第4章短路电流及其效应的计算
- 格式:ppt
- 大小:2.21 MB
- 文档页数:79
短路电流热效应公式短路电流热效应公式在电力系统中,电流会在电路中产生热量,尤其是在短路发生时。
短路电流热效应公式用于计算短路过程中的温升和热损耗。
以下是一些相关公式及其解释:短路电流的计算公式1.短路电流幅值公式:[Is = (Uk / Zk) * e^(jθ)](–Is: 短路电流的幅值–Uk: 额定电压–Zk: 短路阻抗的复数表示–θ: 短路电流的相位角该公式表示短路电流的幅值与额定电压Uk和短路阻抗Zk之间的关系。
2.短路电流的相位角公式:[θ = θk - φ](–θ: 短路电流的相位角–θk: 短路阻抗的相角–φ: 短路时电压与电流之间的相角差该公式表示短路电流的相位角与短路阻抗的相角和电压/电流相角差之间的关系。
短路电流热效应计算公式3.短路电流对应的温升公式:[ΔT = K * Is^2 * t](–ΔT: 电流对应的温升–K: 热损耗系数–Is: 短路电流的幅值–t: 短路持续时间该公式表示短路电流的幅值平方乘以短路持续时间与热损耗系数之间的关系。
4.短路电流对应的热损耗公式: [P_loss = K *Is^2](–P_loss: 短路电流对应的热损耗–K: 热损耗系数–Is: 短路电流的幅值该公式表示短路电流的幅值平方与热损耗系数之间的关系。
示例解释假设某电力系统的额定电压为1kV,短路阻抗为2 + j3Ω,短路电流相位角为30°,电压与电流相角差为20°,短路持续时间为秒。
根据短路电流幅值公式可得:Is = (Uk / Zk) * e^(jθ) = (1000 / (2 + j3)) * e^(j30°) = * e^(j30°)根据短路电流的相位角公式可得:θ = θk - φ = 30° - 20° = 10°根据短路电流对应的温升公式可得:ΔT = K * Is^2 * t = K * ()^2 *根据短路电流对应的热损耗公式可得: P_loss = K * Is^2 = K* ()^2以上是关于短路电流热效应的相关公式和一个示例解释。
国际电工委员会IEC标准出版号865第一版1986年短路电流效应计算水电部科技情报所标准化室1987.3国际电工委员会短路电流效应计算前言1)IEC有关技术问题的正式诀议或协议是由各技术委员会代表对这些问题特别关切的所有国家委员会提出的,它们尽可能地表达出对所涉及问题国际上的一致意见。
2)这些决议或协议以推荐标准的形式供国际上使用,并在此意义上为各国家委员会所接受。
3)为了促进国际上的统一,IEC希望所有国家委员会在其本国条件许可的范围内,采用IEC推荐标准内容作为他们的国家规则。
IEC推荐标准和相应的国家规则之间的任何分歧,应尽可能在国家规则中明确指出。
序本标准是由IEC第73“短路电流”技术委员会负责制订的。
本标准的内容以下表中两个文件为根据:关于投票的详细情况,可以在投票结果报告中查找。
短路电流的效应计算1.范围本标准为计算短路电流效应的标准化方法,共包括如下两部分:第一部分:硬导线和松弛导线的电磁效应第二部分:裸导线的热效应只适用于额定电压为72.5kV及以下的交流系统。
2.符号本标准使用的符号和所表示量值的单位如下表所示:2.1 第一部分--电磁效应使用的符号A 导线截面积mm2a 导线中心线间的距离mas 导线间的中心线距离ma1 导线间的中心线距离mb 与力的方向垂直的组合导线中分支导线的尺寸c 隔离片或固定无件的影响因数(见图3)d 在受力方向组合导线中分支导线的尺寸c 隔离惩或固定元件的影响因数(见图3)d 在受力方向组合导线中分支导线的尺寸N/mm2E 杨氏(young s)模量NF 短路时,两根平行长导线间的作用力NFd 短路过程中作用在硬导线支持件上的力(峰值)NFf 短路后,软导线受的张力NFm 主导线间的力NFm2 线间短路时,主导线之间的力NFm3 三相结称短路时,作用在中间心导线上的力NFs 组合导线中分支导线之间的力NFs1 软导线上的静态张力NF1 短路时软导线上的张力NFn 平行排列的软导线,短路电流对外侧导线在单位长度上产生的力N/m f 系统频率Hzfc 主导线的自然频率H/fe 基本频率H/gm 重力加速度的常规值m/s2Ik3 三相对称短路电流(r·m·s)kAip 短路电流峰值kAip2 线间短路时,短路电流峰值kAip3 三相对称短路时,短路电流峰值kAii2 导线中电流的瞬时值kAJ 导线截面的惯性矩cm3J 组合导线中分支导线截面的惯性矩cm4k 隔离片或固定件的数目(见图3)k6 导线中心距离的有效因数(见图1)L 导线支持件间的距离mL 隔离片或固定件间的距离mm 主导线每单位长度的质量kg/mms 组合导线中分支导线每单位长度的质量kg/mmz 两个支持件间的一个固定件或一个间隔片的总质量kgn 组合导线中的分支导线数q 塑性因数(见表Ⅲ)Rp0.2 屈服点N/mm2S 导线固端的合成弹性系数N/mmtn 三相自动重合时间的死区SVF 导张支持件上所受动态力与静态力之比(见图4)Vr 三相自动重合闸成功与不成功时的应力比(见图5) Vn 导线动应国和与静应力之比(见图4)V 组合导线中分支导线的动应力与静应力之比(见图4) Z 截面模量cm2Z 组合导线中分支导线的截面模量cm2a 支持件上的作用因数(见表Ⅱ)B 主导线应力因数(见表Ⅱ)v 自然频率测定因数(见表Ⅱ)k 峰值短路电流因数ξφψ软导线张力因数(见图6)σ主导线弯曲应力N/mm2σ组合导线中分支导线的弯曲应力N/mm2σ导线的总应力N/mm22.2 第二部分--热效应使用的符号Ik 稳态短路电流(r·m·s)kAIk 起始对称短路电流(r·m·s)kAIth 热等效短路电流(r·m·s)kAIk 重复短路时电流(r·m·s)kAIk 额定短时电流(r·m·s)kAm 直流分量的热效应因数(见7a)n 交流分量的热效应因数(见图7a)Sth 热等效短路电流密度(r·m·s)A/mm2Sthr 时间为一秒时的额定短时电流密度(r·m·s)A/mm2Tk 短路持续时间STki 重复短路时,每次短路的持续时间STkr 额定短时间Sθb 短路开始时,导线的温度℃θc 短路结束时,导线的温度℃3.常用术语的定义3.1 主导线通过一相中全部电流的单概括导线或由多根导线按一定方式布置的导线。
教学目标:掌握短路电流热效应和电动力效应的实用计算。
重点:短路电流的效应实用计算方法。
难点:短路电流的效应计算公式。
一、短路电流电动力效应1.电动力:载流导体在相邻载流导体产生的磁场中所受的电磁力。
当电力系统中发生三相短路后,导体流过冲击短路电流时必然会在导体之间产生最大的电动力。
2.电动力的危害:引起载流导体变形、绝缘子损坏,甚至于会造成新的短路故障。
3.两平行导体间最大的电动力载流导体之间电动力的大小,取决于通过导体电流的数值、导体的几何尺寸、形状以及各相安装的相对位置等多种因素。
(N)式中:i1 、i2—通过两根平行导体的电流瞬时最大值,A;L—平行导体长度,(m);ɑ—导体轴线间距离,(m);K f—形状系数。
形状系数K f:表明实际通过导体的电流并非全部集中在导体的轴线位置时,电流分布对电动力的影响。
实际工程中,三相母线采用圆截面导体时,当两相导体之间的距离足够大,形状系数K f取为1;对于矩形导体而言,当两导体之间的净距大于矩形母线的周长时,形状系数K f可取为1。
电动力的方向:两个载流导体中的电流方向相同时,其电动力为相互吸引;两个载流导体中的电流方向相反时,其电动力为相互排斥。
4.两相短路时平行导体间的最大电动力发生两相短路时,平行导体之间的最大电动力F(2)(N):(N)式中:—两相短路冲击电流,(A)。
5.三相短路时平行导体之间的最大电动力发生三相短路时,每相导体所承受的电动力等于该相导体与其它两相之间电动力的矢量和。
三相导体水平布置时,由于各相导体所通过的电流不同,所以边缘相与中间相所承受的电动力也不相同。
边缘相U相与中间相V相导体所承受的最大电动力、分别为:(N)(N)式中:—三相冲击短路电流,(A)。
发生三相短路后,母线为三相水平布置时中间相导体所承受的电动力最大。
计算三相短路时的最大电动力时,应按中间相导体所承受的电动力计算。
6.短路电流电动力效验当系统中同一处发生三相或两相短路时,短路处三相冲击短路电流与两相冲击短路电流之比为。
短路电流热效应的计算方法短路电流热效应可是个挺有趣又有点小复杂的事儿呢。
咱们先得知道短路电流热效应是啥。
简单说呀,就是当电路发生短路的时候,电流会突然变得很大,这么大的电流在短时间内会产生很多热量,这个热量的效应就是我们要研究的啦。
那怎么计算呢?这里面有个公式哦。
一般来说,短路电流热效应Q等于一个积分,就是从短路开始时刻到短路切除时刻,i²Rdt的积分。
这里的i就是短路电流,R呢就是电路的电阻,t就是时间啦。
不过这个公式看起来有点头疼,实际计算的时候,我们常常会做一些简化。
如果短路电流是个恒定的值,那计算就简单多啦。
就直接是Q = I²Rt,这里的I 就是短路电流的有效值。
就好像我们知道一个大力士(短路电流)一直在用力(电流通过电阻做功发热),那产生的热量就可以这么简单地算出来。
在实际的电力系统里呀,短路电流可不是一直不变的,它是随着时间变化的。
这个时候呢,我们就得分段来考虑啦。
比如说,在短路刚开始的瞬间,有个很大的冲击电流,这个冲击电流产生的热量在很短时间内就有个小爆发。
然后呢,随着时间推移,电流会慢慢稳定一点,我们就得按照不同阶段的电流值和对应的时间来分别计算热量,最后再把这些热量加起来。
还有哦,如果我们知道短路电流的一些参数,像它的周期分量和非周期分量,也能计算热效应。
周期分量产生的热量和非周期分量产生的热量都要算进去。
就像把两个小伙伴做的事儿(产生热量)都得统计起来一样。
计算短路电流热效应可重要啦。
因为这个热量如果太大,会对电路里的设备造成很大的损害,就像大火会烧坏东西一样。
所以呢,工程师们得好好计算这个热效应,这样才能选择合适的设备,让电路能够安全稳定地运行,就像给电路里的设备穿上合适的保护服,让它们不怕短路这个小怪兽啦。
概论短路电流的计算及效应(全文)【摘要】通过短路计算可知,供电系统发生短路时短路电流是相当大的,如此大的短路电流通过电器和导体一方面要产生很高的温度(即热效应),另一方面要产生很大的电动力(即电动效应),这两类短路效应对电器和导体的安全运行威胁很大,必须充分注意。
【关键词】短路电流;计算;效应变压器在运行时可能会处于单相接地短路、两相短路、两相接地短路或三相短路的运行状态。
变压器应能承受住各种短路状态下短路电流产生的动态力及热效应。
对系统来讲,应在极短时间内切断短路电流,包括重合闸在内,应使热效应限制在2s以内。
对大容量高电压变压器而言,应用快速保护,如用TPY或TPZ级暂态保护型电流互感器驱动断路器,快速切断短路电流。
《电力变压器》国家标准中将短路试验列为特殊试验,但此试验只考核短路电流的动稳定效应, 考核变压器能否承受住短路电流的头几个峰值电流产生的机械力的作用。
外施电压过零时短路电流第一个峰值最大,试验持续时间为0.25~0.5s,配电变压器为0.5s,大容量变压器为0.25s。
标准中不要求考核短路电流的热效应, 而是列出公式计算2s内绕组的平均温度。
对铜绕组而言, 短路电流流过2s后绕组平均温度不超过250e。
计算时,以变压器在温度为40e且在额定负载下连续运行作为起始条件,即短路开始时绕组起始温度为105e,理由将在本文叙述。
由于试验电源的限制,正在制定的IEC76-5标准,将规定一些条件,用计算方法验证大容量变压器的承受动稳定的能力。
一、短路电流的计算短路是电力系统中不可避免的故障。
在供电系统的设计和运行中,需要进行短路电流的计算,关要是因为:(1)选择电气设备和载流导体时,需用短路电流校验其动稳定性和热稳定性,以保证在发生可能的最大短路电流时不至于损坏;(2)选择和整定用于短路保护的继电保护装置时,需应用短路电流参数;(3)选择用于限制短路电流的设备时,也需进行短路电流计算。
短路计算中有关物理量一般采用以下单位:电流为“千安”(kA);电压为“千伏”(kv);路容量和断流容量为“兆伏安”(Mv?A);设备容量为“千瓦”(kw)或“千伏安”(kv?A);抗为“欧姆”(Ω)等。