中位数和众数(1)
- 格式:doc
- 大小:84.50 KB
- 文档页数:2
个人理解,说简单点:一组数据中如果有特别大的数或特别小的数时,一般用中位数一组数据比较多(20个以上),范围比较集中,一般用众数其余情况一般还是平均数比较精确一、联系与区别:1、平均数是通过计算得到的,因此它会因每一个数据的变化而变化。
2、中位数是通过排序得到的,它不受最大、最小两个极端数值的影响.中位数在一定程度上综合了平均数和中位数的优点,具有比较好的代表性。
部分数据的变动对中位数没有影响,当一组数据中的个别数据变动较大时,常用它来描述这组数据的集中趋势。
另外,因中位数在一组数据的数值排序中处中间的位置,3、众数也是数据的一种代表数,反映了一组数据的集中程度.日常生活中诸如“最佳”、“最受欢迎”、“最满意”等,都与众数有关系,它反映了一种最普遍的倾向.二、平均数、中位数和众数它们都有各自的的优缺点.平均数:(1)需要全组所有数据来计算;(2)易受数据中极端数值的影响.中位数:(1)仅需把数据按顺序排列后即可确定;(2)不易受数据中极端数值的影响.众数:(1)通过计数得到;(2)不易受数据中极端数值的影响关于“中位数、众数、平均数”这三个知识点的理解,我简单谈谈自己的认识和理解。
⒈众数。
一组数据中出现次数最多的那个数据,叫做这组数据的众数。
⒉众数的特点。
①众数在一组数据中出现的次数最多;②众数反映了一组数据的集中趋势,当众数出现的次数越多,它就越能代表这组数据的整体状况,并且它能比较直观地了解到一组数据的大致情况。
但是,当一组数据大小不同,差异又很大时,就很难判断众数的准确值了。
此外,当一组数据的那个众数出现的次数不具明显优势时,用它来反映一组数据的典型水平是不大可靠的。
3.众数与平均数的区别。
众数表示一组数据中出现次数最多的那个数据;平均数是一组数据中表示平均每份的数量。
4.中位数的概念。
一组数据按大小顺序排列,位于最中间的一个数据(当有偶数个数据时,为最中间两个数据的平均数)叫做这组数据的中位数。
《中位数与众数(第一课时)》课后作业1.已知数据 1,2,x 和 5 的平均数是 2.5,则这组数据的众数是______.【答案】2.【解析】根据题意先求出 x 的值,再根据众数的意义得出答案.2.从某市 5000 名初一学生中,随机地抽取 100 名学生,测得他们的身高数据,得到一个样本,则这个样本数据的平均数、中位数、众数三个统计量中,服装厂最感兴趣的是( ).(A)平均数 (B)中位数 (C)众数 (D)不确定【答案】C.【解析】理解平均数、中位数、众数的意义,体会平均数、中位数、众数三者的特点与差异能根据具体问题选择这些统计量来分析数据.3.已知数据 x,5,0,3,-1 的平均数是 1,那么它的中位数是( ).(A)0 (B)2.5 (C)1 (D)0.5【答案】A.【解析】根据题意先求出 x 的值,再将这数据按照从小到大(或从大到小)的顺序排序,五个数据,位于最中间的是第三个位置上对应的数据,进而得到答案.4.如果一组数据中有一个数据变动,那么( ).(A)平均数一定会变动 (B)中位数一定会变动(C)众数一定会变动 (D)平均数、中位数和众数可能都不变【答案】A.【解析】了解众数、中位数、平均数的意义及求法.5.某校八年级(1)班 50 名学生参加 2009 年贵阳市数学质量监控考试,全班学生的成绩统计请根据表中提供的信息解答下列问题:(1)该班学生考试成绩的众数是______;(2)该班学生考试成绩的中位数是______;(3)该班张华同学在这次考试中的成绩是 83 分,能不能说张华同学的成绩处于全班中游偏上水平?试说明理由.【答案】 (1)88;(2)86;(3)不能.因为 83 小于中位数.【解析】了解众数、中位数的意义,会求一组数据的众数、中位数, 能根据具体问题选择这些统计量来分析数据.。
第3讲中位数和众数1、认识中位数和众数,并会求出一组数据中的众数和中位数。
2、理解中位数和众数的意义和作用。
它们也是数据代表,可以反映一定的数据信息,帮助人们在实际问题中分析并做出决策。
3、会利用中位数、众数分析数据信息做出决策。
知识点01 中位数和众数1.中位数一般地,n个数据按照大小顺序排列,处于最中间位置的一个数据(或最中间两个数据的平均数)叫做这组数据的中位数.要点诠释:(1)一组数据的中位数是唯一的;一组数据的中位数不一定出现在这组数据中.(2)由一组数据的中位数可以知道中位数以上和以下数据各占一半.2.众数一组数据中出现次数最多的那个数据叫做这组数据的众数.要点诠释:(1)一组数据的众数一定出现在这组数据中;一组数据的众数可能不止一个.(2)众数是一组数据中出现次数最多的数据而不是数据出现的次数.【即学即练1】下表是七年级(2)班30名学生期中考试数学成绩表(已破损).已知该班学生期中考试数学成绩平均分是76分.(1)求该班80分和90分的人数分别是多少?(2)设此班30名学生成绩的众数为,中位数为,求的值.a b a b目标导航知识精讲知识点02 平均数、中位数与众数的联系与区别联系:平均数、众数、中位数都是用来描述数据集中趋势的量,其中以平均数最为重要.区别:平均数的大小与每一个数据都有关,任何一个数的波动都会引起平均数的波动,当一组数据中有个别数据太高或太低,用平均数来描述整体趋势则不合适,用中位数或众数则较合适.中位数与数据排列位置有关,个别数据的波动对中位数没影响;众数主要研究各数据出现的频数,当一组数据中不少数据多次重复出现时,可用众数来描述.【即学即练2】(福州)若一组数据1,2,3,4,x的平均数与中位数相同,则实数x的值不可能是()A.0B.2.5C.3 D.5能力拓展考法011.有一组数据:2,2,4,5,7,这组数据的中位数为()A. 2 B.4 C.5 D.72.如果一组数据6,7,x,9,5的平均数是2x,那么这组数据的中位数为( )A.5B.6C.7D.93.淮安市“读书节”活动主题是“阅读,遇见更美好的自己”.为了解同学们课外阅读情况,王老师对某学习小组10名同学5月份的读书量进行了统计,结果如下(单位:本):5,5,3,6,3,6,6,5,4,5,则这组数据的众数是A.3B.4C.5D.64.若一组数据x,3,1,6,3的中位数和平均数相等,则x的值为A.2 B.3 C.4 D.55.一组数据-2、1、1、0、2、1,这组数据的众数和中位数分别是()A . -2,0 B. 1,0 C. 1,1 D. 2,16.某校5名同学在“国学经典颂读”比赛中,成绩(单位:分)分别是86,95,97,90,88,这组数据的中位数是()A. B. C. D.7.某公司全体职工的月工资如下:月工资(元)18000 12000 8000 6000 4000 2500 2000 1500 1200 人数1(总经理)2(副总经理) 3 4 10 20 22 12 6该公司月工资数据的众数为2000,中位数为2250,平均数为3115,极差为16800,公司的普通员工最关注的数据是()A.中位数和众数 B.平均数和众数 C.平均数和中位数 D.平均数和极差8.在某时段有50辆车通过一个雷达测速点,工作人员将测得的车速绘制成如图所示的条形统计图,则这50辆车的车速的众数(单位:km/h)为A. 60B. 50C. 40D. 15 a9.抽样调查某班10名同学身高(单位:厘米)如下:160,152,165,152,160,160,170,160,165,159.则这组数据的众数是A.152B.160C.165D.170分层提分题组A 基础过关练1.已知一组数据:66,66,62,67,63 这组数据的众数和中位数分别是A. 66,62B.66,66C.67,62D.67,662.在光明中学组织的全校师生迎“五四”诗词大赛中,来自不同年级的25名参赛同学的得分情况如图所示,这些成绩的中位数和众数分别是A.96分,98分B.97分,98分C.98分,96分D.97分,96分3.某班40名同学一周参加体育锻炼时间统计如下表所示:人数(人)317 13 7 时间(小时) 78910那么该班40名同学一周参加体育锻炼时间的众数、中位数分别是( ) A.17, 8.5 B.17, 9 C. 8, 9 D.8, 8.54.某班7个兴趣小组人数如下,5,6,6,x ,7,8,9,已知这组数据的平均数是7,则这组数据的中位数是A .6B .6.5C .7D .85.武汉市某气象观测点记录了5天的平均气温(单位:℃),分别是25、20、18、23、27,这组数据的中位数是___________.6.一组数据1,7,8,5,4的中位数是a ,则a 的值是______.题组B 能力提升练7.某校为了解七、八年级学生对“防溺水”安全知识的掌握情况,从七、八年级各随机抽取50名学生进行测试,并对成绩(百分制)进行整理、描述和分析,部分信息如下: a.七年级成绩频数分布直方图:b.七年级成绩在70≤x <80这一组的是: 70 72 74 75 76 76 77 77 77 78 79c.七、八年级成绩的平均数、中位数如下:成绩/分频数10090807060501515111110108866年级 平均数 中位数 七 76.9 m 八79.279.5根据以上信息,回答下列问题:(1)在这次测试中,七年级在80分以上(含80分)的有____人; (2)表中m 的值为 ;(3)在这次测试中,七年级学生甲与八年级学生乙的成绩都是78分,请判断两位学生在各自年级的排名谁更靠前,并说明理由;(4)该七年级学生有400人,假设全部参加此次测试,请估计七年级成绩超过平均数76.9分的人数.8.良好的饮食对学生的身体、智力发育和健康起到了极其重要的作用,荤菜中蛋白质、钙、磷及脂溶性维生素优于素食,而素食中不饱和脂肪酸、维生素和纤维素又优于荤食,只有荤食与素食适当搭配,才能强化初中生的身体素质.某校为了了解学生的体质健康状况,以便食堂为学生提供合理膳食,对本校七年级、八年级学生的体质健康状况进行了调查,过程如下: 收集数据:从七、八年级两个年级中各抽取15名学生,进行了体质健康测试,测试成绩(百分制)如下: 七年级:74 81 75 76 70 75 75 79 81 70 74 80 91 69 82 八年级:81 94 83 77 83 80 81 70 81 73 78 82 80 70 50 整理数据:年级 60x <6080x < 8090x < 90100x七年级 0 10 4 1 八年级1581(说明:90分及以上为优秀,80~90分(不含90分)为良好,60~80分(不含80分)为及格,60分以下为不及格) 分析数据:年级平均数中位数众数七年级75 75八年级77.5 80得出结论:(1)根据上述数据,将表格补充完整;(2)可以推断出年级学生的体质健康状况更好一些,并说明理由;(3)若七年级共有300名学生,请估计七年级体质健康成绩优秀的学生人数.9.为弘扬传统文化,某校开展了“传承经典文化,阅读经典名著”活动.为了解七、八年级学生(七、八年级各有600名学生)的阅读效果,该校举行了经典文化知识竞赛.现从两个年级各随机抽取20名学生的竞赛成绩(百分制)进行分析,过程如下:收集数据:七年级:79,85,73,80,75,76,87,70,75,94,75,79,81,71,75,80,86,59,83,77.八年级:92,74,87,82,72,81,94,83,77,83,80,81,71,81,72,77,82,80,70,41.整理数据:x8089xx90100x6069x70794049x5059七年级0 1 0 a7 1八年级 1 0 0 7 b 2分析数据:平均数众数中位数七年级78 75 c八年级78 d80.5应用数据:(1)由上表填空:a=,b=,c=,d=.(2)估计该校七、八两个年级学生在本次竞赛中成绩在90分以上的共有多少人?(3)你认为哪个年级的学生对经典文化知识掌握的总体水平较好,请说明理由.10.高尔基说:“书,是人类进步的阶梯.”阅读可以丰富知识、拓展视野、充实生活等诸多益处.为了解学生的课外阅读情况,某校随机抽查了部分学生阅读课外书册数的情况,并绘制出如下统计图,其中条形统计图因为破损丢失了阅读5册书数的数据.(1)求条形图中丢失的数据,并写出阅读书册数的众数和中位数;(2)根据随机抽查的这个结果,请估计该校1200名学生中课外阅读5册书的学生人数;(3)若学校又补查了部分同学的课外阅读情况,得知这部分同学中课外阅读最少的是6册,将补查的情况与之前的数据合并后发现中位数并没有改变,试求最多补查了多少人?题组C 培优拔尖练11.陈老师对他所教的九(1)、九(2)两个班级的学生进行了一次检测,批阅后对最后一道试题的得分情况进行了归类统计(各类别的得分如下表),并绘制了如图所示的每班各类别得分人数的条形统计图(不完整).各类别的得分表得分类别0 A:没有作答1 B:解答但没有正确3 C:只得到一个正确答案6 D:得到两个正确答案,解答完全正确已知两个班一共有50%的学生得到两个正确答案,解答完全正确,九(1)班学生这道试题的平均得分为3.78分.请解决如下问题:(1)九(2)班学生得分的中位数是;(2)九(1)班学生中这道试题作答情况属于B类和C类的人数各是多少?12.为了了解居民的环保意识,社区工作人员在光明小区随机抽取了若干名居民开展主题为“打赢蓝天保卫战”的环保知识有奖问答活动,并用得到的数据绘制了如下条形统计图(得分为整数,满分为10分,最低分为6分).请根据图中信息,解答下列问题:(1)本次调查一共抽取了____名居民;(2)求本次调查获取的样本数据的平均数、众数和中位数;(3)社区决定对该小区500名居民开展这项有奖问答活动,得10分者设为“一等奖”.请你根据调查结果,帮社区工作人员估计需准备多少份“一等奖”奖品?13.为积极响应“弘扬传统文化”的号召,某学校倡导全校1200名学生进行经典诗词诵背活动,并在活动之后举办经典诗词大赛,为了解本次系列活动的持续效果,学校团委在活动启动之初,随机抽取部分学生调查“一周诗词诵背数量”,根据调查结果绘制成的统计图(部分)如下图所示:大赛结束后一个月,再次调查这部分学生“一周诗词诵背数量”,绘制成统计表:一周诗词诵背数量3首4首5首6首7首8首人数10 10 15 40 25 20 请根据调查的信息分析:(1)活动启动之初学生“一周诗词诵背数量”的中位数为______________.(2)估计大赛后一个月该校学生一周诗词诵背6首(含6首)以上的人数;(3)选择适当的统计量,从两个不同的角度分析两次调查的相关数据,评价该校经典诗词诵背系列活动的效果.11/ 11。
20.1.2中位数和众数(第一课时)
教学任务分析
教学流程安排
教学过程设计
教学设计说明
本节课沿着创设情境,引入中位数、众数——探索、理解中位数、众数定义——应用中位数、众数——分析、决策——解决身边实际问题这样的主线设计,始终以学生为主体,辅以学生小组活动,探索实践.在学生独立思考和合作交流的基础上,有针对性地引导,使学生在学习活动中体会到数学与实际生活的紧密联系.
本节教学内容属中位数与众数第一课时,由一首含1、2、3、4的诗启示出生活中点点滴滴若留意,时时处处有数学,从而引入实际问题,在学生讨论、交流、解决实际问题的同时,发现平均数在有些
情况下很难反映问题真实的一面,进而思考选择恰当的数据代表来描述数据的“集中趋势”.这对培养学生的创新意识是十分有利的.为了让学生理解中位数、众数的概念这一重点,本节设计了通过学生讨论、探索、尝试归纳的活动,然后教师适时适度引导,加深了学生对中位数、众数的概念的理解,同时培养了学生良好的思考习惯和合作意识.
为了让学生达到能够利用中位数、众数分析数据并做出决策,且在具体的生活情境中会初步选择恰当的数据代表,对数据作出自己的评判,特选取了两个生活实例,使学生在有效的数学活动中发现、获得知识,增长能力.同时还让学生留心生活,列举了一些身边的实例,让学生感受到生活中有很多问题都是可以用本节所学知识来解决的,使学生体会到本节所学知识的应用价值.
课后生活点悟这一环节,既举出众数在生活中的另一个应用实例,又给学生一些生活启迪,让学生体会到数学的应用价值,体味到数学与艺术的联系,从而自主学习数学.。
沪科版数学八年级下册《中位数和众数》教学设计1一. 教材分析《中位数和众数》是沪科版数学八年级下册的教学内容,本节课主要介绍中位数和众数的概念,以及它们的求法。
中位数是将一组数据从小到大排列,位于中间位置的数,能够反映数据的集中趋势;众数是一组数据中出现次数最多的数,能够反映数据的最常出现的值。
通过学习本节课,学生能够理解中位数和众数的概念,掌握它们的求法,并能够运用中位数和众数解决实际问题。
二. 学情分析学生在八年级上册已经学习了平均数的概念和求法,对数据的集中趋势有一定的了解。
但是,对于中位数和众数的概念和求法可能还比较陌生,需要通过具体的数据分析来理解和掌握。
此外,学生可能对于如何运用中位数和众数解决实际问题还不够了解,需要通过例题和练习来培养这方面的能力。
三. 教学目标1.了解中位数和众数的概念,掌握它们的求法。
2.能够运用中位数和众数解决实际问题。
3.培养学生的数据分析能力和解决问题的能力。
四. 教学重难点1.中位数和众数的概念。
2.中位数和众数的求法。
3.运用中位数和众数解决实际问题。
五. 教学方法采用问题驱动的教学方法,通过具体的数据分析来引导学生理解和掌握中位数和众数的概念和求法,通过例题和练习来培养学生的数据分析能力和解决问题的能力。
六. 教学准备1.PPT课件。
2.练习题。
3.教学素材。
七. 教学过程导入(5分钟)通过一个实际问题导入本节课的学习:某班有50名学生,在一次数学考试中,成绩分布在60-100分之间,其中有20人的成绩在80分以上,问这个班级的平均成绩是多少?引导学生思考,如果直接计算这50名学生的平均成绩,可能会受到极端值的影响,因此需要寻找一种能够反映数据集中趋势的量。
呈现(10分钟)通过PPT呈现中位数和众数的定义和求法。
中位数是将一组数据从小到大排列,位于中间位置的数,如果数据个数是偶数,则中位数是中间两个数的平均值;众数是一组数据中出现次数最多的数。
通过具体的例子,讲解如何求一组数据的中位数和众数。
中位数和众数习题(一)1.在一组数据中,出现______最多的______叫做这组数据的众数,一组数据的众数可能是______个也可能是______个.2.数据 10,15,14,19,15,12,16,17,15,14中众数是______.3.将一组数据按______依次排列,把处在______位置的数据或________________________叫做中位数.4.已知下列数据:55,73,84,51,67,55,71,87,76,55.这组数据中出现次数最多的数据是______,它叫做这组数据的______.把这组数据从小到大排列,结果是_______________________________________,处在中间位置的数据是______,这组数据的中位数是______5.数据14,15,14,19,15,12,16,17,15,14的中位数是______.6、一组数据23、27、20、18、X 、12,它的中位数是21,则X 的值是 ______ . (二)7.数据6,6,8,10,3,8,11,4,8的中位数是 [ ]A .8;B .9;C .10;D .3.8.在一次数学考试中,20名学生的得分如下:70,80,100,60,80,70,90,50,80,70,80,70,90,80,90,80,70,90,60,80.这次考试中学生得分的众数是[ ]A .60; B .70; C .80; D .90.9.10名工人在某天生产同一种零件,生产的件数是15,17,14,10,15,19,17,16,14,12.这一天10名工人生产零件的中位数是 [ ]A .14;B .15;C .16;D .17.10、数据92、96、98、100、X 的众数是96,则其中位数和平均数分别是( )A.97、96B.96、96.4C.96、97D.98、97(三) 11. 商店有食品54 吨,支援灾区运走31 ,又卖出 52,还剩几分之几?12.一堂课需用时 32小时,老师讲解用了 51小时,学生操作实验用了 41小时,其余的时间是学生练习做作业。
在冲突中引入在比较中生成—《中位数与众数》的教学设计与评析●教学内容:中位数与众数●教学目标:【知识技能目标】掌握中位数和众数的概念,并会求一组数据的中位数和众数。
【过程方法目标】通过结合具体情境,区别平均数、中位数和众数三者的差异,能初步选择恰当的数据代表对数据作出自己的评判。
【情感态度目标】统计作为处理现实世界数据信息的一个重要数学分支,必然要求素材本身的真实性,以培养学生求真的科学态度;将知识的学习放在解决实际生活问题的情境中,使学生体会数学与现实的联系。
●教学重点、难点:【教学重点】求一组数据的中位数和众数。
【教学难点】平均数、众数、中位数这三个量之间的区别与联系。
●教学过程:一、创设情境、引出问题:1、前不久,刘老师参加了一次跳绳比赛,7位老师的平均成绩是120下,刘老师排在一不小心,刘老师的成绩被墨水弄污了。
谁来猜一猜,刘老师可能跳了多少下?(学生各自猜测)【设置生活情境,可以让学生感受到生活中处处有数学;数学猜想作为一种直觉思维活动,有助于提高学生学习的积极性、同时对培养学生勇于探索的精神和创造性思维都是大有裨益的】二、探索交流、领悟新知:1、你们都认为刘老师的成绩应在平均数之上,一定是这样吗?有没有可能在平均数之下呢?完成表格中刘老师成绩107的填写。
(如果有人猜120之下,则顺势引导)如何更清楚的看出老师的名次?再让学生验证一下平均数是不是120,并说明排名情况。
学生惊奇地发现刘老师的成绩虽然比平均数低,却排在第二名。
2、为什么刘老师的成绩比平均数低,却还能排在第二名呢?启发学生讨论、交流。
引导学生观察分析原因,从而发现第一名老师跳得太好了,远远高于其他六位老师的成绩,把平均数大大提高了。
7个数据中高于平均数的只有1个,低于平均数的却有6个,平均数已大大偏离了这组数据的中心位置。
【冲突的产生对思维的诱发作用是明显的,学生发自内心的疑问可有效地促进积极的思维活动的出现.】教师顺势说明“238”这样的数据对平均数产生了较大的影响,是一个极端数据,并问:你们觉得,这时用平均数120代表这7位老师跳绳的普遍水平合适吗?(不太合适)3、你能从中选择一个数据来代表这7位老师跳绳的普遍水平吗?学生充分地自主寻找,在有一些学生认为应选择102时,引导学生发现: 102正好是这组数据中正中间的一个,大部分学生觉得这时用102更能代表这7位老师跳绳的普遍水平。
众数,中位数,平均数的特点和应用场合
问题:众数,中位数,平均数的特点和应用场合
回答:众数、中位数和平均数具有以下特点和应用场合:
1.众数:
(1)特点:是一组数据中出现次数最多的那个数值。
(2)应用场合:常用于需要了解数据中最普遍、最常见的情况,例如在市场
调查中了解哪种产品最受消费者欢迎,在统计某种现象最典型的表现等。
2.中位数:
(1)特点:按顺序排列的一组数据中居于中间位置的数,如果数据有奇数个,
则正中间的数字为中位数;如果数据有偶数个,则中间两个数的平均数为中位数。
它不受极端值的影响较大。
(2)应用场合:在一些数据分布偏态较大,存在极端值时,中位数能更好地
反映数据的集中趋势,如收入分配的研究等。
3.平均数:
(1)特点:反映一组数据的平均水平,容易受极端值影响。
(2)应用场合:应用广泛,比如计算平均成绩、平均产量、平均工资等,能
总体上反映数据的一般水平,但对极端值较敏感。
中位数与众数1.中位数一般地,n个数据按大小顺序排列,处于最中间位置的一个数据(或最中间两个数据的平均数)叫做这组数据的中位数.一组数据的中位数是唯一的.它可以是这组数据中的数也可以是这组数据外的数.在计算一组数据的中位数时,其步骤为:(1)将这组数据按从小到大(或从大到小)的顺序排列;(2)找到处在最中间位置的一个数或最中间的两个数的平均数即为中位数.谈重点确定中位数求中位数时,一定要先按大小顺序将数据排列,再找中位数,当数据的个数是偶数时,中位数是中间两个数的平均数;当数据的个数是奇数时,正中间的数是中位数.【例1-1】求下列数据的中位数.(1)2,3,14,16,7,8,10,11,13;(2)11,9,7,5,3,1,10,14.分析:求一组数据的中位数时,既可以由小到大排列,也可以由大到小排列,结果数据的个数是偶数,则为最中间两个数据的平均数;如果是奇数,则为最中间一个数据的值.解:(1)将已知数据按从小到大的顺序重新排列:2,3,7,8,10,11,13,14,16.故这组数据的中位数为10.(2)将已知数据按从小到大的顺序重新排列:1,3,5,7,9,10,11,14.∵中间的两个数是7和9,它们的平均数是8,∴这组数据的中位数是8.【例1-2】求数据6,5,4,7,8,10,3的中位数.一般地,一组数据中出现次数最多的那个数据叫做这组数据的众数.一组数据可以有不止一个众数,也可以没有众数.若几个数据出现的次数相同,并且比其他数据出现的次数都多,那么这几个数据都是这组数据的众数;当所有的数出现的次数一样多时,无众数.辩误区区分众数与次数众数是一组数据中出现次数最多的数,而不是该数据出现的次数.【例2-1】某商店有200 L,215 L,185 L,180 L四种型号的冰箱,一段时间内共销售58台,其中四个型号分别售6台,30台,14台,8台,在研究电冰箱出售情况时,商店经理关心这组数据的平均数吗他关心的是什么分析:销售量的多少是商店经理最关心的一个问题,因此在这个问题中平均数不再是考查的主要对象,这组数据的众数是215 L,说明这种型号的电冰箱销量最好,这才是商店经理最为关心的.解:商店经理不关心这组数据的平均数,他关心的是众数,也就是哪种型号的电冰箱销量最好.【例2-2】求数据6,-2,0,6,6,-3,6,2的众数.3.平均数、中位数和众数的关系平均数、中位数和众数都是描述一组数据的集中趋势的特征数,但又具有不同的统计意义.平均数是反映个体的平均水平,从个体的平均水平能估计总体状况.因而平均数应用最为广泛.中位数仅与数据的排列位置有关,某些数据的变动对中位数没有影响.中位数可能出现在所给的数据中,也可能不在所给数据中.当一组数据中个别数据变动较大时,可用它来描述其集中趋势.众数反映各数据出现的次数,其大小只与这组数据中的部分数据有关,当一组数据中有不少数据多次重复出现时,其众数往往更能反映问题.【例3】某乡镇企业生产部有技术工人15人,生产部为了合理制定产品的每月生产定额,统计了这15人某月的加工零件个数:(1)(2)假如生产部负责人把每位工人的月加工零件数定为260件,你认为这个定额是否合理,为什么解:(1)平均数:260(件),中位数:240(件),众数:240(件).(2)不合理.因为表中数据显示,每月能完成260件的人数一共是4人,还有11人不能达到此定额,尽管260是平均数,但不利于调动多数员工的积极性.因为240既是中位数,又是众数,是大多数人能达到的定额,故定额为240较为合理.4.平均数、中位数、众数的应用(1)应用平均数时,所有数据都参加运算,它能充分地利用数据所提供的信息;但当一组数据中存在极大值或极小值时,平均数将不能准确表示数据的集中情况.(2)应用中位数时,计算较简单,不会受到极大值或极小值存在的影响,但不能充分利用所有数据信息.(3)应用众数,某些情况下,人们最关心、最重视的是出现次数最多的数据,这种情况下,应用众数简单而且能够直接满足人们的需求,但当各个数据的重复次数大致相等时,众数往往没有特别意义.点评:求中位数应注意的几点:(1)求中位数时需先将数据按从小到大或从大到小排序.(2)当数据有奇数个时,中位数就是排序后最中间位置上的数;当数据有偶数个时,中位数就是排序后最中间两个数据的平均数.(3)当数据分组排列时,应按数据总个数求中位数,而不能按小组数求中位数.【例4】三个生产日光灯管的厂家在广告中宣称,他们生产的日光灯管在正常情况下,灯管的使用寿命为12个月.工商部门为了检查他们宣传的真实性,从三个厂家各抽取11只日光灯管进行检测,灯管的使用寿命(单位:月)如下:位数、众数)进行宣传(2)如果三种产品的售价一样,作为顾客的你会选购哪个厂家的产品请说明理由.解:(1)甲厂的广告利用了统计中的平均数.乙厂的广告利用了统计中的众数.丙厂的广告利用了统计中的中位数.(2)选购甲厂的产品.理由是甲厂生产的灯管的使用寿命的平均数能较真实地反映灯管的使用寿命.或选用丙厂的产品.理由是丙厂生产的灯管的使用寿命有一半以上超过12个月.。