随访生存分析的统计学基础
- 格式:pdf
- 大小:3.39 MB
- 文档页数:89
随访资料的⽣存分析对于需要长期观察的病例,如慢性病或恶性肿瘤,原有疗效指标如有效率、治愈率等就不适⽤,还需要考虑出现结局的时间长短。
⽣存分析(survival analysis)是将结局和出现时间结合起来分析的统计分析⽅法。
⽣存分析最常⽤的⽅法有乘积限法和寿命表法、⽣存率⽐较的log-rank检验和Wilcoxon检验以及Cox⽐例风险回归模型。
⽣存分析的基本概念研究⽣存时间需要通过随访完成,随访有两种形式:1. 从所有观察对象在同⼀时间接受统⼀处理后观察到事先规定的时间或⼀定数量观察对象出现特定结局为⽌2. 观察不同时间接受同⼀处理,然后观察到规定时间或⼀定数量出现特定结局(此状况更常见)。
终点事件(endpoint event):⼜称失效事件(failure event),是指研究对象发⽣的研究者关⼼的特定结局。
起始事件:研究对象⽣存特征的起始特征事件。
⽣存时间(survival time):两个有联系的起始事件和终点事件之间的时间。
为了得到准确的⽣存时间,必须明确规定起点事件和终点事件。
需要注意,虽然名词是“⽣存时间”,但事实上不⼀定是说⽣存,只要符合上⾯定义的任何时间段都可以叫⽣存时间。
⽣存时间需要恰当的测度单位(⼩时、⽇、⽉、年等),⼀般测度时间越⼩,准确性越⾼。
删失(censoring):也叫终检,是指没有观察到终点事件,⽆法得知确切⽣存时间。
包含删失数据称为不完全数据(incomplete data)。
右删失(right censoring):从时间轴上看,终点事件发⽣在最后⼀次随访时间的右⽅,真实⽣存时间只能⼤于这个时间。
产⽣右删失原因:1 随访对象失访2 随访结束仍未出现终点事件3 治疗措施改变⽣存率估计与⽣存曲线常⽤的两种⽅法:乘积限法(product-limit method),⽤于⼩样本未分组资料。
寿命表法(life table method),⽤于⼤样本分组资料。
乘积限法:也叫Kaplan-Meier法或K-M法,主要⽤于⼩样本,也可⽤于⼤样本。
五、其它30分(3~5道题目,每题6~10分)随访资料的生存分析:【06真题】九、某医生从 2002年 1月 1日起对某医院收治的 6名急性心肌梗塞病人进行跟踪观察,2002年 3月 25日结束观察,共 12周。
记录的资料如下:(5分)1、上述资料随访时间单位以(日)、(月)、(年)哪个较合适?为什么?2、判断上述随访时间哪些属截尾值?写出观察对象编号。
【05真题、04真题、03真题】四、16例某癌症病人在不同时期经随机化分配到A、B两治疗组,并继续进行随访至1974年5月 31日结束。
资料如下表:(8分)16例某种癌症病人随访资料病人号治疗组分组日期终止日期是否该病死亡截尾值1 A 68.05.12 68.05.30 Y2 B 70.10.18 71.04.16 Y3 B 69.02.12 70.11.06 Y4 A 72.01.30 74.05.31 仍存活5 A 73.11.11 74.01.02 Y6 B 68.03.12 73.03.30 车祸死亡7 A 69.01.06 69.01.04 Y8 A 69.02.08 70.02.08 迁出9 B 71.05.02 71.11.13 Y10 B 68.03.08 68.05.23 Y11 B 73.12.12 74.02.20 Y12 A 74.05.01 74.05.09 Y13 B 72.07.02 72.07.15 Y14 B 68.12.18 74.04.31 失访15 A 69.01.01 74.05.31 仍存活16 B 73.09.02 73.09.20 Y1.上述资料随访时间单位以(日)、(月)、(年)哪个较合适?为什么?2.判断上述随访时间哪些属截尾值,写出观察对象编号。
3.要比较A、B疗法对该种癌症病人的疗效,宜选用何种统计检验方法?4.A、B治疗组随访资料生存时间的特征量(代表值)一般用何指标表示?【答案】jszb0、本资料中,第7号观察对象数据,终止日期竟然早于分组日期,是典型的错误数据,应该排除。
第十七章 随访资料的生存分析一、教学大纲要求(一)掌握内容 1.生存分析基本概念生存时间、完全数据、截尾数据、死亡率、死亡概率、生存概率、生存率。
2.估计生存率的方法:Kaplan-Meier 法、寿命表法。
(二)熟悉内容1.生存曲线、半数生存期。
2.生存资料的基本要求。
3.两生存曲线的比较的对数秩检验。
(三)了解内容 Cox 回归模型。
二、教学内容精要(一)生存分析中的基本概念1.生存时间(survial time )指观察到的存活时间,如表11-1中t 分别为360,990,1400,1800天。
生存时间有两种类型:(1)完全数据(complete data )指从起点至死亡所经历的时间,即死者的存活时间,如表11-1中360,990,1800天。
(2)截尾数据(censored data )由于失访、改变防治方案、研究时间结束时事件尚未发生等情况,使得部分病人不能随访到底,称之为截尾。
从起点至截尾所经历的时间,称为截尾数据,如表11-1中1400天,习惯上记为1400+天。
表11-1 4例鼻咽癌随访记录患者序号性别 (男=1)处理组号开始日期 终止日期 结局 (死=1)存活天数 10 1 11/29/80 11/04/85 1 360 2 1 1 06/13/82 06/08/83 1 990 3 1 0 03/02/83 12/31/86 0 1400+ 4 008/04/8304/10/86118002.死亡概率与生存概率(1)死亡概率(mortality probability )指死于某时段内的可能性大小,记为q 。
年死亡概率的计算公式为q =某年年初观察例数某年内死亡数,若年内有截尾,则分母用校正人口数(校正人口数=年初人口数-21截尾例数)。
这里的死亡概率与通常所说的死亡率是有区别的,死亡率的分母常用年平均人口,反映过去一年的死亡频率(年平均水平),而死亡概率则用年初人口,表示往后的一年中死亡机会大小。
医学统计学临床随访研究及分析在医学领域中,统计学的应用日益重要。
特别是在临床随访研究中,统计学的分析对于了解疾病的发展、评估治疗效果以及制定预防措施至关重要。
本文将探讨医学统计学在临床随访研究中的应用以及相应的分析方法。
临床随访研究是一种通过追踪研究对象的状况和结果来观察疾病发展和治疗效果的方法。
这种研究对于确定病因、预测病程以及评估治疗效果非常有价值。
然而,由于研究对象的个体差异以及相关数据的复杂性,仅仅凭经验判断是远远不够的。
这时候,统计学的应用就显得尤为重要。
首先,对于临床随访研究中的数据,常见的统计学方法之一是描述性统计分析。
通过统计数据的均值、标准差、中位数等指标,可以全面了解研究对象的基本情况。
例如,在一项关于某种药物治疗效果的研究中,可以通过描述性统计分析来计算出平均改善率以及患者群体中的变异程度。
然而,仅凭描述性统计分析无法提供深入的认识。
这时候,我们需要运用推断统计学的方法。
推断统计学通过对样本数据的分析来推断总体的特征。
在临床随访研究中,样本数据常常存在一定的偏差,例如,样本量可能较小或者样本对象并不完全代表整个患者群体。
因此,推断统计学的应用可以帮助我们更准确地推断总体的特征。
在推断统计学中,假设检验和置信区间是常用的方法。
假设检验通过对样本数据的比较,判断总体参数是否具有显著差异。
例如,在一项关于两种治疗方法效果比较的研究中,可以利用假设检验来判断两种方法是否存在显著的差异。
而置信区间则是通过对样本数据的范围估计,提供总体参数的区间估计值。
例如,在一项关于某种疾病发病率的研究中,可以利用置信区间来估计总体发病率的范围。
除了假设检验和置信区间,回归分析也是临床随访研究中常用的统计学方法之一。
回归分析可以帮助我们了解不同因素对结果变量的影响程度,并建立预测模型。
例如,在一项关于危险因素与疾病发展的研究中,可以利用回归分析来确定各个危险因素的权重,从而建立预测模型。
此外,在临床随访研究中,生存分析也是重要的统计学方法之一。
生存分析基础知识生存分析是一种统计学方法,用于研究个体在一定时间内生存或发生某事件的概率。
在医学、生物学、工程学等领域都有广泛的应用。
本文将介绍生存分析的基础知识,包括生存函数、生存曲线、危险函数等概念,帮助读者更好地理解和应用生存分析方法。
### 1. 生存函数生存函数(Survival Function)是生存分析中的重要概念,通常用S(t)表示。
生存函数描述了一个个体在时间t内存活下来的概率,即在时间t内不发生事件(比如死亡、故障等)的概率。
生存函数的取值范围是0到1,随着时间的增加逐渐减小。
### 2. 生存曲线生存曲线(Survival Curve)是生存函数的图形表示,横轴表示时间,纵轴表示生存概率。
生存曲线通常是一个递减的曲线,随着时间的增加,生存概率逐渐降低。
生存曲线的形状可以反映出不同群体或不同因素对生存时间的影响。
### 3. 生存率生存率(Survival Rate)是生存函数的导数,表示在某一时刻存活下来的概率。
生存率可以用来比较不同群体或不同处理方式对生存时间的影响。
生存率的计算通常使用生存函数来推导得到。
### 4. 危险函数危险函数(Hazard Function)是生存分析中另一个重要的概念,通常用λ(t)表示。
危险函数描述了在给定时间t内发生事件的概率密度,即在时间t到t+Δt内发生事件的概率与Δt的比值。
危险函数的倒数称为平均寿命函数。
### 5. 生存分析方法生存分析常用的方法包括Kaplan-Meier方法、Cox比例风险模型等。
Kaplan-Meier方法用于估计生存函数,适用于右偏分布的生存数据。
Cox比例风险模型用于探讨影响生存时间的因素,可以同时考虑多个危险因素对生存时间的影响。
### 6. 应用领域生存分析在临床医学中常用于评估治疗效果、预测患者生存时间等。
在生物学领域,生存分析可用于研究生物体的寿命、疾病发生率等。
在工程学中,生存分析可用于评估设备的可靠性、寿命分布等。
生存分析入门及其应用领域生存分析是统计学中一种重要的分析方法,用于研究个体在特定时间内生存或发生某种事件的概率。
生存分析主要关注个体的生存时间或事件发生时间与其相关因素之间的关系,是一种强大的工具,被广泛应用于医学、生物学、工程、经济学等领域。
本文将介绍生存分析的基本概念、常用方法以及在不同领域的应用。
一、生存分析基本概念生存分析的基本概念包括生存时间、生存函数、生存率、危险函数等。
生存时间是指个体从特定起始点到达终点的时间间隔,可以是任意非负实数。
生存函数(Survival Function)是描述个体在给定时间内存活下来的概率,通常用S(t)表示,其中t为时间。
生存率(Hazard Rate)是在给定时间t内个体发生事件的概率密度函数,通常用λ(t)表示。
危险函数(Hazard Function)是在给定时间t前个体发生事件的危险率,通常用h(t)表示。
二、生存分析常用方法1. Kaplan-Meier方法:Kaplan-Meier方法是生存分析中最常用的非参数方法,用于估计生存函数。
该方法考虑了个体在不同时间点的生存状态,通过累积生存率的乘积来估计整体生存函数。
2. Cox比例风险模型:Cox比例风险模型是生存分析中常用的半参数方法,用于研究生存时间与危险因素之间的关系。
该模型假设危险函数是一个基础风险函数与危险因素的乘积,通过估计危险比来评估不同因素对生存时间的影响。
3. 生存树方法:生存树是一种结合决策树和生存分析的方法,用于识别影响生存时间的关键因素。
通过构建生存树,可以直观地展示不同因素对生存时间的影响程度,帮助研究者进行决策和预测。
三、生存分析在医学领域的应用在医学领域,生存分析被广泛应用于疾病预后评估、药物疗效评价、临床试验设计等方面。
通过生存分析,医生可以评估患者的生存时间和生存率,制定个性化的治疗方案;药物研发者可以评估新药的疗效和安全性,指导临床试验的设计和分析。
四、生存分析在生物学领域的应用在生物学领域,生存分析常用于研究动植物的寿命、繁殖周期、环境适应性等生存特征。