,f (x )=2 015x +log 2 015x 在区间(0,12 015)内存在一个零点,又f (x )为增函数,因此在(0,+∞)内有且仅有一个零点.根据对称性可知函数在(-∞,0)内有且仅有一解,从而函数f (x )在R 上的零点的个数为3.7.已知函数f (x )=⎩⎪⎨⎪⎧2x -1,x >0,-x 2-2x ,x ≤0,若函数g (x )=f (x )-m 有3个零点,则实数m 的取值范围是________. 答案 (0,1) 解析 画出f (x )=⎩⎪⎨⎪⎧2x-1,x >0-x 2-2x ,x ≤0的图象,如图. 由于函数g (x )=f (x )-m 有3个零点,结合图象得:0<m <1,即m ∈(0,1). 8.若函数f (x )=x 2+ax +b 的两个零点是-2和3,则不等式af (-2x )>0的解集是________.答案 {x |-32<x <1}解析 ∵f (x )=x 2+ax +b 的两个零点是-2,3. ∴-2,3是方程x 2+ax +b =0的两根,由根与系数的关系知⎩⎪⎨⎪⎧-2+3=-a-2×3=b ,∴⎩⎪⎨⎪⎧a =-1b =-6,∴f (x )=x 2-x -6. ∵不等式af (-2x )>0,即-(4x 2+2x -6)>0⇔2x 2+x -3<0,解集为{x |-32<x <1}.三、解答题9.已知函数f (x )=x 3-x 2+x 2+14.证明:存在x 0∈(0,12),使f (x 0)=x 0.证明 令g (x )=f (x )-x .∵g (0)=14,g (12)=f (12)-12=-18,∴g (0)·g (12)<0.又函数g (x )在[0,12]上连续,∴存在x 0∈(0,12),使g (x 0)=0.即f (x 0)=x 0.10.已知函数f (x )=4x +m ·2x +1有且仅有一个零点,求m 的取值范围,并求出该零点. 解 ∵f (x )=4x +m ·2x +1有且仅有一个零点, 即方程(2x )2+m ·2x +1=0仅有一个实根. 设2x =t (t >0),则t 2+mt +1=0. 当Δ=0,即m 2-4=0,∴m =-2时,t =1;m =2时,t =-1(不合题意,舍去), ∴2x =1,x =0符合题意. 当Δ>0,即m >2或m <-2时, t 2+mt +1=0有两正根或两负根, 即f (x )有两个零点或没有零点. ∴这种情况不符合题意.综上可知,m =-2时,f (x )有唯一零点,该零点为x =0.B 组 专项能力提升1.已知x 1,x 2是函数f (x )=e -x -|ln x |的两个零点,则( ) A.1e <x 1x 2<1 B .1<x 1x 2<e C .1<x 1x 2<10D .e<x 1x 2<10 答案 A解析 在同一坐标系中画出函数y =e -x 与y =|ln x |的图象,结合图象不难看出,它们的两个交点中,其中一个交点的横坐标属于区间(0,1),另一个交点的横坐标属于区间(1,+∞),即在x 1,x 2中,其中一个属于区间(0,1),另一个属于区间(1,+∞).不妨设x 1∈(0,1),x 2∈(1,+∞),则有e -x 1=|ln x 1|=-ln x 1∈(e -1,1),e -x 2=|ln x 2|=ln x 2∈(0,e -1),e -x 2-e -x 1=ln x 2+ln x 1=ln x 1x 2∈(-1,0),于是有e -1<x 1x 2<e 0,即1e<x 1x 2<1. 2.若直角坐标平面内的两点P ,Q 满足条件:①P ,Q 都在函数y =f (x )的图象上;②P ,Q 关于原点对称.则称点对[P ,Q ]是函数y =f (x )的一对“友好点对”(点对[P ,Q ]与[Q ,P ]看作同一对“友好点对”).已知函数f (x )=⎩⎪⎨⎪⎧log 2x ,x >0,-x 2-4x ,x ≤0,则此函数的“友好点对”有( ) A .0对B .1对C .2对D .3对答案 C 解析 函数f (x )=⎩⎪⎨⎪⎧log 2x ,x >0,-x 2-4x ,x ≤0的图象及函数f (x )=-x 2-4x (x ≤0)的图象关于原点对称的图象如图所示,则A ,B 两点关于原点的对称点一定在函数f (x )=-x 2-4x (x ≤0)的图象上,故函数f (x )的“友好点对”有2对,选C.3.若方程4-x 2=k (x -2)+3有两个不等的实根,则k 的取值范围是________.答案 (512,34] 解析 作出函数y 1=4-x 2和y 2=k (x -2)+3的图象如图所示,函数y 1的图象是圆心在 原点,半径为2的圆在x 轴上方的半圆(包括端点),函数y 2的图象是过定点P (2,3)的直线,点A (-2,0),k P A =3-02-(-2)=34.直线PB 是圆的切线,由圆心到直线的距离等于半径得,|3-2k PB |k 2PB +1=2,得k PB =512.由图可知当k PB <k ≤k P A 时,两函数图象有两个交点,即原方程有两个不等实根.所以512<k ≤34.4.已知关于x 的二次方程x 2+2mx +2m +1=0.(1)若方程有两根,其中一根在区间(-1,0)内,另一根在区间(1,2)内,求m 的取值范围;(2)若方程两根均在区间(0,1)内,求m 的取值范围.解 (1)由条件,抛物线f (x )=x 2+2mx +2m +1与x 轴的交点分别在区间(-1,0)和(1,2)内, 如右图所示,得⎩⎪⎨⎪⎧ f (0)=2m +1<0f (-1)=2>0f (1)=4m +2<0f (2)=6m +5>0⇒⎩⎪⎨⎪⎧m <-12,m ∈R ,m <-12,m >-56. 即-56<m <-12, 故m 的取值范围是(-56,-12). (2)抛物线与x 轴交点的横坐标均在区间(0,1)内,如右图所示,列不等 式组 ⎩⎪⎨⎪⎧f (0)>0f (1)>0Δ≥00<-m <1 ⇒⎩⎪⎨⎪⎧ m >-12,m >-12,m ≥1+2或m ≤1-2,-1<m <0.即-12<m ≤1- 2. 故m 的取值范围是(-12,1-2]. 5.已知a 是正实数,函数f (x )=2ax 2+2x -3-a .如果函数y =f (x )在区间[-1,1]上有零点,求a 的取值范围.解 f (x )=2ax 2+2x -3-a 的对称轴为x =-12a . ①当-12a ≤-1,即0≤a ≤12时, 须使⎩⎪⎨⎪⎧ f (-1)≤0,f (1)≥0,即⎩⎪⎨⎪⎧ a ≤5,a ≥1,∴a 的解集为∅.②当-1<-12a <0,即a >12时, 须使⎩⎪⎨⎪⎧ f (-12a )≤0,f (1)≥0,即⎩⎪⎨⎪⎧ -12a -3-a ≤0,a ≥1,解得a ≥1,∴a 的取值范围是[1,+∞).。
§2.3 函数的奇偶性与周期性1.函数的奇偶性奇偶性,定义,图象特点偶函数,如果对于函数f (x )的定义域内任意一个x ,都有f (-x )=f (x ),那么函数f (x )是偶函数,关于y 轴对称奇函数,如果对于函数f (x )的定义域内任意一个x ,都有f (-x )=-f (x ),那么函数f (x )是奇函数,关于原点对称 2.周期性(1)周期函数:对于函数y =f (x ),如果存在一个非零常数T ,使得当x 取定义域内的任何值时,都有f (x +T )=f (x ),那么就称函数y =f (x )为周期函数,称T 为这个函数的周期. (2)最小正周期:如果在周期函数f (x )的所有周期中存在一个最小的正数,那么这个最小正数就叫做f (x )的最小正周期.1.判断下面结论是否正确(请在括号中打“√”或“×”) (1)函数f (x )=0,x ∈(0,+∞)既是奇函数又是偶函数.( × ) (2)若函数y =f (x +a )是偶函数,则函数y =f (x )关于直线x =a 对称. ( √ ) (3)若函数y =f (x +b )是奇函数,则函数y =f (x )关于点(b,0)中心对称.( √ ) (4)若函数f (x )=x(x -2)(x +a )为奇函数,则a =2.( √ )(5)函数f (x )在定义域上满足f (x +a )=-f (x ),则f (x )是周期为2a (a >0)的周期函数.( √ ) (6)函数f (x )为R 上的奇函数,且f (x +2)=f (x ),则f (2 014)=0. ( √ )2.(2013·山东)已知函数f (x )为奇函数,且当x >0时,f (x )=x 2+1x ,则f (-1)等于( )A .-2B .0C .1D .2答案 A解析 f (-1)=-f (1)=-(1+1)=-2.3.已知f (x )=ax 2+bx 是定义在[a -1,2a ]上的偶函数,那么a +b 的值是( )A .-13 B.13 C.12 D .-12答案 B解析 依题意b =0,且2a =-(a -1),∴a =13,则a +b =13.4.已知f (x )在R 上是奇函数,且满足f (x +4)=f (x ),当x ∈(0,2)时,f (x )=2x 2,则f (2 015)等于( )A .-2B .2C .-98D .98答案 A解析 ∵f (x +4)=f (x ),∴f (x )是以4为周期的周期函数, ∴f (2 015)=f (503×4+3)=f (3)=f (-1). 又f (x )为奇函数,∴f (-1)=-f (1)=-2×12=-2,即f (2 015)=-2.5.设函数f (x )是定义在R 上的奇函数,若当x ∈(0,+∞)时,f (x )=lg x ,则满足f (x )>0的x 的取值范围是________. 答案 (-1,0)∪(1,+∞)解析 画草图,由f (x )为奇函数知:f (x )>0的x 的取值范围为 (-1,0)∪(1,+∞).题型一 判断函数的奇偶性 例1 判断下列函数的奇偶性: (1)f (x )=9-x 2+x 2-9;(2)f (x )=(x +1) 1-x1+x ;(3)f (x )=4-x 2|x +3|-3.思维启迪 确定函数的奇偶性时,必须先判定函数定义域是否关于原点对称.若对称,再验证f (-x )=±f (x )或其等价形式f (-x )±f (x )=0是否成立.解 (1)由⎩⎪⎨⎪⎧9-x 2≥0x 2-9≥0,得x =±3.∴f (x )的定义域为{-3,3},关于原点对称. 又f (3)+f (-3)=0,f (3)-f (-3)=0. 即f (x )=±f (-x ).∴f (x )既是奇函数,又是偶函数.(2)由⎩⎪⎨⎪⎧1-x 1+x ≥01+x ≠0,得-1<x ≤1.∵f (x )的定义域(-1,1]不关于原点对称. ∴f (x )既不是奇函数,也不是偶函数.(3)由⎩⎪⎨⎪⎧4-x 2≥0|x +3|-3≠0,得-2≤x ≤2且x ≠0.∴f (x )的定义域为[-2,0)∪(0,2],关于原点对称. ∴f (x )=4-x 2(x +3)-3=4-x 2x. ∴f (x )=-f (-x ),∴f (x )是奇函数.思维升华 (1)利用定义判断函数奇偶性的步骤:(2)在判断奇偶性的运算中,可以转化为判断奇偶性的等价等量关系式(f (x )+f (-x )=0(奇函数)或f (x )-f (-x )=0(偶函数))是否成立. 判断下列函数的奇偶性:(1)f (x )=lg (1-x 2)|x -2|-2;(2)f (x )=⎩⎪⎨⎪⎧x 2+2(x >0)0(x =0)-x 2-2(x <0).解 (1)由⎩⎪⎨⎪⎧1-x 2>0|x -2|-2≠0,得定义域为(-1,0)∪(0,1),f (x )=lg (1-x 2)-(x -2)-2=-lg (1-x 2)x .∵f (-x )=-lg[1-(-x )2]-x =-lg (1-x 2)-x =-f (x ).∴f (x )为奇函数.(2)f (x )的定义域为R ,关于原点对称,当x >0时,f (-x )=-(-x )2-2=-(x 2+2)=-f (x ); 当x <0时,f (-x )=(-x )2+2=-(-x 2-2)=-f (x );当x =0时,f (0)=0,也满足f (-x )=-f (x ). 故该函数为奇函数. 题型二 函数周期性的应用例2 (1)定义在R 上的函数f (x )满足f (x +6)=f (x ),当-3≤x <-1时,f (x )=-(x +2)2;当-1≤x <3时,f (x )=x .则f (1)+f (2)+f (3)+…+f (2 015)等于( )A .335B .336C .1 678D .2 012(2)已知f (x )是定义在R 上的偶函数,并且f (x +2)=-1f (x ),当2≤x ≤3时,f (x )=x ,则f (105.5)=________.思维启迪 (1)f (x )的周期性已知,可以通过一个周期内函数值的变化情况求和.(2)通过题意先确定函数的周期性. 答案 (1)B (2)2.5解析 (1)利用函数的周期性和函数值的求法求解. ∵f (x +6)=f (x ),∴T =6.∵当-3≤x <-1时,f (x )=-(x +2)2; 当-1≤x <3时,f (x )=x ,∴f (1)=1,f (2)=2,f (3)=f (-3)=-1,f (4)=f (-2)=0,f (5)=f (-1)=-1,f (6)=f (0)=0, ∴f (1)+f (2)+…+f (6)=1,∴f (1)+f (2)+…+f (6)=f (7)+f (8)+…+f (12)=…=f (2 005)+f (2 006)+…+f (2 010)=1,∴f (1)+f (2)+…+f (2 010)=1×2 0106=335.而f (2 011)+f (2 012)+f (2 013)+f (2 014)+f (2 015) =f (1)+f (2)+f (3)+f (4)+f (5)=1+2-1+0-1=1. ∴f (1)+f (2)+…+f (2 015)=335+1=336. (2)由已知,可得f (x +4)=f [(x +2)+2]=-1f (x +2)=-1-1f (x )=f (x ).故函数的周期为4.∴f (105.5)=f (4×27-2.5)=f (-2.5)=f (2.5). ∵2≤2.5≤3,由题意,得f (2.5)=2.5. ∴f (105.5)=2.5.思维升华 (1)函数的周期性反映了函数在整个定义域上的性质.对函数周期性的考查,主要涉及函数周期性的判断,利用函数周期性求值. (2)求函数周期的方法(1)若f (x )是R 上周期为5的奇函数,且满足f (1)=1,f (2)=2,则f (3)-f (4)等于( )A .-1B .1C .-2D .2 (2)设f (x )是周期为2的奇函数,当0≤x ≤1时,f (x )=2x (1-x ),则f ⎝⎛⎭⎫-52等于 ( ) A .-12B .-14C.14D.12答案 (1)A (2)A解析 (1)由f (x )是R 上周期为5的奇函数知 f (3)=f (-2)=-f (2)=-2, f (4)=f (-1)=-f (1)=-1, ∴f (3)-f (4)=-1,故选A.(2)∵f (x )是周期为2的奇函数,∴f ⎝⎛⎭⎫-52=f ⎝⎛⎭⎫-52+2=f ⎝⎛⎭⎫-12=-f ⎝⎛⎭⎫12 =-2×12×⎝⎛⎭⎫1-12=-12. 题型三 函数性质的综合应用例3 设f (x )是(-∞,+∞)上的奇函数,f (x +2)=-f (x ),当0≤x ≤1时,f (x )=x . (1)求f (π)的值;(2)当-4≤x ≤4时,求f (x )的图象与x 轴所围成图形的面积; (3)写出(-∞,+∞)内函数f (x )的单调区间.思维启迪 可以先确定函数的周期性,求f (π);然后根据函数图象的对称性、周期性画出函数图象,求图形面积、写单调区间. 解 (1)由f (x +2)=-f (x )得,f (x +4)=f [(x +2)+2]=-f (x +2)=f (x ), 所以f (x )是以4为周期的周期函数, ∴f (π)=f (-1×4+π)=f (π-4)=-f (4-π) =-(4-π)=π-4.(2)由f (x )是奇函数与f (x +2)=-f (x ), 得:f [(x -1)+2]=-f (x -1)=f [-(x -1)], 即f (1+x )=f (1-x ).故知函数y =f (x )的图象关于直线x =1对称.又当0≤x ≤1时,f (x )=x ,且f (x )的图象关于原点成中心对称,则f (x )的图象如图所示.当-4≤x ≤4时,f (x )的图象与x 轴围成的图形面积为S ,则S =4S △OAB =4×⎝⎛⎭⎫12×2×1=4.(3)函数f (x )的单调递增区间为[4k -1,4k +1] (k ∈Z ), 单调递减区间为[4k +1,4k +3] (k ∈Z ).思维升华 关于奇偶性、单调性、周期性的综合性问题,关键是利用奇偶性和周期性将未知区间上的问题转化为已知区间上的问题,体现了转化思想.(1)已知偶函数f (x )在区间[0,+∞)上单调递增,则满足f (2x -1)<f ⎝⎛⎭⎫13的x 的取值范围是( )A.⎝⎛⎭⎫13,23B.⎣⎡⎭⎫13,23 C.⎝⎛⎭⎫12,23D.⎣⎡⎭⎫12,23(2)已知定义在R 上的奇函数f (x )满足f (x -4)=-f (x ),且在区间[0,2]上是增函数,则( ) A .f (-25)<f (11)<f (80) B .f (80)<f (11)<f (-25) C .f (11)<f (80)<f (-25) D .f (-25)<f (80)<f (11) 答案 (1)A (2)D解析 (1)偶函数满足f (x )=f (|x |),根据这个结论,有f (2x -1)<f ⎝⎛⎭⎫13⇔f (|2x -1|)<f ⎝⎛⎭⎫13, 进而转化为不等式|2x -1|<13,解这个不等式即得x 的取值范围是⎝⎛⎭⎫13,23. (2)由函数f (x )是奇函数且f (x )在[0,2]上是增函数可以推知, f (x )在[-2,2]上递增,又f (x -4)=-f (x )⇒f (x -8)=-f (x -4)=f (x ), 故函数f (x )以8为周期,f (-25)=f (-1),f (11)=f (3)=-f (3-4)=f (1), f (80)=f (0),故f (-25)<f (80)<f (11).忽视定义域致误典例:(10分)(1)若函数f (x )=k -2x 1+k ·2x在定义域上为奇函数,则实数k =________.(2)已知函数f (x )=⎩⎪⎨⎪⎧x 2+1,x ≥0,1,x <0,则满足不等式f (1-x 2)>f (2x )的x 的取值范围是________.易错分析 (1)解题中忽视函数f (x )的定义域,直接通过计算f (0)=0得k =1. (2)本题易出现以下错误由f (1-x 2)>f (2x )得1-x 2>2x ,忽视了1-x 2>0导致解答失误. 解析 (1)∵f (-x )=k -2-x1+k ·2-x =k ·2x -12x +k,∴f (-x )+f (x )=(k -2x )(2x +k )+(k ·2x -1)·(1+k ·2x )(1+k ·2x )(2x+k ) =(k 2-1)(22x +1)(1+k ·2x )(2x +k ).由f (-x )+f (x )=0可得k 2=1,∴k =±1.(2) 画出f (x )=⎩⎪⎨⎪⎧x 2+1,x ≥0,1,x <0的图象,由图象可知,若f (1-x 2)>f (2x ),则⎩⎪⎨⎪⎧1-x 2>0,1-x 2>2x ,即⎩⎪⎨⎪⎧-1<x <1,-1-2<x <-1+2,得x ∈(-1,2-1). 答案 (1)±1 (2)(-1,2-1)温馨提醒 (1)已知函数的奇偶性,利用特殊值确定参数,要注意函数的定义域. (2)解决分段函数的单调性问题时,应高度关注: ①抓住对变量所在区间的讨论.②保证各段上同增(减)时,要注意左、右段端点值间的大小关系. ③弄清最终结果取并还是交.方法与技巧1.正确理解奇函数和偶函数的定义,必须把握好两个问题:(1)定义域在数轴上关于原点对称是函数f (x )为奇函数或偶函数的必要非充分条件; (2)f (-x )=-f (x )或f (-x )=f (x )是定义域上的恒等式.2.奇函数的图象关于原点对称,偶函数的图象关于y 轴对称,反之也成立.利用这一性质可简化一些函数图象的画法,也可以利用它去判断函数的奇偶性.3.若对于函数f (x )的定义域内任一个自变量的值x 都有f (x +a )=-f (x )或f (x +a )=1f (x )或f (x +a )=-1f (x )(a 是常数且a ≠0),则f (x )是一个周期为2a 的周期函数. 失误与防范1.判断函数的奇偶性,首先应该判断函数定义域是否关于原点对称.定义域关于原点对称是函数具有奇偶性的一个必要条件.2.判断函数f (x )是奇函数,必须对定义域内的每一个x ,均有f (-x )=-f (x ),而不能说存在x 0使f (-x 0)=-f (x 0).对于偶函数的判断以此类推.3.分段函数奇偶性判定时,要以整体的观点进行判断,不可以利用函数在定义域某一区间上不是奇偶函数而否定函数在整个定义域上的奇偶性.A 组 专项基础训练一、选择题1.(2013·广东)定义域为R 的四个函数y =x 3,y =2x ,y =x 2+1,y =2sin x 中,奇函数的个数是( )A .4B .3C .2D .1答案 C解析 由奇函数的定义可知y =x 3,y =2sin x 为奇函数.2.设f (x )是定义在R 上的奇函数,当x ≤0时,f (x )=2x 2-x ,则f (1)等于( )A .-3B .-1C .1D .3答案 A解析 ∵f (x )是奇函数,当x ≤0时,f (x )=2x 2-x , ∴f (1)=-f (-1)=-[2×(-1)2-(-1)]=-3.3.定义在R 上的偶函数f (x ),对任意x 1,x 2∈[0,+∞)(x 1≠x 2),有f (x 2)-f (x 1)x 2-x 1<0,则( )A .f (3)<f (-2)<f (1)B .f (1)<f (-2)<f (3)C .f (-2)<f (1)<f (3)D .f (3)<f (1)<f (-2)答案 A解析 由题意知f (x )为偶函数,所以f (-2)=f (2), 又x ∈[0,+∞)时,f (x )为减函数,且3>2>1, ∴f (3)<f (2)<f (1),即f (3)<f (-2)<f (1),故选A.4.定义两种运算:a b =a 2-b 2,a ⊗b =(a -b )2,则f (x )=2x2-(x ⊗2)是( )A .奇函数B .偶函数C .既奇又偶函数D .非奇非偶函数答案 A 解析 因为2x =4-x 2,x ⊗2=(x -2)2, 所以f (x )=4-x 22-(x -2)2=4-x 22-(2-x )=4-x 2x, 该函数的定义域是[-2,0)∪(0,2], 且满足f (-x )=-f (x ). 故函数f (x )是奇函数.5.已知定义在R 上的奇函数f (x )和偶函数g (x )满足f (x )+g (x )=a x -a -x +2(a >0,且a ≠1).若g (2)=a ,则f (2)等于( )A .2 B.154C.174D .a 2答案 B解析 ∵f (x )为奇函数,g (x )为偶函数, ∴f (-2)=-f (2),g (-2)=g (2)=a , ∵f (2)+g (2)=a 2-a -2+2,①∴f (-2)+g (-2)=g (2)-f (2)=a -2-a 2+2,②由①、②联立,g (2)=a =2,f (2)=a 2-a -2=154.二、填空题6.函数f (x )在R 上为奇函数,且x >0时,f (x )=x +1,则当x <0时,f (x )=________. 答案 --x -1解析 ∵f (x )为奇函数,x >0时,f (x )=x +1, ∴当x <0时,-x >0, f (x )=-f (-x )=-(-x +1), 即x <0时,f (x )=-(-x +1)=--x -1.7.若函数f (x )=x 2-|x +a |为偶函数,则实数a =________.答案 0解析 ∵函数f (x )=x 2-|x +a |为偶函数,∴f (-x )=f (x ),即(-x )2-|-x +a |=x 2-|x +a |,∴|-x +a |=|x +a |,∴a =0.8.已知函数f (x )满足:f (1)=14,4f (x )f (y )=f (x +y )+f (x -y )(x ,y ∈R ),则f (2 015)=________.答案 14解析 方法一 令x =1,y =0时,4f (1)·f (0)=f (1)+f (1),解得f (0)=12,令x =1,y =1时,4f (1)·f (1)=f (2)+f (0),解得f (2)=-14,令x =2,y =1时,4f (2)·f (1)=f (3)+f (1),解得f (3)=-12,依次求得f (4)=-14,f (5)=14,f (6)=12,f (7)=14,f (8)=-14,f (9)=-12,…可知f (x )是以6为周期的函数,∴f (2 015)=f (335×6+5)=f (5)=14.方法二 ∵f (1)=14,4f (x )·f (y )=f (x +y )+f (x -y ),∴构造符合题意的函数f (x )=12cos π3x ,∴f (2 015)=12cos ⎝⎛⎭⎫π3×2 015=14. 三、解答题9.已知函数f (x )是定义在R 上的奇函数,且它的图象关于直线x =1对称. (1)求证:f (x )是周期为4的周期函数;(2)若f (x )=x (0<x ≤1),求x ∈[-5,-4]时,函数f (x )的解析式. (1)证明 由函数f (x )的图象关于直线x =1对称,有f (x +1)=f (1-x ),即有f (-x )=f (x +2). 又函数f (x )是定义在R 上的奇函数, 故有f (-x )=-f (x ).故f (x +2)=-f (x ). 从而f (x +4)=-f (x +2)=f (x ), 即f (x )是周期为4的周期函数.(2)解 由函数f (x )是定义在R 上的奇函数,有f (0)=0. x ∈[-1,0)时,-x ∈(0,1],f (x )=-f (-x )=--x .故x ∈[-1,0]时,f (x )=--x .x ∈[-5,-4]时,x +4∈[-1,0],f (x )=f (x +4)=--x -4.从而,x ∈[-5,-4]时,函数f (x )=--x -4. 10.已知函数f (x )=⎩⎪⎨⎪⎧ -x 2+2x ,x >0,0,x =0,x 2+mx ,x <0是奇函数.(1)求实数m 的值; (2)若函数f (x )在区间[-1,a -2]上单调递增,求实数a 的取值范围.解 (1)设x <0,则-x >0,所以f (-x )=-(-x )2+2(-x )=-x 2-2x .又f (x )为奇函数,所以f (-x )=-f (x ),于是x <0时,f (x )=x 2+2x =x 2+mx ,所以m =2.(2)由(1)知f (x )在[-1,1]上是增函数,要使f (x )在[-1,a -2]上单调递增.结合f (x )的图象知⎩⎪⎨⎪⎧ a -2>-1,a -2≤1, 所以1<a ≤3,故实数a 的取值范围是(1,3].B 组 专项能力提升1.已知f (x )是定义在R 上的偶函数,g (x )是定义在R 上的奇函数,且g (x )=f (x -1),则f (2 013)+f (2 015)的值为( ) A .-1B .1C .0D .无法计算 答案 C解析 由题意,得g (-x )=f (-x -1),又∵f (x )是定义在R 上的偶函数,g (x )是定义在R 上的奇函数,∴g (-x )=-g (x ),f (-x )=f (x ),∴f (x -1)=-f (x +1),∴f (x )=-f (x +2),∴f (x )=f (x +4),∴f (x )的周期为4,∴f (2 013)=f (1),f (2 015)=f (3)=f (-1),又∵f (1)=f (-1)=g (0)=0,∴f (2 013)+f (2 015)=0.2.设奇函数f (x )的定义域为R ,最小正周期T =3,若f (1)≥1,f (2)=2a -3a +1,则a 的取值范围是( ) A .a <-1或a ≥23 B .a <-1C .-1<a ≤23D .a ≤23答案 C 解析 函数f (x )为奇函数,则f (1)=-f (-1).由f (1)=-f (-1)≥1,得f (-1)≤-1;函数的最小正周期T =3,则f (-1)=f (2),由2a -3a +1≤-1,解得-1<a ≤23. 3.设函数f (x )是定义在R 上的偶函数,且对任意的x ∈R 恒有f (x +1)=f (x -1),已知当x ∈[0,1]时,f (x )=2x ,则有①2是函数f (x )的周期;②函数f (x )在(1,2)上是减函数,在(2,3)上是增函数;③函数f (x )的最大值是1,最小值是0.其中所有正确命题的序号是________.答案 ①②解析 在f (x +1)=f (x -1)中,令x -1=t ,则有f (t +2)=f (t ),因此2是函数f (x )的周期,故①正确;当x ∈[0,1]时,f (x )=2x 是增函数,则f (x )在[-1,0]上是减函数,根据函数的周期性知,函数f (x )在(1,2)上是减函数,在(2,3)上是增函数,故②正确;在区间[-1,1]上,f (x )的最大值为f (1)=f (-1)=2,f (x )的最小值为f (0)=1,故③错误.4.函数f (x )的定义域为D ={x |x ≠0},且满足对于任意x 1,x 2∈D ,有f (x 1·x 2)=f (x 1)+f (x 2).(1)求f (1)的值;(2)判断f (x )的奇偶性并证明你的结论;(3)如果f (4)=1,f (x -1)<2,且f (x )在(0,+∞)上是增函数,求x 的取值范围.解 (1)∵对于任意x 1,x 2∈D ,有f (x 1·x 2)=f (x 1)+f (x 2),∴令x 1=x 2=1,得f (1)=2f (1),∴f (1)=0.(2)令x 1=x 2=-1,有f (1)=f (-1)+f (-1),∴f (-1)=12f (1)=0. 令x 1=-1,x 2=x 有f (-x )=f (-1)+f (x ),∴f (-x )=f (x ),∴f (x )为偶函数.(3)依题设有f (4×4)=f (4)+f (4)=2,由(2)知,f(x)是偶函数,∴f(x-1)<2⇔f(|x-1|)<f(16).又f(x)在(0,+∞)上是增函数.∴0<|x-1|<16,解之得-15<x<17且x≠1.∴x的取值范围是{x|-15<x<17且x≠1}.5.设函数f(x)在(-∞,+∞)上满足f(2-x)=f(2+x),f(7-x)=f(7+x),且在闭区间[0,7]上只有f(1)=f(3)=0.(1)试判断函数y=f(x)的奇偶性;(2)试求方程f(x)=0在闭区间[-2 005,2 005]上的根的个数,并证明你的结论.解(1)∵f(1)=0,且f(x)在[0,7]上只有f(1)=f(3)=0,又∵f(2-x)=f(2+x),令x=-3,f(-1)=f(5)≠0,∴f(-1)≠f(1),且f(-1)≠-f(1).∴f(x)既不是奇函数,也不是偶函数.(2)f(10+x)=f[2+8+x]=f[2-(8+x)]=f(-6-x)=f[7-(13+x)]=f[7+13+x]=f(20+x),∴f(x)以10为周期.又f(x)的图象关于x=7对称知,f(x)=0在(0,10)上有两个根,则f(x)=0在(0,2 005]上有201×2=402个根;在[-2 005,0]上有200×2=400个根;因此f(x)=0在闭区间上共有802个根.。
第二章函数的概念、基本初等函数(Ⅰ)及函数的应用§2.1函数及其表示1.了解构成函数的要素,会求一些简单函数的定义域和值域;了解映射的概念.2.在实际情境中,会根据不同的需要选择恰当的方法(如图象法、列表法、解析法)表示函数.3.了解简单的分段函数,并能简单应用(函数分段不超过三段).从近几年高考来看,函数的概念、分段函数的解析式和求函数值是重点考查的内容之一,主要以选择、填空题的形式出现.1.函数的概念一般地,设A,B是两个非空的数集,如果按照某种确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有________f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个________,记作y=f(x),x∈A,其中,x叫做________,x的取值范围A叫做函数的________;与x的值相对应的y值叫做________,其集合{f(x)|x∈A}叫做函数的________.2.函数的表示方法(1)解析法:就是用________表示两个变量之间的对应关系的方法.(2)图象法:就是用________表示两个变量之间的对应关系的方法.(3)列表法:就是________表示两个变量之间的对应关系的方法.3.构成函数的三要素(1)函数的三要素是:________,________,________.(2)两个函数相等:如果两个函数的________相同,并且完全一致,则称这两个函数相等.4.分段函数若函数在定义域的不同子集上的对应关系也不同,这种形式的函数叫做分段函数,它是一类重要的函数.5.映射的概念一般地,设A,B是两个非空的集合,如果按某一个确定的对应关系f,使对于A中的________元素x,在集合B中都有________元素y与之对应,那么就称对应f:A→B为从集合A到集合B的一个映射.6.映射与函数的关系(1)联系:映射的定义是在函数的现代定义(集合语言定义)的基础上引申、拓展而来的;函数是一种特殊的_____________.(2)区别:函数是从非空数集..A到非空数集..B的映射;对于映射而言,A和B不一定是数集...7.复合函数一般地,对于两个函数y=f(u)和u=g(x),如果通过变量u,y可以表示成x的函数,那么称这个函数为函数y=f(u)和u=g(x)的复合函数,记作y=f(g(x)),其中y=f(u)叫做复合函数y=f(g(x))的外层函数,u=g(x)叫做y=f(g(x))的内层函数.【自查自纠】1.唯一确定的数函数自变量定义域函数值值域2.(1)数学表达式(2)图象(3)列出表格3.(1)定义域对应关系值域(2)定义域对应关系5.任意一个唯一确定的6.(1)映射(2012·江西)下列函数中,与函数y=13x定义域相同的函数为()A.y=1sin x B.y=ln xxC.y=x e x D.y=sin xx解:函数y=13x的定义域为(-∞,0)∪(0,+∞),列判断正确的是.都表示映射,都表示y 是x 的函数 .仅③表示y 是x 的函数 .仅④表示y 是x 的函数 .都不能表示y 是x 的函数根据映射的定义,①②③中,x 与y 的对应关系都不是映射,当然不是函数关系,④是映射,是函数关系.故选C.函数y =-x 2-3x +4x的定义域________________.依题意知⎩⎪⎨⎪⎧-x 2-3x +4≥0,x ≠0, 解得-4≤1.故填[-4,0)∪(0,1].规定记号“*”表示一种运算,且a *b =ab ,a b 是正实数,已知1*k =3.正实数k 的值为____________;在(1)的条件下,函数f (x )=k *x 的值域是___________.∵1*k =k +k +1=3,∴k =1;k *x =1*x =⎝⎛⎭⎫x +122+34>1,∴函数f (x )=k *x 的值域是.故填1;(1,+∞).________.①P =Z 素取绝对值与集合②P ={→y =x 2 ①A =R ②A =⎩⎨⎧a :a →b , 相等的函数是A .g (x一函数的是(A.f(x)=B.f(x)=的定义域.(2)若函数的定义域求函数f(x)的定义域(2)已知函数的定义域.解:(1)∵(1)y=11(3)y=2,x <-12,,-12≤x ≤4,>4,作出其图象,可知函数f (x )的值域是求函数值域的常用方法:①单调性法,(2);③分离常数法,如(包括代数换元与三角换元⑥判别式法,如(4);⑦不等式法,⑧导数法,主要是针对在某区间内连续可导的函数;⑨图象法求分段函数的值域通常先作出函数的图象,然后由函数的图象写出函数的值域,如(5),(6)),其解法要针对具体题目可以将二元函数化为一元函数求值只能用不等式法求值域.求函数的值域是个较复杂的问题,它比求函数的定义域难度要大,而单调性法,即根据函数在定义域内的单调性求函数的值域是较为简单且常用的方法,应重点掌握.求下列函数的值域:(1)y =x +; (2)f (x )=解:(1)函数的定义域为和y =(1)已知;(2)已知(3)已知,求f(x)(2)已知2x+17,求(3)已知1-x),-1)-f ________.解:∵x>02x,x>012(-x),范围是(A.(-1(a )>f (-a ),则有由题意可得⎩⎪⎨⎪⎧a >0,log 2a >-log )>log 2(-a )⇒⎩⎪⎨⎪⎧)>0.或-1<a <0.故选类型七 创新问题对实数a 与b ,定义运算a -b ≤1a -b >1.若函数y =f c 的取值范围是由图可知,要使y =f ()x 与y =c 的图象有两个交的活动范围是在l 1与l 2之间, a -b )2)A .f (x )=§2.2函数的单调性与最大(小)值1.理解函数的单调性、最大值、最小值及其几何意义.2.掌握简单函数单调性的判断和证明方法.3.能将函数单调性、最大(小)值的定义、图象、求导等紧密结合,并能综合应用,解决函数单调性问题.函数的单调性、最值一直是高考的热点.1.函数的单调性(1)增函数与减函数一般地,设函数f(x)的定义域为I:①如果对于定义域I内某个区间D上的自变量的值x1,x2,当x1<x2时,都有f(x1)<f(x2),那么就说函数f(x)在区间D上是.②如果对于定义域I内某个区间D上的自变量的值x1,x2,当x1<x2时,都有f(x1)>f(x2),那么就说函数f(x)在区间D上是.(2)单调性与单调区间如果函数y=f(x)在区间D上是增函数或减函数,那么就说函数y=f(x)在这一区间具有(严格的) ,区间D叫做y=f(x)的.2.函数的最值(1)最大值一般地,设函数y=f(x)的定义域为I,如果存在实数M满足:①对于任意的x∈I,都有;②存在x0∈I,使得.那么,我们称M是函数y=f(x)的最大值.(2)最小值一般地,设函数y=f(x)的定义域为I,如果存在实数m满足:①对于任意的x∈I,都有;②存在x0∈I,使得.那么我们称m是函数y=f(x)的最小值.【自查自纠】1.(1)①任意两个增函数②任意两个减函数(2)单调性单调区间2.(1)①f(x)≤M②f(x0)=M(2)①f(x)≥m②f(x0)=m(2012·广东)下列函数中,在区间(0,+∞)上为增函数的是()A.y=ln(x+2) B.y=-x+1C.y=⎝⎛⎭⎫12xD.y=x+1x解:易知选项中4个函数均在区间(0,+∞)上有意义,由y=ln(x+2)的增区间为(-2,+∞)可知:y =ln(x+2)在(0,+∞)上是增函数.故选A.若函数y=ax+1在[1,2]上的最大值与最小值的差为2,则实数a的值是()A.2 B.-2C.2或-2 D.0解:当a>0时,由题意得2a+1-(a+1)=2,即a=2;当a<0时,a+1-(2a+1)=2,即a=-2,所以a=±2.故选C.下列区间中,函数f(x)=||ln(2-x)在其上为增函数的是()A.(-∞,1] B.⎣⎡⎦⎤-1,43C.⎣⎡⎭⎫0,32D.[1,2)解:f(x)的定义域为(-∞,2),f(1)=0,当x∈[1,2)时,f(x)=-ln(2-x),由复合函数的单调性特征知f(x)为增函数.故选D.函数f(x)=log5(2x+1)的单调增区间是____________.解:f(x)的定义域为⎝⎛⎭⎫-12,+∞.∵u=2x+1在⎝⎛⎭⎫-12,+∞上单调递增,且u∈(0,+∞),y=log5u在(0,+∞)上单调递增.∴f(x)在⎝⎛⎭⎫-12,+∞上单调递增.故填⎝⎛⎭⎫-12,+∞.(2012·上海)已知函数f(x)=e|x-a|(a为常数).若f(x)在区间[1,+∞)上是增函数,则a的取值范围是__________.解:图象法,根据函数f(x)=e|x-a|=⎩⎪⎨⎪⎧e x-a,x≥a,e-x+a,x<a.的图象如图所示,由图象知当为增函数,而已知函数上为增函数,所以a的取值范围为判断函数的单调性,求函数的单调区间2013·重庆模拟)求下列函数的单调区间:①y=-+3;②y=1x+2;③y=x①依题意,可得=-x2+2x+3=-(=-x2-2x+3=-由二次函数的图象知,函数y=-上是增函数,在[y=-x2+2|x|+1];单调减区间为0,得x≥2或x≤,则y=1-u,减的是________①f(x)=③f(x)=上是单调增函数,求实数解:设是单调增函数.在区间[2解:设假设符合条件的当a>1时,由复合函数的单调性知,只需y)=f(x+(1)求证:(2)求f(∞),且对一切时,有(1)求f(1)(2)判断-1)<0,f (11)=f (3)>(80)<f (11),故选D .若函数f (x )=||2x +a 的单调递增区a =____________.函数的对称轴为x =-a2,由对称性可知6. (3)=0⇒a =-6.故填-若函数f (x )=a x (a >0,,最小值为m ,且函数增函数.§2.3函数的奇偶性与周期性了解函数奇偶性的含义.在高考中,函数的奇偶性、周期性常与函数的其他性质结合在一起命题,综合考查学生对函数基本概念及性质的理解,题型以选择、填空为主.1.奇偶函数的概念(1)偶函数一般地,如果对于函数f(x)的定义域内任意一个x,都有,那么函数f(x)就叫做偶函数.(2)奇函数一般地,如果对于函数f(x)的定义域内任意一个x,都有,那么函数f(x)就叫做奇函数.2.奇偶函数的图象特征偶函数的图象关于对称;奇函数的图象关于对称.3.具有奇偶性函数的定义域的特点具有奇偶性函数的定义域关于,即定义域关于是一个函数具有奇偶性的条件.4.周期函数的概念(1)周期、周期函数对于函数f(x),如果存在一个T,使得当x取定义域内的值时,都有,那么函数f(x)就叫做周期函数.T叫做这个函数的周期.(2)最小正周期如果在周期函数f(x)的所有周期中存在一个的正数,那么这个最小正数就叫做f(x)的最小正周期.5.函数奇偶性与单调性之间的关系(1)若函数f(x)为奇函数,在[a,b]上为增(减)函数,则f(x)在[-b,-a]上应为;(2)若函数f(x)为偶函数,在[a,b]上为增(减)函数,则f(x)在[-b,-a]上应为.6.奇偶函数的“运算”(共同定义域上)奇±奇=,偶±偶=,奇×奇=,偶×偶=,奇×偶=.7.函数的对称性如果函数f(x),x∈D,满足∀x∈D,恒有f(a+x)=f(b-x),那么函数的图象有对称轴;如果函数f(x),x∈D,满足∀x∈D,恒有f(a-x)=-f(b +x),那么函数的图象有对称中心.8.函数的对称性与周期性的关系(1)如果函数f(x)(x∈D)在定义域内有两条对称轴x=a,x=b(a<b),则函数f(x)是周期函数,且周期T =2(b-a)(不一定是最小正周期,下同).(2)如果函数f(x)(x∈D)在定义域内有两个对称中心A(a,0),B(b,0)(a<b),那么函数f(x)是周期函数,且周期T=2(b-a).(3)如果函数f(x),x∈D在定义域内有一条对称轴x=a和一个对称中心B(b,0)(a≠b),那么函数f(x)是周期函数,且周期T=4|b-a|.【自查自纠】1.(1)f(-x)=f(x)(2)f(-x)=-f(x)2.y轴原点3.原点对称原点对称必要不充分4.(1)非零常数每一个f(x+T)=f(x)(2)最小5.(1)增(减)函数(2)减(增)函数6.奇偶偶偶奇7.x=a+b2⎝⎛⎭⎫a+b2,0(2013·广东)定义域为R的四个函数y=x3,y=2x,y=x2+1,y=2sin x中,奇函数的个数是() A.4 B.3 C.2 D.1解:易知函数y=x3,y=2sin x为奇函数,故选C.(2013·山东)已知函数f(x)为奇函数,且当x>0时,f(x)=x2+1x,则f(-1)=()A.-2 B.0 C.1 D.2解:∵f(x)为奇函数,∴f(-1)=-f(1)=-2.故选A.(2013·东北三校联考)若f(x)是R上周期为5的奇函数,且满足f(1)=1,f(2)=2,则f(3)-f(4)=()A.-1 B.1 C.-2 D.2解:∵函数f(x)的周期为5,∴f(3)-f(4)=f(-2)-f(-1),又∵f(x)为R上的奇函数,∴f(-2)-f(-1)=-f(2)+f(1)=-2+1=-1.故选A.设函数f(x)=x(e x+a e-x)(x∈R)是偶函数,则实数a=.解:令g(x)=x,h(x)=e x+a e-x,因为函数g(x)(1)f(x)=(2)f(x)=,∴-2≤x≤2且x≠0定义域关于原点对称.偶性:(1)f(x)=(2)f(x)=(1)求证:(2)若f(1)(3)若当f(x)的解析式称,且当x∈x).解:由题意知函数期的周期函数.所以先求出一个周期内的表达式,然2]上单调递减,若值范围是________________解:∵∴f(1--1,1)上又是减函数,且满足的取值范围为解:由奇函数的性质得+x)=f(5-2014,A.808解:∵数,且f(2)=成立,则A.4024解:函数是定义在R 上的偶函数,且满足:;②当0≤x ≤1时,是否为周期函数;.)=f (2-x ),)=f (-x ) ⇒x )是周期为2的周期函数.1.5)=f (1.5)=f (2-x )的定义域为(-2,的定义域;为奇函数,并且在定义域上单调递减,的解集.由题意可知,∴⎩⎪⎨⎪⎧-1<x <3,12<x <52,的偶函数,当§2.4 二次函数二次函数虽属于初中内容,在考试大纲中也没有明确要求,但二次函数、一元二次方程和一元二次不等式又是高考的热点内容之一,因此,二次函数的重要性在于它的工具性和基础性,从题型上看,选择、填空、大题都有.掌握好二次函数的关键是掌握其图象,记住它的图象,其性质就很容易掌握.1.二次函数解析式的三种形式(1)一般式:f (x )= (a ≠0); (2)顶点式:f (x )= (a ≠0); (3)零点式:f (x )= (a ≠0). 2.二次函数的图象与性质(1)二次函数f (x )=ax 2+bx +c (a ≠0)的图象是一条抛物线,它的对称轴、顶点坐标、开口方向、值域、单调性分别是:①对称轴:x = ; ②顶点坐标: ;③开口方向:a >0时,开口 ,a <0时,开口 ;④值域:a >0时,y ∈ ,a <0时,y ∈ ;⑤单调性:a >0时,f (x )在 上是减函数,在 上是增函数;a <0时,f (x )在⎝⎛⎭⎫-∞,-b2a 上是 ,在⎝⎛⎭⎫-b 2a ,+∞上是____________. (2)二次函数、二次方程、二次不等式三者之间的关系二次函数f (x )=ax 2+bx +c (a ≠0)的零点(图象与x 轴交点的横坐标)是相应一元二次方程ax 2+bx +c =0的 ,也是一元二次不等式ax 2+bx +c ≥0(或ax 2+bx +c ≤0)解集的 .3.二次函数在闭区间上的最值二次函数在闭区间上必有最大值和最小值.它只能在区间的 或二次函数的 处取得,可分别求值再比较大小,最后确定最值.4.一元二次方程根的讨论(即二次函数零点的分布)设x 1,x 2是实系数一元二次方程ax 2+bx +c =0(a >0)的两实根,则x 1,x 2的分布范围与系数之间的关向下④⎣⎡⎭⎫4ac-b24a,+∞⎝⎛⎦⎤-∞,4ac-b24a⑤⎝⎛⎭⎫-∞,-b2a⎝⎛⎭⎫-b2a,+∞增函数减函数(2)根端点值3.端点顶点函数f(x)=x2+mx+1的图象关于直线x=1对称的充要条件是()A.m=-2 B.m=2C.m=-1 D.m=1解:当m=-2时,f(x)=x2-2x+1,对称轴为x=1,其图象关于直线x=1对称,反之也成立.故选A.(2013·重庆)()3-a()a+6()-6≤a≤3的最大值为()A.9 B.92C.3 D.322解:(3-a)(a+6)=-⎝⎛⎭⎫a+322+814≤92,当a=-32时,取等号.故选B.(也可用基本不等式求解)设abc>0,二次函数f(x)=ax2+bx+c的图象可能是()解:A选项中,由于二次函数图象开口向下,所以a<0,且函数与y轴交点在y轴负半轴,所以c<0,又abc>0,所以b>0,函数的对称轴x=-b2a>0,显然A不正确;B选项中,a<0,c>0,所以b<0,所以对称轴x=-b2a<0,所以B不正确;C选项中,a>0,c<0,所以b<0,所以对称轴x=-b2a>0,所以C错.故选D.若函数y=mx2+x+5在[-2,+∞)上是增函数,则m的取值范围是.解:m=0时,函数在给定区间上是增函数;m≠0时函数是二次函数,由题知m>0,对称轴为x=-12m≤-2,∴0<m≤14,综上0≤m≤14.故填⎣⎡⎦⎤0,14.(2012·江苏改编)已知函数f(x)=x2+ax+b(a,b∈R)的值域为[0,+∞),若关于x的不等式f(x)-c<0的解集为(m,m+6),则实数c的值为________.解:由条件设f(x)-c=(x-m)(x-m-6),∴f(x)=x2-(2m+6)x+m(m+6)+c.由于f(x)的值域为[0,+∞),∴Δ=0,∴(2m+6)2-4[m(m+6)+c]=0,解得c=9.故填9.类型一求二次函数的解析式已知二次函数f(x)满足f(2)=-1, f(-1)=-1,且f(x)的最大值是8,试确定此二次函数的解析式.解法一:(利用一般式)设f(x)=ax2+bx+c(a≠0),由题意得⎩⎪⎨⎪⎧4a+2b+c=-1,a-b+c=-1,4ac-b24a=8,解之得⎩⎪⎨⎪⎧a=-4,b=4,c=7.∴所求二次函数为y=-4x2+4x+7.解法二:(利用顶点式)设f(x)=a(x-m)2+n,∵f(2)=f(-1),∴抛物线对称轴为x=2+(-1)2=12,∴m=12,又根据题意,函数有最大值为8,∴n=8,∴f(x)=a⎝⎛⎭⎫x-122+8.∵f(2)=-1,即a⎝⎛⎭⎫2-122+8=-1.解之得a=-4.∴f(x)=-4⎝⎛⎭⎫x-122+8=-4x2+4x+7.解法三:(利用零点式)由已知f(x)+1=0的两根为x1=2,x2=-1,即g(x)=f(x)+1的两个零点为2,-1,故可设f(x)+1=a(x-2)(x+1),即f(x)=ax2-ax-2a-1.⎭⎫32-x 对的两实根之差的绝对值等于析式.解:∵a >b >c 且a +b +c =0, >0,c <0,b 2-4ac >0,图象开口向上,在y 轴上截距为负,且过故选A.【评析】a 决定抛物线开口的方向,c 确定抛物线轴上的截距,b 与a 确定顶点的横坐标(或对称轴,再结合题设条件就不难解答此题了.在同一坐标系中,函数y =ax 2+bx +b (ab ≠0)的图象只可能是( )解:抛物线y =ax 2+bx 过原点排除A ,又直线与抛物线y =ax 2+bx 都过点⎝⎛⎭⎫-ba ,0,排除故选D.类型三 二次函数的最值(2013·济南模拟)已知f (x )=ax (0≤x ≤1),求f (x )的最小值g (a ).解:(1)当a =0时,f (x )=-2x 在[0,1]上单调递减,∴g (a )=f (x )min =f (1)=-2. 当a >0时,f (x )=ax 2-2x 的图象开口方向向上,且其对称轴为x =1a .当0<1a≤1,即a ≥1时,f (x )=ax 2-2x 的图象对上有最小值解:f(x)①当t≤1②当t>1(1)若方程有两根,其中一根在区间另一根在区间(2)若方程两根均在区间1<0,2>0,2<0,5>0⇒⎩⎪⎨⎪⎧m<-m∈m<-m>-的取值范围为⎩⎨⎧m|-56<m<-轴交点落在区间1>0,2>0,4(2m+1)≥0,≤1-2,∴-12<的取值范围为⎩⎨⎧m|-12<m≤1一元二次方程根的分布,即二次函数零点的分布,关键在于作出二次函数的草图,由此列出不等式组,要注意二次函数的对称轴及2012·郑州模拟)已知二次函数bx+c(b,+b=0的两个实数根分别在区间内,求实数解:由题意知2tx+2t+§2.5 基本初等函数(Ⅰ)1. 指数函数(1)了解指数函数模型的实际背景.(2)理解有理指数幂的含义,了解实数指数幂的意义,掌握幂的运算.(3)理解指数函数的概念及其单调性,掌握指数函数图象通过的特殊点.会画底数为2,3,10,12,13的指数函数的图象.(4)体会指数函数是一类重要的函数模型. 2. 对数函数(1)理解对数的概念及其运算性质,知道用换底公式将一般对数转化成自然对数或常用对数;了解对数在简化运算中的作用.(2)理解对数函数的概念及其单调性,掌握对数函数图象通过的特殊点.会画底数为2,10,12的对数函数的图象.(3)体会对数函数是一类重要的函数模型.(4)了解指数函数y =a x 与对数函数y =log a x 互为反函数(a >0且a ≠1).3. 幂函数(1)了解幂函数的概念.(2)结合函数y =x ,y =x 2,y =x 3,y =x 12,y =1x的图象,了解它们的变化情况.指数函数、对数函数在高考中属常考内容.以考查指数函数、对数函数的图象、性质为主,性质又以单调性为主,有时在大题中与其他函数混合出现,一般用导数方法解决.高考中常以5种幂函数为载体,考查幂函数的图象及性质,题目多以选择填空题的形式 出现.(一)指数函数 1. 根式(1)n 次方根:如果x n =a ,那么x 叫做a 的 ,其中n >1,且n ∈N *.①当n 为奇数时,正数的n 次方根是一个 数,负数的n 次方根是一个 数,这时a 的n 次方根用符号 表示.②当n 为偶数时,正数的n 次方根有 个,这两个数互为 .这时,正数a 的正的n 次方根用符号 表示,负的n 次方根用符号 表示.正的n 次方根与负的n 次方根可以合并写成 .③负数没有偶次方根.④0的n (n ∈N *)次方根是 ,记作 . (2)根式:式子na 叫做根式,这里n 叫做 ,a 叫做 .(3)根式的性质:n 为奇数时,na n = ; n 为偶数时,na n = . 2. 幂的有关概念及性质 (1)正整数指数幂:a n =(n ∈N *).(2)零指数幂:a 0= .这里a 0. (3)负整数指数幂:a -n = (a ≠0,n ∈N *). (4)正分数指数幂:a m n= (a >0,m ,n ∈N *,且n >1).(5)负分数指数幂:a -m n= (a >0,m ,n ∈N *,且n >1).(6)0的正分数指数幂等于 ,0的负分数指数幂.(7)有理指数幂的运算性质 ⎩⎪⎨⎪⎧a r a s= (a >0,r ,s ∈Q ),(a r )s= (a >0,r ,s ∈Q ),(ab )r = (a >0,b >0,r ∈Q ).注:无理数指数幂a α(a >0,α是无理数)是一个确定的实数.有理数指数幂的运算性质同样适用于无理数指数幂.3. 指数函数的图象及性质定义一般地,函数y =a x (a >0,且a ≠1)叫做指数函数图象a >10<a <1定义域 __________ 值域 __________ 性 质过定点__________在R 上是 __________在R 上是 __________位长度,所得图象与曲线⎛ _________(2)0.75-1614.(1)y=⎝⎛(3)y=2解:(1)(1)y=82(3)y=⎝⎛1 2解:(1)因为列五个关系:①<a<0)A.1个与指数函数有关的比较大小问题,除了应用函数的单调性外,还用到指数函数图象的程度,也就是函数f(x)增(减)的快慢.2013·合肥模拟)函数f(x)=如图所示,其中a,b为常数,则下列结论正确的是)<0>0,b>0,b<0由图象知f(x)是减函数,∴0<a<轴的截距小于1可知a-b<1,即-类型四指数函数的综合问题已知函数f(x)=⎝⎛⎭⎫13x,x∈[-=f 2(x)-x)+3的最小值为h(a).(1)若f(x(2)若2t f的取值范围解:(1)当(1)log535(2)a log(3)(log2(1)(lg2)2(2)(log32(3)lg600lg10,c=A.c>b C.a>c 解:a=-12,则(A.x<yC.z<y解:由对数与指数性质知(1)若f((2)若函数(3)若函数的取值范围;x+3).(1)若f(1)(2)是否存在实数求出a的值;若不存在,说明理由a≠1).f(x)-f⎝⎛(1)求f(x(2)若方程图象,已知,C2,C3数形结合法):如图,作直线的图象与直线x=t的交点为的大小与图象交点的“高低特殊值法):当x=2时,,y4=2-1=12,故填3,2,12,-利用幂函数的性质比较大小,往往伴解:因为幂函数0.7<1,所以1.3x是增函数,并且C .3 ⎝⎛⎭⎫13,23,N ⎝⎛23,13,即α=log 2313,β2313=1.故选A.的方程a ·4x +b ·2x +异号,则下列结论中正确的是.此方程无实根.此方程有两个互异的负实根 .此方程有两个异号实根 .此方程仅有一个实根,则at 2+bt +c =t 2=-b a <0,t 1t 2=2x 单调递增,所以只有一正根,故选D .已知函数f (x )=lg x , .(2x +t )(t§2.6函数与方程结合二次函数的图象,了解函数的零点与方程根的联系,判断一元二次方程根的存在性及根的个数.从近两年的高考试题来看,函数的零点,方程根的问题是热点,题型既有选择题、填空题,又有解答题.预计今后高考仍有可能以函数的零点,方程根的存在性问题为主要考点,并结合考查相应函数的图象和性质.1.函数的零点(1)定义:对于函数y=f(x),我们把使的实数x叫做函数y=f(x)的零点.(2)函数有零点的几个等价关系:方程f(x)=0有实数根⇔函数y=f(x)的图象与x轴⇔函数y=f(x) .2.函数的零点存在性定理如果函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,并且有,那么,函数y=f(x)在区间内有零点,即存在c∈,使得,这个c也就是方程f(x)=0的根.3.二次函数的零点分布(即一元二次方程根的分布,见2.4考点梳理4)【自查自纠】1.(1)f(x)=0(2)有交点有零点2.f(a)·f(b)<0(a,b)(a,b)f(c)=0函数f(x)=2x+3x的零点所在的一个区间是()A.(-2,-1) B.(-1,0)C.(0,1) D.(1,2)解:∵f(-1)=12-3<0,f(0)=1>0,∴f(-1)·f(0)<0,因此,函数f(x)在区间(-1,0)内有零点.故选B.(2012·湖北)函数f(x)=x cos x2在区间[0,4]上的零点个数为()A.4 B.5 C.6 D.7解:若f(x)=0,则x=0或cos x2=0,x2=kπ+π2,k∈Z,又x∈[0,4],k=0,1,2,3,4,所以f(x)共有6个零点.故选C.已知a是函数f(x)=ln x-log12x的零点,若0<x0<a,则()A.f(x0)=0 B.f(x0)>0C.f(x0)<0 D.f(x0)的符号不确定解:因为f(x)=ln x-log12x在(0,+∞)上是增函数,所以当0<x0<a时,有f(x0)<f(a)=0,故选C.已知实数a≠0,函数f(x)=⎩⎪⎨⎪⎧2x+a,x<1,-x-2a,x≥1.若f(1-a)=f(1+a),则a的值为.解:⎩⎪⎨⎪⎧a>0,2(1-a)+a=-(1+a)-2a,或⎩⎪⎨⎪⎧a<0,-(1-a)-2a=2(1+a)+a .可得a=-34.故填-34.方程ln x=8-2x的实数根x∈(k,k+1),k∈Z,则k=________.解:令函数f(x)=ln x+2x-8,∴f′(x)=1x+2>0(x>0),则f(x)在(0,+∞)上单调递增,又f(1)=-6<0,f(2)=ln2-4<0,f(3)=ln3-2<0,f(4)=ln4>0,∴f(x)的唯一零点在(3,4)内,因此k=3.故填3..(1)f(x)=(2)f(x)=的零点所在的大致区间是A.(1,C.(1,解:∵f1)内的零点个数是A.0解法一:定义域上单调递增且连续,=2x,y2=2-x3,在同一坐标系中画出两函数的图象如图所示,在区间(0f(x)的零点个数.故选零点个数为(A.1解:函数判断函数在给定区间零点的步骤确定函数的图象在闭区间[a,bb)的值并判断f(a)·f0,则有实数解.除了用上面的零点存在性定理判断外,有时还需结合相应函数的图象来作出判断.零点个数(方程f(x)=判断二次函数f(x)在R上的零点个数,一般由)=0的判别式Δ>0来完成;对于一些不便用判别式判断零点个数的二次函数,则要结合二次函数的图象进行判断对于一般函数零点个数的判断,点存在性定理,还必须结合函数的图象和性质才能确定,如三次函数的零点个数问题.在[a,b]上的图象是连续不断的一条曲线,且是单调函数,又f(a)·f(b)<0,则长春第二次调研)若a >2,则函数2)内零点的个数为(.2 C .1 (x )=x 2-2ax ,由a 时恒为负数,即f (x )在(0,=83-4a +1<0,则内只有一个零点,故选是函数f (x )=2x +11-x 的一个零点,若,+∞),则( )2)<0 B .f (x 1)<02)<0 D .f (x 1)>0g (x )=11-x =-1x -=2x 在(1,+∞)上单调递增,在(1,+∞)上单调递增,所以函数x),f(x)=§2.7函数的图象1.掌握常见函数的图象(如一次函数、二次函数、指数函数、对数函数、三角函数、幂函数).2.会利用图象变换的知识作出一些简单函数的图象.3.会求经过某种变换后所得图象的函数表达式.4.会运用基本初等函数的图象分析函数的性质.图象是函数的重要表现形式,数形结合是研究函数的重要技巧与方法.在历年高考中,都有直接或间接考查函数图象的题目出现.1.作函数的图象有两种基本方法:(1)利用描点法作图,其一般步骤为:①确定函数定义域;②化简函数解析式;③讨论函数的性质(奇偶性、单调性、周期性、最值等);④描点并作出函数图象.(2)图象变换法.2.图象变换的四种形式(1)平移变换①水平平移:y=f(x)的图象向左平移a(a>0)个单位长度,得到________的图象;y=f(x-a)(a>0)的图象可由y=f(x)的图象向________平移a个单位长度而得到.②竖直平移:y=f(x)的图象向上平移b(b>0)个单位长度,得到________的图象;y=f(x)-b(b>0)的图象可由y=f(x)的图象向________平移b个单位长度而得到.总之,对于平移变换,记忆口诀为“左加右减,上加下减”.(2)对称变换①y=f(-x),y=-f(x),y=-f(-x)三个函数的图象与y=f(x)的图象分别关于、、对称;②若对定义域内的一切x均有f(m+x)=f(m-x),则y=f(x)的图象关于直线对称.(3)伸缩变换①要得到y=Af(x)(A>0)的图象,可将y=f(x)的图象上每点的纵坐标伸(A>1时)或缩(A<1时)到原来的;②要得到y=f(ax)(a>0)的图象,可将y=f(x)的图象上每点的横坐标伸(a<1时)或缩(a>1时)到原来的.(4)翻折变换①y=|f(x)|的图象作法:作出y=f(x)的图象,将图象位于x轴下方的部分以x轴为对称轴翻折到x轴上方,上方的部分不变;②y=f(|x|)的图象作法:作出y=f(x)在y轴右边的图象,以y轴为对称轴将其翻折到左边得y=f(|x|)在y 轴左边的图象,右边的部分不变.【自查自纠】2.(1)①y=f(x+a)右②y=f(x)+b下(2)①y轴x轴原点②x=m(3)①A倍②1a倍(2013·福建)函数f(x)=ln()x2+1的图象大致是()解:由函数解析式可知f(x)=f(-x),即函数为偶函数,排除C;由函数图象过(0,0)点,排除B,D.故选A.函数f(x)=2x+2-x的图象()解:令x =2,则y =-f (2-x )=-f (0)项可排除,令x =1,则y =-f (2-x )=-可排除A ,C 项,故选B.若将函数y =f (x )的图象向左平移再沿y 轴对折,得到y =lg(x +1)的图象,则 .解:把y =lg(x +1)的图象沿y 轴对折得到y =lg(-x +1)的图象,再将图象向右平移得y =lg[-(x -2)+1]=lg(3-x )的图象.∴f (x )=lg(3-x ),故填lg (3-x ).函数f (x )=⎩⎪⎨⎪⎧ax +b ,x <0,log c ⎝⎛⎭⎫x +116,x ≥0 的图象如图所示,则abc = .解:依图象有⎩⎪⎨⎪⎧b =2,-a +b =0,log c116=2.得a =(1)y =|x (2)y =|log (3)y =2(1)=log 2x 的图象,然后向左平移轴下方的图象沿x 轴对折,图(3)函数的解析式为y =2x -1x +1=2①本题中(2)(3)的函数的图象是由基本函数通过变换得到的,因此可先作最基本的函数的图象,伸缩、对称等变换作出待作函数的图象;②变换法作函数的图象是经常用到的一种作图方法,在作图时,应注意先作出图象的关键点和关键线(如对称轴、渐近线等函数奇偶性与基本函数图象的特征作图,也是常用方作出下列函数的图象:x -1-1=2(x -1)+1x -1.-∞,1)∪(1,+∞).的图象向右平移1个单位得=1x -1的图象向上平移2个单位可得的图象.类型二 识图2012·山东)函数y =cos6x2x -2 )解:令f (x )=cos6x2x -2-x,由f (-x )=-f (x )知f (x )为奇 )解:由3x-1≠0,得x ≠0,可排除A ;当x <0,可排除B ;当x 趋近于+∞时,y 趋近于0.可排故选C.类型三 用图设a 为实数,且1<x <3,试讨论关于的方程x 2-5x +3+a =0的实数解的个数.解:原方程即a =-x 2+5x -3.分别作出函数y =-x 2+5x -3=-⎝⎛⎭⎫x -522+1343)和y =a 的图象,得a >134或a ≤1时,原方程的实数解的个数为a =134或1<a ≤3时,原方程的实数解的个数3<a <134时,原方程的实数解的个数为2.=x3+x的零点依次为小顺序为(A.b>cC.a>b合理处理识图题与用图题对于给定的图象,要能从图象的左、右、上、下分布的范围、变化趋势、对称性等方面研究函数的定义域、值域、单调性、奇偶性、周期性、最大值、最函数图象形象地显示了函数的性质,为研究数量”的直观性,它是探求解题途径,使问题成功获解的重要依托.函数图象主要应用于以下方面:①求函数的解析式;②求函数的定义域;③求函数的值域;④求函数⑤判断函数的奇偶性;⑥求函数的单调区间;⑦解不等式;⑧证明不等式;⑨探求关于方程根的分布问题;⑩比较大小;⑪求函数周期.图象对称性的证明证明函数的对称性,即证明其图象上的任意一或对称轴)的对称点仍在图象上与C2的对称性,即证明或对称轴)的对称点在研究函数的图象必须与函数的性质有机结合起的完美结合,不要将二者割裂易知函数y=e21x-为偶函数,因此排除e21x->0,故排除D.故选C.f(x)=x-cos x,则方程f(x)=0在[0上的实根个数是().没有实根.有且仅有一个实根.有且仅有两个实根.有无穷多个实根令f(x)=x-cos x=0,即x=cos x,画出函和y=cos x的图象(如图),函数y=x与函数的图象仅在x=α⎝⎛⎭⎫0<α<π2处有一个交点.把函数y=log2(x-1)的图象上各点的横坐标缩短到原来的12倍,再向右平移12个单位长度所得图象的)=log2(2x+1) B.y=log2(2x+=log2(2x-1) D.y=log2(2x-把函数y=log2(x-1)图象上各点的横坐标缩短到原来的12倍,得到y=log2(2x-1)的图象,再向右单位长度,所得函数的解析式为⎦⎤⎭⎫12-1=log2(2x-2).故选D.y=2-|x-1|-m的图象与x轴有交点时,取值范围是()。
第三讲 基本初等函数、函数与方程及函数的应用1.(2014·辽宁高考)已知a =132,b =log 213,c =log 1213,则( )A.a >b >cB.a >c >bC.c >a >bD.c >b >a解析:选C a =132∈(0,1),b =log 213∈(-∞,0),c =log 1213=log 23∈(1,+∞),所以c >a >b .2.(2014·北京高考)已知函数f (x )=6x-log 2x ,在下列区间中,包含 f (x )零点的区间是( )A.(0,1)B.(1,2)C.(2,4)D.(4,+∞)解析:选C 因为f (1)=6-log 21=6>0,f (2)=3-log 22=2>0,f (4)=32-log 24=-12<0,所以函数f (x )的零点所在区间为(2,4),故选C.3.(2014·浙江高考)在同一直角坐标系中,函数f (x )=x a (x >0),g (x )=log a x 的图象可能是( )A B C D解析:选D 根据对数函数性质知,a >0,所以幂函数是增函数,排除A(利用(1,1)点也可以排除);选项B 从对数函数图象看a <1,与幂函数图象矛盾;选项C 从对数函数图象看a >1,与幂函数图象矛盾,故选D.4.(2014·北京高考)加工爆米花时,爆开且不糊的粒数占加工总粒数的百分比称为“可食用率”.在特定条件下,可食用率p 与加工时间t (单位:分钟)满足的函数关系p =at 2+bt +c (a ,b ,c 是常数),如图记录了三次实验的数据.根据上述函数模型和实验数据,可以得到最佳加工时间为( )A.3.50分钟B.3.75分钟C.4.00分钟D.4.25分钟解析:选B 由实验数据和函数模型知,二次函数p =at 2+bt +c 的图象过点(3,0.7),(4,0.8),(5,0.5),分别代入解析式,得⎩⎪⎨⎪⎧0.7=9a +3b +c ,0.8=16a +4b +c ,0.5=25a +5b +c ,解得⎩⎪⎨⎪⎧a =-0.2,b =1.5,c =-2.所以p =-0.2t 2+1.5t -2=-0.2(t -3.75)2+0.812 5,所以当t =3.75分钟时,可食用率p 最大.故选B.5.(2014·天津高考)已知函数f (x )=|x 2+3x |,x ∈R .若方程f (x )-a |x -1|=0恰有4个互异的实数根,则实数a 的取值范围为________.解析:画出函数f (x )=|x 2+3x |的大致图象,如图,令g (x )=a |x -1|,则函数f (x )的图象与函数g (x )的图象有且仅有4个不同的交点,显然a >0.联立⎩⎪⎨⎪⎧y =-x 2-3x ,y =a -x 消去y ,得x 2+(3-a )x +a=0,由Δ>0,解得a <1或a >9;联立⎩⎪⎨⎪⎧y =x 2+3x ,y =a -x消去y ,得x 2+(3+a )x -a =0,由Δ>0,解得a >-1(舍去)或a <-9(舍去).综上,实数a 的取值范围为(0,1)∪(9,+∞). 答案:(0,1)∪(9,+∞)1.指数与对数式的七个运算公式(1)a m ·a n =a m +n ; (2)(a m )n =a mn ;(3)log a (MN )=log a M +log a N ;(4)log a MN=log a M -log a N ;(5)log a M n =n log a M ; (6)a log a N =N ;(7)log a N =log b Nlog b a(a >0且a ≠1,b >0且b ≠1,M >0,N >0).指数函数对数函数图象单调性0<a <1时,在R 上单调递减;a >1时,在R 上单调递增a >1时,在(0,+∞)上单调递增;0<a <1时,在(0,+∞)上单调递减函数值性质 0<a <1,当x >0时,0<y <1;当x <0时,y >1 0<a <1,当x >1时,y <0;当0<x <1时,y >0a >1,当x >0时,y >1;当x <0时,0<y <1a >1,当x >1时,y >0;当0<x <1时,y <0 函数F (x )=f (x )-g (x )的零点就是方程f (x )=g (x )的根,即函数y =f (x )的图象与函数y =g (x )的图象交点的横坐标.1.(2014·福建高考)若函数 y =log a x (a >0,且a ≠1)的图象如图所示,则下列函数图象正确的是 ( )A B C D2.(2014·涡阳模拟)设a =e 0.3,b =0.92,c =log π0.87,则a ,b ,c 的大小关系是( ) A.a <b <c B.c <b <a C.c <a <b D.b <c <a3.已知函数f (x )=ln x ,x 1,x 2∈⎝⎛⎭⎫0,1e ,且x 1<x 2,则下列结论中正确的是( ) A.(x 1-x 2)[f (x 1)-f (x 2)]<0B.f ⎝⎛⎭⎫x 1+x 22<fx 1+fx 22C.x 1f (x 2)>x 2f (x 1)D.x 2f (x 2)>x 1f (x 1)[自主解答] 1.因为函数y =log a x 过点(3,1),所以1=log a 3,解得a =3.y =3-x 不可能过点(1,3),排除A ;y =(-x )3=-x 3不可能过点(1,1),排除C ;y =log 3(-x )不可能过点(-3,-1),排除D,故选B.2.把a 看成函数y =e x 当x =0.3时的函数值,因为e>1,0.3>0,所以a >1;把b 看成函数y =0.9x 当x =2时的函数值,因为0<0.9<1,2>0,所以0<b <1;把c 看成函数y =log π x 当x =0.87时的函数值,因为π>1,0<0.87<1,所以c <0.综上,c <b <a ,故选B.3.选项A,由于函数在区间上为增函数,由单调性定义可知(x 1-x 2)[f (x 1)-f (x 2)]>0,故A 错误;选项B,由函数图象的凸凹性可知f x 1+x 22>fx 1+fx 22,故B 错误;选项C,令g (x )=fx x =ln xx,由于g ′(x )=1-ln x x2,当x ∈⎝⎛⎭⎫0,1e 时,g ′(x )>0,即函数在区间⎝⎛⎭⎫0,1e 上为增函数,故x 1<x 2⇒g (x 1)<g (x 2)⇒fx 1x 1<fx 2x 2⇒x 2f (x 1)<x 1f (x 2),故C 正确;同理,令h (x )=xf (x )=x ln x ,可知x 1f (x 1)>x 2f (x 2),D 错误.[答案] 1.B 2.B 3.C互动探究将题3中“f (x )=ln x ,x 1,x 2∈⎝⎛⎭⎫0,1e ”改为“f (x )=e x ”,如何选择? 解析:选B 因为f (x )=e x为增函数,所以(x 1-x 2)·[f (x 1)-f (x 2)]>0,故A 错误;由于函数f (x )=e x 的凸凹性可知f ⎝⎛⎭⎫x 1+x 22<fx 1+fx 22,故B 正确;令g (x )=e x x ,则g ′(x )=x e x -e x x 2=e xx -x 2,所以g (x )=e xx 在(-∞,0),(0,1)上为减函数,在(1,+∞)上为增函数,故C 错误;同理,令h (x )=x e x ,则h ′(x )=e x+x e x =(1+x )e x ,所以h (x )=x e x 在(-∞,-1)上为减函数,在(-1,+∞)上为增函数,故D 错误.1.三招破解指数、对数、幂函数值的大小比较问题(1)底数相同,指数不同的幂用指数函数的单调性进行比较; (2)底数相同,真数不同的对数值用对数函数的单调性比较;(3)底数不同、指数也不同,或底数不同、真数也不同的两个数,常引入中间量或结合图象比较大小.2.解决含参数的指数、对数问题应注意的问题 对于含参数的指数、对数问题,在应用单调性时,要注意对底数进行讨论.解决对数问题时,首先要考虑定义域,其次再利用性质求解.1.(2014·南安模拟)已知函数f (x )=3x +2x 的零点所在的一个区间是( ) A.(-2,-1) B.(-1,0) C.(0,1) D.(1,2)2.函数f (x )=⎩⎪⎨⎪⎧x 2-2≤0,x ≤0,2x -6+ln x ,x >0的零点个数是________.3.已知函数f (x )=|x -2|+1,g (x )=kx .若方程f (x )=g (x )有两个不相等的实根,则实数k 的取值范围是________.[自主解答] 1.f (-1)=-53<0,f (0)=1>0,所以零点所在的一个区间是(-1,0).2.当x ≤0时,令x 2-2=0,解得x =-2;当x >0时,f (x )=2x -6+ln x ,因为f ′(x )=2+1x>0,所以函数f (x )=2x -6+ln x 在(0,+∞)上单调递增,因为f (1)=2-6+ln 1=-4<0,f (3)=ln 3>0,所以函数f (x )=2x -6+ln x 在(0,+∞)有且只有一个零点,综上,函数f (x )的零点个数为2.3.在同一坐标系中分别画出函数f (x ),g (x )的图象如图所示,方程f (x )=g (x )有两个不相等的实根等价于两个函数的图象有两个不同的交点,结合图象可知,当直线y =kx 的斜率大于坐标原点与点(2,1)连线的斜率且小于直线y =x -1的斜率时符合题意,故12<k <1.[答案] 1.B 2.2 3.⎝⎛⎭⎫12,1判断函数零点个数的方法(1)直接求零点:令f (x )=0,则方程解的个数即为零点的个数. (2)零点存在性定理:利用该定理不仅要求函数在[a ,b ]上是连续的曲线,且f (a )·f (b )<0,还必须结合函数的图象和性质(如单调性)才能确定函数有多少个零点.(3)数形结合:对于给定的函数不能直接求解或画出图形,常会通过分解转化为两个函数图象,然后数形结合,看其交点的个数有几个,其中交点的横坐标有几个不同的值,就有几个不同的零点.热点三函数的实际应用命题角度 以实际生活为背景,通过巧妙设计和整合命制,常与函数解析式的求法、函数最值、不等式、导数等交汇命题,多以求最值为高考考向.[例1] “环岛”.以正方形的四个顶点为圆心在四个角分别建半径为x m(x 不小于9)的扇形花坛,以正方形的中心为圆心建一个半径为15x 2 m 的圆形草地.为了保证道路畅通,岛口宽不小于60 m,绕岛行驶的路宽均不小于10 m.(1)求x 的取值范围(运算中2取1.4);(2)若中间草地的造价为a 元/m 2,四个花坛的造价为433ax 元/m 2,其余区域的造价为12a11元/m 2,当x 取何值时,可使“环岛”的整体造价最低?[师生共研] (1)由题意得,⎩⎪⎨⎪⎧x ≥9,100-2x ≥60,1002-2x -2×15x 2≥2×10,解得⎩⎪⎨⎪⎧x ≥9,x ≤20,-20≤x ≤15,即9≤x ≤15.(2)记“环岛”的整体造价为y 元,则由题意得y =a ×π×⎝⎛⎭⎫15x 22+433ax ×πx 2+12a 11×⎣⎡⎦⎤104-π×⎝⎛⎭⎫15x 22-πx 2=a 11π-125x 4+43x 3-12x 2+12×104,令f (x )=-125x 4+43x 3-12x 2,则f ′(x )=-425x 3+4x 2-24x =-4x ⎝⎛⎭⎫125x 2-x +6,由f ′(x )=0,解得x =10或x =15,列表如下:所以当x =10时,y 取最小值.故当x =10时,可使“环岛”的整体造价最低.解决函数应用题的四步曲(1)阅读理解:读懂题意,弄清题中出现的量及其数学含义.(2)分析建模:分析题目中的量与量之间的关系,同时要注意由已知条件联想熟知的函数模型,以确定函数模型的种类,建立目标函数,将实际问题转化为数学问题.(3)数学求解:利用相关的函数知识求解计算.(4)还原总结:把计算获得的结果还原到实际问题中进行总结作答.1.某企业为打入国际市场,决定从A ,B 两种产品中只选择一种进行投资生产.已知投资生产这两种产品的有关数据如表:(单位:万美元)其中年固定成本与年生产的件数无关,m 为待定常数,其值由生产A 产品的原材料价格决定,预计m ∈[6,8].另外,年销售x 件B 产品时需上交0.05x 2万美元的特别关税.假设生产出来的产品都能在当年销售出去.(1)写出该厂分别投资生产A ,B 两种产品的年利润y 1,y 2与生产相应产品的件数x 之间的函数关系并指明其定义域;(2)如何投资最合理(可获得最大年利润)?请你做出规划. 解:(1)由年销售量为x 件,按利润的计算公式,有生产A ,B 两产品的年利润y 1,y 2分别为y 1=10x -(20+mx )=(10-m )x -20(x ∈N,0≤x ≤200),y 2=18x -(8x +40)-0.05x 2=-0.05x 2+10x -40(x ∈N,0≤x ≤120).(2)因为6≤m ≤8,所以10-m >0,函数y 1=(10-m )x -20在[0,200]上是增函数,所以当x =200时,生产A 产品有最大利润,且y 1max =(10-m )×200-20=1 980-200m (万美元).又y 2=-0.05(x -100)2+460(x ∈N,0≤x ≤120),所以当x =100时,生产B 产品有最大利润,且y 2max =460(万美元). 因为y 1max -y 2max =1 980-200m -460=1 520-200m ⎩⎪⎨⎪⎧>0,6≤m <7.6,=0,m =7.6,<0,7.6<m ≤8.所以当6≤m <7.6时,可投资生产A 产品200件;当m =7.6时,生产A 产品或生产B 产品均可(投资生产A 产品200件或生产B 产品100件);当7.6<m ≤8时,可投资生产B 产品100件.热点四 零点与函数性质的综合问题命题角度此类问题多以零点为载体考查函数与方程间的转化以及函数的图象和性质,且常以创新题的形式出现.[例2] (2014·成都模拟)已知偶函数f (x )满足对任意x ∈R ,均有f (1+x )=f (3-x )且f (x )=⎩⎪⎨⎪⎧m -x 2,x ∈[0,1],x -1,x ∈,2].若方程3f (x )=x 恰有5个实数解,则实数m 的取值范围是________. [师生共研] 由f (1+x )=f (3-x )得,函数f (x )的图象关于直线x =2对称,偶函数的图象关于y 轴对称.当m >0时,作出函数f (x )及y =x3的图象如下:由图可知,方程3f (x )=x 恰有5个实数解,则⎩⎨⎧f43,f83,即43<m <83. 同理,当m <0时,可得-83<m <-43.[答案] ⎝⎛⎭⎫-83,-43∪⎝⎛⎭⎫43,83函数与方程的转化类型(1)判断函数零点个数常转化为两函数的图象交点;(2)由函数的零点情况确定参数范围,常转化为利用函数图象求解; (3)方程根的讨论转化为函数的零点问题.2.已知定义域为R 的函数f (x )=⎩⎪⎨⎪⎧1|x -1| x ,x =,若关于x 的方程f 2(x )+bf (x )+c =0有3个不同的实根x 1,x 2,x 3,则x 21+x 22+x 23等于( )A.13B.2b 2+2b 2C.5D.3c 2+2c2解析:选C 作出f (x )的图象,由图知,只有当f (x )=1时有3个不同的实根;∵关于x 的方程f 2(x )+bf (x )+c =0有3个不同的实数解x 1,x 2,x 3,∴必有f (x )=1,从而x 1=1,x 2=2,x 3=0,故可得x 21+x 22+x 23=5,故选C.3.偶函数f (x )满足f (1-x )=f (1+x ),且在x ∈[0,1]时,f (x )=2x -x 2,若直线kx -y +k =0(k >0)与函数f (x )的图象有且仅有三个交点,则k 的取值范围是( )A.⎝⎛⎭⎫1515,33B.⎝⎛⎭⎫35,53 C.⎝⎛⎭⎫13,12 D.⎝⎛⎭⎫115,13解析:选A 因为f (1-x )=f (1+x ),所以函数f (x )的图象关于直线x =1对称,又f (x )是偶函数,所以f (x -1)=f (1+x ),即有f (2+x )=f (x ),所以f (x )是周期为2的函数.由y =2x -x 2,得x 2-2x +y 2=0,即(x -1)2+y 2=1,画出函数f (x )和直线y =k (x +1)的示意图.因为直线kx -y +k =0(k >0)与函数f (x )的图象有且仅有三个交点,所以根据示意图易知1515<k <33.一、选择题1.(2014·天津高考)设 a =log 2π,b =log 12π,c =π-2,则( )A.a >b >cB.b >a >cC.a >c >bD.c >b >a解析:选C 利用中间量比较大小.因为a =log 2π∈(1,2),b =log 12π<0,c =π-2∈(0,1),所以a >c >b .2.(2014·西安模拟)已知函数y =f (x )是周期为2的周期函数,且当x ∈[-1,1]时,f (x )=2|x |-1,则函数F (x )=f (x )-|lg x |的零点个数是( )A.9B.10C.11D.12 解析:选B F (x )=f (x )-|lg x |的零点个数即函数y =f (x )与函数y =|lg x |图象交点的个数. 3.(2014·湖南高考)某市生产总值连续两年持续增加,第一年的增长率为p ,第二年的增长率为q ,则该市这两年生产总值的年平均增长率为( )A.p +q 2B.p +q +-12C.pqD.p +q +-1解析:选D 设年平均增长率为x ,原生产总值为a ,则(1+p )(1+q )a =a (1+x )2,解得x =+p +q -1,故选D. 4.(2014·荆门模拟)已知a >b >1,0<x <1,以下结论中成立的是( ) A.⎝⎛⎭⎫1a x >⎝⎛⎭⎫1b x B.x a >x b C.log x a >log x b D.log a x >log b x 解析:选D ∵a >b >1,0<x <1,∴0<1a <1b<1,∴⎝⎛⎫1a x <⎝⎛⎫1b x ,故A 不成立;∵a >b >1,0<x <1,∴x a <x b,故B 不成立;∵a >b >1,0<x <1,∴log x a <log x b ,故C 不成立;∵a >b >1,0<x <1,∴log a x >log b x ,故D 成立,故选D.5.(2014·温州模拟)对于函数f (x )=4x -m ·2x +1,若存在实数x 0,使得f (-x 0)=-f (x 0)成立,则实数m 的取值范围是( )A.m ≤12B.m ≥12C.m ≤1D.m ≥1解析:选B 若存在实数x 0,使得f (-x 0)=-f (x 0),则4-x 0-m ·2-x 0+1=-4x 0+m ·2x 0+1,整理得,2m (2x 0+2-x 0)=4x 0+4-x 0,2m =4x 0+4-x 02x 0+2-x 0=()2x 0+2-x 02-22x 0+2-x 0=(2x 0+2-x 0)-22x 0+2-x 0,设t =2x 0+2-x 0(t ≥2),则2m =t -2t 在[2,+∞)上为增函数,当t =2时,2m =1,得m =12,所以m ≥12,故选B.6. (2014·湖州模拟)如图是函数f (x )=x 2+ax +b 的部分图象,函数g (x )=e x -f ′(x )的零点所在的区间是(k ,k +1)(k ∈Z ),则k 的值为( )A.-1或0B.0C.-1或1D.0或1解析:选C 由于函数f (x )=x 2+ax +b 经过点(-1,0),代入得1-a +b =0,即a =b +1;并且由f (x )的图象可以知0<f (0)<1,即有0<b <1;从而有1<a =b +1<2;f ′(x )=2x +a, 所以g (x )=e x -2x -a ,易知g (x )在区间(-∞,ln 2)上单调递减;在区间(ln 2,+∞)上单调递增,而g (ln 2)=2-2ln 2-a <0,所以把0,1,-1分别代入验证k 的值为-1或1.7.(2014·四川高考)已知f (x )=ln(1+x )-ln(1-x ),x ∈(-1,1),现有下列命题:①f (-x )=-f (x );②f ⎝⎛⎭⎫2x1+x 2=2f (x );③|f (x )|≥2|x |.其中所有正确命题的序号是( )A.①②③B.②③C.①③D.①②解析:选A f (-x )=ln(1-x )-ln(1+x )=-f (x ),故①正确;因为f (x )=ln(1+x )-ln(1-x )=ln 1+x 1-x ,又当x ∈(-1,1)时,2x 1+x 2∈(-1,1),所以f ⎝⎛⎭⎫2x 1+x 2=ln 1+2x 1+x 21-2x 1+x2=ln ⎝ ⎛⎭⎪⎫1+x 1-x 2=2ln 1+x 1-x =2f (x ),故②正确;当x ∈[0,1)时,|f (x )|≥2|x |⇔f (x )-2x ≥0,令g (x )=f (x )-2x =ln(1+x )-ln(1-x )-2x (x ∈[0,1)),因为g ′(x )=11+x +11-x -2=2x 21-x 2>0,所以g (x )在区间[0,1)上单调递增,g (x )=f (x )-2x ≥g (0)=0,即f (x )≥2x ,又f (x )与y =2x 都为奇函数,所以|f (x )|≥2|x |成立,故③正确,故选A.8.(2014·南安模拟)已知x 0是函数f (x )=2x +11-x的一个零点.若x 1∈(1,x 0),x 2∈(x 0,+∞),则( )A.f (x 1)<0,f (x 2)<0B.f (x 1)<0,f (x 2)>0C.f (x 1)>0,f (x 2)<0D.f (x 1)>0,f (x 2)>0解析:选B 方程的根与函数的零点的联系为:方程f (x )=0有实根⇔函数y =f (x )的图象与x 轴有交点⇔函数y =f (x )有零点.当x >1时,y =11-x是增函数;y =2x 也是增函数.所以f (x )是增函数,因为f (x 0)=0且x 1<x 0,x 2>x 0,所以f (x 1)<0,f (x 2)>0.9.已知关于x 的方程⎝⎛⎭⎫12x =1+lg a1-lg a 有正根,则实数a 的取值范围是( )A.(0,1)B.⎝⎛⎭⎫110,10C.⎝⎛⎭⎫110,1 D.(10,+∞) 解析:选C 令f (x )=⎝⎛⎭⎫12x ,g (x )=1+lg a 1-lg a,由方程⎝⎛⎭⎫12x =1+lg a 1-lg a 有正根,即f (x ),g (x )的图象在(0,+∞)上有交点,如图可知0<1+lg a1-lg a <1,即⎩⎪⎨⎪⎧1+lg a1-lg a>0,1+lg a1-lg a <1,整理得⎩⎪⎨⎪⎧-1<lg a <1,2lg alg a -1>0,即⎩⎪⎨⎪⎧-1<lg a <1,lg a <0或lg a >1,即-1<lg a <0,则110<a <1.10.(2014·眉山模拟)已知函数f (x )=|x 3+a |,a ∈R 在[-1,1]上的最大值为M (a ),若函数g (x )=M (x )-|x 2+t |有4个零点,则实数t 的取值范围为( )A.⎝⎛⎭⎫1,54B.(-∞,-1)C.(-∞,-1)∪⎝⎛⎭⎫1,54 D.(-∞,-1)∪(1,2) 解析:选C 当a ≥0时,M (a )=1+a ;当a <0时,M (a )=1-a ;所以g (x )=⎩⎪⎨⎪⎧1-x -|x 2+t |,x <0,1+x -|x 2+t |,x ≥0,当t ≥0时,分别作出y =|x 2+t |,y =1-x (x <0),y =1+x (x ≥0)的图象如图所示:当t =1时,g (x )有三个零点;由x 2+t =1+x ⇒x 2-x +t -1=0,Δ=0⇒t =54,所以当1<t <54时,g (x )有四个零点;当t <0时,若t =-1时,有g (x )三个零点;当t <-1时,g (x )有四个零点.综上,当1<t <54或t <-1时,g (x )有四个零点,选C.二、填空题11.已知函数f (x )=⎩⎪⎨⎪⎧a ·2x ,x ≥02-x ,x <0(a ∈R ),若f [f (-1)]=1,则a =________.解析:因为-1<0,所以f (-1)=2-(-1)=2.又2>0,所以f [f (-1)]=f (2)=a ·22=1,解得a =14.答案:1412.设函数f (x )=⎩⎪⎨⎪⎧e x -1,x <1,x 13,x ≥1,则使得f (x )≤2成立的x 的取值范围是________.解析:当x <1时,由e x -1≤2得x ≤1+ln 2,∴x <1;当x ≥1时,由x 13≤2得x ≤8,∴1≤x ≤8.综上,符合题意的x 的取值范围是x ≤8.答案:(-∞,8] 13.(2014·宿州模拟)已知等式a ln x +b =ln(x +b )对∀x >0恒成立,写出所有满足题设的数对(a ,b )=________.解析:因为等式a ln x +b =ln(x +b )对∀x >0恒成立,所以ln x a +b =ln(x +b ),所以ln x a +ln e b =ln(x +b ),所以ln(x a e b )=ln(x +b ),所以x a e b=x +b 对∀x >0恒成立.只有满足⎩⎪⎨⎪⎧a =1,b =0时等式才成立,故填(1,0).答案:(1,0) 14.(2014·江苏高考)已知f (x )是定义在R 上且周期为3的函数,当x ∈[0,3)时,f (x )=⎪⎪⎪⎪x 2-2x +12.若函数y =f (x )-a 在区间[-3,4]上有10个零点(互不相同),则实数a 的取值范围是________.解析:函数y =f (x )-a 在区间[-3,4]上有互不相同的10个零点,即函数y =f (x ),x ∈[-3,4]与y =a 的图象有10个不同交点.在坐标系中作出函数y =f (x )在[-3,4]上的图象,f (-3)=f (-2)=f (-1)=f (0)=f (1)=f (2)=f (3)=f (4)=12,观察图象可得0<a <12.答案:⎝⎛⎭⎫0,12 15.(2014·中山模拟)已知函数f (x )=⎩⎪⎨⎪⎧ ax 2+2x +1,-2<x ,ax -3,x 有3个零点,则实数a 的取值范围是________.解析:∵函数f (x )=⎩⎪⎨⎪⎧ ax 2+2x +1,-2<x ,ax -3,x 有3个零点,图象如图:∴a >0且f (x )=ax 2+2x +1在(-2<x ≤0)上有2个零点, ⎩⎪⎨⎪⎧ a >0,a -2+-+1>0,-2<-1a <0,Δ=4-4a >0,解得34<a <1. 答案:⎝⎛⎭⎫34,116.设函数f (x )=a x +b x -c x ,其中c >a >0,c >b >0.(1)记集合M ={(a ,b ,c )|a ,b ,c 不能构成一个三角形的三条边长,且a =b },则(a ,b ,c )∈M 所对应的f (x )的零点的取值集合为________;(2)若a ,b ,c 是△ABC 的三条边长,则下列结论正确的是________(写出所有正确结论的序号).①∀x ∈(-∞,1),f (x )>0;②∃x 0∈R ,使ax 0,bx 0,cx 0不能构成一个三角形的三条边长;③若△ABC 为钝角三角形,则∃x 0∈(1,2),使f (x 0)=0.解析:(1)由题设f (x )=0,a =b ⇒2a x =c x ⇒⎝⎛⎭⎫a c x =12, 又a +b ≤c ,a =b ⇒a c ≤12⇒⎝⎛⎭⎫a c x ≤⎝⎛⎭⎫12x ,x >0,所以12≤⎝⎛⎭⎫12x ⇒0<x ≤1. (2)由题设a +b >c ⇒a c +b c >1,又0<a c <1,0<b c<1,∀x ∈(-∞,1)⇒⎝⎛⎭⎫a c x >a c ,⎝⎛⎭⎫b c x >b c ⇒⎝⎛⎭⎫a c x +⎝⎛⎭⎫b c x >1,即f (x )>0,所以①正确;由(1)可知②正确;由△ABC 为钝角三角形,所以a 2+b 2<c 2,所以f (2)<0.又a +b >c ,所以a c +b c>1,所以f (1)>0,由零点存在性定理可知③正确. 答案:(1){x |0<x ≤1} (2)①②③。