六年级数学上册用百分数解决问题例5
- 格式:ppt
- 大小:1.53 MB
- 文档页数:15
第五单元 百分数的应用例1:某工厂加工一批零件,师傅比徒弟多加工41。
徒弟比师傅少加工百分之几? 解析:“师傅比徒弟多加工41”则可以把徒弟加工的看作4份,师傅加工了4+1=5(份),求徒弟比师傅少加工百分之几,用徒弟比师傅少加工的份数÷师傅加工的份数=徒弟比师傅少加工百分之几,据此列式解答即可。
解答:(5-4)÷5=0.2=20%答:徒弟比师傅少加工20%。
例2:一辆轿车去年降价10%,今年又降价5%,现价比去年降价前的价格少百分之几?解析:根据题意可知,“一辆轿车去年降价10%”是以去年降价前的价格为单位“1”去年降价10%,则去年是降价前的1-10%=90%,“今年又降价5%”是在去年的基础上降价5%,是以去年的价格为单位“1”,则今年的价格是前年的90%×(1-5%)=85.5%,用去年降价前的-今年的现价=现价比去年降价前的价格少百分之几,据此解答即可。
解答:1-(1-10%)×(1-5%)=1-90%×95%=1-85.5%=14.5%答: 现价比去年降价前的价格少14.5%。
例3:光明超市,某一品牌商品优惠大酬宾,先提价10%,再降价10%。
现价是原价的百分之几?解析:根据题意,此题把把原价看作单位“1”,先提价10%,这时的价格是原价的1+10%=110%,再降价10%,那么这时的价格是原价的110%×(1-10%),计算后即可得出现价是原价的百分之几。
解答:(1+10%)×(1-10%)=110%×90%=99%答:现价是原价的99%。
例4:商店里苹果比雪梨多240千克,苹果和雪梨都卖出100千克后,雪梨的质量是苹果的107,原来商店里苹果的质量比雪梨多百分之几?(除不尽时百分号前保留一位小数)解析:根据题意,“商店里苹果比雪梨多240千克,苹果和雪梨都卖出100千克后”苹果仍比雪梨多240千克;都卖出100千克后,苹果比梨多1-107=103 ,已知一个数的几分之几是多少用除法计算,即可求出卖出100千克后苹果的质量,从而求出苹果的质量比雪梨多百分之几。
第六单元第6课时百分数问题中的变化幅度问题例5教学设计学习任务一:阅读题目,寻找信息,画线段图分析问题。
【设计意图:温故知新,引导学生在复习旧知的过程种力求从旧知中寻找新旧知之间的关联,从而达到从旧知过渡到新知,在学习探究过程中形成新的知识结构。
阅读题目,寻找信息,明确问题,画线段图分析问题。
】➯情境导入,引“探究”教师谈话导入:同学们,你们喜欢购物吗?(学生自由说一说)其实在我们购物时总会遇到一些商品先降价,再提价的情况。
商品在价钱变化中比原来是提高了呢?还是降了呢?我们今天来研究这一问题。
➯知识链接,构“联系”提问:你知道下面每个百分数的含义吗?和同伴交流一下吧!(1)某学校,六年级学生的近视率是28%。
(2)某品牌电脑搞促销,降价10%出售。
(3)国庆期间,实际销售量比计划销售量增加了75%。
学生根据汇报交流。
明确百分数的含义,正确判断单位“1”➯新知探究,习“方法”课件出示教材第88-89页例5某种商品4月份的价格比3月份降了20%,5月份的价格比4月份又涨了20%。
5月份的价格和3月份相比是涨了还是降了?变化幅度是多少?一、学生独立自学,教师观察指导。
1.学生阅读例题,你获得了哪些信息?2.明确:已知的条件是什么?要解决的问题是什么?3.画线段图分析问题。
二、学生发言,教师总结1.学生读题找信息。
你知道了哪些数学信息?已知问题:每两个月之间价格的变化幅度是多少?要解决的问题:经过两次幅度变化,最终价格是涨了还是降了,变化的幅度是多少?2.分析数量关系。
把哪个量看做单位“1”?找准变化中的单位“1”3.画线段图表示题中的数量关系吗?4.列式解决问题。
学习任务二:掌握用假设法解决“已知一个数量的两次增减变化情况,求最后变化幅度”的百分数问题。
【设计意图:本节课的教学重点是要让学生掌握用假设法解决问题的思路,初步建立模型思想,能灵活地解决有关百分数的问题,并通过回顾与反思,加深理解方法之间的内在联系。
数学人教六年级上册《第六单元_第06课时_ 百分数问题中的变化幅度问题例5》(说课稿)一. 教材分析人教六年级上册《数学》第六单元第06课时,主要讲解百分数问题中的变化幅度问题。
这部分内容是在学生已经掌握了百分数的基础知识和应用题的基础上进行讲解的,旨在让学生进一步理解百分数的含义,提高解决实际问题的能力。
本节课时的例5通过具体的实际问题,引导学生运用百分数的变化幅度来解决实际问题,培养学生的数学思维能力和解决问题的能力。
教材通过例5的讲解,让学生理解变化幅度的概念,掌握计算变化幅度的方法,并能够运用变化幅度解决实际问题。
二. 学情分析六年级的学生已经掌握了百分数的基础知识,对百分数的含义和应用题已经有了一定的理解。
但是,学生在解决实际问题时,往往还存在一定的困难,对于如何运用百分数的变化幅度来解决问题,还需要进一步的引导和培养。
同时,学生在学习过程中,需要充分理解和掌握计算变化幅度的方法,以及如何将实际问题转化为数学问题,运用变化幅度来解决问题。
因此,在教学过程中,需要注重学生的实际操作和实践,提高学生的解决问题的能力。
三. 说教学目标1.知识与技能目标:学生能够理解变化幅度的概念,掌握计算变化幅度的方法,并能够运用变化幅度解决实际问题。
2.过程与方法目标:通过例5的讲解,引导学生运用数学思维方式来解决问题,培养学生的数学思维能力和解决问题的能力。
3.情感态度与价值观目标:培养学生对数学的兴趣,提高学生解决实际问题的能力,培养学生的团队合作意识和交流沟通能力。
四. 说教学重难点1.教学重点:学生能够理解变化幅度的概念,掌握计算变化幅度的方法,并能够运用变化幅度解决实际问题。
2.教学难点:学生如何将实际问题转化为数学问题,运用变化幅度来解决问题。
五. 说教学方法与手段本节课时,我将采用问题驱动的教学方法,引导学生通过实际问题来理解和掌握变化幅度的概念和方法。
同时,我将运用多媒体教学手段,通过动画和图表的展示,让学生更直观地理解和掌握变化幅度的计算方法。
1、存入银行的钱叫做本金,取款时银行除还给本金外,另外付给的钱叫做利息,利息占本金的百分率叫做利率。
2、利息=本金×利率×时间。
3、几折就是十分之几,也就是百分之几十。
4、商品现价 = 商品原价×折数。
四、典型例题例1、(解决税前利息)李明把500元钱按三年期整存整取存入银行,到期后应得利息多少元?分析与解:根据储蓄年利率表,三年定期年利率5.22%。
税前应得利息 = 本金×利率×时间500× 5.22%× 3 = 78.3(元)答:到期后应得利息78.3元。
例2、(解决税后利息)根据国家税法规定,个人在银行存款所得的利息要按5%的税率缴纳利息税。
例1中纳税后李明实得利息多少元?分析与解:从应得利息中扣除利息税剩下的就是实得利息。
税后实得利息 = 本金×利率×时间×(1 - 5%)500 × 5.22%× 3 = 78.3(元)……应得利息78.3 × 5% = 3.915(元)……利息税78.3 – 3.915 = 74.385 ≈ 74.39(元)……实得利息或者 500 × 5.22%× 3 ×(1 - 5%) = 74.385(元)≈ 74.39(元)答:纳税后李明实得利息74.39元。
例3、方明将1500元存入银行,定期二年,年利率是4.50%。
两年后方明取款时要按5%缴纳利息税,到期后方明实得利息多少元?错误解答:1500 × 4.50%×(1 - 5%) = 64.125(元)≈ 64.13(元)分析原因:税后实得利息 = 本金×利率×时间×(1 - 5%),这里漏乘了时间。
正确解答:1500 ×2× 4.50%×(1 - 5%) = 128.25(元)答:到期后方明实得利息128.25元。
第六单元《百分数》疑难题解答【例1】看图列式,并计算。
解析:本题考查的知识点是结合线段图用“数形结合思想”分析百分数意义,解决简单的实际问题。
解答时,根据线段图直观呈现数量之间的关系,对百分数的意义有一个形象的理解。
本题呈现的是两个相对独立量之间的关系,根据“求比一个数多(少)百分之几的数是多少”的方法进行解答。
(1)已知柳树有230棵,杨树比柳树少30%,求杨树多少棵就是求比230少30%的数是多少,解答时,根据求比一个数少百分之几的数用这个数×(1-百分之几)来解答,列式计算为230×(1-30%)=161(棵)。
(2)已知公鸡有35只,母鸡的只数比公鸡多10%,求母鸡有多少只就是求比350多10%的数是多少,解答时根据求比一个数多百分之几的数是多少用这个数×(1+百分之几)来解答,列式计算为350×(1+10%)=385(只)。
解答:(1)230×(1-30%)=161(棵) 答:杨树有161棵。
(2)350×(1+10%)=385(只) 答:母鸡有385只。
【例2】把22%、51、0.202和92按从小到大的顺序排列是: ( )<( )<( )<( )解析: 本题考查的知识点是通过转化法统一分数、小数或百分数,然后再比较出它们的大小。
解答时,一般把百分数和分数转化为小数,然后通过比较小数的大小来比较这些数的大小。
22%=0.22、51=0.2、0.202=0.202、92≈0.222,因为0.2<0.202<0.22<0.222,所以,51<0.202<22%<92。
解答:51<0.202<22%<92 【例3】哥哥比弟弟高20%,弟弟比哥哥矮百分之几?解析:本题考查的知识点是利用转化法求一个数比另一个数少百分之几。
解答时,先明确的是哥哥比弟弟高20%是以弟弟的身高为单位“1”,哥哥的身高就是1+20%=1.2,求弟弟比哥哥矮百分之几就是求1比1.2少百分之几,根据求比一个数少百分之几的数是多少,列式为(1.2-1)÷1.2=0.2÷1.2≈17%。
六年级上册数学教案《用百分数解决问题(例5)》人教新课标一、教学内容今天我们要学习的是六年级上册数学的《用百分数解决问题(例5)》。
我们将通过实际情境,理解百分数在生活中的应用,学会如何利用百分数来表示两数之间的倍数关系,并解决相关问题。
二、教学目标1. 知识与技能:学生能理解百分数的意义,会用百分数表示两数之间的倍数关系,并解决实际问题。
2. 过程与方法:通过合作交流,培养学生解决问题的能力。
3. 情感态度价值观:激发学生对数学的兴趣,培养学生积极思考、主动探索的精神。
三、教学难点与重点重点:理解百分数的意义,会用百分数表示两数之间的倍数关系。
难点:解决实际问题,理解百分数在生活中的应用。
四、教具与学具准备教具:PPT、黑板、粉笔学具:练习本、笔五、教学过程1. 情境引入:我会在PPT上展示一些生活中的图片,比如超市的商品标签,让学生观察并说出其中的百分数。
2. 自主学习:让学生翻到课本第104页,阅读例5,理解题目要求,并独立思考如何解决问题。
3. 合作交流:学生分组讨论,分享各自的想法,共同寻找解决问题的方法。
4. 讲解与演示:我会选择一些学生的解法,进行讲解和演示,让学生理解并掌握解题思路。
5. 随堂练习:我会给出一些类似的题目,让学生当场练习,巩固所学知识。
6. 板书设计:板书题目,解题步骤,以及最终答案。
六、作业设计1. 完成课本第104页的练习题。
2. 收集生活中的百分数,下节课分享。
七、课后反思及拓展延伸课后,我会反思这节课的教学效果,观察学生对百分数的理解和运用情况,对教学方法进行调整和改进。
同时,我会鼓励学生在日常生活中多观察、多思考,将所学知识运用到实际生活中。
通过这节课的学习,学生应该能理解百分数的意义,会用百分数表示两数之间的倍数关系,并解决实际问题。
同时,他们也应该能体会到数学在生活中的重要性,激发对数学的兴趣和热情。
重点和难点解析在上述教案中,有几个关键的细节是需要我们重点关注的。
六年级百分数应用题练习题〔精选4篇〕篇1:六年级百分数应用题练习题六年级百分数应用题练习题六年级百分数应用题练习题及答案【知识点】用百分数解决问题1、常见百分率的计算方法:2甲比乙多〔少〕百分之几的应用题:〔甲?乙〕?乙?100%=甲比乙多的百分之几〔乙?甲〕?乙?100%=甲比乙少的百分之几1、求比一个数多〔少〕百分之几的数是多少的应用题:单位“1”的量?对应分率=局部量2、一个数的百分之几是多少,求这个数的应用题:局部量?对应分率=单位“1”的量3、折扣:商品按原价的百分之几出售,叫做折扣。
4、纳税:纳税的税款叫应纳税额。
应纳税额与各种收入的比率叫税率。
应纳税额=总收入?税率5、利息:取款时银行多支付的钱叫做利息。
税后利息=本金?利率?时间?〔1-5%〕【典型例题】例1、一个盒子里装有大小一样的白色玻璃球6个,红色玻璃球12个。
从中任意摸出一个,摸到红球的可能性是百分之几?例2、同一段路上,小方要跑5分钟,小强要跑4分钟,小强的速度比小方快百分之几?例3、某商店同时卖出两种商品,每种各得480元,其中一种赚20%,另一种赔本20%。
这个商品卖出这两种商品赚钱还是赔本?为什么?例4、根据算式补充条件。
一台微波炉的原价是500元,,现价是多少?〔1〕500?80% 〔2〕500?80% (3) 500-1?20%? (4) 500-1?20%?(5) 500-1?20%? (6) 500-1?20%?例5、红红在一凡图书城购置了一套大七折的《三国演义》,结果少付了45元。
这套《三国演义》原价是多少?1例6、利民超市在国庆期间举行“买三百送一百”的'促销活动。
妈妈话300元钱买了一些物品,妈妈能享受到几折优惠?例7、刘叔叔开了一家小商店,上个月按全部收入的5%缴纳营业税,一共缴纳税款元。
刘叔叔上个月的营业额是多少?〔2〕宋老师写一本书需缴纳个人说得税696元,这本书的稿费是多少元?例9、赵明有200元压岁钱,打算存入银行两年,有两种存法:一种是存两年期,年利率是4.68%;另一种是先存入一年,年利率是4.14%,第一年到期后再把本金和税后利息合一起,再存入一年。
数学思维策略培训——分数百分数应用题(五)姓名评价分数和百分数这部分内容是小学数学的重要组成部分,在我们的现实生活及生产实际中经常会遇到与分数、百分数有关的问题.因此学好这部分知识,会给我们解决好有关的实际问题,理清数量关系带来很多便利。
例2 一列火车从甲地开往乙地,如果将车速提高20%,可以比原计划提前1小时到达;如果先以原速度行驶240千米后,再将速度提高25%,则可提前40分钟到达.求甲、乙两地之间的距离及火车原来的速度。
例3 甲、乙、丙三人合作生产一批机器零件,甲生产的零件数量的一半与乙生产的零件数量的五分之三相等,又等于丙生产的零件数量的四分之三,已知乙比丙多生产50个零件,问:这批零件共有多少个?例4 某商店同时卖出两件商品,每件各得60元,但其中一件赚20%,另一件亏本20%,问这个商店卖出这两件商品是赚钱还是亏本?例5 甲、乙两只装有糖水的桶,甲桶有糖水60千克,含糖率4%,乙桶有糖水40千克,含糖率为20%,两桶互相交换多少千克才能使两桶糖水的含糖率相等?在小学数学竞赛中经常出现有关分数、百分数的应用题,且一般比较复杂.但它的解题思考方法与解答基本应用题的方法相类似,所以我们将学过的有关分数、百分数的应用题进行分类,搞清“分率(百分率)”的概念是解决这类问题的关键所在。
正确解决有关分数、百分数的应用题,常常将被比的量(标准量)看作单位“1”,再看与它相比的量(比较量)相当于单位“1”的几分之几,称作分率(百分率),认清其数量关系,是解决这类问题的突破口。
当堂练习天又进了一批书,数量是第二天售书后剩下的一半,这时书店存有这类图书298本,问书店原有这类图书多少本?4.甲、乙两辆汽车合运一批货物.原计划甲比乙多运50吨,结果乙问这批货物共多少吨?5.甲工程队有600人,其中老工人占5%,乙工程队有400人,老工人占20%,要使甲、乙两个工程队中老工人所占的百分比相同,应从乙队中抽调多少名老工人与甲队中的年青工人进行一对一对换?1、上看每一个数量都在改变,但我们仔细观察与思考,不难发现,在这个过程中,其他学校的总人数并没有改变.即:前面所提到的其他校人数占清这个问题,我们就找到了解决问题的突破口。