材料力学实验教学7弯扭组合主应力电测实验实验报告
- 格式:doc
- 大小:200.00 KB
- 文档页数:2
弯扭组合变形主应力的测定是一种重要的实验方法,可以用于材料的力学性质和变形特性的研究。
以下是一份弯扭组合变形主应力的测定实验报告,供参考。
1. 实验目的通过弯扭组合变形实验,测定材料在三轴应力状态下的主应力大小和方向。
2. 实验原理弯扭组合变形是一种三轴应力状态下的变形方法。
它是将拉伸和剪切两种应力作用于材料上,使其产生弯曲和扭转的复合变形。
在弯扭组合变形中,主应力的大小和方向可通过计算与测量获得。
3. 实验装置和材料实验装置包括弯曲扭转试验机、电子称量仪、应变计等设备。
试验材料为直径为10mm、长度为50mm的圆柱形铝合金试样。
4. 实验步骤(1) 根据试验要求,调整试验机工况参数,如加载速度、加载次数等。
(2) 将试样装入试验机,并进行预紧力的加载。
(3) 开始弯曲扭转试验,记录下相应的载荷、位移、时间等数据。
(4) 在试验过程中,及时采集应变计的数据,并进行数据处理和分析。
5. 实验结果通过弯扭组合变形实验,得到了试样的应力-应变曲线和主应力大小和方向的测量结果。
试验结果表明,在三轴应力状态下,铝合金试样的主应力大小和方向与加工方向有关。
6. 结论弯扭组合变形主应力的测定实验结果表明,铝合金试样在三轴应力状态下的主应力大小和方向与其加工方向有关。
该方法可以用于材料的力学性质和变形特性的研究,并具有一定的应用价值。
7. 实验总结弯扭组合变形主应力的测定实验需要选用适当的试验装置和材料,并按照标准操作程序进行实验。
在数据处理和分析过程中,要注意准确性和可靠性。
该实验方法对于材料力学性质和变形特性的研究具有重要意义和应用价值。
弯扭组合实验实验报告 Company Document number:WUUT-WUUY-WBBGB-BWYTT-1982GT乐享科技弯扭组合实验实验报告经营管理乐享实验二弯扭组合试验一、实验目的1.用电测法测定平面应力状态下一点处的主应力大小和主平面的方位角;2.测定圆轴上贴有应变片截面上的弯矩和扭矩;3.学习电阻应变花的应用。
二、实验设备和仪器1.微机控制电子万能试验机;2.电阻应变仪;3.游标卡尺。
三、试验试件及装置弯扭组合实验装置如图一所示。
空心圆轴试件直径D 0=42mm ,壁厚t=3mm , l 1=200mm ,l 2=240mm (如图二所示);中碳钢材料屈服极限s σ=360MPa ,弹性模量E =206GPa ,泊松比μ=。
图一 实验装置图四、实验原理和方法1、测定平面应力状态下一点处的主应力大小和主平面的方位角;圆轴试件的一端固定,另一端通过一拐臂承受集中荷载P ,圆轴处于弯扭组合变形状态,某一截面上下表面微体的应力状态如图四和图五所示。
在圆轴某一横截面A -B 的上、下两点贴三轴应变花(如图三),使应变花的各应变片方向分别沿0°和±45°。
根据平面应变状态应变分析公式:αγαεεεεεα2sin 22cos 22xyyx yx --++=(1)可得到关于εx 、εy 、γxy 的三个线性方程组,解得:4545045450εεγεεεεεε-=-+==--xy y x (2)图三 应变花示意图图四 圆轴上表面微体的应力状xxxx 图五 圆轴下表面微体的应力状由平面应变状态的主应变及其方位角公式:2221222⎪⎪⎭⎫⎝⎛+⎪⎪⎭⎫ ⎝⎛-±+=xy y x y x γεεεεεε (3)0min max 2()2()xy xyx y tg γγαεεεε=-=---或yx xy tg εεγα--=02 (4) 将式(2)分别代入式(3)和式(4),即可得到主应变及其方位角的表达式。
实验五弯扭组合变形主应力实验一、实验目的1、用电测法测定平面应力状态下一点的主应力的大小和方向;2、在弯扭组合作用下,分别测定由弯矩和扭矩产生的应力值;3、进一步熟悉电阻应变仪的使用,学会全桥法测应变的实验方法。
二、仪器设备1、弯扭组合变形实验装置;2、YD-2009型数字式电阻应变仪;三、试件制备与实验装置1、试件制备本实验采用合金铝制薄壁圆管作为测量对象。
为了测量圆管的应力大小和方向,在圆管某一截面的管顶B点、管底D点各粘贴了一个45º应变花(如图4-5-1),圆管发生弯扭组合变形后,其应变可通过应变仪测定。
图4-5-12、实验装置如图4-5-1所示,将薄壁圆管一端固定在弯扭组合变形实验装置上,逆时针转动实验架上的加载手轮,通过薄壁圆管另一端的钢丝束施加载荷,使圆管产生变形。
从薄壁圆管的内力图4-5-2可以发现:薄壁圆管除承受弯矩M作用之外,还受扭矩T的作用,圆管处于“组合变形”状态,且弯矩M=P•L,扭矩T= P•a图4-5-2 内力图图 4-5-3 单元体图四、实验原理1、主应力大小和方向的测定如图4-5-3,若测得圆管管顶B 点的-45º、0º、45º三个方向(产生拉应变方向为45º,产生压应变的方向为-45º,轴向为0º)的线应变为ε-45º、ε0º、ε45º。
由《材料力学》公式αγαεεεεεα2sin 212cos 22xy -++=-yx yx 可得到关于εx 、εy 、γxy 的线形方程组()[]()[]452sin 21452cos 22xy45-⨯--⨯++=--γεεεεεyx yx220y x yx εεεεε-++=()()452sin 21452cos 22xy 45⨯-⨯++=-γεεεεεyx y x联立求解以上三式得εx =ε0ºεy =ε-45º+ε45º-ε0ºγxy =ε-45º-ε45º则主应变为εγεεεεε2xy 22,1222⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛±+=-y x yx yxy xεεγα--=02tg 由广义胡克定律()21211μεεμσ+-E=()12221μεεμσ+-E=得到圆管的管顶A 点主应力的大小和方向计算公式()()()()()24524545452,1012212----+++E ±-E =εεεεμμεεσ454504545022tg -----=εεεεεα2、弯矩产生的应力大小测定分析可知,圆管虽为弯扭组合变形,但管顶B 和管底D 两点沿x 轴方向的应变计只能测试因弯矩引起的线应变,且两者等值反向。
浙江大学材料力学实验报告(实验项目:扭弯组合)一、实验目的:1、测定圆管在扭弯组合变形下一点处的主应力; 2、测定圆管在扭弯组合变形下的弯矩和扭矩。
二、设备及试样:1. 电阻应变仪;2. 小型圆管扭弯组合装置。
试样尺寸及相关常数三、实验原理:1、确定主应力和主方向(1)主应力由公式 145452+2=22εεεε-⎫±⎬⎭确定(2)主方向由公式 4545004545tan 22εεαεεε---=-- 确定(3)再由广义胡克定律算出主应力11222212E =(+)1-E =(+)1-σεμεμσεμεμ⎧⎪⎪⎨⎪⎪⎩2、测定弯矩测弯矩使用公式 44E (D -d )M=64r Dπε 3、测定扭矩测扭矩使用公式 44E (D -d )T=4(1+)16r Dεπμ4、弯矩、扭矩、和主应力1σ的理论值分别是 max M=P l max =P T a11(2M Wσ=四、实验记录表格和计算1、测试数据(一次加载参考表格)2、计算(取最大载荷下的应变计算)四、思考题3、用两枚纵向片组成的相互补偿电路,不但能消除温度应变的影响,而且可以消除因为偏心造成的误差,可见用两枚应变片组成的相互补偿电路较好。
4、(a)45ε和45ε-都由三部分组成,有T 45++εεεε=扭弯,T 45-++εεεε-=扭弯,所以得45452r εεεε-=-=扭, 即 1=2r εε扭,可见用这种方法也可以消除弯矩的影响,测出扭矩。
(b) 同 (a) 的解释相同,用这种方法也可以测出扭矩。
(c) 加温度补偿片只能消除温度应变的影响,不能消除弯矩的影响,故不能用这种方法测出扭矩。
弯扭组合变形主应力的测定 一、实验目的1.用电测法测定薄壁圆管弯扭组合变形时表面任一点的主应力值和主方向,并与理论值进行比较。
2.测定分别由弯矩和扭矩引起的应力σ和nτ,熟悉半桥和全桥接线方法。
w二、实验仪器与装置 1.静态电阻应变仪 2.弯扭组合变形实验装置 实验装置如图2-28所示,它由薄壁圆管1、扇臂2、钢索3、手轮4、加载支座5、加载螺杆6、载荷传感器7、钢索接头8、底座9、数字测力仪10和固定支架11组成。
传感器7安装在加载螺杆6上,钢索3一端固定在扇臂上,另一端通过钢索接头8固定在传感器7上。
实验时转动手 图2-28 弯扭组合变形实验装置轮,传感器随加载螺杆向下移动,钢索受拉,传感器受力,传感器信号输入数字测力仪,显示出作用在扇臂端的载荷值,扇臂端作用力传递至薄壁管上,薄壁管产生弯扭组合变形。
薄壁管材料为铝合金,其弹性模量E=70 GPa,泊松比μ=0.33。
薄壁管外径D=40 mm,内径 d=36 mm,其受力简图和有关尺寸见图2-29。
I-I截面为被测试截面,取图示A、B、C、D四个测点,在每个测点上贴一个应变花(-45°、0°、45°),供不同实验目的选用。
图2-29 试件几何尺寸与受力简图三、实验原理和方法由截面法可知,Ⅰ-Ⅰ截面上的内力有弯矩、剪力和扭矩,A、B、C、D各点均处于平面应力状态。
用电测法测试时,按其主应力方向是已知还是未知,而采用不同的贴片形式。
1.主应力方向已知 主应力的方向就是主应变方向。
只要沿两个主应力方向各贴一个电阻片,即可测出该点的两个主应变I ε和II ε,进而由广义虎克定律计算出主应力: σⅠ=2μ−1E(εⅠ+μεⅡ),σⅡ2μ−=1E(εⅡ+μεⅠ) (2 - 14) 2.主应力方向未知 由于主应力方向未知,故主应变方向亦未知。
由材料力学中应变分析可知,某一点的三个应变分量yxεε、和xyr,可由任意三个方向的正应变ϕαθεεε、、确定。
电测弯曲应力实验报告电测弯曲应力实验报告一、实验目的通过本次实验,了解弯曲应力的概念,掌握电测法测量材料弯曲应力的方法,熟悉电阻应变片的使用,同时探究不同载荷下的弯曲应力变化规律。
二、实验器材和材料1. 电测模量仪2. 平板弯曲装置3. 电阻应变片4. 匀强截面悬臂梁样品5. 钳子、卡尺等辅助工具三、实验原理1. 弯曲应力在悬臂梁上加一个偏斜载荷,悬臂梁就会发生形变,并且形成一个转矩,这个转矩可以使悬臂梁弯曲。
弯曲时,弯曲截面的一侧受到压应力,而另一侧受到拉应力,弯曲应力就是材料中某一点所受的横向、超出其所处截面的轴向力分量。
2. 电阻应变片电阻应变片又称应变电阻器,是一种基于金属电阻的变形量测量装置。
当电流通过电阻应变片时,金属电阻发生变化,通过电阻测量电路转换为输出的电压信号,这个电压信号与金属电阻的变化成正比。
电阻应变片可以用来测量材料中的应变变化量。
3. 电测法测量弯曲应力利用电阻应变片,可以将材料中的弯曲形变量转化为电阻值变化信号,进而用电阻检测电路将其转换为电压信号。
通过电流、电压和几何参数的关系,可以计算出样品的弯曲应力。
四、实验步骤1. 安装样品将样品安装在平板弯曲装置上,注意悬臂梁的固定端应放置在装置固定架上。
2. 调整电测模量仪接上电源,根据仪器说明书调整仪器,使其能够正常工作,并调整测量范围。
3. 安装电阻应变片将电阻应变片按照说明书装配,并用胶水固定在样品的下表面。
4. 进行载荷实验用载荷装置施加不同的偏斜载荷,记录电测模量仪的读数,并记录电压计量器的读数。
5. 数据处理根据仪器说明书,用实验数据计算弯曲应力的数值,并绘制出不同载荷下的弯曲应力-载荷曲线。
五、实验结果利用电测法测量到的悬臂梁的弯曲应力-载荷曲线如下图所示:六、实验讨论和结论通过电测法测量弯曲应力可以得到样品在不同偏斜载荷下的弯曲应力-载荷曲线,通过观察、分析,可以得出以下结论:1. 随着偏斜载荷的增加,样品弯曲应力的数值也逐渐增大,符合弯曲时弯曲截面的一侧受到压应力,而另一侧受到拉应力的规律。
弯扭组合应力实验报告一、实验目的:1.了解弯扭组合应力的概念和特性;2.掌握弯扭应力下构件应变性能的变化规律;3.探究弯扭组合应力对材料疲劳寿命的影响。
二、实验原理:1. 弯曲应力在支撑不良时,构件横截面的形状和尺寸不再恒定,会引起截面内部应力和应变。
当弯曲应力作用于构件时,构件截面内部产生剪应力和正应力。
当弯曲跨度为l,力F作用在构件的中心处时,构件的弯曲应力σb可根据公式计算:σb = (M × y) / I2. 扭转应力当扭矩作用于杆件的端部时,杆件沿轴线方向的每一截面都要扭转。
因此,当扭矩t作用在截面上时,将产生切应力τ,它的大小可以使用公式计算:τ = (t × R) / I其中,R表示截面的半径,I表示扭转惯性矩。
3. 弯扭组合应力弯扭组合应力是指同时在构件上施加弯曲和扭转载荷时的应力。
具体而言,施加在构件上的载荷的平面与构件的长轴和横轴不平行,这会引起构件的剪辑应力。
弯扭组合应力的计算有许多方法,比较常用的一种方法是所谓的最大剪应力理论。
该原则的基本思想是,如果构件的弯曲应力和扭曲应力产生的共同剪应力小于极限剪应力,该构件就能够承受弯扭组合应力。
三、实验步骤:1. 准备实验设备,包括万能试验机,弯曲夹具和扭转夹具。
2.准备试样(直径为5mm的低合金钢棒)。
3.将试样安装在试验机的弯曲夹具和扭转夹具上。
4.施加不同的弯曲载荷和扭转载荷,并在此过程中记录试样在不同载荷下的弯曲度和扭转度。
5.根据试样的弯曲度和扭曲度计算出弯扭组合应力下试样的弯曲应力、扭曲应力以及最大剪应力。
6.比较不同载荷下试样的最大剪应力,计算出疲劳寿命。
四、实验结果分析:1.根据不同的弯曲载荷和扭转载荷,记录试样在不同载荷作用下的弯曲度和扭转度,绘制出弯曲度-载荷和扭转度-载荷曲线,如下图所示:图1:弯曲度-载荷曲线图图2:扭转度-载荷曲线图2. 根据试样的弯曲度和扭曲度计算出弯扭组合应力下试样的弯曲应力、扭曲应力以及最大剪应力,并作出如下图所示的应力-载荷曲线图:图3:应力-载荷曲线图3. 比较不同载荷下试样的最大剪应力,并计算出疲劳寿命,如下表所示:载荷(N)最大剪应力(MPa)疲劳寿命(次)100 42.31 1000200 82.4 2000300 118.6 3000五、实验结论:1.在弯曲载荷和扭转载荷的联合作用下,试样的变形强度和变形模式发生了明显变化,特别是当载荷超过一定阈值后。
薄壁圆筒在弯扭组合变形主应力测定报告一、概述薄壁圆筒是工程中常见的一种结构形式,其在使用过程中受到的弯曲和扭转载荷往往同时存在,因此对其在弯扭组合变形条件下的主应力进行准确测定具有重要意义。
本报告旨在对薄壁圆筒在弯扭组合变形下的主应力进行测定,并提供权威的数据支持。
二、实验目的1.对薄壁圆筒在弯曲和扭转载荷下的主应力进行测定;2.掌握薄壁圆筒在弯扭组合变形条件下的变形规律;3.提供准确可靠的数据支持,为工程设计提供参考依据。
三、实验原理在弯曲和扭转载荷共同作用下,薄壁圆筒内部会产生主应力和主剪应力。
其主应力由弯曲应力和扭转应力共同决定,根据相关理论原理,可以通过测定薄壁圆筒表面的变形情况,推导出其在弯扭组合变形条件下的主应力。
四、实验装置和材料1.薄壁圆筒实验样品;2.应变仪;3.扭转载荷施加装置;4.弯曲载荷施加装置;5.数据采集系统;6.相关辅助工具;7.其他必要的辅助材料。
五、实验步骤1.准备薄壁圆筒样品,清洁表面并固定在实验台上;2.根据实验要求,施加弯曲载荷,并记录薄壁圆筒的变形情况;3.根据实验要求,施加扭转载荷,并记录薄壁圆筒的变形情况;4.利用应变仪等装置对薄壁圆筒表面的应变变化进行实时监测和记录;5.根据采集的数据,推导出薄壁圆筒在弯扭组合变形条件下的主应力。
六、实验数据处理和分析1.根据实验采集的数据,绘制出薄壁圆筒在不同弯曲和扭转载荷下的主应力变化曲线;2.对数据进行详细分析和比对,得出薄壁圆筒在不同载荷情况下的主应力范围;3.分析实验中存在的误差和不确定性,并提出相应的修正方案;4.对实验结果进行合理的解释和结论。
七、实验结果与结论1.根据实验数据处理和分析,得出薄壁圆筒在弯扭组合变形条件下的主应力范围为△σ;2.对实验结果进行科学的解释和结论,明确指出实验的可靠性和局限性;3.在结论部分提出对后续研究和工程应用的建议和展望。
八、实验总结1.总结全文工作,重点强调实验的意义和价值;2.对实验中存在的问题和不足进行梳理和反思;3.为未来相关研究和工程设计提供经验和借鉴。