分子发光荧光与磷光
- 格式:ppt
- 大小:4.62 MB
- 文档页数:73
荧光与磷光的基本原理荧光和磷光是物质光致发光过程中常见的两种现象。
它们可以被用来检测材料的性质、追踪物质在生物体内的分布,以及在科学研究和工业中扮演着至关重要的角色。
本文将讨论荧光和磷光的基本原理,以及它们的应用。
一、荧光的基本原理荧光是一种光致发光现象。
当某些物质被激发时,它们会吸收能量,并在吸收后发射光子。
这个过程可以被描述为:M +hυ(excited state) → M* → M + hυ(emission) 。
其中M为物质,hυ为光子,excited state和emission分别表示激发态和发射态。
荧光在荧光检测和生物学研究中被广泛使用。
它可以用于探测药物、发现病毒、细菌和细胞,以及跟踪DNA和RNA等生物大分子。
荧光还有广泛的应用,如流式细胞仪、荧光显微镜等。
二、磷光的基本原理磷光是一种光致发光现象,与荧光相似。
它的过程可以被描述为:M + hυ(excited state) → M* → M + hυ(emission) 。
在此过程中,“excited state”可以分为单重态和三重态。
单重态和三重态分别对应于分子的不同电子的自旋状态。
在很多情况下,荧光和磷光都可以同时存在。
磷光通常比荧光持久,因为在它的发生过程中,光子被释放的能量不是来自分子的振动能,而是来自分子的旋转能。
在这种情况下,分子释放出的能量被分散到周围的基体中,而不是以光子的形式释放。
因此,磷光可以从几纳秒持续到数百微秒。
三、荧光和磷光的应用荧光和磷光的应用非常广泛,从材料科学到医学和环境科学。
在材料科学中,荧光和磷光被广泛用于表面分析、光辐射测量和固体物性等方面。
在医学中,荧光和磷光能够帮助识别肿瘤和病原体,优化药物筛选和治疗方法。
在环境科学中,荧光和磷光可以用于监测水体和土壤中的有机物和无机物质的分布和迁移。
值得注意的是,荧光和磷光的应用通常需要结合化学、光学、电子学和计算机学等多个领域的知识。
例如,荧光和磷光分析需要分析样品中的存在物种和激发条件,并根据荧光和磷光的特性来选择合适的检测设备和荧光染料。
光与物质作用产生激发态分子,其返回基态时的发光现象称为光致发光,荧光和磷光都是光致发光。
多环芳烃和某些金属配合物分子结构中含有大平面丌电子共轭体系,是常见的荧光分子,可以直接进行荧光分析。
对于那些无荧光或荧光较弱的分子,通过与荧光试剂反应后可进行间接荧光分析。
分子荧光光谱法某些物质被紫外光照射激发后,在回到基态的过程中发射出比原激发波长更长的荧光,通过测量荧光强度进行定量分析的方法。
测定原理:由光源发射的光经第一单色器得到所需的激发光波长,通过样品池后,一部分光能被荧光物质所吸收,荧光物质被激发后,发射荧光。
为了消除入射光和散射光的影响,荧光的测量通常在与激发光成直角的方向上进行。
为消除可能共存的其它光线的干扰,如由激发所产生的反射光、Raman光以及为将溶液中杂质滤去,以获得所需的荧光,在样品池和检测器之间设置了第二单色器。
荧光作用于检测器上,得到响应的电信号。
(1)激发光源在紫外-可见区范围,通常的光源是氙灯和高压汞灯。
(2)样品池荧光用的样品池须用低荧光的材料制成,通常用石英,形状以方形和长方形为宜。
(3)单色器光栅(4)检测器由光电管和光电倍曾管作检测器,并与激发光成直角。
荧光分析方法的特点:(1)灵敏度高(2)选择性强(3)试样量少和方法简单(4)提供比较多的物理参数荧光分析法的弱点是它的应用范围小。
因为本身能发荧光的物质相对较少,用加入某种试剂的方法将非荧光物质转化为荧光物质进行分析,其数量也不多;另一方面,由于荧光分析的灵敏度高,测定对环境因素敏感,干扰因素较多。
分子磷光光谱法处于第一最低单重激发态分子以无辐射弛豫方式进入第三重激发态,再跃迁返回基态发出磷光。
测定磷光强度进行定量分析的方法。
分子磷光与分子荧光光谱的主要差别是磷光是第一激发单重态的最低能层,经系间跨越跃迁到第一激发三重态,并经振动弛豫至最低振动能层,然后跃迁回到基态发生的。
与荧光相比,磷光具有如下三个特点:(1)磷光辐射的波长比荧光长,分子的T1态能量比S1态低。
第5章分子发光—荧光、磷光和化学发光法(Molecular Emisssion and Luminescence)(3学时)教学目的和要求:1.学会分子发光——荧光、磷光和化学发光原理。
2.了解分子发光——荧光、磷光和化学发光法的特点和应用。
教学要点和所涵盖的知识点:荧光、磷光和化学发光原理、仪器、分析方法及应用重点和难点:荧光的原理、仪器、分析方法及应用。
分子发光:处于基态的分子吸收能量(电、热、化学和光能等)被激发至激发态,然后从不稳定的激发态返回至基态并发射出光子,此种现象称为发光。
发光分析包括荧光、磷光、化学发光、生物发光等。
物质吸收光能后所产生的光辐射称之为荧光和磷光。
第一节荧光分析法一、概述分子荧光分析法是根据物质的分子荧光光谱进行定性,以荧光强度进行定量的一种分析方法。
荧光分析的特点:灵敏度高:视不同物质,检测下限在0.1~0.001μg/mL之间。
可见比UV-Vis 的灵敏度高得多。
选择性好:可同时用激发光谱和荧光发射光谱定性。
结构信息量多:包括物质激发光谱、发射光谱、光强、荧光量子效率、荧光寿命等。
应用不广泛:主要是因为能发荧光的物质不具普遍性、增强荧光的方法有限、外界环境对荧光量子效率影响大、干扰测量的因素较多。
二、基本原理1、分子荧光的产生处于分子基态单重态中的电子对,其自旋方向相反,当其中一个电子被激发时,通常跃迁至第一激发态单重态轨道上,也可能跃迁至能级更高的单重态上。
这种跃迁是符合光谱选律的,如果跃迁至第一激发三重态轨道上,则属于禁阻跃迁。
单重态与三重态的区别在于电子自旋方向不同,激发三重态具有较低能级。
在单重激发态中,两个电子平行自旋,单重态分子具有抗磁性,其激发态的平均寿命大约为10-8s;而三重态分子具有顺磁性,其激发态的平均寿命为10-4~1s以上(通常用S和T分别表示单重态和三重态)。
处于激发态的电子,通常以辐射跃迁方式或无辐射跃迁方式再回到基态。
辐射跃迁主要涉及到荧光、延迟荧光或磷光的发射;无辐射跃迁则是指以热的形式辐射其多余的能量,包括振动弛豫( VR)、内部转移(IR)、系间窜跃(IX)及外部转移(EC)等,各种跃迁方式发生的可能性及程度,与荧光物质本身的结构及激发时的物理和化学环境等因素有关。
LS-45/55荧光/磷光/发光分光光度计使用说明书美国Perkin Elmer公司王国强黄建权编译2002年4月一、理论基础荧光、磷光、化学发光及生物发光均属于分子发光。
现将其原理简介如下:室温下,大多数分子处于基态的最低振动能层。
处于基态的分子吸收能量后被激发为激发态。
激发态不稳定,将很快衰变到基态。
若返回到基态时伴随着光子的辐射,这种现象被称为“发光”。
每个分子具有一系列严格分立的能级,称为电子能级,而每个电子能级中又包含了一系列的振动能层和转动能层。
图中基态用S0表示,第一电子激发单重态和第二电子激发单重态分别用S1、S2表示,0、1、2、3…表示基态和激发态的振动能层(见图1),第一、二电子的激发三重态分别用T1和T2表示(见图2)。
图1荧光的能级图1、荧光的产生当分子处于单重激发态的最低振动能级时,去活化过程的一种形式是以10-9~10-6秒左右的短时间内发射一个光子返回基态,这一过程称为荧光发射(见图1)。
2、磷光的产生从单重态回到三重态的分子系间跨越越迁发生后,接着发生快速的振动驰豫而到达三重态的最低振动能层上,当没有其他过程同它竞争时,在10-4~102秒左右的时间内跃迁回基态而发生磷光(见图2)。
由此可见,荧光与磷光的的根本区别是:荧光是由激发单重态最低振动能层至基态各振动能层的跃迁产生的,而磷光是由激发三重态的最低振动能层至基态各振动能层间跃迁产生的。
图2磷光的能级图3、化学发光及生物发光的产生某些物质在进行化学反应时,由于吸收了反应时产生的化学能,而使反应产物分子激发至激发态,受激分子由激发态回到基态时,便发出了一定波长的光,这种吸收化学能使分子发光的过程称为化学发光。
化学发光也发生于生命体系,这种发光被称为生物发光。
二、仪器简介1、仪器原理图3LS45/55荧光/磷光/发光分光光度计的原理图用于测量荧光/磷光/发光的LS45/55是由图3所示的五个主要部件组成的:光源、激发光单色器、样品池、发光单色器及检测器。
分子发光分析法基态分子吸收了一定能量后,跃迁至激发态,当激发态分子以辐射跃迁形式将其能量释放返回基态时,便产生分子发光(Molecular Luminescence)。
依据激发的模式不同,分子发光分为光致发光、热致发光、场致发光和化学发光等。
光致发光按激发态的类型又可分为荧光和磷光两种。
本章讨论分子荧光(Molecular Fluorescence)、分子磷光(Molecular Phosphorescence)和化学发光(Chemiluminescence)分析法。
第一节荧光分析法一、概述分子荧光分析法是根据物质的分子荧光光谱进行定性,以荧光强度进行定量的一种分析方法。
早在16世纪,人们观察到当紫外和可见光照射到某些物质时。
这些物质就会发出各种颜色和不同强度的光,而当照射停止时,物质的发光也随之很快消失。
到1852年才由斯托克斯(Stokes)给予了解释,即它是物质在吸收了光能后发射出的分子荧光。
斯托克斯在对荧光强度与浓度之间的关系进行研究的基础上,于1864年提出可将荧光作为一种分析手段。
1867年Goppelsroder应用铝—桑色素络合物的荧光对铝进行了测定。
进入20世纪,随着荧光分析仪器的问世,荧光分析的方法和技术得到了极大发展,如今已成为一种重要且有效的光谱分析手段。
荧光分析法的最大优点是灵敏度高,它的检出限通常比分光光度法低2~4个数量级,选择性也较分光光度法好。
虽然能产生强荧光的化合物相对较少,荧光分析法的应用不如分光光度法广泛,但由于它的高灵敏度以及许多重要的生物物质都具有荧光性质。
使得该方法在药物、临床、环境、食品的微量、痕量分析以及生命科学研究各个领域具有重要意义。
二、基本原理(一)分子荧光的产生大多数分子含有偶数电子。
根据保里不相容原理,基态分子的每一个轨道中两个电子的自旋方向总是相反的,因而大多数基态分子处于单重态(2S+1=1),基态单重态以S0表示。
当物质受光照射时,基态分子吸收光能就会产生电子能级跃迁而处于第一、第二电子激发单重态,以S1、S2表示。
荧光现象与磷光现象:荧光现象:是指叶绿素在透射光下为绿色,而在反射光下为红色的现象,这红光就是叶绿素受光激发后发射的荧光。
叶绿素溶液的荧光可达吸收光的10%左右。
而鲜叶的荧光程度较低,只占其吸收光的0.1~1%左右。
产生原因:(1)对着光源观察叶绿素提取液时,看到的是叶绿素的吸收光谱。
由于叶绿素提取液吸收的绿光部分最少,故用肉眼观察到的为绿色透射光。
(2)背光源观察叶绿素提取液时,看到的是叶绿素分子受激发后所产生的发射光谱。
当叶绿素分子吸收光子后,就由最稳定的、能量最低的基态提高到一个不稳定的、高能量的激发态。
由于激发态不稳定,因此发射光波(此光波即为荧光),消失能量,迅速由激发态回到基态。
叶绿素分子吸收的光能有一部分用于分子内部振动上,辐射出的能量就小。
由“光子说”可知,光是以一份一份光子的形式不连续传播的,而且E=hv= hc/λ,即波长与光子能量成反比。
因此,反射出的光波波长比入射光波的波长长,叶绿素提取液在反射光下呈红色。
叶绿素溶液在透射光下呈绿色,在反射光下呈红色的现象叫做荧光现象。
由实验现象及观察结果得出结论:观察叶绿素提取液时,对着光源将看到试管内提取液呈绿色;背着光源将看到试管内提取液呈红色。
磷光现象:是指在激发源停止作用之后可感觉到的具有特征衰减率的发冷光现象。
当去掉光源后,叶绿素溶液还能继续辐射出极微弱的红光,它是由三线态回到基态时所产生的光,这种发光现象称为磷光现象。
人或动物的尸体在腐烂的过程中,磷就会以联磷或磷化氢气体形式钻过土壤,钻出地面。
磷在空气中缓慢氧化,当表面聚集热量达40摄氏度时,引起自燃,部分反应能量以光能的形式放出,这就是磷在暗处能发光的原因,叫“磷光现象”。