Polymer artificial muscles-人工肌肉材料
- 格式:pdf
- 大小:1.34 MB
- 文档页数:24
人造肌肉的研究与发展肌肉是人体中重要的一部分,它不仅提供了人体运动的动力,还对维持身体内部环境平衡有着重要的作用。
在许多疾病中,肌肉功能的丧失会导致生活质量下降甚至危及生命。
由此,研究和开发出一种具有人工肌肉功能的材料变得越来越迫切。
人造肌肉(Artificial Muscle)是一种由聚合物材料制成的人工肌肉。
它可以对外界环境做出反应,具有线性可控的伸长和收缩能力。
人造肌肉目前已经成功应用于多个领域,例如医疗,机器人,航空航天等。
一、人造肌肉开发背景人造肌肉材料的开发可以追溯到19世纪,当时研究人员发现了一种叫做硝化棉的材料可以在受到电刺激时收缩。
这种效应被称为电致收缩(Electrostriction)。
随着科技的进步,人们开始使用一些新材料,比如刚度变形聚合物(Stiffness-Deformable Polymers)来代替硝化棉,这些材料的优点在于弹性好、可塑性强,能够在受到电刺激时快速的变形。
此外,还有其他类似功能的材料得到了广泛研究和应用,例如:聚丙烯(Polypropylene)、聚苯硫醚(Polyphenylene sulphide)等。
二、人造肌肉的工作原理人造肌肉的工作原理与肌肉非常相似,其实它的结构就是在模拟肌肉运动的过程。
与自然肌肉不同的是,人造肌肉是由各种材料制成的。
一般而言,人造肌肉包括两个部分:1. 拉伸杆。
它负责输送外部电能,并向人造肌肉施加拉伸力;2. 收缩杆。
它在受到拉伸力后,向外界提供收缩能量。
当人造肌肉接收到外部电能时,拉伸杆会产生拉力,同时收缩杆会收缩。
当电能消失时,拉伸杆和收缩杆会重新回归原先的形态。
这种伸长和收缩的过程会不断重复,形成了与真正肌肉非常相似的运动效果。
三、人造肌肉的应用前景:1. 医学:人造肌肉能够被用作人体肌肉的移植,帮助人体肌肉重新回复正常功能。
并可在机械辅助腿部、胳膊等医学设备方面得到应用。
2. 机器人:机器人在很多领域都有着广泛的应用,例如生产和物流等,而人造肌肉能够增加机器人人体化的特性,提高其工作效率和安全性。
人工肌肉的制备及其应用研究近年来,人工智能、机器人等领域的不断发展和进步,让人们对人工肌肉的研究和应用产生了更大的兴趣。
相信不久的将来,人工肌肉将会在多个领域内得到广泛的应用。
一、人工肌肉的定义及分类人工肌肉,指的是一种由聚合物发展而来的高分子材料,能够在电场的刺激下收缩和扩张,从而产生与自然肌肉类似的运动功能。
根据不同的材料和工艺,人工肌肉可分为三类:1.电作用人工肌肉它由金属外壳和电介质组成,外部通过电场或场电极激励电荷,产生变形,可实现类似于自然肌肉的运动。
2.电动力聚合物人工肌肉该材料设计有可控制的、可逆转的伸长性和收缩性,导致它可达到自然肌肉运动。
该材料可以由不同形状的分子链所构成。
3.压电人工肌肉压电人工肌肉,由电子学的压电作用刺激产生收缩和扩张,该波形信号模仿了自然肌肉的运动方式。
二、人工肌肉的制备1.电作用人工肌肉制备电作用人工肌肉通常由金属材料制成,这个材料是有两层的金属层所包裹的电学介质。
金属和电介质之间形成了一个电荷,从而导致材料的体积收缩和扩张。
制备方法已比较成熟,但由于其不够灵活、重量较大、响应速度较慢等原因,目前应用范围有限。
2.电动力聚合物人工肌肉制备电动力聚合物人工肌肉的制备方法更加复杂。
主要有三种方法:光束聚合法、电致聚合法和湿润法。
其中,光束聚合法是应用最广的方法之一。
利用具有发光性能的物质,光照射时调节其聚合行为,最终生产出符合功能需求的电动聚合物人工肌肉。
3.压电人工肌肉制备制备压电人工肌肉的方法与电作用人工肌肉类似,但它的成分不同,它是由一些压电材料制成的,如钨酸锶、小分子、聚合物等,这些材料可以响应电压或电场,产生运动。
三、人工肌肉的应用1.生物医学领域人工肌肉在生物医学领域的应用极其广泛。
例如,在人工心脏瓣膜中使用人工肌肉,可以使瓣膜的开关更加准确、自然。
同时,人工肌肉也被广泛应用于人工肢体的制造上。
借助其可靠的运动特性和结构强度,可以为需要足够支撑的失去身体肢体的人群,提供更好的康复效果。
人造肌肉材料的制备与性能研究近年来,随着人类科技的不断发展,越来越多的研究人员开始探索人造肌肉材料的制备与性能研究。
这种新型材料被广泛应用在机器人、医疗、生命科学等领域,具有广阔的应用前景和重大意义,因此这个领域也逐渐成为材料科学领域的一个研究热点。
本文将介绍人造肌肉材料的类型、制备、性能研究进展以及未来发展趋势。
一、人造肌肉材料类型人造肌肉材料的制备需要合适的材料和设计,使其具有肌肉的特性,如弹性、伸缩性和可编程等。
目前人造肌肉材料主要有两种类型:液态和固体。
1.液态人造肌肉材料液态人造肌肉材料由含有弹性体的液体嵌段共聚物水凝胶制成。
这里的液体嵌段共聚物是指弹性体和水凝胶的主链单元。
这种材料能够像肌肉一样进行变形,并具有良好的响应性能。
2.固态人造肌肉材料固态人造肌肉材料可以分为有机和无机两种类型。
无机固态人造肌肉材料最常见的是金属层间化合物(misfit-layer compounds,MLC),有机固态人造肌肉材料则由聚合物或液晶材料制成。
这种材料具有较好的形状记忆性和动态响应性,在智能材料领域有广泛应用。
二、人造肌肉材料的制备人造肌肉材料制备的关键在于设计、合成和制备肌肉的构型。
目前几种材料制备技术主要包括:聚合物合成、石墨烯、电致变色材料、液晶和柔性水凝胶等。
1.聚合物合成聚合物合成是制备人造肌肉材料最常用的方法。
这种方法使用聚合物单体,在适当条件下通过单体链延长、交联和缩合形成纳米尺度上强度和刚度符合肌肉的材料。
聚合物合成技术可以根据需要设计和制备各种形状和尺寸的人造肌肉。
2.石墨烯石墨烯材料可以通过加热和嵌段共聚物制备获得,具有极高的强度和高水分敏感性。
石墨烯材料的制备技术现在已经非常成熟,但是要制备具有肌肉特性的石墨烯材料仍需要更深入的研究和开发。
3.电致变色材料电致变色材料是一种具有形状记忆和变色性质的材料。
这种材料受到电流和温度刺激后可以发生形状变化和颜色变化。
电致变色材料材料的制备需要依靠创新的设计和合成技术,目前这种材料的实用性还需要进一步验证和完善。
人造肌肉材料的制备与应用研究随着生命科学和工程技术的发展,人工智能、机器人和生物医学领域的相关技术正在不断进步。
其中,人造肌肉也是近年来发展迅猛的领域之一。
本文将重点介绍人造肌肉材料的制备方法和应用研究。
一、新型人造肌肉材料的制备方法1.基于3D打印技术的人造肌肉3D打印技术已经广泛应用于各种领域。
近年来,研究人员利用3D打印技术设计和制造了具有多种功能的人造肌肉组织。
这种人造肌肉具有与自然肌肉相似的结构和功能,可以用于制造更为真实的仿生机器人。
2. 智能力杆人造肌肉智能力杆可以看作是一种通用人造肌肉,它具有高度灵活性和可伸缩性。
研究人员利用聚合物和碳纤维等复合材料,制造了一种具有自适应功能的人造肌肉材料。
这种人造肌肉能够改变其形状和长度,实现高速、高精度和高效率的动力学操作。
3. 基于聚合物的人造肌肉聚合物是一种常见的材料,具有良好的化学和物理性能。
研究人员利用聚合物材料制备了一种具有类似自然肌肉运动的人造肌肉。
这种人造肌肉可以根据外界刺激做出相应的缩放,能够承受较大的压强和拉力。
二、人造肌肉的应用研究1. 仿生机器人人造肌肉的研究对于仿生机器人的发展具有重要意义。
通过利用人造肌肉制造仿生机器人,将可以实现更为智能、自适应和复杂的动作,可以应用于各种领域,如医疗、救援、安全等。
2. 肌肉再生和修复人造肌肉材料可以用于肌肉再生和修复,尤其对于那些患有严重肌肉损伤和缺损的人群来说,具有重要的临床价值。
人造肌肉可以在肌肉组织缺失的部位进行修复,提高患者的生活质量和自理能力。
3. 生物医学领域人造肌肉材料的研究还可以应用于生物医学领域,例如,制造更为真实的仿生假肢和智能康复装置等。
此外,还可以将人造肌肉应用于药物筛选和生物反应器的设计和制造。
综上所述,人造肌肉材料的制备方法和应用研究是一个具有广阔前景的领域。
未来,随着技术的不断进步和应用的不断推广,相信人造肌肉材料将会有更多的实用价值和创新应用。
人造骨骼技术和人工肌肉技术的发展随着科技的发展,人类对于生命体的认知越来越深入,对于人体的探索也越来越深刻。
在医疗技术的发展过程中,人造骨骼技术和人工肌肉技术一直是备受关注的领域。
这两个领域在人类历史上扮演着至关重要的角色,并且有着着极大的应用前景。
1. 人造骨骼技术的发展人造骨骼技术是近年来医疗技术中的重要分支,主要是通过现代材料学、纳米技术、仿生学等多方面的技术手段,构建出一种能够替代人体骨组织的新型人造骨骼。
人造骨骼技术的主要目的是通过骨组织再生工程、激素替代疗法、外科手术等多种技术手段,为患者提供更优质的服务。
目前,人造骨骼材料主要包括Titanium、Porous tantalum、carbon fiber reinforced polymer、bio-ceramic等多种类型。
其中Titanium具有良好的生物相容性,被应用于人体骨骼置换手术中。
而Porous tantalum材料主要以其亲骨性及耐久性而被广泛应用于人工髋关节等医疗领域。
carbon fiber reinforced polymer则是一种结构轻、高硬度、高强度的材料,目前已经在人体骨骼置换和修复领域得到广泛应用。
bio-ceramic是一种非金属材料,具有生物相容性和良好的高温环境耐受性,在人造骨骼技术中应用广泛。
2. 人工肌肉技术的发展人工肌肉技术是通过仿生学手段,开发出一种能够代替人体肌肉的全新科技。
人工肌肉技术的应用领域很广泛,可以被应用于卫星制造、智能机器人、医疗领域等各个领域,在未来的发展前景较为可观。
人工肌肉技术是借助一些先进的材料科学技术,如电致伸缩材料等,完成对人工肌肉器件的构建。
通过引入一些刺激信号,人工肌肉能够产生收缩、扩张等动作,实现对目标物体的操作。
3. 人造骨骼技术和人工肌肉技术的应用前景人造骨骼和人工肌肉的技术是近年来医疗技术中的重要分支,具有广泛的应用前景。
在医疗领域,人造骨骼技术和人工肌肉技术的应用将会为患者带来更好的治疗效果,更完美的手术体验,更快的恢复速度等。
人工肌肉的制作方法1. 引言人工肌肉是一种模仿人类肌肉的人工材料,具有柔软、可伸缩和可控制的特性。
它广泛应用于机器人、医疗设备、仿生学等领域。
本文将介绍人工肌肉的制作方法,包括材料选取、加工工艺和性能调整。
2. 材料选取人工肌肉的材料通常包括聚合物和柔性电子材料。
聚合物通常选择具有良好弹性和塑性的材料,如硅橡胶、丁苯橡胶等。
柔性电子材料可以是导电聚合物或金属纳米颗粒。
这些材料需要具有良好的导电性和柔韧性。
3. 制作工艺3.1 材料预处理首先,将聚合物材料切割成所需形状的薄片或块状。
然后,用溶剂进行清洗,去除杂质和表面污染物,以提高材料的纯度。
3.2 聚合物制备将聚合物材料放入特定比例的溶剂中,经过搅拌和加热使之完全混合。
然后,向混合物中添加交联剂,促使聚合物形成交联结构。
这一步骤可以使用化学交联或热交联两种方法。
3.3 导电聚合物涂层将导电聚合物溶液涂覆在聚合物基材表面。
可以使用刷子、滚筒或喷涂等方法进行涂覆。
保持一定的厚度均匀性,以确保导电性能的稳定性。
3.4 电极连接将金属电极固定在人工肌肉的两端,通过焊接或电导胶固定。
确保电极与导电聚合物涂层充分接触,以实现电流传导。
4. 性能调整4.1 张力调整通过改变聚合物的交联程度和厚度,可以调整人工肌肉的张力。
交联程度越高,人工肌肉的张力越大。
4.2 控制电流通过调整外加电流的大小和方向,可以控制人工肌肉的收缩和松弛。
增大电流会导致人工肌肉收缩,减小电流则会使人工肌肉松弛。
4.3 优化材料组成可以尝试不同比例的聚合物和导电聚合物,以找到最优的材料组成。
这有助于提高人工肌肉的力学性能和导电性能。
5. 总结本文介绍了人工肌肉的制作方法,包括材料选取、制作工艺和性能调整。
制作人工肌肉需要选择合适的聚合物和柔性电子材料,经过搅拌、加热和交联等工艺步骤制成。
通过调整张力、控制电流和优化材料组成,可以实现人工肌肉的预期性能。
人工肌肉的制作方法为仿生学和机器人技术的发展提供了重要支持。
人工肌肉材料的制备及应用随着科技的进步,人工智能、机器人等领域已经取得了长足的发展,而在这些领域中,人工肌肉材料的制备和应用也逐渐受到了人们的重视。
本文将从材料的制备和应用两个方面进行说明。
一、材料的制备人工肌肉材料通常由无机或有机材料制成。
无机材料主要包括电活性材料、金属材料和陶瓷材料,而有机材料则包括聚合物材料、超分子材料和生物大分子材料。
1.电活性材料电活性材料是指具有电学性能,在外界电场作用下可以发生收缩或扩张的材料。
常用的电活性材料包括聚硅氧烷电致伸缩材料、聚丙烯酸电致伸缩材料和聚乙烯醇电致伸缩材料等。
这些材料的制备过程主要是在基底上制备电极并进行化学修饰,利用在氧化还原反应中产生的离子来调节材料的形状和力学性能,进一步寻找电活性材料的最佳配方。
2.金属材料金属材料是指具有较高的机械性能和导电性能的材料。
常见的金属材料有铝、钛、铜等。
这些材料的制备常常采用离子束刻蚀、电沉积、激光烧蚀等物理和化学方法。
同时,通过改变金属的组分和微观结构来调节其性能,例如采用微弧氧化技术可以形成多孔结构的硬质膜,提高其生物相容性和抗腐蚀性能。
3.聚合物材料聚合物材料是指由单体分子聚合而成的高分子化合物,具有良好的机械性能和分子自组织能力。
广泛应用于人工肌肉材料中的聚合物材料有聚乳酸、聚己内酯、聚丙烯酸等。
这些材料的制备方法包括溶液聚合、悬浮聚合、乳液聚合等,通过调节聚合物的分子量、分子结构和侧链基团来调节其机械性能和工艺性能。
二、材料的应用人工肌肉材料的应用包括医学、机器人、仿生学等领域。
1.医学应用人工肌肉材料可以用于肌肉替代、修复和复原。
例如,通过设计和制备可活动的人工肌肉材料,可以给失去肌肉功能的人士带来帮助,减轻和解决一些身体功能的障碍。
此外,一些医疗设备还使用了人工肌肉材料,如人工心脏、人工胰岛素泵等,这些设备可以使得医疗行业更加的便捷和效率化。
2.机器人应用人工肌肉材料也可以用于机器人领域中。
人造肌肉材料的发展及应用人造肌肉材料已经成为了工程技术的重要组成部分。
这种材料可以像肌肉一样收缩和放松,其应用领域非常广泛。
目前人造肌肉材料的发展已经进入到了一个非常高的阶段,相信未来将有更多的突破性的发现,以下是本文将要谈到的一些方面。
一、人造肌肉材料的组成人造肌肉材料的组成非常复杂,其中主要包含了作为电极的金属导线,作为材料基底的聚合物和电解质溶液。
其中聚合物主要有聚乳酸、聚丙烯酸甲酯、聚乙烯二醇等。
这些聚合物可以与电解质溶液形成一种可充电的半导体材料。
人造肌肉材料中的电解质溶液则可以通过冠状型电键分子的方式,使电荷从聚合物中传递到电极上。
二、人造肌肉材料的发展历程人造肌肉材料的发展历程可以追溯到上世纪六十年代。
在那个时候,研究人员就开始尝试将聚苯乙烯等材料加工成柔软的肌肉组织。
但当时的技术还不够成熟,因此人造肌肉材料的性能无法满足实际使用的需要。
随着时间的推移,人造肌肉材料的研究变得越来越成熟,其性能也不断提升。
今天,人造肌肉材料已经成为了应用极广的材料之一。
例如,人造肌肉材料可以应用在仿生机器人领域,帮助机器人实现更加自然的运动。
三、人造肌肉材料的应用人造肌肉材料的应用领域非常广泛,以下是其中一些例子。
1. 仿生机器人–人造肌肉材料可以使得机器人更加自然的运动,如经典实验“鱼鳍泳动器”,通过更为优秀的人造肌肉材料来完成鱼鳍的运动。
2. 医疗领域–人造肌肉材料可以被用来制作斜视、驱动人工心脏、人工胰腺与外骨骼等医疗器械。
3. 纳米监测技术–人造肌肉材料可以用来制作可拉伸的电子元件,这些元件可以被用来监测非常微小的力量,如血液中的化学物质。
4. 软体机器人–人造肌肉材料可以被用来创造软性机器人,这些机器人既可以完成大部分硬性机器人的任务,又可以完成硬性机器人无法完成的任务,例如在复杂的环境中自由移动等。
四、未来的发展方向未来人造肌肉的发展方向主要有以下两个方面:1. 提高人造肌肉的性能,包括生理性能和力学性能。
龙源期刊网
新型“人工肌肉”材料
作者:九逸
来源:《科学》2016年第01期
[本刊讯]复旦大学高分子科学系、聚合物分子工程国家重点实验室、先进材料实验室彭慧胜教授课题组通过对碳纳米管的多级螺旋组装,成功制备出一种新型纤维状“人工肌肉”材料。
相关研究论文发表于Nature Nanotechnology,2015,10(12):1077-1083上。
据介绍,这种导电的“人工肌肉”材料对溶剂响应具有很高的灵敏度和特异的选择性,在工业生产和化学品储存中,可以用来探测毒性溶剂的泄露和预警等。
事实上,科学界很早就开始了对“人工肌肉”材料的研究,但传统的溶剂敏感型“人工肌肉”多是基于功能性的高分子材料,这种材料的缺陷在于其对溶剂的响应速度较慢,运动形式也相对单一,多为简单的膨胀或弯曲,并且不易控制。
彭慧胜团队以具有高比表面积、优异力学和电学性能的取向碳纳米管为基本单元,并对其进行多级螺旋构筑,在纤维内部形成了大量的纳米和微米尺度的管道结构,这种多级管道结构可以使溶剂高效快速地渗透到纤维内部,并引起纤维的快速膨胀。
当具有多级螺旋结构的碳纳米管纤维与有机溶剂(如乙醇)及其蒸汽接触,可产生优异的扭转和收缩运动。
此外,该类纤维状“人工肌肉”还可以产生强劲的收缩响应,其收缩强度是人类骨骼肌的10倍,并可以在几十毫秒内完成,比传统的高分子基敏感材料快3
个数量级,甚至高于植物界响应最快的植物——食蝇草的“捕食”速度。
这种新型结构设计为制备高性能的智能响应材料和器件提供了一条新途径,有着广阔的应用前景。
在生物仿生科学研究领域,一种被称为人造肌肉的复合材料号称能够成为水下交通运输的动力装置,还能用于帮助残疾人(假肢)进行复原。
这种离子聚合物复合材料构造非常简单,你只需要将2块聚合物电极接上电源,然后打开开关,其中的离子就会随电压迁移,聚合物就会发生相应的变化。
但目前还有个问题就是,在长时间暴露于空气和电流中使用金属电极时,电极会产生裂缝,部分粒子会从缝隙逃逸,这将影响人工肌肉的性能。
韩国科学技术院(KAIST)先进科学技术研究所的科学家们希望通过石墨烯材料
来解决相关问题。
在最近发表在《ACS Nano》杂志的一篇论文中,来自KAIST的研究团队采用一种性价比很高的石墨烯材料——疏水性激光蚀刻低氧化石墨烯纸(HLrGOP)来解决这个问题。
而这种材料最近被用于超级电容(supercapacitors )的制作。
通过降低相关的石墨氧化物成分,能够获得较为纯净的石墨烯,这种高纯的石墨烯材料也被用于3D全息显示方面。
尽管如此,在人造肌肉应用中,主要开始考虑利用材料的疏水性。
这种疏水性的石墨烯电极表面十分光滑,内部也比较硬,这就能防止电极产生裂纹,内部也有利于离子的传输。
在实验中,采用这种材料的人工肌肉具有更好的耐用性,损坏也更慢。
实验结果令人鼓舞,不过他们称相关的改进工作还有很多。
在韩科院设计的一个仿生机器人中,他们将使用这种新的人工肌肉。
计划这个机器人将是一部能够在水中行走的水马(water strider )或者是相关水黾科的昆虫。
Published in Materials Today.Copyright Elsevier.Polymer artificial musclesTissaphern Mirfakhrai1, John D W Madden1 and Ray H Baughman 2AbstractThe various types of natural muscle are incredible material systems that enable the production of large deformations by repetitive molecular motions. Polymer artificial muscle technologies are being developed that produce similar strains and higher stresses using electrostatic forces, electrostriction, ion insertion and molecular conformational changes. Materials used include elastomers, conducting polymers, ionically conducting polymers and carbon nanotubes. The mechanisms, performance and remaining challenges associated with these technologies are described. Initial applications are being developed. Further work by the materials community should help make these technologies widely applicable in a range of devices where muscle-like motion is desirable.1.IntroductionA variety of polymers have emerged that exhibit substantial deformations in response to applied voltage. These materials reversibly contract and expand in length and volume, which is the primary similarity with muscle.Is there a need for new motors 1, 2? Our most common actuators are combustion engines, electric motors and piezoelectrics. Combustion engines are generally most efficient when operated continuously and are therefore not ideal for applications in which motion is frequently interrupted, such as in valves or walking robots. Electric motors are low in torque to mass compared to muscle making them very bulky for medical, robotic and fluidic applications. Piezoceramics achieve very high power densities but strain is small (0.1 %), making massive mechanical amplification necessary if significant displacements are needed. There is currently no technology that is widely used to replace or simulate muscle, providing a strong motivation for research and development.The performance of the emerging polymer actuators exceeds that of natural muscle in many respects, making them particularly attractive for use anywhere where a muscle-like response is desirable, including in medical devices, prostheses, robotics, toys, bio-mimetic devices and micro/nano-electromechanical systems 1, 2. Commercial application of these materials is at an early stage 3. Challenges remain with many of the technologies, most of which can be overcome via improvements in material properties. In this review we have sought to relate material properties to performance in the hopes of galvanizing the materials community into improving existing materials and inventing new ones.1Department of Electrical and Computer Engineering and Advanced Materials and Process Engineering Laboratory, The University of British Columbia, 2332 Main Mall, Vancouver BC, Canada V6T 1Z42 NanoTech Institute, The University of Texas at Dallas, Richardson, Texas, 75080In this review polymer artificial muscles have been divided into two major groups 4. In the first group dimensional change (actuation) is in response to electric field. These are commonly known as electronic or electric electroactive polymers. Some of the technologies that fall under this category are dielectric elastomer actuators (DEAs), relaxor ferroelectric polymers, and liquid crystal elastomers. The second group is a class of materials in which the presence and movement of ions is necessary to make actuation possible. This group is referred to as ionic electroactive polymers. For the ions to be able to move an electrolyte phase is necessary, which is often liquid; so these actuators are also known as wet electroactive polymers. Actuators described in this paper employ conducting polymers, ionic polymer metal composites (IPMC), and carbon nanotubes as the active materials. Gel actuators 4 also fit into this category, but are not covered here. A number of other artificial muscle technologies exist that respond to heat, which have also been omitted. The article also gives a brief description of some exciting directions in actuation in which molecular design is used to create actuation that is either voltage or light driven.The composition, mechanisms, properties and materials challenges are described for each technology. The key properties of interest are elastic modulus, strain, stress, work density, power density and electromechanical coupling. Work density is the amount of mechanical work per unit volume in one actuator stroke. The convention in work density used in the piezoelectric and dielectric elastomer literature is to report the work done in elastically deforming the actuator materials itself in one dimension, u=21εE, where E is2the elastic modulus and ε is the strain. In acting on a matched elastic load only half of this work can be extracted, so in fact the work out is the u divided by two to provide an upper bound on the external work done under such loading conditions. Similarly the electromechanical coupling values include mechanical work done on the actuator materials themselves. In achieving high work densities in compliant materials large strains are needed, whereas in materials with small strains the stiffness must be high. The full range of compliances has been explored, from dielectric elastomers (E< 1 MPa) to carbon nanotubes (E tube~640 GPa).Table 1 lists properties of mammalian skeletal muscle for comparison. Most technologies described have higher work densities and similar power densities. High work and power densities are particularly beneficial where space (or mass) limitations exist, as in robots, implantable devices, and microelectromechanical systems.Table 1: Properties of mammalian skeletal muscle 2P ROPERTY T YPICAL M AXIMUMStrain (%) 20 >40Stress (MPa) 0.1(sustainable) 0.35Work Density (kJ⋅m-3) 8Density (kg⋅m-3) 1037Strain Rate (%⋅s-1) 500Power to Mass (W⋅kg-1) 50 200Efficiency (%) 40Cycle Life 109Modulus (MPa) 10-602.Electronic artificial muscleThe simplest field driven actuation mechanism is the result of the electrostaticinteractions between electrodes. This mechanism dominates in low modulus materialssuch as dielectric elastomers (section 2.1) in which extremely large strains (> 40 %) canbe obtained. A second mechanism is observed in electrostrictive polymers, where electricdipoles within the polymer are pushed or pulled by the applied field, resulting indisplacement. The highest strains are achieved in ferroelectric polymers in whichimperfections are introduced to disrupt long range order such that field applied to aparaelectric phase leads to conformational changes in the backbone, induced polarization,and large strains (up to 7 %). Graft copolymers in which polar side chains formcrystalline domains also produce substantial strains, as do liquid crystal elastomers inwhich polar groups are oriented by the applied field. A perceived drawback with thisclass of actuators is their use of high voltages (> 1 kV typical) due to the very high fieldsthat are needed (~ 100 MV/m). This challenge is being addressed by reducing filmdimensions and increasing dielectric constant. These materials feature goodelectromagnetic coupling coefficients, and high work densities (100 x that of muscle).2.1 Dielectric elastomer actuators (DEAs)Dielectric elastomer actuators are capable of generating large strains and strain rates.They are one of the most studied polymer actuators and numerous applications are beingdeveloped including electroactive fluid pumps, conformal skins for Braille screens,insect-like robots and Artificial Muscles Inc.'s auto focus lens positioner (Figure 1),which can focus a photography camera by moving the lens by as much as 350 µm 5, 6.a bFigure 1: (a) Artificial Muscles Inc.'s DLP-95 auto focus lens positioner 6 at right, and (b) cutaway drawing of the diaphragm mechanism in which bottom and top ring actuators alternately push or pull. Reproduced with permission from Artifical Muscle Inc.The actuators are capacitors with very compliant dielectrics and electrodes. When a voltage is applied across these materials the attraction between opposite charges and the repulsion of like charges generates stress in the dielectric, known as Maxwell stress, which compresses and elongates the dielectric as shown in Figure 2. This stress is proportional to the square of the applied field and to the dielectric constant 7, 8. Low modulus (~ 1 MPa) and high dielectric strength (> 100 MV/m) can lead to strains of up to 380 % at high applied fields 5. More typically strains are 10 to 100 %, which compares favorably with the 20 % observed in our skeletal muscle.Figure 2: The mechanism of actuation in dielectric elastomer actuators. The application of the voltage V between the two electrodes results in the generation of a Maxwell stress of σ, compressing the dielectric and resulting in its lateral expansion.The elastomer employed is often a silicone or acrylic elastomer, sometimes loaded with heavy particles such as Titanium Dioxide 9 to increase the dielectric constant. The compliant electrodes can be made of conductive carbon or silver pastes, spin-coated conductive rubbers, sprayed graphite particles or superelastic carbon nanotube sheets 8-10. The key to large strain is to make both the electrodes and the elastomer highly compliant, without sacrificing dielectric strength and conductivity.(a)(b)Figure 3: (a) A spring roll dielectric elastomer actuator made by rolling a planar DEA around a compliant compression spring11 and (b) SRI's FLEX 2 6-legged robot operating with spring roll actuators such as those in (a) 7, (© 2002, 2003 SPIE).Electromechanical coupling is typically 60 - 80% for acrylic and up to 90 % for silicone elastomers 7, 12. The large strains resulting from the actuation lead to high work per unit volume per stroke in these actuators; the 3.4 MJ/m3 maximum is four hundred times that of our muscle) 2. The electrostatic energy stored within a dielectric elastomer increases in proportion to the field squared while the mechanical energy density is roughly proportional to the fourth power of field. As a result mechanical energy density and electromechanical coupling are maximized by operating close to breakdown and using materials with the maximum dielectric strength. Dielectric strength can be increased by prestraining the elastomers, and this prestraining also serves to amplify strain 13.The high voltage used to drive DEAs (> 1 kV) could be provided using relatively compact ferroelectric DC-to-DC converters 14. Some safety issues may arise in large devices where both high voltages and currents are present. Since it is the field in the dielectric and not the voltage itself that drives the actuation, it is possible to maintain the same field while reducing the required voltage by using thinner sheets of elastomer 15 or by increasing dielectric constant 9.Stacking in layers 15 or rolling in tubes produces larger forces by making multiple thin layers of DEAs apply their actuation forces in parallel. These actuators can be used in devices, including the robotic insect shown in Figure 3. The advantage of high voltageoperation is that currents are very low, and this advantage is lost as multiple thin layers are used. As currents increase it becomes increasingly important to have a high conductivity in the compliant electrode layer – which is a materials challenge in itself.2.2 Electrostrictive relaxor ferroelectric polymersFerroelectric materials, like ferromagnets, have dipoles that can be aligned, and a Curie point above which they lose their permanent polarization. Inorganic ferroelectrics such as barium titanate are known to undergo dimensional changes in response to field, but these are only on the order of 0.1 %, much smaller than those in ferroelectric polymers, which can strain by an incredible 10 % 16. Like inorganic piezo and ferroelectrics, the ferroelectric polymer actuators are fast and have a high work density (1 MJ/m3) 17.The best actuator performance to date is obtained from poly(vinylidene fluoride)-based, (PVDF), polymers that are co-polymerized with trifluoroethylene, forming P(VDF-TrFE). The electronegativity of the fluorine makes these polymer backbones highly polar. Field driven alignment of polar groups produces reversible conformational changes which are made use of in actuation, as depicted in Figure 4 for PVDF 17. The application of field perpendicular to the chains leads to a transition between the non-polar forms (alpha phase) and the polar (ferroelectric beta phase). The result is a contraction in the direction of polarization and an expansion perpendicular to it. In order to facilitate this transition P(VDF-TrFE) is irradiated or a small mass fraction of a bulky monomer such as chlorofluoroethylene (< 10 %) is added in order to disrupt long range order. The disruption effectively eliminates the formation of domains and the hysteretic behavior characteristic of ferroelectrics. The resulting material is known as a relaxor ferroelectric. Strain is maximum at stresses of approximately 20 MPa, and electromechanical coupling reaches 0.42 17.Figure 4: Alpha and beta phases in PVDF 17, looking along the chains (top) and perpendicular to the chains (bottom). A similar alpha to beta phase changes is induced in P(VDF-TrFE) relaxor ferroelectrics which begin in the non-polar alpha phase and switch to the polar beta phase upon the application of an electric field. This results in dimensional changes (expansion along the chain length and contraction perpendicular to the chain direction).The elastic modulus of the ferroelectric relaxors (0.3-1.2 GPa) is 1000 X higher than in DEAs, the dielectric constant is ~ 20 X higher, and the dielectric strength is similar. Overall this leads to smaller strains but similar energy densities (~ 1 MJ/m 3) and coupling. As in dielectric elastomers, fields and voltages are very high (~100 MV/m, > 1 kV). As in DEAs increases in dielectric constant and reductions in thickness are options for lowering voltage 17. In general, polymers with high polarizability associated with a large (and preferably fast) conformational change in the polymer backbone are desirable. Two other electrostrictive materials are now described.(()n )n 0.462 nmAlpha Phase 0.516nmBeta Phase 0.496 nm0.964 nm Alpha 0.491 nm 0.858nm Beta2.3 Electrostrictive graft elastomersThese polymers feature polar groups attached as side chains to a flexible backbone of a polymer. The polar groups aggregate to form polar crystalline regions. Application of a field aligns these regions, and this reorientation leads to dimensional changes within the polymer, as depicted in Figure 5. Applied fields on the order of 10 MV/m are needed to induce strains reaching 2.5 %, and provide an elastic energy density of ~ 0.5 MJ/m3. These results are obtained using a chlorotrifluoroethylene and trifluoroethylene backbone having P(VDF-TrFE) polar sidechains, producing a comparatively stiff matrix (E = 0.6 GPa) 17. Fields are lower than those required for relaxor ferroelectrics, but so are actuator strains. Due to the size of the polar grafts actuation rates are lower than for relaxor ferroelectrics.2.4 Liquid crystal elastomersLiquid crystals are known to change phase and orientation under the influence of applied field. By incorporating such mesogens into a compliant polymer backbone or as side chains, field induced changes in phase can be used to produce actuation 18. A recent implementation is depicted in Figure 6 in which a 4 % strain was obtained at 133 Hz using field amplitudes of 1.5 MV/m 19. The modulus of these polymers is low and the combination of low modulus and relatively low actuator strains leads to low work density. Work density has recently been improved by using a stiffer polymer (2 % strains at 25 MV/m with a work density of 0.02 MJ/m320). This performance still does not matchthat of high performance relaxor ferroelectrics, but investigations are still at an early stage. Minimizing dielectric loss is important for high frequency operation in liquid crystal elastomers, as in other field driven actuators, since high loss reduces efficiency and leads to heating and failure.3O (a)Figure 6: An example of a ferroelectric liquid crystal elastomer. (a) The polymer backbones (rectangles) are siloxane, from which mesogens (ovals) extend. A small fraction of the mesogens are crosslinked to neighboring polymer chains. In the system shown the application of a field normal to the long axis of the mesogens produces a reversible rotation, as depicted in (b), resulting in dimensional changes. Adapted from Lehman et al 19. (© 2004 IEEE) 2.3. Ionic artificial muscleAn alternative means of producing actuation in a polymer is to employ ions that are mobile within the polymer phase. Applied field drives the motion of these ions and entrained solvent, leading to swelling or contraction when these ions enter or leave regions of the polymer. If the polymer phase is electronically conducting (as in conducting polymers and carbon nanotubes) then ions serve to balance charge generated on these conductors as potential is changed, creating very strong local fields (but overall low voltage). The voltages employed in these materials are low (1 – 7 V) but the energies are nonetheless high because of the close spacing between ions and electronic charges, and the large amount of charge that can be transferred.3.1 Carbon nanotube (CNT) actuatorsCarbon single-wall nanotubes (SWNTs) can be thought of as a single layer of graphite (graphene) rolled into a cylinder of nanometer diameter (Figure 7a). Carbon multi-wall nanotubes (MWNTs) are nested SWNTs (Figure 7b). Individual SWNTs or very long MWNTs are materials with exceptional mechanical properties. The tensile modulus of single-wall carbon nanotubes (640 GPa) approaches that of diamond, while their tensile strength is thought to be between 20 and 40 GPa, about ten times higher than for continuous fibers of any type 21. While mechanical properties in this range are observed for individual SWNTs, observed properties are much lower for assemblies of untold trillions of these nanotubes in nanotube yarns and sheets, and this restricts the performance of actuators based on nanotube yarns or sheets.At high levels of charge injection into the carbon nanotubes, the predominant cause of actuation is electrostatic, like for the dielectric elastomer actuators. However, the electrostatic forces are repulsive interactions between like charges injected into the nanotubes, rather than between two electrodes. A voltage is applied between an actuating nanotube electrode and a counter electrode, through an ion containing solution, as depicted in Figure 8a (where the counter-electrode is another CNT), leading to charging (Figure 8a, b). Electrostatic repulsive forces between like charges on the carbon nanotubes work against the stiff carbon-carbon bonds in the nanotubes to elongate and expand the nanotubes, though quantum mechanical effects can predominate over electrostatic forces at low decreases of charge injection 22. Unlike dielectric elastomers the strains are low (< 2 % 21) since carbon nanotubes are extremely stiff.Actuation is generally achieved in films or yarns (Figure 8c) composed of many nanotubes. The porous nature of the films and fibres enables fast ion transport with response times of < 10 ms, with effective strain rates of 19 %/s, and effective power to mass ratios of 270 W/kg (half that of a high revving electric motor) 23. The achievable response rate decreases with increasing nanotube yarn or sheet thickness, increasing inter-electrode separation, and decreasing ionic conductivity of the electrolyte.Work densities in CNT fibers and yarns are calculated from elastic modulus and strain to be ~ 1 MJ/m3 (as in DEAs and ferroelectric polymers). Measured values are somewhat lower due to creep 24. The energy densities thought achievable for individual nanotube actuators are unmatched by any actuator technology, perhaps reaching 108 J/m3. Achieving such incredible work densities in a bulk material will require using extremely long nanotubes, or ones that are cross-linked together, so that the mechanical properties of nanotube yarns and sheets approach those of the individual SWNTs. These approaches could reduce creep (which is presently a problem), and lead to high electromechanical coupling. Coupling is presently less than 1 %, likely the result of the tremendously large energy needed to deform individual nanotubes (E=640 GPa) and the fact that this energy cannot presently be effectively utilized for actuation because of low bulk modulus (E~ 15 GPa) compared with the individual nanotube modulus 24.High work density combined with good temperature stability (> 450 o C in air, > 1000 o C inert environment) make CNTs prime candidates for situations where weight andtemperature are important, as in aerospace applications. Strains are relatively small compared to other polymer actuators (but an order of magnitude larger than is found in typical piezoceramics). Strain might be increased by employing electrolytes such as highly purified ionic liquids that can withstand very large potentials without reacting electrochemically.(a)(b)Figure 7: (a) A graphene sheet rolled into a nanotube25 (b) and a multi-walled carbon nanotube (MWNT)26.(c)Figure 8: Charge injection in a CNT-based electromechanical actuator (a) an applied potential injects charges in the two nanotube electrodes in solution 24 (red +’ve, yellow –‘ve ions) (b) Charge injection at the surface of a nanotube bundle 22, (c) A scanning electron micrograph of a twist-spun MWNT yarn, which provides a 0.6 % actuator stroke at loads of 100 MPa 24.CNT actuators have recently been shown to actuate when used as electrodes in a fuel cell 27. This possibility is exciting because the energy density of fuel cells is much higher than that of batteries, helping enable autonomous applications of CNTs and possibly other artificial muscle technologies 28.3.2 Conducting PolymersConducting polymers are polymeric materials that are typically semiconducting when undoped and highly conducting when doped with donor or acceptor ions 29. Doping is typically achieved chemically or electrochemically. Some applications that have long been of interest include polymer light emitting diodes, electrochromic windows, energy storage, sensing and actuation 29. Polypyrrole and polyaniline are two commonconducting polymers (Figure 9)H NN H *n a H N N H *n bFigure 9: The structure of two common conducting polymers: (a) polypyrrole and (b) polyanilineThough the use of conducting polymers as artificial muscles was first published by Baughman and coworkers in 1990 30, advances in performance have been continuously made up to the present and further improvements are both desirable and achievable. These conducting polymer artificial muscles use the dimensional changes resulting from electrochemical ion insertion and deinsertion, possibly along with associated solvatingspecies. Since both electrodes can comprise conducting polymers, both can be used as artificial muscles. Depending upon the conducting polymer/electrolyte system used, theinitial state, and the rate of potential change used for actuation, electron insertion into oneelectrode can be accompanied by a volume increase as cations are inserted or a volumedecrease as anions are removed and similar processes can occur at the counter-electrode. This feature, as well as possible time-dependent changes of the intercalated/deintercalated species can complicate control of actuation 31, 32. Expansion appears to be primarily perpendicular to the polymer chain orientation for oriented polymers, suggesting to first order that ions and accompanying solvent are slotted between chains 33-35, as depicted in Figure 10, which also shows the suggested apparent structure of polypyrrole doped with PF 6- 36, 37. The polymers most often used in actuation are polypyrrole, polyaniline and polythiophene derivatives.ab Figure 10: (a) Proposed structure of polypyrrole and (b) possible mechanism of actuation via ion (yellow/purple & A -) and solvent (red/blue/gray) insertion between chains 34, 36, 37.a+2e --2A --2e -+2A -ExpandedContracted a Strains are typically between 2 and 10 %, though recent work by Kaneto and coworkers show that actuator strokes can reach 40 % 2, 38-41. Rates of actuation tend to be low (<< 1 %/s) because of the relatively slow transport of ions within the polymer and the large degree of doping sometimes utilized 42, 43, but they can exceed 10 %/s by using metal contacts, porous polymers, fast charging methods or thin films & fibers 44-47. High qualityelectrochemically grown films and solution spun fibers have tensile strengths on the order of 100 MPa or higher, and added carbon nanotubes can further increase strength and reduce problematic creep 48. Small strains (< 0.2 %) are achieved at loads of 100 MPa 48, with typical operating stresses being more typically 1-34 MPa 32. Work densities approach 100 MJ/m349 . Operating voltages are ~ 2 V, though higher voltages of up to 10 V are sometimes used to increase actuation rate. Such high voltages will ultimately cause degradation of the electrolyte and/or polymer unless the voltage profile as a function of time is properly provided 44, so that excess voltage over the redox stability range is resistively dissipated at the beginning of a voltage pulse and the applied voltage is progressively decreased as the current decreases.The advantage of conducting polymers over electronic EAPs is their low operating voltage. They feature higher strains and are lower in cost than CNTs. Like CNTs the electromechanical coupling is low (< 1 %). Much of the input electrical energy can be recovered, but the need to shunt relatively large amounts of electrical energy can slow actuation and push the limits of power supplies, making large scale applications (e.g. robotic arms) challenging 1, 42. One promising means of improving coupling is to design conjugated molecules that fold and expand in response to changes oxidation state, bringing artificial muscle a little closer to the elegance of real muscle 50, 51.Applications being considered include blood vessel reconnection, dynamic Braille displays, valves and actuated catheters 52-55.3.3 Ionic Polymer-Metal Composites (IPMCs)This type of electrochemical artificial muscle employs a polyelectrolyte as an ion-conducting layer, wherein polymer chains provide one ion type and the opposite ion type comprises mobile solvated ions. The polyelectrolyte is sandwiched between two high-surface-area flexible metallic electrodes, which interpenetrate the polyelectrolyte. The metal electrodes are typically composed of percolated Pt nanoparticles or Au 56-58. When a voltage is applied between the two electrodes, as depicted in Figure 11a, solvated mobile cations move towards the oppositely charged electrode, resulting in swelling near this negative electrode, shrinkage near the positive electrode, and resulting bending of the actuator tri-layer (Figure 11b) 59.The polyelectrolytes used are commonly either i) perfluorinated alkenes with short side-chains terminated with ionic groups, such as SO3- (e.g. Nafion) or COO- (e.g. Flemion), and ii) styrene/divinylbenzene-based polymers in which the ionic groups are substituted on the phenyl rings 2, 56. These materials are also used as separators in fuel cells.When a step voltage input is applied to Nafion-based IPMCs an original fast actuation is followed by a slow relaxation in the direction opposite to the original actuation. However, in Flemion-based IPMCs under the same circumstances, the original fast actuation is followed by a slow actuation in the same direction as the original actuation. This is believed to be because of the interaction between the cations and the strongly-polar sulfonate groups in Nafion; the cations originally repel the electric dipoles associated with these sulfonate groups, thus resulting in a fast and large actuation. Over。