工频变化量方向继电器
- 格式:ppt
- 大小:268.00 KB
- 文档页数:23
工频变化量阻抗继电器工频变化量阻抗继电器是一种在电力系统中常用的保护和控制装置。
它的作用是在电流或电压超过一定限值时,能够及时将电路切断,保护电力设备和人员安全。
本文将分为以下几个方面进行论述,以使内容更加清晰。
首先,我将介绍工频变化量阻抗继电器的基本原理。
工频变化量阻抗继电器是通过测量电路中的电压和电流,并根据预设的电流和电压阈值来判断电路的状态。
当电流或电压超过设定的限制值时,继电器会迅速切断电路并发出报警信号,以保护电力设备和人员的安全。
其次,我将详细介绍工频变化量阻抗继电器的工作原理。
继电器通过测量电路中的电压和电流来计算电路的阻抗值。
当电路中的阻抗发生变化时,继电器会根据设定的阻抗变化范围来判断电路的状态。
一般来说,当电路的阻抗超过设定的范围时,继电器会切断电路并发出报警信号。
然后,我将讨论工频变化量阻抗继电器的应用领域。
工频变化量阻抗继电器常用于电力系统中的变压器保护和电力设备保护。
在变压器保护中,继电器可以监测变压器的阻抗变化,以及电压和电流之间的相位差,从而判断变压器是否正常工作。
在电力设备保护中,继电器可以监测设备的电流和电压,判断设备是否超载或过流,并及时切断电路保护设备。
最后,我将讨论工频变化量阻抗继电器的优点和不足。
工频变化量阻抗继电器具有响应速度快、可靠性高、可调节性强等优点。
但是,它也存在一些不足之处,例如在高频电路中可能会出现误报警情况,以及灵敏度可能会受到电力系统中其他因素的影响。
总之,工频变化量阻抗继电器是一种在电力系统中常用的保护和控制装置。
它通过测量电路中的电压和电流,根据预设的电流和电压阈值来判断电路的状态,并在超过限制值时切断电路。
它的应用领域广泛,并具有一定的优点和不足之处。
这些特点使得工频变化量阻抗继电器成为电力系统中不可或缺的一部分。
方向保护原理一、零序方向保护原理在系统正常运行时,只有正序分量,没有零序分量,当系统发生接地短路故障或不对称断线故障时才产生零序分量,因此零序分量是构成保护的一种很可利用的故障特征量。
要构成方向保护必须能够区分正、反方向故障。
接下来我们分析一下正、反方向短路故障时零序分量的方向性。
规定正方向:电流由母线指向线路为正方向;电压以电压升为正方向1、正方向短路故障:系统接线及零序序网如下图示通常情况下零序阻抗角按约75度考虑,所以反方向短路时Uo超前Io 约75度。
分析序网要切记一点,在计算某点电压时要由高电位点经过无电源端至低电位点构成回路,如果从电源端计算,则等于电源电压加(或减)两点间压降,而电源电压很可能也是一个未知数。
对于零序网络来说,短路点电压最高,可以看成是零序回路的电源。
由分析可以看出:在特定的正方向下,零序分量具有明确的方向性。
根据上述推导,如果要构成一个零序方向继电器,使它在正方向短路时动作,反方向短路时不动,则该继电器的最大动作灵敏角应为Uo超前Io约-105度。
据此我们可以画出零序方向继电器的动作特性图:由动作特性可得动作方程:165o&learg3UO/3IO&le-15o当我们知道动作特性及动作方程后,就可以构成继电器。
二、负序方向保护原理同样在系统正常运行时,也没有负序分量,当系统发生不对称短路故障或不对称断线故障时才产生负序分量,因此负序分量也是构成保护的一种很可利用的故障特征量。
接下来我们看一下系统正、反方向短路故障时负序序网图:由图可得:正方向短路U2=-I2×Xs2反方向短路U2=I2×(Xl2+Xr2)通常情况下负序阻抗角按约75度考虑,所以正方向短路时U2超前I2约-105度。
反方向短路时U2超前I2约75度。
由上述分析可以看出:负序分量同零序方向具有相同的动作特性,在特定的正方向下,具有明确的方向性。
(其他分析同零序方向)三、工频变化量方向(突变量方向)保护原理当系统发生短路故障时,根据叠加原理,短路后状态=短路前状态+短路附加状态以两侧为无穷大系统发生金属性短路为例:则短路后状态UK=0。
对工频变化量距离继电器的一点认识为了帮助大家对工频变化量距离继电器的理解,我从电压的角度来分析这个继电器。
看下图(以对称故障为例,继电器装在M侧):In△MN△Im、△In分别为正、反方向故障时与负荷电流无关的由故障引起的突变量电流。
正方向F1点故障时,故障前M侧母线电压:Um′﹦Em﹣I fh*Zs ,工作电压: Uop′﹦Um′﹣I fh*Zzd 。
故障后M侧母线电压: Um〞﹦Em﹣(△Im+I fh) *Zs ,工作电压: Uop〞﹦Um〞﹣(△Im+I fh) *Zzd。
F1点短路时工作电压的变化量:△Uop﹦Uop〞﹣Uop′﹦Um〞﹣Um′﹣(△Im+Ifh)*Zzd﹣(﹣Ifh*Zzd)﹦﹣△Im(Zzd+Zs)。
正方向F1点故障时,故障前F1点的电压:U k1′﹦Um′﹣I fh*Z k1,故障后F1点的电压: U k1〞﹦Um〞﹣(△Im+I fh) Z k1。
F1点的电压变化量:△U k1﹦U k1〞﹣U k1′﹦﹣△Im*( Z k1+Zs)。
比较︱△Uop︱与︱△U k1︱, 显然F1点故障时,Z k1﹤Zzd,︱△Uop︱﹥︱△U k1︱。
F3点故障时,由于Z k3﹥Zzd,︱△Uop︱﹤︱△U k3︱。
反方向F2点故障时,流进M侧CT的电流由对侧电源提供,分析时既以对侧电源为电源,故障前M侧母线电压:Um′﹦I fh*Zs′+En,工作电压: Uop′﹦Um′﹣I fh*Zzd 。
故障后M侧母线电压: Um〞﹦En+[(﹣△In)+I fh]* Zs′,工作电压:△Uop〞﹦Um〞﹣[(﹣△In)+I fh]* Zzd]。
△Uop﹦△Uop〞﹣△Uop′﹦Um〞﹣Um′﹣[(﹣△In)+I fh]* Zzd+I fh*Zzd﹦﹣△In(Zs′﹣Zzd)。
反方向F2故障时,故障前F2点的电压:U k2′﹦En+I fh*(Z k2+Zs′),F2故障点后: U k2〞﹦En+[(﹣△In)+I fh]*(Z k2+Zs′),F2点的电压变化量:△U k2﹦U k2〞﹣U k2′﹦﹣△In*(Z k2+Zs′)。
(一)零序方向继电器对零序方向继电器的最基本要求是利用比较零序电压和零序电流的相位来区分正、反方向的接地短路。
㈠ 正、反方向接地短路时,零序电压和零序电流的夹角。
(a) 正方向短路(b) 反方向短路I 0S 0Z I 0U 0I )Z Z I U +=(c) 正方向短路相量图(d) 反方向短路相量图图3-2 正、反方向接地短路时的零序序网图和相量图设零序方向继电器装在MN 线路的M 侧。
在图3-2所示的零序序网图中,加在继电器的上的零序电压、电流按传统方式规定它的正方向。
零序电压的正方向是母线电压为正、中性点电压为负,图中电压箭头表示电位升方向。
零序电流以母线流向被保护线路方向为其正方向。
900系列线路保护中的零序方向继电器采用比较零序功率的方法实现。
()l I U P ϕϕ-⋅⋅=cos 33000 (3-1)l ϕ:为线路零序阻抗的阻抗角,取080ϕ:为03U 超前于03I 的夹角,00I U arg =ϕ。
(1)正方向故障时根据图3-2(a )所示的正方向短路的零序序网图,按上述规定的电压、电流正方向可得:00S Z I U -= (3-2) 如果系统中各元件零序阻抗的阻抗角都为080。
正方向短路时根据(3-2)式,零序电压超前零序电流的角度为:()()000000100180-=-=-==S S Z arg Z arg I U arg ϕ (3-3)正方向短路时的相量图示于图3-2(c )中。
因此得()000000033)80100cos(33cos 33I U I U I U P l ⋅-=--⋅⋅=-⋅⋅=ϕϕ 为负的最大值。
故而正方向的零序方向继电器的动作方程可定为:()()⎪⎭⎪⎬⎫=-<-⋅⋅==-<-⋅⋅=时1当2033时5当133000000A I VA .cos I U P A I VA cos I U P N l N l ϕϕϕϕ (3-4)在正方向短路时正方向的零序方向继电器可以灵敏动作。
RCS-901A超高压线路成套保护装置1.概述1.1 应用范围本装置由微机实现的数字式超高压成套快速保护装置,可用作220KV及以上电压等级输电线路的主保护及后备保护。
1.2 保护配置RCS-901A包括以纵联变化量方向和零序方向元件为主体的快速主保护,由工频变化量距离元件构成的快速Ⅰ段保护,由三段式相间和接地距离及2个延时段零序方向过流构成的全套后备保护;RCS-901A保护有分相出口,配有重合闸功能,对单或双母线接线的开关实现单相重合、三相重合、和综合重合。
当采用光纤接口时,增加远跳、远传功能。
1.3 性能特征1)动作速度快,线路近处故障跳闸时间小于10ms。
线路中间故障跳闸时间小于15ms。
线路远处故障跳闸时间小于25ms。
2)主保护采用积分算法,计算速度快;后备保护强调准确性,采用傅式算法,滤波效果好,计算精度高。
3)反应工频变化量的测量元件采用具有自适应能力的浮动门槛,对系统不平衡和抗干扰具有较强的抗干扰能力,因而测量元件能在保证安全的基础上达到特高速,启动元件有很高的灵敏度而不会频繁启动。
4)先进可靠的振荡闭锁功能,保证距离保护在系统振荡加区外故障时能可靠闭锁,而在振荡加区内故障时能可靠切除故障。
5)灵活的自动重合闸功能。
6)完善的事件报文处理,可保存最新64次动作报告,24次故障录波报告。
7)友好的人机界面、汉字显示、中文报告打印。
2.软件工作原理2.1 装置启动元件2.2.1 电流变化量启动该元件动作并展宽7s,去放出口继电器正电源。
ΔIφφmax>1.25ΔI T+ΔI ZDΔIφφmax 是相间电流的半波积分的最大值ΔI ZD 为可整定的固定门坎ΔI T 为浮动门坎,随着变化量的变化而自动调整,取1.25倍可保证门坎始终高于不平衡输出。
2.2.2 零序过流元件启动当外接和自产零序电流均大于整定值时,零序启动元件动作并展宽7s,去开放出口继电器正电源。
2.2.3 位置不对应启动此部分的启动由用户选择投入,条件满足总启动元件动作并展宽15s,去开放出口继电器正电源。
距离保护一、选择题1.距离保护是以距离(A)元件作为基础构成的保护装置。
A :测量 B)启动 C :振荡闭锁 D :逻辑1、距离保护装置一般由(D )组成A :测量部分、启动部分;B :测量部分、启动部分、振荡闭锁部分;C :测量部分、启动部分、振荡闭锁部分、二次电压回路断线失压闭锁部分;D :测量部分、启动部分、振荡闭锁部分、二次电压回路断线失压闭锁部分、逻辑部分;2、距离保护的动作阻抗是指能使阻抗继电器动作的(B )A :大于最大测量阻抗的一个定值B :最大测量阻抗C :介于最小测量阻抗与最大测量阻抗之间的一个值D :最小测量阻抗3.以电压U 和(U-IZ)比较相位,可构成(B)。
A :全阻抗特性的阻抗继电器B :方向阻抗特性的阻抗继电器C :电抗特性的阻抗继电器D :带偏移特性的阻抗继电器4.加到阻抗继电器的电压电流的比值是该继电器的(A)。
A :测量阻抗B :整定阻抗C :动作阻抗5.如果用Z m 表示测量阻抗,Z set 表示整定阻抗,Z act 表示动作阻抗。
线路发生短路,不带偏移的圆特性距离保护动作,则说明(B)。
A ;act set set ,m Z Z Z Z <<B :act set set ,m Z Z Z Z ≤≤C: act set set ,m Z Z Z Z <≤ D: act set set ,m Z Z Z Z ≤≤6.某距离保护的动作方程为90<270J DZ J Z Z Arg Z -<︒,它在阻抗复数平面上的动作特性是以+DZ Z 与坐标原点两点的连线为直径的圆。
特性为以+DZ Z 与坐标原点连线为长轴的透镜的动作方程(δ>0°)是(B)。
.A :90+<270+J DZ J Z Z Arg Z δδ-<︒B :90+<270J DZ J Z Z Arg Z δδ-<︒-C :90-<270+J DZ J Z Z Arg Z δδ-<︒ D :90-<270J DZ J Z Z Arg Z δδ-<︒-7.模拟型方向阻抗继电器受电网频率变化影响较大的回路是(C)。