自动循迹小车
- 格式:doc
- 大小:1.21 MB
- 文档页数:17
智能循迹小车的引言概述智能循迹小车是近年来兴起的一种智能机器人,它能够通过内置的传感器和程序,自动识别和跟踪预定的路径。
这种小车使用了先进的计算机视觉技术和控制算法,能够在各种环境中准确地进行循迹。
智能循迹小车在许多领域中都得到了广泛的应用,包括工业自动化、物流运输、仓储管理等。
本文将对智能循迹小车的原理、技术和应用进行详细阐述。
智能循迹小车的原理和技术1. 传感器技术a. 摄像头传感器:通过摄像头传感器,智能循迹小车可以捕捉环境中的图像,并进行图像处理和识别。
b. 距离传感器:距离传感器可以帮助智能循迹小车感知周围环境中的障碍物,并避免碰撞。
c. 地盘传感器:地盘传感器用于检测小车在路径上的位置和姿态,以便进行准确的定位和导航。
2. 计算机视觉技术a. 特征提取:通过计算机视觉技术,智能循迹小车可以从摄像头捕捉的图像中提取关键特征,例如路径轮廓、颜色等。
b. 物体识别:利用深度学习算法,智能循迹小车可以识别环境中的物体,例如道路标志和交通信号灯,以便做出相应的反应。
c. 路径规划:根据图像处理和物体识别的结果,智能循迹小车可以计算出最优的路径规划,以达到快速而安全地循迹的目的。
3. 控制算法a. PID控制算法:智能循迹小车使用PID控制算法来实现精确的速度和方向控制,以便按照预定的路径进行循迹。
b. 路径校正算法:当智能循迹小车发现偏离路径时,会通过路径校正算法对速度和方向进行调整,以便重新回到预定的路径上。
智能循迹小车的应用1. 工业自动化a. 生产线物料运输:智能循迹小车可以自动将物料从一个地点运输到另一个地点,减少人力成本和提高生产效率。
b. 仓储管理:智能循迹小车可以在仓库中自动识别货物并进行搬运和分拣,提升仓储管理的效率和精确度。
2. 物流运输a. 快递配送:智能循迹小车可以在城市道路上按照预定的路径进行循迹,实现快递的自动配送和准时派送。
b. 高速公路货物运输:智能循迹小车可以在高速公路上准确无误地进行循迹,减少人为驾驶过程中的车祸风险。
循迹小车原理
循迹小车是一种能够根据指定轨迹行驶的智能小车,它可以根据预先设计的路
线进行自主行驶,是现代智能科技在机器人领域的一种应用。
循迹小车的原理主要包括传感器感知、控制系统和执行系统三个方面,下面我们将逐一介绍。
首先,循迹小车的传感器感知是其实现自主行驶的关键。
传感器可以获取小车
周围环境的信息,如地面颜色、光线强度等。
通过对这些信息的感知和分析,循迹小车可以确定自己当前的位置和方向,并且判断前方的路况,从而做出相应的行驶决策。
常见的循迹传感器包括红外线传感器、光电传感器等,它们可以有效地感知地面的黑线或者其他指定的标志,从而实现沿着指定轨迹行驶的功能。
其次,循迹小车的控制系统起着至关重要的作用。
控制系统是循迹小车的大脑,它接收传感器传来的信息,进行数据处理和分析,并做出相应的控制指令,以控制小车的行驶方向和速度。
控制系统通常由单片机或者其他嵌入式系统构成,它们能够根据预先设计的算法,实现对小车的精准控制,从而使小车能够按照指定的轨迹行驶。
最后,循迹小车的执行系统是实现控制指令的具体执行者。
执行系统通常包括
电机、轮子等部件,它们能够根据控制系统发出的指令,实现小车的转向、前进、后退等动作。
通过执行系统的协调配合,循迹小车可以按照预先设计的轨迹自主行驶,完成各种任务。
总的来说,循迹小车的原理是基于传感器感知、控制系统和执行系统的协同作用,实现对小车行驶的精准控制。
在实际应用中,循迹小车可以用于仓库自动化、智能导航、无人巡检等领域,为人们的生产和生活带来便利。
随着科技的不断发展,循迹小车的原理和技术也在不断完善和创新,相信它将会有更广泛的应用前景。
循迹小车原理循迹小车是一种能够根据预设的轨迹行驶的智能小车,它可以通过感知环境、控制方向和速度来实现自动导航。
循迹小车原理主要包括传感器感知、控制系统和执行机构三个部分。
首先,循迹小车通过搭载在车身上的传感器来感知周围环境。
这些传感器通常包括红外线传感器、光电传感器等,它们能够检测地面上的标志线或者其他特定的标识物,从而确定小车的行驶方向。
通过不断地对环境进行感知和分析,循迹小车能够及时地调整自己的行驶轨迹,保持在预设的路径上行驶。
其次,循迹小车的控制系统起着至关重要的作用。
当传感器检测到环境发生变化时,控制系统会根据预设的算法和逻辑进行数据处理和决策,然后通过执行机构来控制车轮转向和速度。
控制系统的设计和算法的优化直接影响着循迹小车的行驶稳定性和精确度。
一个高效的控制系统能够使循迹小车更加智能化和灵活,从而提高其在复杂环境下的适应能力。
最后,执行机构是循迹小车原理中的另一个关键部分。
它通常由电机、舵机等组成,能够根据控制系统的指令来实现车轮的转向和速度调节。
执行机构的性能直接影响着循迹小车的实际行驶效果,包括转向灵活度、速度响应等方面。
因此,对执行机构的选型和优化也是循迹小车设计中需要重点考虑的问题。
总的来说,循迹小车原理涉及传感器感知、控制系统和执行机构三个方面,它们共同作用才能实现循迹小车的自动导航功能。
只有在这三个方面都得到合理的设计和优化,循迹小车才能够稳定、精准地行驶在预设的轨迹上。
希望通过对循迹小车原理的深入理解,能够为循迹小车的设计和应用提供一定的参考和帮助。
目录目录 0摘要: (1)1.任务及要求 (2)1.1任务 (2)2.系统设计方案 (2)2.1小车循迹原理 (2)2.2控制系统总体设计 (2)3.系统方案 (3)3.1 寻迹传感器模块 (3)3.1.1红外传感器ST188简介 (3)3.1.2比较器LM324简介 (4)3.1.3具体电路 (4)3.1.4传感器安装 (5)3.2控制器模块 (5)3.3电源模块 (6)3.4电机及驱动模块 (7)3.4.1电机 (7)3.4.2驱动 (7)3.5自动循迹小车总体设计 (8)3.5.1总体电路图 (8)3.5.2系统总体说明 (10)4.软件设计 (10)4.1 PWM控制 (10)4.2 总体软件流程图 (11)4.3小车循迹流程图 (11)4.4中断程序流程图 (12)4.5单片机测序 (13)5.参考资料 (16)自动循迹小车摘要:本设计是一种基于单片机控制的简易自动寻迹小车系统,包括小车系统构成软硬件设计方法。
小车以AT89C51 为控制核心, 用单片机产生PWM波,控制小车速度。
利用红外光电传感器对路面黑色轨迹进行检测,并将路面检测信号反馈给单片机。
单片机对采集到的信号予以分析判断,及时控制驱动电机以调整小车转向,从而使小车能够沿着黑色轨迹自动行驶,实现小车自动寻迹的目的。
关键词:单片机AT89C51 光电传感器直流电机自动循迹小车Abstract :This design is a Simple Design of a smart auto-tracking vehicle which based on MSC control.The construction of the car ,and methods of hardware and software design are included. The car use AT89C51 as heart of centrol in this system. Then using PWM waves Produced by MCU to control car speed. By using infraraed sensor to detect the information of black track. The smart vehicle acquires the information and sends t hem to the MSC.Then the MSC analyzes the signals and controls the movements of t he motors. Which make the smart vehicle move along the given black line antomaticly.Keywords :infrared sensor ;MSC ;auto-tracking1.任务及要求1.1任务设计一个基于直流电机的自动寻迹小车,使小车能够自动检测地面黑色轨迹,并沿着黑色车轨迹行驶。
大学生电子设计竞赛自动循迹小车目录摘要 (1)1.方案论证 (2)1.1方案描述 (2)1.2单片机方案的比较与论证 (2)1.3编码器选择与论证 (2)1.4 LDC1000与LDC1314选择与论证 (3)1.5 OLED显示方案 (3)1.6蜂鸣器发声方案 (3)2.理论分析与计算 (3)2.1速度增量式PID计算 (3)2.2舵机位置式PID算法 (3)3.电路与程序设计 (4)3.1系统组成 (4)3.2系统流程图 (5)4.测试方案与测试结果 (5)4.1测试方案 (5)4.1.1舵机测试方案 (6)4.1.2电机测试方案 (6)4.2系统测试结果分析 (6)5.结论 (6)6.参考文献 (7)摘要本循迹小车以单片机XS128为控制核心,主要由LDC1314感应模块、稳压模块、液晶显示模块、驱动控制模块、蜂鸣器模块、编码器、舵机以及小车组成。
跑道的标识为一根直径0.6~0.9mm的细铁丝,小车在规定的平面跑道自动按顺时针方向循迹前进。
在任意直线段铁丝上放置4个直径约19mm的镀镍钢芯硬币(第五套人民币的1角硬币),硬币边缘紧贴铁丝。
实验结果表明,在直线区任意指定一起点(终点),小车都能够依据跑道上设置的铁丝标识,能够自动绕跑道跑完一圈,而且时间不超过10分钟,小车运行时始终保持轨迹铁丝位于小车垂直投影之下,小车路过硬币时能够发现并发出声音提示,显示屏上能够实时显示小车行驶的距离和运行时间。
关键词:自动循迹 LDC1314 实时显示自动循迹小车1.方案论证1.1方案描述自动循迹小车依据电磁感应原理,由单片机XS128控制,控制系统是由XS128控制模块、LDC1314感应模块、稳压模块、液晶显示模块、驱动控制模块、蜂鸣器模块、编码器、舵机以及电动小车组成的闭环控制系统。
LDC1314感应模块采集小车在跑道上位置与角度信息,利用XS128单片机处理位置与角度数据后调节舵机打角并通过PID精确算法调整后轮速度。
循迹小车的原理循迹小车是一种基于传感器的智能机器人,它能够自动地在预设的路径上行驶,并根据环境的变化进行自我调整。
循迹小车的原理主要涉及到传感器、控制电路和电机三个方面。
首先,循迹小车依靠传感器来感知环境的变化,其中最常用的传感器是红外线传感器。
红外线传感器主要由发射器和接收器组成,其中发射器发射红外线信号,接收器接收反射回来的红外线信号。
当循迹小车在行驶过程中,传感器能够感知到路径上的黑线或者其他颜色差异,然后将这些信号转化为电信号,传递给控制电路。
其次,控制电路是循迹小车的核心部分,它根据传感器接收到的信号,进行相应的逻辑判断和处理,来控制电机的运动。
控制电路一般由集成电路组成,可以通过编程或者硬连线的方式来实现逻辑控制。
当传感器感知到黑线时,控制电路会判断是否需要转弯,根据不同的判断结果,向电机提供不同的控制信号,控制电机的转向和速度。
这样循迹小车就可以根据黑线的走向,做出适当的转弯和速度调整,从而沿着预设的路径行驶。
第三,电机是循迹小车的动力源,它负责驱动车轮的转动。
一般来说,循迹小车采用两个驱动轮,每个驱动轮都有一个电机来驱动。
电机接收控制电路输出的控制信号,根据信号的不同进行相应的运转,从而驱动车轮转动。
当循迹小车需要转弯时,控制电路会向电机提供不同的信号,使得其中一个电机停止或者反向运转,从而实现转弯动作。
通过控制电路对电机的控制,循迹小车可以根据需要改变行进速度和转弯半径,以实现在预设路径上的准确行驶。
综上所述,循迹小车的原理主要包括传感器的感知、控制电路的处理和电机的运转。
通过传感器感知路径上的黑线或其他有色标记,控制电路进行逻辑判断和处理,再通过控制信号控制电机的运动,循迹小车就可以自动地在预设的路径上行驶。
循迹小车的原理简单实用,可以通过调整控制电路和传感器的设置,实现不同场景下的行驶需求,因此在教育、娱乐和实验等领域都有广泛的应用。
循迹小车原理
循迹小车是一种智能机器人,通过感应地面上的黑线来实现自主导航。
它具有一组红外线传感器,安装在车体底部。
这些传感器能够感知地面上的线路情况,判断车子应该如何行驶。
循迹小车的工作原理是基于光电传感技术。
当小车上的传感器感受到黑线时,光电传感器就会产生信号。
这些信号通过控制系统进行处理,确定小车的行驶方向。
如果传感器感受到较亮的地面,即没有黑线的区域,控制系统会判断小车偏离了轨迹,并做出相应的调整。
为了确保精确的导航,循迹小车的传感器通常安装在车体的前部和底部,使其能够更好地感知地面上的线路。
此外,传感器之间的距离也很重要,它们应该能够覆盖整个车体宽度,以确保车子能够准确地行驶在黑线上。
循迹小车的控制系统通过对传感器信号的分析来判断车子的行驶方向。
当传感器感知到线路时,控制系统会发出信号,控制电机转动,使车子朝着正确的方向行驶。
如果传感器感知不到线路,或者线路出现了间断,控制系统会做出相应的调整,使车子重新找到正确的线路。
循迹小车是一种简单而有效的机器人,它在许多领域都有广泛的应用。
例如,它可以用于仓库自动化,实现货物的自动运输;也可以用于工业生产线,实现物品的自动装配。
总的来说,循迹小车通过光电传感技术,能够自主导航,实现精确的线路行驶。
自动循迹小车毕业设计毕业设计:自动循迹小车摘要:本毕业设计致力于设计和制作一种自动循迹小车。
该小车能够在给定的路径上自动行驶,并根据环境中的线路进行循迹操作。
设计方案基于Arduino控制器和红外传感器实现,小车能够感知到路径上的线路,并据此进行正确的行驶操作。
此外,设计还包括电机驱动,电源供应和用户界面等功能模块。
实验结果表明,该自动循迹小车能够高效准确地行驶在指定的路径上。
关键词:1.引言2.设计原理自动循迹小车的设计方案基于Arduino控制器和红外传感器。
红外传感器能够感知到路径上的线路,从而确定小车的行驶方向。
Arduino控制器能够接收传感器的数据并根据预先编写的程序进行控制操作,例如调整电机速度和方向等。
整个设计系统的模块主要包括传感器模块,控制器模块,电机驱动模块和电源供应模块。
3.系统设计3.1传感器模块本设计中使用红外传感器来感知路径上的线路。
传感器模块负责采集红外传感器的数据,并将其传输给控制器模块进行处理。
3.2控制器模块控制器模块由Arduino控制器组成。
它通过连接传感器模块和电机驱动模块来接收传感器数据,并根据编写的程序进行控制操作。
控制器模块具有高度灵活性和可编程性,使得小车能够按照预先设定的规则行驶。
3.3电机驱动模块电机驱动模块负责控制小车的速度和方向。
根据传感器数据,控制器模块会发送相应的指令给电机驱动模块,以控制小车的行驶。
3.4电源供应模块电源供应模块为整个系统提供所需的电力。
它负责将来自电池或电源适配器的直流电源转换为小车所需的电压和电流。
4.实验结果和讨论通过设置合适的传感器感应距离,测试了自动循迹小车在给定路径上的行驶性能。
实验结果表明,该小车能够稳定地沿着给定的路径行驶,并根据环境中的线路进行循迹操作。
5.结论本毕业设计成功地设计和制作了一种自动循迹小车。
该小车能够准确地沿着给定的路径行驶,并根据环境中的线路进行循迹操作。
通过这个设计,我们可以更深入地理解自动控制和传感器应用的原理和实践。
智能循迹小车随着科技的飞速发展,无人驾驶技术逐渐成为现代交通领域的重要组成部分。
其中,智能循迹小车作为一种先进的无人驾驶车辆,具有广泛的应用前景。
本文将介绍智能循迹小车的基本原理、系统构成、设计方法以及应用场景。
智能循迹小车通过传感器感知周围环境,包括道路标志、其他车辆、行人等信息,再通过控制系统对感知到的信息进行处理和分析,制定出相应的行驶策略,最终控制车辆的行驶。
其中,循迹小车通过特定的传感器识别道路标志,并沿着标志所指示的路径行驶,实现自动循迹。
传感器系统:用于感知周围环境,包括道路标志、其他车辆、行人等信息。
常见的传感器包括激光雷达、摄像头、超声波等。
控制系统:对传感器感知到的信息进行处理和分析,制定出相应的行驶策略,并控制车辆的行驶。
常用的控制系统包括基于规则的控制、模糊控制、神经网络等。
执行机构:根据控制系统的指令,控制车辆的行驶速度、方向等。
常见的执行机构包括电机、舵机等。
电源系统:提供电力支持,保证小车的正常运行。
常用的电源包括锂电池、超级电容器等。
硬件设计:根据需求选择合适的传感器、控制系统、执行机构和电源等硬件设备,并对其进行集成设计,保证各个设备之间的兼容性和稳定性。
软件设计:编写控制系统的程序,实现对车辆的控制。
常用的编程语言包括C++、Python等。
在软件设计中需要考虑如何处理传感器感知到的信息,如何制定行驶策略,以及如何控制执行机构等方面的问题。
调试与优化:通过实验测试小车的性能,发现问题并进行优化。
常见的调试和优化方法包括调整控制系统的参数、更换硬件设备等。
智能循迹小车具有广泛的应用前景,主要包括以下几个方面:交通管理:用于交通巡逻、交通管制等,提高交通管理效率。
应急救援:在灾难现场进行物资运输、人员疏散等任务,提高应急救援效率。
自动驾驶:作为无人驾驶车辆的样机进行研究和发展,推动自动驾驶技术的进步。
教育科研:用于高校和研究机构的科研项目,以及学生的实践和创新项目。
目录目录 0摘要: (1)1.任务及要求 (2)1.1任务 (2)2.系统设计方案 (2)2.1小车循迹原理 (2)2.2控制系统总体设计 (2)3.系统方案 (3)3.1 寻迹传感器模块 (3)3.1.1红外传感器ST188简介 (3)3.1.2比较器LM324简介 (4)3.1.3具体电路 (4)3.1.4传感器安装 (5)3.2控制器模块 (5)3.3电源模块 (6)3.4电机及驱动模块 (7)3.4.1电机 (7)3.4.2驱动 (7)3.5自动循迹小车总体设计 (8)3.5.1总体电路图 (8)3.5.2系统总体说明 (10)4.软件设计 (10)4.1 PWM控制 (10)4.2 总体软件流程图 (11)4.3小车循迹流程图 (11)4.4中断程序流程图 (12)4.5单片机测序 (13)5.参考资料 (16)自动循迹小车摘要:本设计是一种基于单片机控制的简易自动寻迹小车系统,包括小车系统构成软硬件设计方法。
小车以AT89C51 为控制核心, 用单片机产生PWM波,控制小车速度。
利用红外光电传感器对路面黑色轨迹进行检测,并将路面检测信号反馈给单片机。
单片机对采集到的信号予以分析判断,及时控制驱动电机以调整小车转向,从而使小车能够沿着黑色轨迹自动行驶,实现小车自动寻迹的目的。
关键词:单片机AT89C51 光电传感器直流电机自动循迹小车Abstract :This design is a Simple Design of a smart auto-tracking vehicle which based on MSC control.The construction of the car ,and methods of hardware and software design are included. The car use AT89C51 as heart of centrol in this system. Then using PWM waves Produced by MCU to control car speed. By using infraraed sensor to detect the information of black track. The smart vehicle acquires the information and sends t hem to the MSC.Then the MSC analyzes the signals and controls the movements of t he motors. Which make the smart vehicle move along the given black line antomaticly.Keywords :infrared sensor ;MSC ;auto-tracking1.任务及要求1.1任务设计一个基于直流电机的自动寻迹小车,使小车能够自动检测地面黑色轨迹,并沿着黑色车轨迹行驶。
系统方案方框图如图1-1所示。
图1-1 系统方案方框图2.系统设计方案2.1小车循迹原理这里的循迹是指小车在白色地板上循黑线行走,由于黑线和白色地板对光线的反射系数不同,可以根据接收到的反射光的强弱来判断“道路”。
通常采取的方法是红外探测法。
红外探测法,即利用红外线在不同颜色的物体表面具有不同的反射性质的特点,在小车行驶过程中不断地向地面发射红外光,当红外光遇到白色纸质地板时发生漫反射,反射光被装在小车上的接收管接收;如果遇到黑线则红外光被吸收,小车上的接收管接收不到红外光。
单片机就是否收到反射回来的红外光为依据来确定黑线的位置和小车的行走路线。
红外探测器探测距离有限,2.2控制系统总体设计自动循迹小车控制系统由主控制电路模块、稳压电源模块、红外检测模块、电机及驱动模块等部分组成,控制系统的结构框图如图2-1 所示。
1、主控制电路模块:用AT89C51单片机、复位电路,时钟电路2、红外检测模块:光电传感器ST188,比较器LM3243、电机及驱动模块:电机驱动芯片L298N、两个直流电机4、电源模块:双路开关电源3.系统方案3.1 寻迹传感器模块ST系列反射式光电传感器是经常使用的传感器。
这个系列的传感器种类齐全、价格便宜、体积小、使用方便、质量可靠、用途广泛。
我们采用ST188作为红外检测传感器。
在黑线检测的测试中,若检测到白色区域,发射管发射的红外线没有反射到接收管,测量接收管的电压为4.8V ,若检测到黑色区域,接收管接受到发射管发射的红外线,电阻发生变化,所分得的电压也就随之发生变化,测的接收管的电压为0.5V,测试基本满足要求。
判断有无黑线我们用的一块比较器LM324,比较基准电压由30K的变阻器调节,各个接收管的参数都不一致,每个传感器的比较基准电压也不尽相同,我们为每个传感器配备了一个变阻器。
3.1.1红外传感器ST188简介含一个反射模块(发光二极管)和一个接收模块(光敏三极管)。
通过发射红外信号,看接收信号变化判断检测物体状态的变化。
A、K之间接发光二极管,C、E之间接光敏三极管(二者在电路中均正接,但要串联一定阻值的电阻)图 3-1 ST188实物图图 3-2 ST188管脚图及内部电路3.1.2比较器LM324简介LM324为四运放集成电路,采用14脚双列直插塑料封装。
内部有四个运算放大器,有相位补偿电路。
电路功耗很小,工作电压范围宽,可用正电源3~30V,或正负双电源±1.5V~±15V工作。
在黑线检测电路中用来确定红外接收信号电平的高低,以电平高低判定黑线有无。
在电路中,LM324的一个输入端需接滑动变阻器,通过改变滑动变阻器的阻值来提供合适的比较电压。
图 3-3 LM324内部电路图 3-4 集成运放的管脚图3.1.3具体电路通过ST188检测黑线,输出接收到的信号给LM324 ,接收电压与比较电压比较后,输出信号变为高低电平,再输入到单片机中,用以判定是否检测到黑线。
图3-5 传感器模块电路图3.1.4传感器安装在小车具体的循迹行走过程中,为了能精确测定黑线位置并确定小车行走的方向,需要同时在底盘装设4个红外探测头,进行两级方向纠正控制,提高其循迹的可靠性。
这4个红外探头的具体位置如图3-6所示。
图3-6 传感器安装图图中循迹传感器全部在一条直线上。
其中X1与Y1为第一级方向控制传感器,X2与Y2为第二级方向控制传感器,并且黑线同一边的两个传感器之间的宽度不得大于黑线的宽度。
小车前进时,始终保持(如图3-6中所示的行走轨迹黑线)在X1和Y1这两个第一级传感器之间,当小车偏离黑线时,第一级传感器就能检测到黑线,把检测的信号送给小车的处理、控制系统,控制系统发出信号对小车轨迹予以纠正。
若小车回到了轨道上,即4个探测器都只检测到白纸,则小车会继续行走;若小车由于惯性过大依旧偏离轨道,越出了第一级两个探测器的探测范围,这时第二级探测器动作,再次对小车的运动进行纠正,使之回到正确轨道上去。
可以看出,第二级方向探测器实际是第一级的后备保护,从而提高了小车循迹的可靠性。
3.2控制器模块采用Atmel 公司的AT89C51 单片机作为主控制器。
它是一个低功耗,高性能的8 位单片机,片内含32k 空间的可反复擦写100,000 次Flash 只读存储器,具有4K 的随机存取数据存储器(RAM),32 个I/O口,2个8位可编程定时计数器,且可在线编程、调试,方便地实现程序的下载与整机的调试。
时钟电路和复位电路如图3-7(与单片机构成最小系统)1)采用外部时钟,晶振频率为12MHZ2)采用按键复位图3-7 时钟电路和复位电路3.3电源模块电源采用双路开关电源。
明伟牌D-30W双路开关电源。
输出(5V、12V)。
实物图如图3-8所示。
图3-8双路开关电源该开关电源尺寸为129X98X38mm,交流输入转换由开关选择,具有过流短路保护功能,能自冷散热。
低价位、高可靠。
输入电压范围----85~132VAC/175~264VAC,47~63Hz开关选择;冲击电流----冷起动电流15A/115V 30A/230V;直流电压可调范围----额定输出电压的10%;启动、上升、保持时间----200ms,100ms,30ms;耐压性---输入输出间;输入与外壳1.5KVAC,输出与外壳,0.5KVAC,历时一分钟;工作温度、湿度---- -10℃~+60℃,20%~90%RH;安全标准----符合CE标准;EMC标准----符合CE标准;连接方法----7位9.5mm接线端子;质量/包装----0.41Kg,45PCS/19.5Kg/1.2CUFT3.4电机及驱动模块3.4.1电机电机采用直流减速电机,直流减速电机转动力矩大,体积小,重量轻,装配简单,使用方便。
由于其内部由高速电动机提供原始动力,带动变速(减速)齿轮组,可以产生较大扭力。
可选用减速比为1:74 的直流电机,减速后电机的转速为100r/min。
若车轮直径为6cm,则小车的最大速度可以达到V=2πr·v=2*3.14*0.03*100/60=0.314m/s能够较好的满足系统的要求。
3.4.2驱动驱动模块采用专用芯片L298N 作为电机驱动芯片,L298N 是一个具有高电压大电流的全桥驱动芯片,其响应频率高,一片L298N可以分别控制两个直流电机。
以下为L298N的引脚图和输入输出关系表。
图3-9 L298N外部引脚表2 L298N输入输出关系驱动电路的设计如图3-10 所示:图3-10 L298N电机驱动电路L298N 的5、7、10、12 四个引脚接到单片机上,通过对单片机的编程就可实现两个直流电机的PWM调速控制。
3.5自动循迹小车总体设计3.5.1总体电路图图3-11 总体电路图3.5.2系统总体说明如图3-11所示,当光电传感器开始接受信号,通过比较器将信号传如单片机中。
小车进入寻迹模式,即开始不停地扫描与探测器连接的单片I/O 口,一旦检测到某个I/O 口有信号变化,就执行相应的判断程序,把相应的信号发送给电动机从而纠正小车的状态。
单片机采用T0定时计数器,通过来产生PWM波,控制电机转速。
4.软件设计4.1 PWM控制本系统采用PWM来调节直流电机的速度。
PWM是通过控制固定电压的直流电源开关频率,从而改变负载两端的电压,进而达到控制要求的一种电压调整方法。
PWM可以应用在许多方面,如电机调速、温度控制、压力控制等。
在PWM驱动控制的调整系统中,按一个固定的频率来接通和断开电源,并根据需要改变一个周期内“接通”和“断开”时间的长短。