张力减径的工艺原理及主要问题
- 格式:pdf
- 大小:219.19 KB
- 文档页数:15
热轧(微)张力减径钢管的主要缺陷和消除方法
- 热轧(微)张力减径钢管的主要缺陷及消除方法
1、缺点:表面缺陷(毛发状缺陷、裂纹、气孔)
消除方法:提高表面洁净度,加强质量检验,严格控制张力差、减
径钢管精度及表面质量;定期作业前对减径钢管进行卷筒表面填充磨光,减少毛发样缺陷,并且要充分控制卷筒表面填充过程中的处理温度、进料收缩率及剩余应力等。
2、缺点:表面弯角不均匀以及错位等
消除方法:应采用实心轴或带有凹槽的轴,并要有足够的轴面硬度,以防止表面错位;减径钢管的低减径层使用放大器,以减少弯角不均
匀情况,还需要弯曲过程定期维护润滑,增强设备操作稳定性。
3、缺点:减径钢管叞边区减径精度较差
消除方法:提高减径工艺技术,提高减径钢管质量,如拉伸减径阶段,应采用刚性夹头、均匀减径以及调整减径速度等;同时,要及时
对减径钢管进行彻底维护,它才能确保拉伸减径的精度。
4、缺点:减径钢管的精度较差
消除方法:在减径钢管的生产过程中,应配备严格的检测,如采用液压系统定时监测拉伸减径的精度;同时进行原料批次检测,以保持安全性。
同时,要加强钢管表面处理,打磨质量,防止表面老化,提高减径钢管的使用性能和精度。
张力减径的工艺特点为了提高轧管机组的生产率和产量,在轧管机后配备了张力减径机。
这样,轧管机只需轧出1种或2种、最多3种外径的荒管,通过张力减径就可生产出多种不同直径和壁厚的成品钢管,使轧管机轧制的钢管单一化,从而减少了管坯和芯棒规格数量。
如宝钢无缝钢管厂的Φ140mm连轧管机组用两种直径,不同壁厚的70个规格的荒管,张力减径后就生产出成品管460个规格。
张力轧制减径中,钢管中间部分的壁厚受到张力作用而被拉薄,头尾两端的壁厚由于受不到张力或受到的张力不同,出现增厚或由厚到薄的过夜壁厚。
因而必须切去钢管两端增厚和过渡壁厚部分的管端。
因此,张力减径机只能配置在能轧制长荒管的轧管机组中,以减少切头损失率。
但是张力减径机如果采用限制管端增厚的电控技术,管端增厚的长度可以减少约1/3。
三辊张力减径机传动有内、外传动两种方式,采用内传动结构居多。
内传动的张力减径机,每个机架内设置有两对圆锥齿轮,简化了机座的结构,但在一定程度上影响了机架间距的缩小。
外传动式是双位机座,机架间距小,承载轧制力大,管端增厚长度也减少。
最大减径率和最大减壁率是张力减径机的两个主要参数。
在最大减径率及其允许的最大减壁率的条件下,用最薄壁的荒管生产出壁厚最薄的钢管,一般称为该台张力减径机的极限规格。
张力减径机组的总对数减径量可达90%,单架对数减径量最髙达12%〜17%。
为提高减径管质量,单架对数减径量常被限制在7%〜9%范围内。
主要机架的单架对数减径量一般为6%〜12%。
张力减径机的进出口速度由生产能力决定。
目前张力减径机的出口速度可达18m/s,进口速度大多在1〜3m/s。
张力减径机的张力系数z的最大允许值一般在0.5〜0.84之间波动,轧制温度高时取下限。
张力减径机的动力学和运动学分析文章主要对三辊式张力减径机进行分析,主要分析张力减径机的动力学和运动学原理,通过对张力减径机的速度分析、转速分析和速度控制来分析张力减径机运动学特征,通过对张力减径机受力分析、张力减径机轧制压力和轧制扭矩动态特性分析。
张力减径机是现代化的生产机组,它的功能和优越性使其在大型无缝钢管生产中不可或缺。
随着我国钢管工业的发展张力减径机组正被广泛运用。
对三辊式张力减径机进行分析,该机组是90年代研制的,具有许多独特的优点。
以下分析张力减径机的运动学和动力学原理。
1.张力减径机的运动特性1.1.运动学特征在张力减径的过程中,要求各个机架的延伸系数和轧辊圆周协调一致,同时,决定连续轧机运行的基本条件要求通过每个机架的第二股金属流相等。
在所有的机架都充满金属而C不等于0的情况下,对于每对轧辊在任意瞬间都遵守秒流量、相等的原则,这种相等可通过轧辊和金属之间的滑移达到。
因此当C不等于0时,减径机任何一个机架中的变形条件发生变化,都会影响其余机架中的变形条件,但由于连轧过程本身存在着相适应,自相调整的过程,因此,即使在这种相互作用的复杂关系中,还原过程仍然可以在任何时刻保持第二个流相等。
但是当差别较大时,必然会造成严重的拉钢和推钢,轻者不能获得所需的钢管尺寸,重者连轧过程不能建立,甚至出现事故,因此较为准确的计算各机架转速是很重要的。
1.2.张力减径机的速度控制当轧管转速确定后,必须采用适当的方法进行测定以控制轧辊的速度。
无论拉伸减径机是单独驱动还是整体驱动,速度必须控制在一定水平内,以确保正确的张力。
2.张力减径机的动态分析2.1.张力减径过程中的外力分析张力减径实际上是无芯棒连轧。
符合圆孔型中轧管时的外作用力关系。
按力学原理,轧制工具对金属施加的外力主要是正压力(垂直于工具表面)以及相对运动而产生的摩擦力(垂直于正压力)。
考虑每个零件沿孔槽宽度的应力条件要复杂得多,不过还是两个力——正压力和摩擦力。
卷绕系统中的张力递减控制一、引言卷绕系统是工业生产中常用的一种工艺流程,其主要作用是将物料卷绕成一定形状和规格的产品。
在卷绕过程中,张力递减控制是非常重要的一个环节,它直接影响到产品质量和生产效率。
本文将从卷绕系统的原理、张力递减的原因、影响因素以及解决方法等方面进行探讨。
二、卷绕系统的原理卷绕系统主要由卷取装置、张力控制装置和放料装置三部分组成。
其中,张力控制装置是保证卷取材料张力恒定的关键。
在卷绕过程中,放料装置将材料送入到卷取装置中,通过加速器带动轴芯旋转,使得材料被缠绕在轴芯上,并且通过张力控制装置来保证材料张力始终保持在一个恒定值。
三、张力递减的原因1. 材料本身特性:不同类型的材料具有不同的拉伸特性和表面摩擦系数,在经过长时间拉伸后会出现弹性变形和塑性变形现象,导致材料表面摩擦系数变化,从而引起张力递减。
2. 张力控制装置的不稳定性:张力控制装置在长时间运行后可能会出现故障或者误差,导致材料张力递减。
3. 卷取装置的设计和状态:卷取装置的设计和状态会影响材料在卷取过程中的张力分布情况,如果设计不合理或者状态不良好,就会导致张力递减。
四、影响因素1. 材料类型:不同类型的材料具有不同的拉伸特性和表面摩擦系数,会对张力递减产生影响。
2. 卷绕速度:卷绕速度越快,材料受到的拉伸程度就越大,容易出现弹性变形和塑性变形现象,从而引起张力递减。
3. 卷取轴芯直径:卷取轴芯直径越大,材料受到的压缩程度就越小,在卷绕过程中容易出现松弛现象,从而引起张力递减。
4. 环境温度和湿度:环境温度和湿度会对材料表面摩擦系数产生影响,从而影响张力递减。
五、解决方法1. 优化卷取装置的设计和状态:通过改变卷取轴芯的直径、改进加速器的结构等方式来优化卷取装置的设计和状态,从而减少张力递减。
2. 优化张力控制装置:通过使用高精度传感器、控制算法等技术手段来提高张力控制装置的稳定性和精度,从而减少张力递减。
3. 控制卷绕速度:通过降低卷绕速度来减少材料受到的拉伸程度,从而减少张力递减。
包头钢铁职业技术学院学生毕业论文论文题目:张力减径的工艺原理及主要问题专业:冶金班级:冶金一班学生:李咏光指导教师:魏宁日期: 2010年3月31日目录摘要 (1)关键词 (1)引言 (1)1 张力减径机技术的发展 (1)2 张力减径机的作用 (1)2.1张力减径机的形式 (2)3 钢管定径、减径的工艺原理 (3)3.1 张力减径的优点、缺点 (3)3.2三辊定径、减径机减径与二辊定径减径机相比 (4)3.3张力径机的孔型 (5)3.4张力减径机与微张力减径机的不同 (8)3.5 管材热扩径方法 (8)4张力减径时管端偏厚的原因 (10)4.1影响张力减径机管端增厚的因素 (10)4.2影响管内多边形的因素 (11)结语 (11)参考文献 (12)张力减径机的工艺原理及主要问题摘要:简介了三辊定径机定径和减径的作用及形式,提出了定减径机工作时常出现的问题,进行了三辊定减径机和两辊定减径机的比较。
关键词:定减径机;壁厚;斜轧;张力引言:在无缝钢管生产的三大机组——穿孔机组、轧管机组、定减径机组中,人们一直十分关注轧管机的研究,先后开发出自动轧管机组、顶管机组、新型顶管机组(CPE)、三辊轧管机组、连轧管机组(包括浮动芯棒MM、限动芯棒MPM和半浮动芯棒连轧管机组等)、AccuRoll轧管机组、改进型三辊轧管机组。
但对于穿孔机组,仅在20世纪80年代初才提出菌式穿孔机。
而定减径机一直使用二辊式和三辊式,直到20世纪90年代初才提出三辊可调式定径机技术。
新型三辊可调式定径机技术是为满足现代钢管生产高效、优质、低耗的要求而开发的,它的开发成功也为无缝钢管的生产注入新的活力。
1张力减径机技术的发展张减工艺主要特点是边连续多机架二辊或三辊无芯棒纵轧,采用适当的孔型系使毛管外径减缩,通过机架系列中轧辊速比的调节获得预定的壁厚变化。
20世纪40年代无缝管机组被美国和西欧所用,这时的张减机都是二辊式,到了20世纪50年代,西德曼乃斯曼公司成功地奕用了三辊式张力减径机,从而代替了二辊式。
张力减径中产品缺陷及预防作者:武建兵来源:《科技创新与生产力》 2016年第4期武建兵(太原通泽重工有限公司,山西太原 030032)摘要:通过分析张力减径中产品青线形成、外径超差、管端增厚、鹅头弯、内六方等缺陷产生的原因,提出了预防或消除缺陷的相应措施。
关键词:减径机;青线;管端增厚;鹅头弯;内六方中图分类号:TG335 文献标志码:A DOI:10.3969/j.issn.1674-9146.2016.04.114收稿日期:2015-11-30;修回日期:2016-03-02作者简介:武建兵(1979-),男,山西平遥人,硕士,工程师,主要从事无缝钢管生产设备设计及生产工艺研究,E-mail:147362164@。
张力减径轧制作为无缝钢管生产的最后一道热轧工序,对产品质量的控制起着决定性作用。
无缝钢管的张力减径是一种不带芯棒的连续轧制过程,在轧制过程中,轧件受到轧辊的径向压力作用使外径、壁厚发生变化,轴向受到轧辊摩擦力作用,使壁厚发生改变,同时受到切向应力及以温度变化等各种因素作用。
由于其轧制过程的复杂性,因此容易引起许多种产品缺陷,其主要缺陷有青线、外径超差、内六方、管端增厚、鹅头弯等。
其中一些缺陷可以采用一定的措施消除,而另一些缺陷则可以加以控制或改善。
为此,笔者从理论与实践两方面就常见缺陷形成原因及预防措施做了简要分析。
1 青线形成原因及预防青线是指钢管表面沿长度方向有一条突起的直线。
青线产生的主要原因有:孔型设计时椭圆度过小、宽展量不合理,使钢管在轧制时金属过充满后被挤入辊缝,形成青线;轧辊沿轴向窜动,由于固定轧辊轴向移动的螺栓(或圆螺母)松动,使得轧辊可以沿轴向移动,造成辊面在辊缝处形成台阶,在钢管轧制时,形成青线。
为了预防青线出现,应根据生产现场情况,分析产生青线的原因。
首先检验每个机架轧辊是否在轴向窜动,如果有个别轧辊轴向窜动,则应维修轧辊机架,消除轧辊机架的窜动因素,随后重新修正孔型尺寸,进行轧制,最后检验产品是否合格。