工频变化量方向继电器
- 格式:ppt
- 大小:268.00 KB
- 文档页数:23
工频变化量阻抗继电器工频变化量阻抗继电器是一种在电力系统中常用的保护和控制装置。
它的作用是在电流或电压超过一定限值时,能够及时将电路切断,保护电力设备和人员安全。
本文将分为以下几个方面进行论述,以使内容更加清晰。
首先,我将介绍工频变化量阻抗继电器的基本原理。
工频变化量阻抗继电器是通过测量电路中的电压和电流,并根据预设的电流和电压阈值来判断电路的状态。
当电流或电压超过设定的限制值时,继电器会迅速切断电路并发出报警信号,以保护电力设备和人员的安全。
其次,我将详细介绍工频变化量阻抗继电器的工作原理。
继电器通过测量电路中的电压和电流来计算电路的阻抗值。
当电路中的阻抗发生变化时,继电器会根据设定的阻抗变化范围来判断电路的状态。
一般来说,当电路的阻抗超过设定的范围时,继电器会切断电路并发出报警信号。
然后,我将讨论工频变化量阻抗继电器的应用领域。
工频变化量阻抗继电器常用于电力系统中的变压器保护和电力设备保护。
在变压器保护中,继电器可以监测变压器的阻抗变化,以及电压和电流之间的相位差,从而判断变压器是否正常工作。
在电力设备保护中,继电器可以监测设备的电流和电压,判断设备是否超载或过流,并及时切断电路保护设备。
最后,我将讨论工频变化量阻抗继电器的优点和不足。
工频变化量阻抗继电器具有响应速度快、可靠性高、可调节性强等优点。
但是,它也存在一些不足之处,例如在高频电路中可能会出现误报警情况,以及灵敏度可能会受到电力系统中其他因素的影响。
总之,工频变化量阻抗继电器是一种在电力系统中常用的保护和控制装置。
它通过测量电路中的电压和电流,根据预设的电流和电压阈值来判断电路的状态,并在超过限制值时切断电路。
它的应用领域广泛,并具有一定的优点和不足之处。
这些特点使得工频变化量阻抗继电器成为电力系统中不可或缺的一部分。
方向保护原理一、零序方向保护原理在系统正常运行时,只有正序分量,没有零序分量,当系统发生接地短路故障或不对称断线故障时才产生零序分量,因此零序分量是构成保护的一种很可利用的故障特征量。
要构成方向保护必须能够区分正、反方向故障。
接下来我们分析一下正、反方向短路故障时零序分量的方向性。
规定正方向:电流由母线指向线路为正方向;电压以电压升为正方向1、正方向短路故障:系统接线及零序序网如下图示通常情况下零序阻抗角按约75度考虑,所以反方向短路时Uo超前Io 约75度。
分析序网要切记一点,在计算某点电压时要由高电位点经过无电源端至低电位点构成回路,如果从电源端计算,则等于电源电压加(或减)两点间压降,而电源电压很可能也是一个未知数。
对于零序网络来说,短路点电压最高,可以看成是零序回路的电源。
由分析可以看出:在特定的正方向下,零序分量具有明确的方向性。
根据上述推导,如果要构成一个零序方向继电器,使它在正方向短路时动作,反方向短路时不动,则该继电器的最大动作灵敏角应为Uo超前Io约-105度。
据此我们可以画出零序方向继电器的动作特性图:由动作特性可得动作方程:165o&learg3UO/3IO&le-15o当我们知道动作特性及动作方程后,就可以构成继电器。
二、负序方向保护原理同样在系统正常运行时,也没有负序分量,当系统发生不对称短路故障或不对称断线故障时才产生负序分量,因此负序分量也是构成保护的一种很可利用的故障特征量。
接下来我们看一下系统正、反方向短路故障时负序序网图:由图可得:正方向短路U2=-I2×Xs2反方向短路U2=I2×(Xl2+Xr2)通常情况下负序阻抗角按约75度考虑,所以正方向短路时U2超前I2约-105度。
反方向短路时U2超前I2约75度。
由上述分析可以看出:负序分量同零序方向具有相同的动作特性,在特定的正方向下,具有明确的方向性。
(其他分析同零序方向)三、工频变化量方向(突变量方向)保护原理当系统发生短路故障时,根据叠加原理,短路后状态=短路前状态+短路附加状态以两侧为无穷大系统发生金属性短路为例:则短路后状态UK=0。
对工频变化量距离继电器的一点认识为了帮助大家对工频变化量距离继电器的理解,我从电压的角度来分析这个继电器。
看下图(以对称故障为例,继电器装在M侧):In△MN△Im、△In分别为正、反方向故障时与负荷电流无关的由故障引起的突变量电流。
正方向F1点故障时,故障前M侧母线电压:Um′﹦Em﹣I fh*Zs ,工作电压: Uop′﹦Um′﹣I fh*Zzd 。
故障后M侧母线电压: Um〞﹦Em﹣(△Im+I fh) *Zs ,工作电压: Uop〞﹦Um〞﹣(△Im+I fh) *Zzd。
F1点短路时工作电压的变化量:△Uop﹦Uop〞﹣Uop′﹦Um〞﹣Um′﹣(△Im+Ifh)*Zzd﹣(﹣Ifh*Zzd)﹦﹣△Im(Zzd+Zs)。
正方向F1点故障时,故障前F1点的电压:U k1′﹦Um′﹣I fh*Z k1,故障后F1点的电压: U k1〞﹦Um〞﹣(△Im+I fh) Z k1。
F1点的电压变化量:△U k1﹦U k1〞﹣U k1′﹦﹣△Im*( Z k1+Zs)。
比较︱△Uop︱与︱△U k1︱, 显然F1点故障时,Z k1﹤Zzd,︱△Uop︱﹥︱△U k1︱。
F3点故障时,由于Z k3﹥Zzd,︱△Uop︱﹤︱△U k3︱。
反方向F2点故障时,流进M侧CT的电流由对侧电源提供,分析时既以对侧电源为电源,故障前M侧母线电压:Um′﹦I fh*Zs′+En,工作电压: Uop′﹦Um′﹣I fh*Zzd 。
故障后M侧母线电压: Um〞﹦En+[(﹣△In)+I fh]* Zs′,工作电压:△Uop〞﹦Um〞﹣[(﹣△In)+I fh]* Zzd]。
△Uop﹦△Uop〞﹣△Uop′﹦Um〞﹣Um′﹣[(﹣△In)+I fh]* Zzd+I fh*Zzd﹦﹣△In(Zs′﹣Zzd)。
反方向F2故障时,故障前F2点的电压:U k2′﹦En+I fh*(Z k2+Zs′),F2故障点后: U k2〞﹦En+[(﹣△In)+I fh]*(Z k2+Zs′),F2点的电压变化量:△U k2﹦U k2〞﹣U k2′﹦﹣△In*(Z k2+Zs′)。