微课设计三角函数
- 格式:docx
- 大小:30.08 KB
- 文档页数:2
第1篇三角函数的概念教学设计一等奖三角函数一. 教学内容:三角函数【结构】二、要求(一)理解任意角的概念、弧度的意义、正确进行弧度与角度的换算;掌握任意角三角函数的定义、会利用单位圆中的三角函数线表示正弦、余弦、正切。
(二)掌握三角函数公式的运用(即同角三角函数基本关系、诱导公式、和差及倍角公式)(三)能正确运用三角公式进行简单三角函数式的化简、求值和恒等式证明。
(四)会用单位圆中的三角函数线画出正弦函数、正切函数的图线、并在此基础上由诱导公式画出余弦函数的图象、会用“五点法”画出正弦函数、余弦函数及Y=Asin(ωx φ)的简图、理解A、ω、< 1271864542"> 的意义。
三、热点分析1. 近几年高考对三角变换的考查要求有所降低,而对本章的内容的考查有逐步加强的趋势,主要表现在对三角函数的图象与性质的考查上有所加强.2. 对本章内容一般以选择、填空题形式进行考查,且难度不大,从1993年至2002年考查的内容看,大致可分为四类问题(1)与三角函数单调性有关的问题;(2)与三角函数图象有关的问题;(3)应用同角变换和诱导公式,求三角函数值及化简和等式证明的问题;(4)与周期有关的问题3. 基本的解题规律为:观察差异(或角,或函数,或运算),寻找联系(借助于熟知的公式、或技巧),分析综合(由因导果或执果索因),实现转化.解题规律:在三角函数求值问题中的解题思路,一般是运用基本公式,将未知角变换为已知角求解;在最值问题和周期问题中,解题思路是合理运用基本公式将表达式转化为由一个三角函数表达的形式求解.4. 立足课本、抓好基础.从前面叙述可知,我们已经看到近几年高考已逐步抛弃了对复杂三角变换和特殊技巧的考查,而重点转移到对三角函数的图象与性质的考查,对基础知识和基本技能的考查上来,所以在中首先要打好基础.在考查利用三角公式进行恒等变形的同时,也直接考查了三角函数的性质及图象的变换,可见高考在降低对三角函数恒等变形的要求下,加强了对三角函数性质和图象的考查力度.四、复习建议本章内容由于公式多,且习题变换灵活等特点,建议同学们复习本章时应注意以下几点:(1)首先对现有公式自己推导一遍,通过公式推导了解它们的内在联系从而培养逻辑推理。
三角函数教案三角函数教案(精选4篇)三角函数教案篇11、锐角三角形中,任意两个内角的和都属于区间 ,且满足不等式:即:一角的正弦大于另一个角的余弦。
2、若 ,则 ,3、的图象的对称中心为 ( ),对称轴方程为。
4、的图象的对称中心为 ( ),对称轴方程为。
5、及的图象的对称中心为 ( )。
6、常用三角公式:有理公式: ;降次公式: , ;万能公式: , , (其中 )。
7、辅助角公式: ,其中。
辅助角的位置由坐标决定,即角的终边过点。
8、时, 。
9、。
其中为内切圆半径, 为外接圆半径。
特别地:直角中,设c为斜边,则内切圆半径 ,外接圆半径。
10、的图象的图象( 时,向左平移个单位, 时,向右平移个单位)。
11、解题时,条件中若有出现,则可设 ,则。
12、等腰三角形中,若且 ,则。
13、若等边三角形的边长为 ,则其中线长为 ,面积为。
14、 ;三角函数教案篇2二、复习要求1、三角函数的概念及象限角、弧度制等概念;2、三角公式,包括诱导公式,同角三角函数关系式和差倍半公式等;3、三角函数的图象及性质。
三、学习指导1、角的概念的推广。
从运动的角度,在旋转方向及旋转圈数上引进负角及大于3600的角。
这样一来,在直角坐标系中,当角的终边确定时,其大小不一定(通常把角的始边放在x轴正半轴上,角的顶点与原点重合,下同)。
为了把握这些角之间的联系,引进终边相同的角的概念,凡是与终边α相同的角,都可以表示成k·3600 α的形式,特例,终边在x轴上的角集合{α|α=k·1800,k∈z},终边在y轴上的角集合{α|α=k·1800 900,k∈z},终边在坐标轴上的角的集合{α|α=k·900,k∈z}。
在已知三角函数值的大小求角的大小时,通常先确定角的终边位置,然后再确定大小。
弧度制是角的度量的重要表示法,能正确地进行弧度与角度的换算,熟记特殊角的弧度制。
在弧度制下,扇形弧长公式l=|α|r,扇形面积公式 ,其中α为弧所对圆心角的弧度数。
三角函数的定义及应用教学教案(优秀4篇)(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如总结报告、心得体会、策划方案、合同协议、条据文书、竞聘演讲、心得体会、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as summary reports, insights, planning plans, contract agreements, documentary evidence, competitive speeches, insights, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please stay tuned!三角函数的定义及应用教学教案(优秀4篇)EXcel中经常需要使用到三角函数进行计算,三角函数具体该如何使用呢?读书破万卷下笔如有神,以下内容是本店铺为您带来的4篇《三角函数的定义及应用教学教案》,希望朋友们参阅后能够文思泉涌。
三角函数的定义教案使学生理解并掌握三角函数线的作法,能利用三角函数线解决一些简单问题. 2.培养学生分析、探索、归纳和类比的能力,以及形象思维能力。
下面是我给大家整理的三角函数的定义教案5篇,希望大家能有所收获!三角函数的定义教案1教学准备教学目标1、知识与技能(1)了解周期现象在现实中广泛存在;(2)感受周期现象对实际工作的意义;(3)理解周期函数的概念;(4)能熟练地判断简单的实际问题的周期;(5)能利用周期函数定义进行简单运用。
2、过程与方法通过创设情境:单摆运动、时钟的圆周运动、潮汐、波浪、四季变化等,让学生感知周期现象;从数学的角度分析这种现象,就可以得到周期函数的定义;根据周期性的定义,再在实践中加以应用。
3、情感态度与价值观通过本节的学习,使同学们对周期现象有一个初步的认识,感受生活中处处有数学,从而激发学生的学习积极性,培养学生学好数学的信心,学会运用联系的观点认识事物。
教学重难点重点:感受周期现象的存在,会判断是否为周期现象。
难点:周期函数概念的理解,以及简单的应用。
教学工具投影仪教学过程【创设情境,揭示课题】同学们:我们生活在海南岛非常幸福,可以经常看到大海,陶冶我们的情操。
众所周知,海水会发生潮汐现象,大约在每一昼夜的时间里,潮水会涨落两次,这种现象就是我们今天要学到的周期现象。
再比如,[取出一个钟表,实际操作]我们发现钟表上的时针、分针和秒针每经过一周就会重复,这也是一种周期现象。
所以,我们这节课要研究的主要内容就是周期现象与周期函数。
(板书课题)【探究新知】1.我们已经知道,潮汐、钟表都是一种周期现象,请同学们观察钱塘江潮的图片(投影图片),注意波浪是怎样变化的?可见,波浪每隔一段时间会重复出现,这也是一种周期现象。
请你举出生活中存在周期现象的例子。
(单摆运动、四季变化等)(板书:一、我们生活中的周期现象)2.那么我们怎样从数学的角度研究周期现象呢?教师引导学生自主学习课本P3——P4的相关内容,并思考回答下列问题:①如何理解“散点图”?②图1-1中横坐标和纵坐标分别表示什么?③如何理解图1-1中的“H/m”和“t/h”?④对于周期函数的定义,你的理解是怎样?以上问题都由学生来回答,教师加以点拨并总结:周期函数定义的理解要掌握三个条件,即存在不为0的常数T;x 必须是定义域内的任意值;f(x+T)=f(x)。
三角函数教案优秀3篇角函数教学设计篇一教材分析:本章包括锐角三角函数的概念(主要是正弦、余弦和正切的概念),以及利用锐角三角函数解直角三角形等内容。
锐角三角函数为解直角三角形提供了有效的工具,解直角三角形在实际当中有着广泛的应用,这也为锐角三角函数提供了与实际联系的机会。
研究锐角三角函数的直接基础是相似三角形的一些结论,解直角三角形主要依赖锐角三角函数和勾股定理等内容,因此相似三角形和勾股定理等是学习本章的直接基础。
本章内容与已学#39;相似三角形#39;#39;勾股定理#39;等内容联系紧密,并为高中数学中三角函数等知识的学习作好准备。
学情分析:锐角三角函数的概念既是本章的难点,也是学习本章的关键。
难点在于,锐角三角函数的概念反映了角度与数值之间对应的函数关系,这种角与数之间的对应关系,以及用含有几个字母的符号sinA、cosA、tanA表示函数等,学生过去没有接触过,因此对学生来讲有一定的难度。
至于关键,因为只有正确掌握了锐角三角函数的概念,才能真正理解直角三角形中边、角之间的关系,从而才能利用这些关系解直角三角形。
第一课时教学目标:知识与技能:1、通过探究使学生知道当直角三角形的锐角固定时,它的对边与斜边的比值都固定(即正弦值不变)这一事实。
2、能根据正弦概念正确进行计算3、经历当直角三角形的锐角固定时,它的对边与斜边的比值是固定值这一事实,发展学生的形象思维,培养学生由特殊到一般的演绎推理能力。
过程与方法:通过锐角三角函数的学习,进一步认识函数,体会函数的变化与对应的思想,逐步培养学生会观察、比较、分析、概括等逻辑思维能力。
情感态度与价值观:引导学生探索、发现,以培养学生独立思考、勇于创新的精神和良好的学习习惯。
重难点:1.重点:理解认识正弦(sinA)概念,通过探究使学生知道当锐角固定时,它的对边与斜边的比值是固定值这一事实。
2.难点与关键:引导学生比较、分析并得出:对任意锐角,它的对边与斜边的比值是固定值的事实。
高中微课动画数学教案人教版
教学目标:
1. 理解三角函数的概念及其定义;
2. 掌握正弦、余弦、正切函数的性质;
3. 能够应用三角函数解决实际问题。
教学重点:
1. 三角函数的定义;
2. 正弦、余弦、正切函数的性质。
教学难点:
1. 性质的理解与应用。
教学准备:
1. 电脑及投影仪;
2. 微课动画教学资源。
教学过程:
一、导入(5分钟)
通过引入一个与实际生活相关的问题或图形,引发学生对三角函数的兴趣,准备学习内容。
二、微课动画教学(15分钟)
1. 展示微课动画,介绍三角函数的定义及图像;
2. 分析正弦、余弦、正切函数的性质,如定义域、值域、奇偶性等。
三、课堂讨论(10分钟)
1. 学生就所学内容展开讨论,解答疑问;
2. 教师带领学生总结重点内容,并阐述其重要性。
四、实例演练(15分钟)
1. 教师出示相关实例题目,学生尝试解答;
2. 学生归纳解题技巧,掌握应用三角函数求解实际问题的方法。
五、作业布置(5分钟)
布置相关练习作业,巩固所学内容,加深理解。
教学反思:
本节课通过微课动画的方式,生动形象地展示了三角函数的概念及性质,帮助学生更好地理解和掌握相关知识。
同时,课堂中引入实例演练,加强了学生的实际运用能力。
在今后的教学中,可以进一步引入更多实际问题,提高学生的学习兴趣和能力。
三角函数教案三角函数教案(通用5篇)在教学工作者实际的教学活动中,就有可能用到教案,编写教案有利于我们弄通教材内容,进而选择科学、恰当的教学方法。
快来参考教案是怎么写的吧!下面是店铺帮大家整理的三角函数教案,仅供参考,希望能够帮助到大家。
三角函数教案篇1一、指导思想与理论依据数学是一门培养人的思维,发展人的思维的重要学科。
因此,在教学中,不仅要使学生“知其然”而且要使学生“知其所以然”。
所以在学生为主体,教师为主导的原则下,要充分揭示获取知识和方法的思维过程。
因此本节课我以建构主义的“创设问题情境——提出数学问题——尝试解决问题——验证解决方法”为主,主要采用观察、启发、类比、引导、探索相结合的教学方法。
在教学手段上,则采用多媒体辅助教学,将抽象问题形象化,使教学目标体现的更加完美。
二、教材分析三角函数的诱导公式是普通高中课程标准实验教科书(人教a版)数学必修四,第一章第三节的内容,其主要内容是三角函数诱导公式中的公式(二)至公式(六)。
本节是第一课时,教学内容为公式(二)、(三)、(四)。
教材要求通过学生在已经掌握的任意角的三角函数的定义和诱导公式(一)的基础上,利用对称思想发现任意角与终边的对称关系,发现他们与单位圆的交点坐标之间关系,进而发现他们的三角函数值的关系,即发现、掌握、应用三角函数的诱导公式公式(二)、(三)、(四)。
同时教材渗透了转化与化归等数学思想方法,为培养学生养成良好的学习习惯提出了要求。
为此本节内容在三角函数中占有非常重要的地位。
三、学情分析本节课的授课对象是本校高一(1)班全体同学,本班学生水平处于中等偏下,但本班学生具有善于动手的良好学习习惯,所以采用发现的教学方法应该能轻松的完成本节课的教学内容。
四、教学目标(1)、基础知识目标:理解诱导公式的发现过程,掌握正弦、余弦、正切的诱导公式;(2)、能力训练目标:能正确运用诱导公式求任意角的正弦、余弦、正切值,以及进行简单的三角函数求值与化简;(3)、创新素质目标:通过对公式的推导和运用,提高三角恒等变形的能力和渗透化归、数形结合的数学思想,提高学生分析问题、解决问题的能力;(4)、个性品质目标:通过诱导公式的学习和应用,感受事物之间的普通联系规律,运用化归等数学思想方法,揭示事物的本质属性,培养学生的唯物史观。
《三角函数》教案设计教案标题:探索三角函数的奥秘教学目标:知识与技能:使学生理解正弦、余弦、正切的基本概念及其在三角形中的应用。
学会利用三角函数解决与角度和边长相关的问题。
过程与方法:通过图形和实例,培养学生观察、归纳和推理的能力。
鼓励学生运用三角函数解决实际问题,提高分析和应用能力。
情感态度与价值观:激发学生对数学的兴趣和好奇心,培养探索精神。
使学生认识到数学在现实生活中的应用价值。
教学内容:三角函数的定义:正弦、余弦、正切。
三角函数的基本性质:周期性、奇偶性、值域等。
三角函数在解三角形中的应用。
教学方法:启发式教学:通过提问和讨论,引导学生自主发现三角函数的性质和规律。
图形辅助教学:利用三角函数图像,帮助学生直观理解函数变化。
案例分析:通过实际问题的分析,培养学生运用知识解决问题的能力。
教学过程:一、导入新课通过现实生活中的例子(如:波动、周期现象等)引出三角函数的概念。
二、新课讲解三角函数定义:结合单位圆和直角三角形,讲解正弦、余弦、正切的定义。
三角函数性质:通过图像和数学推导,探讨三角函数的周期性、奇偶性等性质。
应用举例:展示三角函数在解三角形、物理波动等领域的应用。
三、课堂练习学生独立完成练习题,教师巡视指导,及时解答疑问。
四、小结与作业小结本节课重点内容,布置相关练习题作为课后作业。
教学工具和材料:多媒体课件:包含三角函数图像、定义和性质等内容。
三角板、量角器等绘图工具:帮助学生绘制三角形,直观理解三角函数。
计算器:用于计算三角函数的值。
评估与反馈:通过课堂练习和课后作业,评估学生对三角函数的掌握情况。
收集学生的疑问和反馈,及时调整教学方法和策略。
拓展延伸:鼓励学生探索三角函数在其他领域(如信号处理、图形学等)的应用。
介绍三角函数的历史背景和发展,激发学生对数学文化的兴趣。
新人教版九年级数学三角函数教案5篇新人教版九年级数学三角函数教案1教学目的1,使学生了解本章所要解决的新问题是:已知直角三角形的一条边和另一个元素(一边或一锐角),求这个直角三角形的其他元素。
2,使学生了解“在直角三角形中,当锐角A取固定值时,它的对边与斜边的比值也是一个固定值。
重点、难点、关键1,重点:正弦的概念。
2,难点:正弦的概念。
3,关键:相似三角形对应边成比例的性质。
教学过程一、复习提问1、什么叫直角三角形2,如果直角三角形ABC中∠C为直角,它的直角边是什么斜边是什么这个直角三角形可用什么记号来表示二、新授1,让学生阅读教科书第一页上的插图和引例,然后回答问题:(1)这个有关测量的实际问题有什么特点(有一个重要的测量点不可能到达)(2)把这个实际问题转化为数学模型后,其图形是什么图形(直角三角形)(3)显然本例不能用勾股定理求解,那么能不能根据已知条件,在地面上或纸上画出另一个与它全等的直角三角形,并在这个全等图形上进行测量(不一定能,因为斜边即水管的长度是一个较大的数值,这样做就需要较大面积的平地或纸张,再说画图也不方便。
)(4)这个实际问题可归结为怎样的数学问题(在Rt△ABC中,已知锐角A和斜边求∠A的对边BC。
)但由于∠A不一定是特殊角,难以运用学过的定理来证明BC的长度,因此考虑能否通过式子变形和计算来求得BC的值。
2,在RT△ABC中,∠C=900,∠A=300,不管三角尺大小如何,∠A的对边与斜边的比值都等于1/2,根据这个比值,已知斜边AB的长,就能算出∠A的对边BC的长。
类似地,在所有等腰的那块三角尺中,由勾股定理可得∠A的对边/斜边=BC/AB=BC/=1/=/2 这就是说,当∠A=450时,∠A的对边与斜边的比值等于/2,根据这个比值,已知斜边AB的长,就能算出∠A的对边BC的长。
那么,当锐角A取其他固定值时,∠A的对边与斜边的比值能否也是一个固定值呢(引导学生回答;在这些直角三角形中,∠A的.对边与斜边的比值仍是一个固定值。
高中数学专题微课教案课程目标:1. 了解三角函数的定义和性质;2. 掌握常见三角函数的计算方法;3. 能够解决与三角函数有关的实际问题。
教学内容:1. 三角函数的定义及性质2. 常见三角函数的计算方法3. 三角函数的应用举例教学重点:1. 熟练掌握三角函数的定义和性质2. 掌握常见三角函数的计算方法3. 能够运用三角函数解决实际问题教学步骤:一、导入(5分钟)教师向学生介绍三角函数的概念,引导学生思考三角函数在现实生活中的应用,并激发学生的学习兴趣。
二、讲解三角函数的定义及性质(15分钟)1. 介绍正弦函数、余弦函数和正切函数的定义和性质;2. 引导学生掌握三角函数在直角三角形中的应用;3. 讲解三角函数的周期性和奇偶性。
三、练习常见三角函数的计算方法(20分钟)1. 给学生提供一些常见的三角函数计算题目,让学生逐步掌握计算方法;2. 指导学生如何利用三角函数的性质简化计算过程;3. 帮助学生解决计算过程中遇到的困难和疑惑。
四、应用实例分析(10分钟)1. 提供一些与三角函数相关的实际问题,让学生运用所学知识解决;2. 引导学生分析问题,确定所需的三角函数模型;3. 指导学生如何将实际问题转化为数学问题,并求解。
五、课堂总结(5分钟)总结本节课的重点内容,强调学生需要掌握的知识和技能,鼓励学生持续学习并提高自己的数学能力。
教学方式:1. 教师讲解与示范2. 学生边听边做3. 学生独立练习4. 学生合作讨论5. 学生展示分享教学工具:1. PowerPoint演示2. 三角函数实例题目3. 计算器4. 小黑板教学评估:1. 课堂练习题2. 实际问题解答3. 学生反馈与讨论延伸阅读:1. 《高中数学三角函数教学设计与实例》2. 《高中数学三角函数应用案例集》3. 《高中数学三角函数练习题精选》教学反思:1. 每个学生的学习风格和节奏不同,需要细心观察学生的学习状态,采用不同的教学方法帮助学生理解;2. 需要注重提高学生的问题解决能力和思维能力,注重知识与实践的结合;3. 需要及时收集学生的反馈信息,根据学生的学习情况及时调整教学方法和内容。
课的真正意义以“系列微课”体现,结
尾应宣传您的下一个微课)
教学反思
准备不足,设备不齐,有待提升
(自我评价)
以下两项适用于录屏软件制作微课
硬件准备完成以下准备可以提高微课的视觉效果:
1、麦克风音量控制90%左右,既可避免音量过小,又可避免系统杂音;
2、摄像头应在脸部正面,左右偏离不超过30度,头像画片显示出肩膀及头部;
3、环境光源应在脸部正面而不是在背面。
电脑设置以下操作可以减少软件出故障概率,提高微课质量:
1、电脑屏幕颜色设置为“16位色”即可,不用过高;(windowsXP系统设置方法:
桌面右键-属性-屏幕保护-选择色位;win7系统设置方法:桌面右键-屏幕分辨率-高
级设置-监视器-选择色位。
)
2、电脑屏幕分辨率设置为“1024*768”及以下,不用过高;(windowsXP系统设
置方法:桌面右键-属性-屏幕保护-选择分辨率;win7系统设置方法:桌面右键-屏幕
分辨率-选择分辨率。
)
3、如果出现未知错误,尝试以“兼容模式”打开软件;(方法:点击桌面
Camtasia Studio软件图标-点击鼠标右键-兼容性-在“以兼容模式打开这个程序”选
项上打钩。
)
4、生成的微课视频格式为FLV或MP4格式,不要用avi格式;
y=Asin(wx+φ)(A>0,w>0,│φ│<π/2)。