【机械专业英文文献】向理想的机械工程设计支持系统
- 格式:doc
- 大小:107.00 KB
- 文档页数:11
机械专业论文中英文Gearbox Noise —— Correlation with Transmission Error and Influence of Bearing Preload变速箱噪声——相关的传输错误和轴承预压的影响摘要ABSTRACTThe five appended papers all deal with gearbox noise and vibration. The first paper presents a review of previously published literature on gearbox noise and vibration.The second paper describes a test rig that was specially designed and built for noise testing of gears. Finite element analysis was used to predict the dynamic properties of the test rig, and experimental modal analysis of the gearbox housing was used to verify the theoretical predictions of natural frequencies.In the third paper, the influence of gear finishing method and gear deviations on gearbox noise is investigated in what is primarily an experimental study. Eleven test gear pairs were manufactured using three different finishing methods. Transmission error, which is considered to be an important excitation mechanism for gear noise, was measured as well as predicted. The test rig was used to measure gearbox noise and vibration for the different test gear pairs. The measured noise and vibration levels were compared with the predicted and measured transmission error. Most of the experimental results can be interpreted in terms of measured and predicted transmission error. However, it does not seem possible to identify one single parameter,such as measuredpeak-to-peak transmission error, that can be directly related to measured noise and vibration. The measurements also show that disassembly and reassembly of the gearbox with the same gear pair can change the levels of measured noise andvibration considerably.This finding indicates that other factors besides the gears affect gear noise.In the fourth paper, the influence of bearing endplay or preload on gearbox noise and vibration is investigated. Vibration measurements were carried out at torque levels of 140 Nm and 400Nm, with 0.15 mm and 0 mm bearing endplay, and with 0.15 mm bearing preload. The results show that the bearing endplay and preload influence the gearbox vibrations. With preloaded bearings, the vibrations increase at speeds over 2000 rpm and decrease at speeds below 2000 rpm, compared with bearings with endplay. Finite element simulations show the same tendencies as the measurements.The fifth paper describes how gearbox noise is reduced by optimizing the gear geometry for decreased transmission error. Robustness with respect to gear deviations and varying torque is considered in order to find a gear geometry giving low noise in an appropriate torque range despite deviations from the nominal geometry due to manufacturing tolerances. Static and dynamic transmission error, noise, and housing vibrations were measured. The correlation between dynamic transmission error, housing vibrations and noise was investigated in speed sweeps from 500 to 2500 rpm at constant torque. No correlation was found between dynamic transmission error and noise. Static loaded transmission error seems to be correlated with the ability of the gear pair to excite vibration in the gearbox dynamic system.论文描述了该试验台是专门设计和建造噪音齿轮测试。
机械工程专业外文文献及翻译文献一(外文标题)
摘要:
该文献研究了机械工程领域中的某个具体问题。
通过实验方法和数学模型的分析,作者得出了一些有意义的结论。
本文介绍了作者的研究方法和结果,并讨论了其在机械工程领域的应用前景。
翻译:
(将文献的主要内容用简洁准确的语言翻译成中文)
文献二(外文标题)
摘要:
该文献探讨了机械工程领域中的另一个重要问题。
通过实证分析和理论推导,作者提出了解决方案,并对其进行了验证。
本文阐述了作者的方法和实验结果,并探讨了其在实践中的应用潜力。
翻译:
(将文献的主要内容用简洁准确的语言翻译成中文)
文献三(外文标题)
摘要:
该文献研究了机械工程领域中的另一个新颖课题。
作者通过数
值模拟和实验验证,得出了一些有趣的发现。
本文介绍了作者的研
究过程和结果,并讨论了其对机械工程领域的影响。
翻译:
(将文献的主要内容用简洁准确的语言翻译成中文)
总结
本文档介绍了三篇机械工程专业的外文文献,包括摘要和翻译。
这些文献都对机械工程领域中的不同问题进行了研究,并提出了相
关的解决方案和发现。
希望这些文献能为机械工程专业的学生和研
究人员提供有价值的参考和启发。
英文原文Study of Inherent Safety Mine hoist based on modern designmethodsYang Lijie 1, Meng Xiangyun2,Wang Guimei1,Niu Qingna11 Hebei University of Engineering, Handan, Hebei, 056038, ChinaYanglijie255@2 China Telecom Handan Company, Handan, Hebei, 056038, China Abstract—As a modern security design, Inherent Safety means that equipment and facilities is able to contain the inherent fundamental features to prevent accidents. Mine hoist is the most important equipment in the coal production. How to achieve safe, reliable, efficient production has been the focus study at home and abroad. Inherent safety is reflected in hoist design, primarily through the design measures to improve the operation of hoist safety and reliability. In this paper, Inherent Safety theory is applied in the design of mine hoist, to proposed the design method by using the software of PRO/E PLC, Labview etc..Keywords-Mine hoist; Inherent Safety; PRO/E; PLC; LabviewI. INTRODUCTIONIn coal production, mine hoist is the equipment to carry coal, gangue, materials, workers and equipments along the rockshaft, the only way linked underground and aboveground, known as mine throat. Mine hoist is a large-scale reciprocating machinery which has the feature of own big inertia, load changes, running speed, and wide range et al.. The advantages and disadvantages of its operating performance, not only directly affect the normal production and coal production efficiency, but also relate to equipment and personal safety. In recent years, mine hoist failures and accidents have happened at home and abroad which have paid a heavy price to coal companies. Therefore, the production technology and safety of mine hoist are higher, and its mechanical manufacturing technology and electrical control technology has been an important research area to the international machine building industry and the electric control industry.Inherent Safety means that equipment and facilities is able to contain the inherent fundamental features to prevent accidents. Inherent Safety lies in design, through continuous improvement, to prevent accidents due to the equipment itself failures. Inherent safety is reflected in hoist design, primarily through the design measures to improve the operation of hoist safety and reliability. In this paper, Inherent Safety theory is applied in the design of mine hoist, to proposed the inherent safety design method by use the software of PRO/E PLC, Labview etc..II. INHERENT SAFETY THEORYThe term of inherent safety originates the development of world space technology in the 1950s. The concept is widely accepted closely linked with scientific technological progress and human understanding of safety culture. The concept of inherent safety produced after the World War II which became major safety concept in many industrialized countries since the mid 20th century.Inherent safety design as the basic method of hazard control, by selecting safe materials, process routes, mechanical equipment, devices, to eliminate or control hazards source rather than relying on "additional" security measures or management measures to control them. As inherent safety design, firstly analyze and identify hazards that may occur in system, and then choose the best methods to eliminate, control hazards, which reflected in project design.Ⅲ. THE DESIGN OF INHERENT SAFETY MINE HOISTMine hoist mainly includs the working device, control system, transmission system and drag, protection systems and other components. To the inherent safety mine hoist design, mainly the mechanical system, control system and monitor system is the major part to considered.A.In-depth investigations to find malfunctionThe concept of inherent safety is required safety all the time in the product design process. That is, the equipment has little malfunction as much as possible during the operation and has long normal operation cycle length. How can design inherent safety equipment, the most important thing is understanding enough to the equipment, especially in work. After in-depth research, fully understanding the situation, try the best to reduce or eliminate the fault in the design. After in-depth understanding of research, design product.B. Mechanical SystemThe traditional method of product has long design cycle, high costs. However, the virtual prototype technology has the advantage in saving the design cost, shortening the design circle, by using the method of modeling, simulation first and then builds the physical prototype. Therefore, the virtual design is the developing trends of mechanical design. In mechanical system design, the application of virtual prototype is used to design mine hoist, not only speeded up the design process, also simulated a variety of conditions to the virtual prototype to discover design faults, to improve the design, to improve mine hoist performance.Mine hoist mechanical system is composed of spindle, roller, reducer, motor, brakes and other components. In its design, virtual design software PRO / E is applied to establish hoist prototype, application of simulation software ADAMS is used to simulate and optimize the design. Specific process shown in Figure 1:Figure 1. Mechanical system designC. Control system designMine hoist control system includes start, run, brake, etc., the requirements in control system are:In normal hoist operation, participation in hoist speed control, brake the hoist when reaching the destination, known as the service braking;In case of emergency, can quickly slow down as required, brake hoist, to prevent the expansion of the accident, that is the safety braking; Participate in the hoist speed control when decelerati; To double-roller hoist, should brake the moving roller and fix roller respectively when regulating rope length, replacement level and changing rope, so that, moving roller would not move when spindle rotates with the fixed roller.Most of mine hoists in China (more than 70%) use the traditional electric control system (tkd-a as the representative). Tkd control system is composed of relay logic circuits, large air contactors, tachometer generator etc., which is a touch control system. After years of development, tkd-a series of electric control system has formed its own characteristics, but its shortcomings are obvious. Its electrical circuit is too complicated, multi-line, causing hoist parking and accidents occurred due to electrical fault. With the computer and digital technology, to form a digital hoist control systemof PLC has become possible. PLC control system has high control precision, parameter stability, simple hardware structure, self-diagnostic capability and communication networking function.Mine hoist control system based on PLC technology structure shown in Figure 2, mainly including the following components: the main plc control circuits, hoist route detection and display circuits, speed detection, and signal circuits. The PLC of the main control circuits uses Mitsubishi FX2N series in Japan which more domestic applications.Figure 2 PLC electric control systemD. Monitoring system designTo ensure safe operation of the hoist, except for selecting the reasonable operation design parameters, the use of advanced control system, should also monitor the technological parameters on regular, conscientiously do performance test work to master the hoist performance, discover the defects in time, eliminate hidden danger,avoid unnecessary losses. In addition, the hoist operation state can be improved to work in the best conditions based on test data. Therefore, the hoist could work safely, reliably, have high efficiency, and extend its work life.Virtual instrument technology is computer-based instrumentation and measurement technology, is loaded some software and hardware on the computer with similar appearance and performance of the actual independent instrument. The user operating the computer, like manipulating a especially conventional electronic devices designed theirs. The essence of virtual instrument technology is that hardware softwarized technology, take full advantage of the latest computer technology to implement and expand the functions of traditional instruments.LabVIEW (laboratory virtual instrument engineering workbench) is a graphical programming and development environment, also known as "G" language. It is widely used by industry, academia and research laboratories, accepted as the standard data acquisition and instrument control software. LabVIEW not only provides and complies with all the functions of hardware and data acquisition cards communications of GPIB, VXI, RS-232 and RS-485 protocol, and built-in library functions support for TCP / IP, ActiveX and other software standards. The software for scientists and engineers is a programming language, it provides a simple, intuitive graphical programming mode, saves a lot of development time, has complete function, best embodied style of virtual instrument.In response to these circumstances, developed a mine hoist Integrate Performance Monitoring System based on virtual instrument LabVIEW-based. Show in Figure 3. With signal conditioning and data acquisition card to receive signals from sensors, then sent the received signal to the virtual instrument software platform, enables the following features:(1)show speed, acceleration, braking time, displacement, oil pressure, delay time and other relevant parameters in digital, and display speed, acceleration, traction, displacement and hydraulic curves.(2)Dynamically monitor the hydraulic oil pressure and oil pump running station, based on these parameters to avoid important braking system failure.(3)Test brake air travel time, relay delay time and other time parameters.(4)inquiry to the measured curve and hoist parameters; print a test report.Figure 3. Diagram of test systemThe monitoring system has characteristics such as compact, light weight, high precision, testing convenient and flexible, feature-rich software etc.. the system can not only display automatically test results, but also finish multiple functions, for example , data transmission, analysis, processing, storage and report printing. The system is high precision, can easily monitor the hoist operation state, to ensure the reliability of hoist operation.Ⅳ. CONCLUSIONSIn this paper, used virtual design software to design the hoist mechanical system, PLC to design control system, applied virtual instrument software-LABVIEW to design monitor system. Therefore, the mine hoist designed has good mechanical properties and safe operation, monitoring easy.REFERENCES[1] Weng qishu. The inherent safety and checks of cabin[J]. navigationTechnology 2006 (3):50-52. (in Chinese)[2] Li jangbo. Study of Test System of Composite Characteristic of Devices Based onVirtual instrument[D]. A Dissertation Submitted to Hebei University ofEngineering For the Academic Degree of Master of Engineering, 2007. (inChinese)[3] Wang chengqin, Li wei , Meng baoxing et al... Random vibration testing system ofhoisting gear based on virtual instrument. Coal mine machinery, 2008(4) :118-120.(in Chinese)[4] Chen baozhi Wu min. concept and practices of inherent safety[J]. Journal ofSafety Science and Technology,2008(6):79-83. (in Chinese)[5] Xu chenyi, Wu yongdong, Huanghe et al.. A PLC-based mine hoist control systemdesign [J]. LC&FA, 2008(10):52-56 (in Chinese)中文译文基于现代设计方法的矿井提升机内在安全性的研究Yang Lijie 1, Meng Xiangyun2,Wang Guimei1,Niu Qingna11河北工程大学,河北邯郸,056038,中国Yanglijie255@2中国电信邯郸分公司,河北邯郸,056038,中国摘要:作为一个现代的安全设计,内在的安全性意味着设备和设施能够包含防止事故发生的固有基本特征。
机械行业英文范文**Mechanical Engineering: Innovation and Development**In the realm of industrial revolution, mechanical engineering stands as a pillar, driving the progress of mankind through its innovative designs and technological advancements. This discipline, which encompasses the design, manufacturing, and maintenance of mechanical systems, has been instrumental in shaping the modern world.The history of mechanical engineering is rich with groundbreaking inventions and ideas. From the simple杠杆原理 (lever principle) in ancient times to the complexinternal combustion engines of today, this field has constantly evolved, pushing the boundaries of what is possible. The Industrial Revolution, in particular, markeda significant milestone in the growth of mechanical engineering, as it led to the mass production of goods, revolutionizing the economic landscape.Today, mechanical engineering finds applications in almost every industry, from aerospace to automotive, and from construction to robotics. The design of efficientengines, precision machinery, and automated systems relies heavily on the principles and technologies developed by mechanical engineers. Furthermore, the integration of mechanical engineering with other fields, such as electronics and computer science, has led to the emergence of new areas like mechatronics, which focus on the integration of mechanical and electronic systems.Innovation is the lifeblood of mechanical engineering. Constant research and development are crucial for creating systems that are not only more efficient but also sustainable and environmentally friendly. Engineers are constantly exploring new materials, processes, and technologies to improve the performance and reliability of mechanical systems.In addition to innovation, another key aspect of mechanical engineering is the meticulous attention to detail. The design and manufacturing of mechanical systems require precise calculations and rigorous testing to ensure their safety and reliability. Mechanical engineers must have a strong understanding of physics, mathematics, andmaterials science to design systems that can withstand extreme conditions and perform optimally.The future of mechanical engineering looks bright, with new technologies and materials promising even greater advancements. The integration of artificial intelligence and robotics with mechanical systems is expected to lead to even more innovative and autonomous systems. Furthermore, the focus on sustainability and environmental conservation will continue to shape the development of mechanical engineering, leading to the creation of systems that are not only efficient but also environmentally friendly.In conclusion, mechanical engineering has been and continues to be a driving force in the industrial revolution. Its importance in driving innovation, improving efficiency, and ensuring reliability cannot be overstated. As we look towards a future filled with new challenges and opportunities, it is crucial that we continue to invest in mechanical engineering, fostering innovation and talent to create a sustainable and prosperous future.**机械工程:创新与发展**机械工程作为工业革命的支柱,通过其创新设计和技术进步推动着人类进步。
机械设计外文文献翻译、中英文翻译unavailable。
The first step in the design process is to define the problem and XXX are defined。
the designer can begin toXXX evaluated。
and the best one is XXX。
XXX.Mechanical DesignA XXX machines include engines。
turbines。
vehicles。
hoists。
printing presses。
washing machines。
and XXX and methods of design that apply to XXXXXX。
cams。
valves。
vessels。
and mixers.Design ProcessThe design process begins with a real need。
Existing apparatus may require XXX。
efficiency。
weight。
speed。
or cost。
while new apparatus may be XXX。
To start。
the designer must define the problem and XXX。
ideas and concepts are generated。
evaluated。
and refined until the best one is XXX。
XXX.XXX。
assembly。
XXX.During the preliminary design stage。
it is important to allow design XXX if some ideas may seem impractical。
they can be corrected early on in the design process。
机械类英语论文及翻译Mechanical design involves the n of machines。
which are composed of mechanisms and other components that can transform and transmit ___ machines include engines。
turbines。
vehicles。
hoists。
printing presses。
washing machines。
and ___ and methods of design that apply to machines also apply to ___。
the term "mechanical design" is used in a broader sense than "machine design" to include their design.When ___。
___ to take into account。
The n and structural aspects of the device。
as well as the ___。
___ apply not only to machines but also to other mechanical devices。
such as switches。
cams。
valves。
vessels。
and mixers.Mechanical design is a critical field in ___ disciplines。
It plays an essential role in the ___ the success of a mechanical design project。
it is essential to follow a set of rules for design。
关于机械的英文文献以下是一篇有关机械的英文文献:Title: The Development and Applications of Mechanical SystemsAbstract:Mechanical systems are used in a wide range of applications from everyday household items to complex industrial machinery. Mechanical systems are composed of various mechanical components that interact with each other to perform mechanical tasks. The development of mechanical systems has been a continuous process, improving over time with the introduction of new technologies and materials.Mechanical systems can be classified into three main categories: power transmission systems, motion control systems, and structural systems. Power transmission systems transmit power from one location to another, either through a series of gears or a belt drive system. Motion control systems control the movement of a mechanical object through the use of servo motors, linear actuators, and other components. Structural systems provide the necessary support and stability for mechanical systems.One of the most important applications of mechanical systems is in the manufacturing industry. Mechanical systems are used in everything from assembly line machinery to robotic systems for welding, painting, and other tasks. Mechanical systems are also commonly used in transportation systems, including automobiles, airplanes, and trains.In recent years, the development of smart mechanical systems has become an area of focus in the research and development of mechanical systems. Smart mechanical systems are designed to be more autonomous and can include features such as sensors, actuators, and advanced control systems. These features allow the mechanical system to operate more efficiently and autonomously.Overall, the development and applications of mechanical systems have played a significant role in the advancement of modern society. As technology continues to evolve, so too will the capabilities of mechanical systems, allowing for new and innovative applications in a wide range of fields.Keywords: mechanical systems, power transmission, motion control, structural systems, manufacturing, smart mechanical systems, sensors,actuators, control systems.。
机械设计制造及其自动化参考文献英文机械设计制造及其自动化参考文献英文:1. Chen, J., & Mei, X. (2016). A review of intelligent manufacturing in the context of Industry 4.0: From the perspective of quality management. Engineering, 2(4), 431-439.这篇文章回顾了智能制造在工业4.0背景下的发展,并从质量管理的角度进行了分析。
2. Wu, D., & Rosen, D. W. (2015). Cloud-based design and manufacturing: A new paradigm in digital manufacturing and design innovation. Computer-Aided Design, 59, 1-14.该研究探讨了基于云计算的设计和制造,认为这是数字制造和设计创新的新范式。
3. Wang, L., Trngren, M., & Onori, M. (2015). Current status and advancement of cyber-physical systems in manufacturing. Journal of Manufacturing Systems, 37, 517-527.这篇文章综述了制造业中物联网技术的现状和进展,强调了制造业中的网络化和物理化系统。
4. Xie, Y. M., & Shi, Y. (2008). A survey of intelligence-based manufacturing: Origins, concepts, and trends. IEEE Transactions on Industrial Informatics, 4(2), 102-120.该文章综述了智能制造的起源、概念和趋势,并对智能制造的方法和技术进行了详细描述。
机械运动和动力学外文翻译文献英文资料Kinematics and dynamics of machineryOne princple aim of kinemarics is to creat the designed motions of the subject mechanical parts and then mathematically compute the positions, velocities ,and accelerations ,which those motions will creat on the parts. Since ,for most earthbound mechanical systems ,the mass remains essentially constant with time,defining the accelerations as a function of time then also defines the dynamic forces as a function of time. Stress,in turn, will be a function of both applied and inerials forces . since engineering design is charged with creating systems which will not fail during their expected service life,the goal is to keep stresses within acceptable limits for the materials chosen and the environmental conditions encountered. This obvisely requies that all system forces be defined and kept within desired limits. In mechinery , the largest forces encountered are often those due to the dynamics of the machine itself. These dynamic forces are proportional to acceletation, which brings us back to kinematics ,the foundation of mechanical design. Very basic and early decisions in the design process invovling kinematics wii prove troublesome and perform badly.Any mechanical system can be classified according to the number of degree of freedom which it possesses.the systems DOF is equal to the number of independent parameters which are needed to uniquely define its posion in space at any instant of time.A rigid body free to move within a reference frame will ,in the general case, have complex motoin, which is simultaneous combination of rotation and translation. In three-dimensional space , there may be rotation about any axis and also simultaneous translation which can be resoled into componention along three axes, in a plane ,or two-dimentional space ,complex motion becomes a combination of simultaneous along two axes in the plane. For simplicity ,we will limit our present discusstions to the case of planar motion:Pure rotation the body pessesses one point (center of rotation)which has no motion with respect to the stationary frame of reference. All other points on the body describe arcs about that center. A reference line drawn on the body through the center changes only its angulai orientation.Pure translation all points on the body describe parallel paths. A reference line drawn on thebody changes its linear posion but does not change its angular oriention.Complex motion a simulaneous combination of rotion and translationm . any reference line drawn on the body will change both its linear pisition and its angular orientation. Points on the body will travel non-parallel paths ,and there will be , at every instant , a center of rotation , which will continuously change location.Linkages are the bacis building blocks of all mechanisms. All common forms of mechanisms (cams , gears ,belts , chains ) are in fact variations of linkages. Linkages are made up of links and kinematic pairs.A link is an (assumed)rigid body which possesses at least two or more links (at their nodes), which connection allows some motion, or potential motion,between the connected links.The term lower pair is used tohe moving parts .we next want te use newton’s second law to caculate the dynamic forces, but to do so we need to know the masses of all the moving parts which have these known acceletations. These parts do not exit yet ! as with any design in order to make a first pass at the caculation . we will then have to itnerate to better an better solutions as we generate more information.A first estimate of your parts’masses can be obtained by assuming some reasonable shapes and size for all the parts and choosing approriate materials. Then caculate the volume of each part and multipy its volume by material’s mass density (not weight density ) to obtain a first approximation of its mass . these mass values can then be used in Newton’s equation.How will we know whether our chosen sizes and shapes of links are even acceptable, let alone optimal ? unfortunately , we will not know untill we have carried the computations all the way through a complete stress and deflection analysis of the parts. It it often the case ,especially with long , thin elements such as shafts or slender links , that the deflections of the parts, redesign them ,and repeat the force ,stress ,and deflection analysis . design is , unavoidably ,an iterative process .It is also worth nothing that ,unlike a static force situation in which a failed design might be fixed by adding more mass to the part to strenthen it ,to do so in a dynamic force situation can have a deleterious effect . more mass with the same acceleration will generate even higher forces and thus higher stresses ! the machine desiger often need to remove mass (in the right places) form parts in order to reduce the stesses and deflections due to F=ma, thus the designer needs to have a good understanding of both material properties and stess and deflection analysis to properlyshape and size parts for minimum mass while maximzing the strength and stiffness needed to withstand the dynamic forces.One of the primary considerations in designing any machine or strucre is that the strength must be sufficiently greater than the stress to assure both safety and reliability. To assure thatmechanical parts do not fail in service ,it is necessary to learn why they sometimes do fail. Then we shall be able to relate the stresses with the strenths to achieve safety .Ideally, in designing any machine element,the engineer should have at his disposal should have been made on speciments having the same heat treatment ,surface roughness ,and size as the element he prosses to design ;and the tests should be made under exactly the same loading conditions as the part will experience in service . this means that ,if the part is to experience a bending and torsion,it should be tested under combined bending and torsion. Such tests will provide very useful and precise information . they tell the engineer what factor of safety to use and what the reliability is for a given service life .whenever such data are available for design purposes,the engineer can be assure that he is doing the best justified if failure of the part may endanger human life ,or if the part is manufactured in sufficiently large quantities. Automobiles and refrigrerators, for example, have very good reliabilities because the parts are made in such large quantities that they can be thoroughly tested in advance of manufacture , the cost of making these is very low when it is divided by the total number of parts manufactrued.You can now appreciate the following four design categories :(1)failure of the part would endanger human life ,or the part ismade in extremely large quantities ;consequently, an elaborate testingprogram is justified during design .(2)the part is made in large enough quantities so that a moderate serues of tests is feasible.(3)The part is made in such small quantities that testing is not justified at all ; or the design must be completed so rapidlly that there is not enough time for testing.(4) The part has already been designed, manufactured, and tested and found to be unsatisfactory. Analysis is required to understand why the part is unsatisfactory and what to do to improve it .It is with the last three categories that we shall be mostly concerned.this means that the designer will usually have only published values of yield strenth , ultimate strength,and percentage elongation . with this meager information the engieer is expected to design against static and dynamic loads, biaxial and triaxial stress states , high and low temperatures,and large and small parts! The data usually available for design have been obtained from the simple tension test , where the load was applied gradually and the strain given time to develop. Yet these same data must be used in designing parts with complicated dynamic loads applied thousands of times per minute . no wonder machine parts sometimes fail.To sum up, the fundamental problem of the designer is to use the simple tension test data and relate them to the strength of the part , regardless of the stress or the loading situation.It is possible for two metal to have exactly the same strength and hardness, yet one of these metals may have a supeior ability to aborb overloads, because of the property called ductility.Dutility is measured by the percentage elongation which occurs in the material at frature. The usual divding line between ductility and brittleness is 5 percent elongation. Amaterial having less than 5 percent elongation at fracture is said to bebrittle, while one having more is said to be ductile.The elongation of a material is usuallu measured over 50mm gauge length.siece this did not a measure of the actual strain, another method of determining ductility is sometimes used . after the speciman has been fractured, measurements are made of the area of the cross section at the fracture. Ductility can then be expressed as the percentage reduction in cross sectional area.The characteristic of a ductile material which permits it to aborb largeoverloads is an additional safety factot in design. Ductility is also important because it is a measure of that property of a material which permits it to be cold-worked .such operations as bending and drawing are metal-processing operations which require ductile materials.When a materals is to be selected to resist wear , erosion ,or plastic deformaton, hardness is generally the most important property. Several methods of hardness testing are available, depending upon which particular property is most desired. The four hardness numbers in greatest usse are the Brinell, Rockwell,Vickers, and Knoop.Most hardness-testing systems employ a standard load which is applied to a ball or pyramid in contact with the material to be tested. The hardness is an easy property to measure , because the test is nondestructive and test specimens are not required . usually the test can be conducted directly on actual machine element .Virtually all machines contain shafts. The most common shape for shafts is circular and the cross section can be either solid or hollow (hollow shafts can result in weight savings). Rectangular shafts are sometimes used ,as in screw driver bladers ,socket wrenches and control knob stem.A shaft must have adequate torsional strength to transmit torque and not be over stressed. If must also be torsionally stiff enough so that one mounted component does not deviate excessively from its original angular position relative to a second component mounted on the same shaft. Generally speaking,the of length between bearing supports.In addition .the shaft must be able to sustain a combination of bending and torsional loads. Thus an equivalent load must be considered which takes into account both torsion and bending . also ,the allowable stress must contain a factor of safety which includes fatigue, since torsional and bending stress reversals occur.For fiameters less than 3 in ,the usual shaft material is cold-rolled steel containing about 0.4 percent carbon. Shafts ate either cold-rolled or forged in sizes from 3in. to 5 in. for sizes above 5 in. shafts are forged and machined to size . plastic shafts are widely used for light loadapplications . one advantage of using plastic is safty in electrical applications, since plastic is a poor confuctor of electricity.Components such as gears and pulleys are mounted on shafts by means of key. The design of the key and the corresponding keyway in the shaft must be properly evaluated. For example, stress concentrations occur in shafts due to keyways , and the material removed to form the keyway further weakens the shaft.If shafts are run at critical speeds , severe vibrations can occur which can seriously damage a machine .it is important to know the magnitude of these critical speeds so that they can be avoided. As a general rule of thumb , the difference betweem the operating speed and the critical speed should be at least 20 percent.Many shafts are supported by three or more bearings, which means that the problem is statically indeterminate .text on strenth of materials give methods of soving such problems. The design effort should be in keeping with the economics of a given situation , for example , if one line shaft supported by three or more bearings id needed , it probably would be cheaper to make conservative assumptions as to moments and design it as though it were determinate . the extra cost of an oversize shaft may be less than the extra cost of an elaborate design analysis.Another important aspect of shaft design is the method of directly connecting one shaft to another , this is accomplished by devices such as rigid and flexiable couplings.A coupling is a device for connecting the ends of adjacent shafts. In machine construction , couplings are used to effect a semipermanent connection between adjacent rotating shafts , the connection is permanent in the sense that it is not meant to be broken during the useful life of the machinem , but it can be broken and restored in an emergency or when worn parts are replaced.There are several types of shaft couplings, their characteristics depend on the purpose for which they are used , if an exceptionally long shaft is required in a manufacturing plant or a propeller shaft on a ship , it is made in sections that are coupled together with rigid couplings. A common type of rigid coupling consists of two mating radial flanges that are attached by key driven hubs to the ends of adjacent shaft sections and bolted together through the flanges to form a rigid connection. Alignment of the connected shafts in usually effected by means of a rabbet joint on the face of the flanges.In connecting shafts belonging to separate device ( such as an electric motor and a gearbox),precise aligning of the shafts is difficult and a fkexible coupling is used . this coupling connects the shafts in such a way as to minimize the harmful effects of shafts misalignment of loads and to move freely(float) in the axial diection without interfering with one another . flexiable couplings can also serve to reduce the intensity of shock loads and vibrationstransmitted from one shaft to another .中文翻译机械运动和动力学运动学的基本目的是去设计一个机械零件的理想运动,然后再用数学的方法去描绘该零件的位置,速度和加速度,再运用这些参数来设计零件。
有关机械专业的英语作文Mechanical engineering is a field of engineering that deals with the design, construction, and maintenance of machines and systems. It is one of the oldest and broadest engineering disciplines and has a significant impact on modern society.To become a successful mechanical engineer, one must have a strong foundation in mathematics, physics, and science. It is also important to have good problem-solving skills and be able to think creatively. A mechanical engineer should be able to design, test, and analyze mechanical systems and components.One important skill for a mechanical engineer is computer-aided design (CAD). CAD software allows engineers to create and modify designs quickly and accurately. It also enables them to simulate and test designs before they are built. This helps reduce errors and save time and resources.Another important skill for mechanical engineers is knowledge of materials. Different materials have differentproperties, and it is important to choose the right material for each component of a machine or system. Mechanical engineers must also be aware of the impact of their designs on the environment and society.Mechanical engineers work in a variety of industries, including automotive, aerospace, and manufacturing. They may design engines, turbines, robots, or other mechanical systems. They may also work on improving existing systems or developing new technologies.One challenge that mechanical engineers face is keeping up with the latest technological advancements. New materials, manufacturing processes, and design techniques are constantly being developed, and it is important for mechanical engineers to stay current with these changes.Another challenge is designing for sustainability. As the world becomes more aware of the impact of human activities on the environment, mechanical engineers must find ways to reduce the carbon footprint of their designs. This may involve designing more efficient systems, using renewable energy sources, or finding ways to recycle or reuse materials.In conclusion, mechanical engineering is a diverse and challenging field that requires a strong foundation in math, physics, and science, as well as critical thinking and problem-solving skills. Mechanical engineers play a vital role in designing and maintaining the machines and systems that make modern life possible. As technology continues to advance and society becomes more aware of the impact of human activities on the environment, mechanical engineers will need to adapt and innovate to meet new challenges.。
机械毕业设计参考文献引言作为机械工程专业的毕业生,在进行毕业设计时,需要参考相关文献来支持自己的研究和设计。
本文将为机械毕业设计提供一些参考文献,包括机械工程基础、设计原理与方法、材料科学与工程、传动与控制等方面的文献。
1. 机械工程基础•Joseph Edward Shigley, Charles R. Mischke, Richard Gordon Budynas.Mechanical Engineering Design. McGraw-Hill Education, 2010.(《机械工程设计》)•R. L. Norton. Design of Machinery: An Introduction to the Synthesis and Analysis of Mechanisms and Machines. McGraw-HillScience/Engineering/Math, 2018.(《机械设计:机构与机器的综合与分析导论》)•V. B. Bhandari. Design of Machine Elements. McGraw-Hill Education, 2016.(《机械元件设计》)这些文献将为机械工程毕业设计提供基础的机械设计知识,包括机械工程的基本原理和设计方法。
2. 设计原理与方法•Alexander Slocum. Precision Machine Design. CRC Press, 1992.(《精密机械设计》)•Pahl, C. G., Beitz, W., & Feldhusen, J. & H. Engineering Design: A Systematic Approach. Springer, 2007.(《工程设计:一种系统的方法》)•Ulrich,.K.T, & Eppinger, S.D. Product Design and Development.McGraw-Hill Education, 2010.(《产品设计与开发》)这些文献涵盖了设计原理与方法的相关知识,包括精密机械设计、工程设计方法和产品设计与开发等方面的内容,为毕业设计的设计过程提供指导。
机械工程专业英语文章随着全球化进程的加快及新型工业化道路的发展,我国劳动力市场对机械工程人才的就业能力提出了更高的要求。
下面是店铺带来的机械工程专业英语文章,欢迎阅读!机械工程专业英语文章精选Milling and Milling Cutter铣削和铣刀Milling is a machining process that is carried out by means of a multiedge rotating tool known asa milling cutter.铣削是采用被称为铣刀的多刃旋转刀具完成的机加工作业。
In this process, metal removal is achieved through combining the rotary motion of the millingcutter and linear motions of the workpiece simultaneously. Milling operations are employed inproducing flat, contoured and helical surfaces as well as for thread- and gear-cuttingoperation.在此工艺中金属去除是通过铣刀的旋转运动和工件的直线运动的组合实现的。
铣削作业既可用于生成平面、轮廓面和螺旋面也可用于切削螺纹和齿轮。
Each of the cutting edges of a milling cutter acts as an individual single-point cutter when itengages with the workpiece metal. Therefore, each of those cutting edges has appropriaterake and relief angles.在铣刀切削工件金属时铣刀的每条切削刃都象一单独的单刃刀具一样作用。
机械设计制造及其自动化英文书籍机械设计制造及其自动化是一个重要的领域,它涵盖了机械工程、制造工程、自动控制和计算机科学等多个学科。
以下是几本关于机械设计制造及其自动化的英文书籍,它们提供了丰富的知识和理论基础,可帮助读者深入了解和应用这一领域的各种技术。
1. “Design of Machinery: An Introduction to the Synthesis and Analysis of Mechanisms and Machines” by Robert L. Norton 这本书是机械设计中经典的教材之一。
作者通过详细介绍机构和机械的设计、综合和分析等内容,帮助读者理解机械工程的基本原理和方法。
书中还涵盖了各种设计工具和技术,例如几何建模、运动分析和动力学等,这些内容对于理解机械系统的运动和性能至关重要。
2. “Mechanical Design: Theory and Methodology” by Jack A. Collins这本书主要介绍了机械设计的理论和方法。
作者详细解释了机械设计过程中的各个阶段,包括需求分析、概念设计、详细设计和制造等。
这本书还强调了重要的设计原则,如强度、刚度和可靠性等。
读者可以通过学习这本书,掌握机械设计的核心原理和方法,并能应用于实际工程项目中。
3. “Manufacturing Engineering and Technology” by Serope Kalpakjian and Steven R. Schmid这本书介绍了现代制造工程和技术的各个方面。
作者详细讲解了各种制造过程和方法,包括制造设备和工艺、材料处理和成形、自动化和控制等。
这本书还强调了质量控制和可持续制造等重要主题。
读者可以通过阅读这本书,了解制造工程的最新发展和应用,并学习如何应用现代制造技术来提高生产效率和产品质量。
4. “Automation, Production Systems, and Computer-Integrated Manufacturing” by Mikell P. Groover这本书主要介绍了自动化生产系统和计算机集成制造技术。
文献翻译英文原文:NOVEL METHOD OF REALIZING THE OPTIMAL TRANSMISSION OF THE CRANK-AND-ROCKER MECHANISM DESIGN Abstract: A novel method of realizing the optimal transmission of the crank-and-rocker mechanism is presented. The optimal combination design is made by finding the related optimal transmission parameters. The diagram of the optimal transmission is drawn. In the diagram, the relation among minimum transmission angle, the coefficient of travel speed variation, the oscillating angle of the rocker and the length of the bars is shown, concisely, conveniently and directly. The method possesses the main characteristic. That it is to achieve the optimal transmission parameters under the transmission angle by directly choosing in the diagram, according to the given requirements. The characteristics of the mechanical transmission can be improved to gain the optimal transmission effect by the method. Especially, the method is simple and convenient in practical use.Keywords:Crank-and-rocker mechanism, Optimal transmission angle, Coefficient of travel speed variationINTRODUCTIONBy conventional method of the crank-and-rocker design, it is very difficult to realize the optimal combination between the various parameters for optimal transmission. The figure-table design method introduced in this paper can help achieve this goal. With given conditions, we can, by only consulting the designing figures and tables, get the relations between every parameter and another of the designed crank-and-rocker mechanism. Thus the optimal transmission can be realized.The concerned designing theory and method, as well as the real cases of its application will be introduced later respectively.1ESTABLISHMENT OF DIAGRAM FOR OPTIMAL TRANSMISSION DESIGNIt is always one of the most important indexes that designers pursue to improve the efficiency and property of the transmission. The crank-and-rocker mechanism is widely used in the mechanical transmission. How to improve work ability and reduce unnecessary power losses is directly related to the coefficient of travel speed variation, the oscillating angle of the rocker and the ratio of the crank and rocker. The reasonable combination of these parameters takes an important effect on the efficiency and property of the mechanism, which mainly indicates in the evaluation of the minimum transmission angle.The aim realizing the optimal transmission of the mechanism is how to find themaximum of the minimum transmission angle. The design parameters are reasonably combined by the method of lessening constraints gradually and optimizing separately. Consequently, the complete constraint field realizing the optimal transmission is established.The following steps are taken in the usual design method. Firstly, the initial values of the length of rocker 3l and the oscillating angle of rocker ϕ are given. Then the value of the coefficient of travel speed variation K is chosen in the permitted range. Meanwhile, the coordinate of the fixed hinge of crank A possibly realized is calculated corresponding to value K .1.1 Length of bars of crank and rocker mechanismAs shown in Fig.1, left arc G C 2 is the permitted field of point A . Thecoordinates of point A are chosen by small step from point 2C to point G .The coordinates of point A are 02h y y c A -= (1)22A A y R x -= (2)where 0h , the step, is increased by small increment within range(0,H ). If the smaller the chosen step is, the higher the computational precision will be. R is the radius of the design circle. d is the distance from 2C to G .2cos )2cos(22cos 33ϕθϕϕ⎥⎦⎤⎢⎣⎡--+=l R l d (3) Calculating the length of arc 1AC and 2AC , the length of the bars of themechanism corresponding to point A is obtained [1,2].1.2 Minimum transmission angle min γMinimum transmission angle min γ(see Fig.2) is determined by the equations [3]322142322min 2)(cos l l l l l l --+=γ (4) 322142322max 2)(cos l l l l l l +-+=γ (5) max min180γγ-︒=' (6) where 1l ——Length of crank(mm)2l ——Length of connecting bar(mm)3l ——Length of rocker(mm)4l ——Length of machine frame(mm)Firstly, we choose minimum comparing min γ with minγ'. And then we record all values of min γ greater than or equal to ︒40 and choose the maximum of them.Secondly, we find the maximum of min γ corresponding to any oscillating angle ϕ which is chosen by small step in the permitted range (maximum of min γ is different oscillating angle ϕ and the coefficient of travel speed variation K ).Finally, we change the length of rockerl by small step similarly. Thus we3γcorresponding to the different length of bars, may obtain the maximum ofmindifferent oscillating angle ϕand the coefficient of travel speed variation K.Fig.3 is accomplished from Table for the purpose of diagram design.It is worth pointing out that whatever the length of rocker 3l is evaluated, the location that the maximum of min γ arises is only related to the ratio of the length of rocker and the length of machine frame 3l /4l , while independent of 3l .2 DESIGN METHOD2.1 Realizing the optimal transmission design given the coefficient of travelspeed variation and the maximum oscillating angle of the rockerThe design procedure is as follows.(1) According to given K and ϕ, taken account to the formula the extreme included angle θ is found. The corresponding ratio of the length of bars 3l /4l is obtained consulting Fig.3.︒⨯+-=18011K K θ (7) (2) Choose the length of rocker 3l according to the work requirement, the length of the machine frame is obtained from the ratio 3l /4l .(3) Choose the centre of fixed hinge D as the vertex arbitrarily, and plot an isosceles triangle, the side of which is equal to the length of rocker 3l (see Fig.4), andϕ=∠21DC C . Then plot 212C C M C ⊥, draw N C 1, and make angleθ-︒=∠9012N C C . Thus the point of intersection of M C 2 and N C 1 is gained. Finally, draw the circumcircle of triangle 21C PC ∆.(4) Plot an arc with point D as the centre of the circle, 4l as the radius. The arc intersections arc G C 2 at point A . Point A is just the centre of the fixed hinge of the crank.Therefore, from the length of the crank2/)(211AC AC l -= (8)and the length of the connecting bar112l AC l -= (9)we will obtain the crank and rocker mechanism consisted of 1l , 2l , 3l , and 4l .Thus the optimal transmission property is realized under given conditions.2.2 Realizing the optimal transmission design given the length of the rocker (or the length of the machine frame) and the coefficient of travel speed variationWe take the following steps.(1) The appropriate ratio of the bars 3l /4l can be chosen according to given K . Furthermore, we find the length of machine frame 4l (the length of rocker 3l ).(2) The corresponding oscillating angle of the rocker can be obtained consulting Fig.3. And we calculate the extreme included angle θ.Then repeat (3) and (4) in section 2.13 DESIGN EXAMPLEThe known conditions are that the coefficient of travel speed variation1818.1=K and maximum oscillating angle ︒=40ϕ. The crankandrockermechanism realizing the optimal transmission is designed by the diagram solution method presented above.First, with Eq.(7), we can calculate the extreme included angle ︒=15θ. Then, we find 93.0/43=l l consulting Fig.3 according to the values of θ and ϕ.If evaluate 503=l mm, then we will obtain 76.5393.0/504==l mm. Next, draw sketch(omitted).As result, the length of bars is 161=l mm,462=l mm,503=l mm,76.534=l mm.The minimum transmission angle is︒=--+=3698.462)(arccos 322142322min l l l l l l γ The results obtained by computer are 2227.161=l mm, 5093.442=l mm, 0000.503=l mm, 8986.534=l mm.Provided that the figure design is carried under the condition of the Auto CAD circumstances, very precise design results can be achieved.4 CONCLUSIONSA novel approach of diagram solution can realize the optimal transmission of the crank-and-rocker mechanism. The method is simple and convenient in the practical use. In conventional design of mechanism, taking 0.1 mm as the value of effective the precision of the component sizes will be enough.译文:认识曲柄摇臂机构设计的最优传动方法摘要:一种曲柄摇臂机构设计的最优传动的方法被提出。
机械设计创造及其自动化毕业论文外文文献翻译INTEGRATION OF MACHINERY译文题目专业机械设计创造及其自动化外文资料翻译INTEGRATION OF MACHINERY(From ELECTRICAL AND MACHINERY INDUSTRY)ABSTRACTMachinery was the modern science and technology development inevitable result, this article has summarized the integration of machinery technology basic outline and the development background .Summarized the domestic and foreign integration of machinery technology present situation, has analyzed the integration of machinery technology trend of development.Key word: integration of machinery ,technology, present situation ,product t,echnique of manufacture ,trend of development0. Introduction modern science and technology unceasing development, impelled different discipline intersecting enormously with the seepage, has caused the project domain technological revolution and the transformation .In mechanical engineering domain, because the microelectronic technology and the computer technology rapid development and forms to the mechanical industry seepage the integration of machinery, caused the mechanical industry the technical structure, the product organization, the function and the constitution, the production method and the management systemof by machinery for the characteristic integration ofdevelopment phase.1. Integration of machinery outline integration of machinery is refers in the organization new owner function, the power function, in the information processing function and the control function introduces the electronic technology, unifies the system the mechanism and the computerization design and the software which constitutes always to call. The integration of machinery development also has become one to have until now own system new discipline, not only develops along with the science and technology, but also entrusts with the new content .But its basic characteristic may summarize is: The integration of machinery is embarks from the system viewpoint, synthesis community technologies and so on utilization mechanical technology, microelectronic technology, automatic control technology, computer technology, information technology, sensing observation and control technology, electric power electronic technology, connection technology, information conversion technology as well as software programming technology, according to the system function goal and the optimized organization goal, reasonable disposition and the layout various functions unit, in multi-purpose, high grade, redundant reliable, in the low energy consumption significance realize the specific function value, and causes the overall system optimization the systems engineering technology .From this produces functional system, then becomes an integration of machinery systematic or the integration of machinery product. Therefore, of coveringtechnology is based on the above community technology organic fusion one kind of comprehensive technology, but is not mechanical technical, the microelectronic technology as well as other new technical simple combination, pieces together .This is the integration of machinery and the machinery adds the machinery electrification which the electricity forms in the concept basic difference .The mechanical engineering technology has the merely technical to develop the machinery electrification, still was the traditional machinery, its main function still was replaces with the enlargement physical strength .But after develops the integration of machinery, micro electron installment besides may substitute for certain mechanical parts the original function, but also can entrust with many new functions,like the automatic detection, the automatic reduction information, demonstrate the record, the automatic control and the control automatic diagnosis and the protection automatically and so on .Not only namely the integration of machinery product is human's hand and body extending, human's sense organ and the brains look, has the intellectualized characteristic is the integration of machinery and the machinery electrification distinguishes in the function essence.2. Integration of machinery development condition integration of machinery development may divide into 3 stages roughly.20th century 60's before for the first stage, this stage is called the initial stage .In this time, the people determination not on own initiative uses the electronic technology the preliminary achievement to consummate the mechanical product the performance .Specially in Second World War period, the war has stimulated the mechanical product and the electronic technology union, these mechanical and electrical union military technology, postwar transfers civilly, to postwar economical restoration positive function .Developed and the development at that time generally speaking also is at the spontaneouscondition .Because at that time the electronic technology development not yet achieved certain level, mechanical technical and electronic technology union also not impossible widespread and thorough development, already developed the product was also unable to promote massively. The 20th century 70~80 ages for the second stage, may be called the vigorous development stage .This time, the computer technology, the control technology, the communication development, has laid the technology base for the integration of machinery development . Large-scale, ultra large scale integrated circuit and microcomputer swift and violent development, has provided the full material base for the integration of machinery development .This time characteristic is :①A mechatronics word first generally is accepted in Japan, probably obtains the quite widespread acknowledgment to 1980s last stages in the worldwide scale ;②The integration of machinery technology and the product obtained the enormous development ;③The various countries start to the integration of machinery technology and the product give the very big attention and the support. 1990s later periods, started the integration of machinery technology the new stagewhich makes great strides forward to the intellectualized direction, the integration of machinery enters the thorough development time .At the same time, optics, the communication and so on entered the integration of machinery, processes the technology also zhan to appear tiny in the integration of machinery the foot, appeared the light integration of machinery and the micro integration of machinery and so on the new branch; On the other hand to the integration of machinery system modeling design, the analysis and the integrated method, the integration of machinery discipline system and the trend of development has all conducted the thorough research .At the same time, because the hugeprogress which domains and so on artificial intelligence technology, neural network technology and optical fiber technology obtain, opened the development vast world for the integration of machinery technology .These research, will urge the integration of machinery further to establish the integrity the foundation and forms the integrity gradually the scientific system. Our country is only then starts from the beginning of 1980s in this aspect to study with the application .The State Councilsummary had considered fully on international the influence which and possibly brought from this about the integration of machinery technology developmenttrend .Many universities, colleges and institutes, the development facility and some large and middle scale enterprises have done the massive work to this technical development and the application, does not yield certain result, but and so on the advanced countries compared with Japan still has the suitable disparity.3. Integration of machinery trend of development integrations of machinery are the collection machinery, the electron, optics, the control, the computer, the information and so on the multi-disciplinary overlapping syntheses, its development and the progress rely on and promote the correlation technology development and the progress .Therefore, the integration of machinery main development direction is as follows:3.1 Intellectualized intellectualizations are 21st century integration of machinery technological development important development directions .Theartificial intelligence obtains day by day in the integration of machinery constructor's research takes, the robot and the numerical control engine bedis to the machine behavior description, is in the control theory foundation, the absorption artificial intelligence, the operations research, the computer science, the fuzzy mathematics, the psychology, the physiology and the chaos dynamics and so on the new thought, the new method, simulate the human intelligence, enable it to have abilities and so on judgment inference, logical thinking, independent decision-making, obtains the higher control goal in order to .Indeed, enable the integration of machinery product to have with the human identical intelligence, is not impossible, also is nonessential .But, the high performance, the high speed microprocessor enable the integration of machinery product to have preliminary intelligent or human's partial intelligences, then is completely possible and essential.In the modern manufacture process, the information has become the control manufacture industry the determining factor, moreover is the most active actuation factor .Enhances the manufacture system information-handling capacity to become the modern manufacture science development a key point .As a result of the manufacture system information organization and structure multi-level, makes the information the gain, the integration and the fusion presents draws up the character, information measure multi-dimensional, as well as information organization's multi-level .In the manufacture information structural model, manufacture information uniform restraint, dissemination processing and magnanimous data aspects and so on manufacture knowledge library management, all also wait for further break through.Each kind of artificial intelligence tool and the computation intelligence method promoted the manufacture intelligence development in the manufacture widespread application .A kind based on the biological evolution algorithm computation intelligent agent, in includes thescheduling problem in the combination optimization solution area of technology, receives the more and more universal attention, hopefully completes the combination optimization question when the manufacture the solution speed and the solution precision aspect breaks through the question scale in pairs the restriction .The manufacture intelligence also displays in: The intelligent dispatch, the intelligent design, the intelligent processing, the robot study, the intelligent control, the intelligent craft plan, the intelligent diagnosis and so on are various These question key breakthrough, may form the product innovation the basic research system. Between 2 modern mechanical engineering front science different science overlapping fusion will have the new science accumulation, the economical development and society's progress has had the new request and the expectation to the science and technology, thus will form the front science .The front science also has solved and between the solution scientific question border area .The front science has the obvious time domain, the domain and the dynamic characteristic .The project front science distinguished in the general basic science important characteristic is it has covered the key science and technology question which the project actual appeared.Manufacture system is a complex large-scale system, for satisfies the manufacture system agility, the fast response and fast reorganization ability, must profit from the information science, the life sciences and the social sciences and so on the multi-disciplinary research results, the exploration manufacture system new architecture, the manufacture pattern and the manufacture system effective operational mechanism .Makes the system optimization the organizational structure and the good movement condition is makes the system modeling , the simulation and the optimized essential target .Not only the manufacture system new architecture to makes the enterprise the agility and may reorganize ability to the demand response ability to have the vital significance, moreover to made the enterprise first floor production equipment the flexibility and may dynamic reorganization ability set a higher request .The biological manufacture view more and more many is introduced the manufacture system, satisfies the manufacture system new request.The study organizes and circulates method and technique of complicated system from the biological phenomenon, is a valid exit which will solve many hard nut to cracks that manufacturing industry face from now on currently .Imitating to living what manufacturing point is mimicry living creature organ of from the organization, from match more, from growth with from evolution etc. function structure and circulate mode of a kind of manufacturing system and manufacturing process.The manufacturing drives in the mechanism under, continuously by one's own perfect raise on organizing structure and circulating mode and thus to adapt the process of[with] ability for the environment .For from descend but the last product proceed together a design and make a craft rules the auto of the distance born, produce system of dynamic state reorganization and product and manufacturing the system tend automatically excellent provided theories foundation and carry out acondition .Imitate to living a manufacturing to belong to manufacturing science and life science of"the far good luck is miscellaneous to hand over", it will produce to the manufacturing industry for 21 centuries huge of influence .机电一体化摘要机电一体化是现代科学技术发展的必然结果,本文简述了机电一体化技术的基本概要和发展背景。
Mechanical DesignJohn ErnstAbstract:A machine is a combination of mechanisms and other components which transforms transmits. Examples are engines, turbines, vehicles, hoists, printing presses, washing machines, and movie cameras. Many of the principles and methods of design that apply to machines also apply to manufactured articles that are not true machines. The term "mechanical design" is used in a broader sense than "machine design" to include their design. The motion and structural aspects and the provisions for retention and enclosure are considerations in mechanical design. Applications occur in the field of mechanical engineering, and in other engineering fields as well, all of which require mechanical devices, such as switches, cams, valves, vessels, and mixers.Keywords: Mechanical Design;Mechanisms Design Process;Application1. The Design ProgressDesigning starts with a need real. Existing apparatus may need improvements in durability, efficiency, weight, speed, or cost. New apparatus may be needed to perform a function previously Done by men, such as computation, assembly, or servicing. With the objective wholly or partlyIn the design preliminary stage, should allow to design the personnel fully to display the creativity, not each kind of restraint. Even if has had many impractical ideas, also can in the design early time, namely in front of the plan blueprint is corrected. Only then, only then does not send to stops up the innovation the mentality. Usually, must propose several sets of design proposals, and then perform the comparison. Has the possibility very much in the plan which finally designated, has used certain not in plan some ideas which accepts.When the general shape and a few dimensions of the several components become apparent, analysis can begin in earnest. The analysis will have as its objective satisfactory or superiorperformance, plus safety and durability with minimum weight, and a competitive cost. Optimum proportions and dimensions will be sought for each critically loaded section, together with a balance between the strengths of the several components. Materials and their treatment will be chosen. These important objectives can be attained only by analysis based upon the principles of mechanics, such as those of static for reaction forces and for the optimum utilization of friction; of dynamics for inertia, acceleration, and energy; of elasticity and strength of materials for stress and deflection; of physical behavior of materials; and of fluid mechanics for lubrication and hydrodynamic drives. The analyses may be made by the same engineer who conceived the arrangement of mechanisms, or, in a large company, they may be made by a separate analysis division or research group. Design is a reiterative and cooperative process, whether done formally or informally, and the analyst can contribute to phases other than his own. Product design requires much research and development. Many Concepts of an idea must be studied, tried, and then either used or discarded. Although the content of each engineering problem is unique, the designers follow the similar process to solve the problems.Product liability suits designers and forced in material selection, using the best program. In the process of material, the most common problems for five (a) don't understand or not use about the latest application materials to the best information, (b) failed to foresee and consider the reasonable use material may (such as possible, designers should further forecast and consider due to improper use products. In recent years, many products liability in litigation, the use of products and hurt the plaintiff accused manufacturer, and won the decision), (c) of the materials used all or some of the data, data, especially when the uncertainty long-term performance data is so, (d) quality control method is not suitable and unproven, (e) by some completely incompetent persons choose materials.Through to the above five questions analysis, may obtain thesequestions is does not have the sufficient reason existence the conclusion. May for avoid these questions to these questions research analyses the appearance indicating the direction. Although uses the best choice of material method not to be able to avoid having the product responsibility lawsuit, designs the personnel and the industry carries on the choice of material according to the suitable procedure, may greatly reduce the lawsuit the quantity.May see from the above discussion, the choice material people should to the material nature, the characteristic and the processing method have comprehensive and the basic understanding.Finally, a design based upon function, and a prototype may be built. If its tests are satisfactory, the initial design will undergo certain modifications that enable it to be manufactured in quantity at a lower cost. During subsequent years of manufacture and service, the design is likely to undergo changes as new ideas are conceived or as further analyses based upon tests and experience indicate alterations. Sales appeal.2. Some Rules for DesignIn this section it is suggested that, applied with a creative attitude, analyses can lead to important improvements and to the conception and perfection of alternate, perhaps more functional, economical, and durable products.To stimulate creative thought, the following rules are suggested for the designer and analyst. The first six rules are particularly applicable for the analyst.(1)A creative use of need of physical properties and control process.(2)Recognize functional loads and their significance.(3) Anticipate unintentional loads.(4) Devise more favorable loading conditions.(5) Provide for favorable stress distribution and stiffness with minimum weight.(6) Use basic equations to proportion and optimize dimensions.(7)Choose materials for a combination of properties.(8)Select carefully, stock and integral components.(9)Modify a functional design to fit the manufacturing process and reduce cost.(10)Provide for accurate location and noninterference of parts in assembly.Machinery design covers the following contents.(1).Provides an introduction to the design process, problem formulation, and safety factors.(2).Reviews the material properties and static and dynamic loading analysis, Including beam, vibration and impact loading.(3) Reviews the fundamentals of stress and defection analysis.(4)Introduces fatigue-failure theory with the emphasis on stress-life approaches to high-cycle fatigue design, which is commonly used in the design of rotation machinery.(5) Discusses thoroughly the phenomena of wear mechanisms, surface contact stresses, and surface fatigue.(6) Investigates shaft design using the fatigue-analysis techniques.(7) Discusses fluid-film and rolling-element bearing theory and application(8) Gives a thorough introduction to the kinematics, design and stress analysis of spur gears, and a simple introduction to helical, bevel, and worm gearing.(9) Discusses spring design including compression, extension and torsion springs.(10) Deals with screws and fasteners including power screw and preload fasteners.(11) Introduces the design and specification of disk and drum clutches and brakes.The complete design of a machine is a complex process. The machine design is a creative work. Project engineer not only must have the creativity in the work, but also must in aspect and so on mechanical drawing, kinematics, engineering material, materials mechanics and machine manufacture technology has the deepelementary knowledge.One of the first steps in the design of any product is to select the material from which each part is to be made. Numerous materials are available to today's designers. The function of the product, its appearance, the cost of the material, and the cost of fabrication are important in making a selection. A careful evaluation of the properties of a. material must be made prior to any calculations.Careful calculations are necessary to ensure the validity of a design. In case of any part failures, it is desirable to know what was done in originally designing the defective components. The checking of calculations (and drawing dimensions) is of utmost importance. The misplacement of one decimal point can ruin an otherwise acceptable project. All aspects of design work should be checked and rechecked.The computer is a tool helpful to mechanical designers to lighten tedious calculations, and provide extended analysis of available data. Interactive systems, based on computer capabilities, have made possible the concepts of computer aided design (CAD) and computer-aided manufacturing (CAM). How does the psychologist frequently discuss causes the machine which the people adapts them to operate. A design personnel’s basic responsibility is diligently causes the machine to adapt the people. This certainly is not an easy work, because certainly does not have to all people to say in fact all is the most superior operating area and the operating process. Another important question, project engineer must be able to carry on the exchange and the consultation with other concerned personnel. In the initial stage, designs the personnel to have to carry on the exchange and the consultation on the preliminary design with the administrative personnel, and is approved. This generally is through the oral discussion, the schematic diagram and the writing material carries on.If front sues, the machine design goal is the production can meet the human need the product. The invention, the discovery and technical knowledge itself certainly not necessarily can bring theadvantage to the humanity, only has when they are applied can produce on the product the benefit. Thus, should realize to carries on before the design in a specific product, must first determine whether the people do need this kind of productMust regard as the machine design is the machine design personnel carries on using creative ability the product design, the system analysis and a formulation product manufacture technology good opportunity. Grasps the project elementary knowledge to have to memorize some data and the formula is more important than. The merely service data and the formula is insufficient to the completely decision which makes in a good design needs. On the other hand, should be earnest precisely carries on all operations. For example, even if places wrong a decimal point position, also can cause the correct design to turn wrongly.Good design personnel should dare to propose the new idea moreover is willing to undertake the certain risk, when the new method is not suitable, use original method. Therefore, designs the personnel to have to have to have the patience, because spends the time and the endeavor certainly cannot guarantee brings successfully. A brand-new design, the request screen abandons absolutely many, knows very well the method for the people. Because many person of conservativeness does this certainly is not an easy matter. A mechanical designer should unceasingly explore the improvement existing product the method, should earnestly choose originally, the process confirmation principle of design in this process, with has not unified it after the confirmation new idea.Human life can not be separated from the machinery, it is everywhere, but for the mechanical manufacturing, production, and its development and future, we know little about. After this semester, I have more knowledge and understanding of the profession of the mechanical.From the primitive society of early human use such as axes, knives and other simple tools, to a simple lever, pulley, human bicycles, animal-Kip Shum car tools, developed to a more complexhydraulic drive, wind-driven Shuinian and windmills morecomplex machinery. After the 18th century British Industrial Revolution, the steam engine, internal combustion engines, electric motors, mechanical power source for the rapid development of manufacturing, transport, human beings began to enter the modern civilized society. The 20th century, the computer issuing automatic control technology, information technology, infectious organic combination of technology, so that the machinery is fully modernized phase. Robotics, CNC machine tools, high-speed delivery vehicles, heavy machinery and the large number of advanced machinery and equipment to accelerate the prosperity and progress of human society, humans can travel into space, landing on the moon, you can explore the vast depths of the sea, to live and pass below the surface all of which can not be separated from the machinery, the development of the machinery into the intelligent stage. Machinery has become one of the five elements of production and services of modern society. The history of the development of the mechanical history of the development of human civilization.In ancient Chinese mechanical engineering, invention and creativity is very brilliant, such as grinding technology, metal smelting technology. China's machinery manufacturing industry developed after 1949. After the founding of new China, the tremendous achievements of China’s economy are inseparable from the progress of the manufacturing sector. After decades of struggle, China's manufacturing components with considerable scale and level of manufacturing systems, today China have become a remarkable manufacturing country. Machinery manufacturing industry overall scale of production is constantly increasing, machinery manufacturing is more than 100 industry, 8.57 million enterprises (large enterprises accounted for 1%) and 60,000 kinds of products a complete range of industrial system. For six consecutive years in China's largest export commodity status, the machinery industry production capacity is 2600 times that of the liberation of the world 5, the machine has a world, vehicle production in the world 4.But we still need to clearly recognize that China is a big manufacturing country, far from being a manufacturing powerhouse. The overall size of the added value of product technology and per capita labor efficiency is far better than the United States, Japan and other manufacturing power. Therefore, the task of development of China's manufacturing industry a long way to go. With the diversification of the high-tech development and social needs of the industrial production rapidly toward large-scale, integrated and complex, so that the modern industrial machinery industry is facing new opportunities and challenges, and more emphasis on the creativity and the efficiency of the workers. Therefore need to continuously enhance the level of China's Mechanical Design Manufacturing and Automation, thereby contributing to the development of China's machinery manufacturing industry.。
Toward the ideal mechanical engineering design support systemDavid G.UllmanAbstract This paper details the progress toward the development oftheidealmechanical engineering design support system.It attempts to look at the gap between the needs of a mechanicalengineerandwhatis currently available onCAD systems Since the tern:CAD emphasizes that the computer is an aid to the human designer,this paper is designer centric it is based heavi~on the activities performed by designers and the types ofinformation developed by then:Seventeen goals for the ideal mechanical design support system are listed These are directed at the types ofinfor mation developed during the design process and the activ ities used to develop them For each of the seventeen,background information,the current state of the art,and opportunities for future development are itemizedKeywords Mechanical engineering design,CAD,Support system1IntroductionThis paper summarizes the progress made toward the development of the ideal mechanical engineering design support system For nearly 30 years,computer aided de sign(CAD)systems have been touted by their developers as systems that support engineering designers developing products CAD systems have had a major impact on how design is accomplished in the workplace This being said,there is amazingly little ibrmal research on the effects of these systems on the designers and on the final products‟This paper presents a structure for discussing these effectsIn doing so、lt summarizes what is known and what needs co be studied Finally、it discusses how CAD systems have evoh,edto supportincreasingportions ofthe activitiesthat are used to develop products.The term CAD emphasizes that the computer ls an aid to the human designer,so this paper is designer centric it is based heavily on the activities pertbrmed by designers and the types ofintbrmation developed by them in many ways,this is an update of two earlier papers,‘‘The importance of drawing in the mechanical design process”[29 J and“issues critical to the development of design history,design ratio nale and design intent systems”【311 The latter paper developed 13 outstanding issues that needed to be resolvedto realize the capture and query ofengineering design intormation as a potential lor lmprovmg the design processand the reuse ofdesign Intormation.The tbundation for the first paper was the study of the marks made on paper by nve mechanical design engineers of varying backgrounds and experience They were each given the initial specifications tbr one of two t~irly simple,yet realistic,mechanical design problems taken from professional practice The engineers were requested to think aloud as they soh,ed the problems Their verbal reports、drawings,and gestures were video and audio taped for aperiod of6 10 h The taped data were then transcribed to ob tain a……protocol”of the design session Each designer made numerous drawings during his or her solution of the problem A11 0fthesewere on paper CAD systemswere not usedinthe studgbecausenone ofthedesigners usedCADln their daily practice,and its use would have added another variable to an already complex experiment.From the more than 40 h ofdata taken,15 sections were selected that represented typical conceptual,layout,detail and selection design for each subject The 15 sections of protocol data consisted of 174 rain of data The data were analyzed to explore the observations that drawings are usedto:1 Archive the geometric torm of the design2 Communicate ldeas between designers and between the designers and manufacturing personnel3 Act as an analysis tool Often,missing dimensions and tolerances are calculated on the drawing as it ls developed4 Simulate the design5 Serve as a completeness checker As sketches or other drawings are being made,the details left to be designed become apparent to the designer This,in ett)ct,helps establish an agenda of design tasks leL to accomplish6 Act as an extension of the designer‟s short term memory Designers often unconsciouslv make sketches to help them remember ldeas that they might otherwise torgetThe 1990 paper refined and supported these observa tions AdditionalIv,although the subiects did not use CAD systems,the resuhs suggested that:1 CAD systerns nl[ist allow tbr sketching lnput2 CAD systerns nlust allow for a variety of Interfaces tbr the designer This does not mean more ways to define a circle、but an eftort to match the interface and the im age on the CAD system to that needed by the designer3 CAD systems iiltlSt recognize domain dependent features and treat them as entities4 CAD tools need to be able to manage constraints(even abstract and tkmctional constraints)and ensure their satistaction、as it is evident that human designers are cognitively limited in this ability Since that paper was written,CAD systerns have matured and have addressed、at least to some degree、all南ur of the conclusions iIowever,even the most recent systems are a ong way tbom the ideal mechanical engineering design support system In this paper,the ideal system will be described and progress toward this ldeal discussed2A model of design problem solvingit may someday be possible for a designer to put on a ‘‘thinking cap”that can take his or her thoughts and de elop a hardware reDresen【atlon Research on under standing cognitive processes,CAD,and rapid prototyping ls certainly moving ln that direction This ideal implies that we can tbrmtflate concepts Jn our heads that are sumciently well tormed to warrant hardware It also as sumes that CAD systems are suflicientlg developed to take our thoughts and manage the evolution of parts and as semblies CAD system development will require an tin derstanding of the cognitive workings of designers so that the transition tbom thought to representation is possibleTo explore what ls known about this link、consider the relationship between the human problem soh,er and the external environment shown in Fig 1 This figure ls based on the model developed bv Newell and Simon『20l and ls called the information processing system(IPS)The figure is a simple……map‟‟ofw here information about the design is developed and stored The figure shows an internal,human problem solving environment(inside the mind of the designer)and an external environment(outside the mind of the designer)Within the designer,two locations correspond to the two different kinds of memory:short term memory(STM)and long term memory(LTM) External to the designer,there are many‘‘design storage locations”including graphical representation media such as pieces of paper and CAD tools,as well as other media such as textual notes,handbooks,and colleagues Each location has certain properties that affect how it can beused in designDetail on the charac Leris【ics of the STM and the LTM ls based on Newell and Simon‟smodel[20 J Extensions have been made to it for visual imagery【1 l,12,13 J and effortshave been made to codil~~it【21 it must be realized that the contents of the model given here are not folly agreed to in the cognitive psychology community,but the),are cer tainly secure enough to provide a basis for discussing the role of CAD in mechanical design2.1Short-term memory Short tern:memorg ls verv fast and powerful The contents of the STM are the information we are aware of,that is,our conscious mind All design operations(。