函数连续,函数可微,函数可导,偏导数存在,偏导数连续之间的关系
- 格式:doc
- 大小:15.00 KB
- 文档页数:3
一元函数可微,偏导存在,连续,偏导连续的关系一元函数可微、偏导存在、连续以及偏导数连续是数学中非常重要的概念。
在这篇文章中,我将详细介绍这几个概念之间的关系,并解释它们在数学中的意义和应用。
首先,让我们来了解一下这些概念的定义。
一元函数可微是指在某个点上,函数的导数存在。
如果函数的导数在某个点上存在,那么这个函数在该点是可导的。
可导性是函数在该点的某种平滑性的体现,它表示函数在该点的变化有一个明确的速率。
一个函数在某点可导,则表示函数在这个点的附近有良好的近似线性性质。
偏导数则是多元函数在某个方向上的导数。
对于一元函数来说,函数只有一个自变量,所以不存在如何"方向"的问题,与导数相同。
但是对于多元函数来说,函数有多个自变量,我们可以考虑在某个方向上的变化率。
如果函数在某个点的所有偏导数都存在,那么这个函数在该点是偏导存在的。
连续性是函数在某个区间上的性质,它表示函数在这个区间上没有突变、断裂的情况。
如果一个函数在某个点处连续,则函数在该点的极限和函数值相等,即函数在该点没有跳跃。
而偏导数连续是指多元函数的所有偏导数是连续的。
多元函数的偏导数连续是函数的光滑性的一种体现,它表示函数在某个点的偏导数不仅存在,而且在该点附近有良好的连续性。
偏导数连续的性质使得函数在该点的各个方向的局部变化率是光滑的。
那么,一元函数可微、偏导存在、连续和偏导连续之间有什么关系呢?首先,一元函数可微是偏导存在的一个特例。
因为在一元函数的情况下,只有一个自变量,不存在多个自变量的方向性概念,所以一元函数可微与偏导存在是等价的。
如果一个一元函数在某点可微,那么它在该点的导数存在,即偏导数存在。
其次,一元函数可微是连续的一个充分条件。
对于一元函数,如果它在某点可微,那么它在该点连续。
这是因为可导性是连续性的一个充分条件。
如果一个函数在某点可微,那么它在该点附近可以用一个线性函数来近似,而线性函数是连续的。
所以可微性保证了函数在该点的连续性。
(3)连续、偏导数存在和可微之间的关系在点处连续、偏导数存在、可微、存在连续的偏导数之间的关系是:在点处存在连续的偏导数在点处可微在点处连续在点处偏导数存在.3、多元复合函数求导法(1)一元函数与多元函数复合的情形如果函数及都在点可导,函数在对应点具有连续偏导数,则复合函数在点可导,且有.(2)多元函数与多元函数复合的情形如果函数及都在点具有对及对的偏导数.函数在对应点具有连续的偏导数,则复合函数在点的两个偏导数存在,且有,.这里有两个自变量和两个中间变量,随着自变量个数与中间变量个数的变化,链导法公式也因之而异,但如果能搞清楚复合函数结构中哪些是自变量,哪些是中间变量以及它们的个数,则就抓住了复合函数求导的关键.如果自变量只有一个,不论中间变量的个数是多少,所求得的导数就是全导数.值得注意的是,对自变量兼作中间变量的情形,求导时往往容易弄混.例如下面的情形:,则复合函数对,的偏导数为,.这里与是不同的,是将复合函数中的看成不变而对的偏导数,是把中的及都看成不变而对的偏导数.与也有类似的区别.读者如能领会此点,就不难正确理解公式中的偏导符号的意义了.4、隐函数的求导公式(1)若是由方程所确定的一元隐函数.则且.(2)若是由方程所确定的二元隐函数.则.求隐函数的一阶导数或偏导数时,首先要认清公式中或中哪个为自变量,哪个为因变量,然后套用公式,值得注意的是,求二阶偏导数不能用上面的公式.5、偏导数的应用(1)偏导数的几何应用①设空间曲线方程为 .则曲线上点处的切线方程为法平面方程为.②空间曲线的方程为.则曲线在点处的切线方程为,法平面方程为.③空间曲线为则曲线在点处切线方程为.法平面方程为.④若曲面方程为.则在点的切平面方程为法线方程为.⑤曲面方程为.则曲面在点处的切平面方程.在点处的的法线方程为.(2)偏导数在经济上的应用主要表现为求边际成本、边际利润和交叉弹性,读者应注意其内在的经济意义.6、方向导数与梯度一般地,方向导数是单侧的,偏导数是双侧的,如函数沿着方向的方向导数存在,但不存在.若在点可微,则在该点它沿任何方向的方向导数均存在,且=(其中,分别为与轴和轴正向的交角,为的方向余弦)且,.梯度是一个向量,梯度的方向是方向导数变化最快的方向,梯度的模为方向导数的最大值.7、多元函数的极值(1)多元函数极值的概念与一元函数完全一样,函数在一点取得极值的含义就是必须大于(或小于)它在的某个邻域上的所有值,只是一元函数中的邻域是一维的区间,而二元函数是二维平面区域.可导函数在取得极值的必要条件是,.由于它们仅仅是必要条件,所以满足,的点不一定是极值点,但是可以肯定,凡不满足这两个条件的点就一定不会是极值点.换句话说,即这两个条件虽然不能用来肯定极值点,但却可起到筛选极值点的作用.因此,我们又引出驻点概念,并给出判定极值点的充分条件.(2)多元函数最值与拉格朗日乘数法在实际问题中,需要我们解决的往往是求函数在特定的有界闭区域上的最大值与最小值.我们知道,在有界闭区域上连续函数必有最大值与最小值,它们既可以在闭域内部取得,也可在边界上取得.与一元函数一样,如果在闭域内取得,则它一定也是极大值或极小值.值得注意的是,函数的最大值或最小值也可在函数不可导的点处取得.例如函数在原点处不可导,但它在原点得最大值1. 因此,求连续函数在有界闭域上的最大值、最小值的方法是:①计算出函数在区域内所有驻点、不可导的点(即所有的临界点)处的值;②将①中的这些值与区域边界上函数的最值一起加以比较,其中最大者就是最大值,最小者就是最小值.③在求最大、最小值的实际问题中,目标函数的各自变量之间往往还有附加的约束条件,这就形成了条件极值的概念.一般说来,条件极值问题可以化为无条件极值问题来处理,方法是利用约束条件将目标函数中多余的自变量消去,使之成为求另一个新的目标函数的无条件极值问题.但这种转化往往有一定的困难,这时我们可引入所谓拉格朗日乘数,它与目标函数及约束条件中的函数构成拉格朗日函数,把其中的乘数也看成是一个变量,然后按无条件极值写出求极值的必要条件,由此即可得到一组求解驻点的联立方程组:拉格朗日乘数法的优点在于引进了拉格朗日乘数后,可以把中的变量都当作自变量,然后按无条件极值写出形式完全对称的必要条件.因此,这个方法还便于推广到有多个约束条件的情形.。
1、可导即设y=fx是一个单变量函数, 如果y在x=x0处存在导数y′=f′x,则称y在x=x0处可导;如果一个函数在x0处可导,那么它一定在x0处是连续函数;函数可导定义:1设fx在x0及其附近有定义,则当a趋向于0时,若 fx0+a-fx0/a的极限存在, 则称fx在x0处可导;2若对于区间a,b上任意一点m,fm均可导,则称fx在a,b上可导;连续函数可导条件:函数在该点的左右偏导数都存在且相等;即就是一个函数在某一点求极限,如果极限存在,则为可导,若所得导数等于函数在该点的函数值,则函数为连续可导函数,否则为不连续可导函数2、连续函数连续必须同时满足三个条件:函数在x0处有定义;x->x0极限limfx存在;x->x0时limfx=fx0定理有:函数可导必然连续;不连续必然不可导;3、可微定义:设函数y= fx,若自变量在点x的改变量Δx与函数相应的改变量Δy有关系Δy=A×Δx+οΔx其中A与Δx无关,则称函数fx在点x可微,并称AΔx为函数fx在点x的微分,记作dy,即dy=A×Δx当x= x0时,则记作dy∣x=x0.可微条件:必要条件:若函数在某点可微,则该函数在该点对x和y的偏导数必存在;充分条件:若函数对x和y的偏导数在这点的某一邻域内都存在,且均在这点连续,则该函数在这点可微;4、可积函数定义如果fx在a,b上的定积分存在,我们就说fx在a,b上可积;即fx是a,b上的可积函数;函数可积的充分条件定理1设fx在区间a,b上连续,则fx在a,b上可积;定理2设fx在区间a,b上有界,且只有有限个第一类间断点,则fx在a,b上可积;定理3设fx在区间a,b上单调有界,则fx在a,b上可积;可积的必要条件:被积函数在闭区间上有界;总结:对于一元函数:函数连续不一定可导例如y=|x|可导一定连续即连续是可导的必要不充分条件,可导是连续的充分不必要条件函数可导必然可微可微必可导即可导是可微的必要充分条件。
摘要 (1)关键词 (1)Abstract (1)Key words (1)引言 (1)1二元函数连续、偏导数、可微三个概念的定义 (1)2二元函数连续、偏导数、可微三个概念之间的关系 (2)二元函数连续与偏导数存在之间的关系 (2)二元函数连续与可微之间的关系 (3)二元函数可微与偏导数存在之间的关系 (3)二元函数可微与偏导数连续之间的关系 (4)二元函数连续、偏导数、可微的关系图 (6)参考文献 (7)致谢 (8)二元函数的连续、偏导数、可微之间的关系摘要 一元函数可微与可导等价,可导必连续.但二元函数并非如此,以下文章给出了二元函数连续、偏导数、可微之间的关系,并给出了简单的证明,且用实例说明了它们之间的无关性和在一定条件下所具有的共性.关键词 二元函数 连续 偏导数 可微The Relationship among Continuation, Partial Derivativesand Differentiability in Binary FunctionAbstract Unary function differentiable with derivative equivalent, will be continuously differentiable. But the dual function is not the case, the following article gives a continuous function of two variables, partial derivatives, can be said the relationship between them, and gives a simple show, and illustrated with examples related between them and under certain conditions have in common..Key words binary function continuation partial derivatives differentiability引言 二元函数的偏导数存在、函数连续、可微是二元函数微分学的三个重要概念.对于学习数学分析的人来说,必须弄清三者之间的关系,才能学好、掌握与之相关的理论知识.本文详细讨论这三者之间的关系.1 二元函数连续、偏导数、可微三个概念的定义定义1 设f 为定义在点集2D R ⊂上的二元函数,0D P ∈(0P 或者是D 的聚点,或者是D 的孤立点),对于任给的正数ε,总存在相应的正数δ,只要0,)(D P U P δ⋂∈,就有0)||()(f P f P ε<-,则称f 关于集合D 在点0P 连续.定义2 设函数(,),(,)z f x y x y D =∈,若00,)(y D x ∈且0,)(y f x 在0x 的某一邻域内有定义,则当极限00000000(,))(,)(,limlimx x x f x y f x y f x x y x x∆→∆→+-=∆∆∆∆存在时,则称这个极限为函数f 在点00,)(y x 关于x 的偏导数,记作0(,)|x y fx∂∂.定义3 设函数(,)z f x y =在点000,)(y P x 某邻域0()U P 内有定义,对于0()U P 中的点00,)(,)(y P x y x x y ++=∆∆,若函数f 在点0P 处的全增量可表示为0000)(,)(,()A z f x x y y f x y x B y ορ++=∆=∆∆-∆+∆+,其中A 、B 是仅与点0P 有关的常数,()ορρ=是较ρ高阶的无穷小量,则称函数f 在点0P 处可微.2 二元函数连续、偏导数、可微三个概念之间的关系二元函数连续与偏导数存在之间的关系例[1]122,(,)(0,0)(,)0,(,)(0,0)xyx y x yf x y x y ⎧≠⎪+=⎨⎪=⎩在(0,0)偏导数存在但不连续. 证明 因为 00(,0)(0,0)00(0,0)limlim 0x x x f x f f x x→→--===, 同理可知 (0,0)0y f =. 所以 (,)f x y 在(0,0)偏导数存在. 因为220,0limx y xyx y →→+ 极限不存在,所以 (,)f x y 在(0,0)不连续.例2[2](,)f x y =在(0,0)点连续,但不存在偏导数. 证明 因为0,00,lim (,)lim0(0,0)x y x y f x y f →→→→===,所以(,)f x y =在(0,0)点连续,因为00(,0)(0,0)(0,0)lim x x x f x f f x →→-== ,该极限不存在,同理 (0,0)y f 也不存在.所以(,)f x y =在点(0,0)连续,但不存在偏导数.此二例说明: 二元函数连续与偏导数存在不等价,偏导数存在不一定连续,连续不一定偏导数存在.这与一元函数不同.一元函数中,可导一定连续,连续不一定可导. 二元函数连续与可微之间的关系定理1[3] 若(,)z f x y =在点(,)x y 可微,则(,)z f x y =在点(,)x y 一定连续. 证明 (,)z f x y =在点(,)x y 可微,0000)(,)(,()A z f x x y y f x y x B y ορ++=∆=∆∆-∆+∆+ (1)所以 当0,0x y ∆→∆→时,有0z ∆→,即 (,)z f x y =在该点连续.例3[4]证明(,)(0,0)(,)0,(,)(0,0)x y f x y x y ≠==⎩在(0,0)点连续,但在(0,0)点不可微.证明 令cos ,sin x r y r θθ==,则(,)00x y r →⇔→.因为2cos sin |||cos sin |0(0)r r r r r θθθθ==≤→→,所以(,)f x y 在(0,0)点连续.按偏导数定义00(,0)(0,0)0(0,0)lim lim 0x x x f x f f xx ∆→∆→∆-===∆∆, 同理 (0,0)0y f = .若(,)f x y 在点(0,0)可微,则(0,0)(0,0)(0,0)(0,0)x y z dz f x y f f x f y ∆-=+∆+∆--∆-∆=应是ρ=较高阶的无穷小量. 因为220limlimz dzx yx y ρρρ→→∆-∆∆=∆+∆ 该极限不存在,所以(,)f x y 在点(0,0)不可微.此例说明: 二元函数在某点连续,不一定可微,但可微一定连续.这与一元函数有相同的结论.二元函数可微与偏导数存在之间的关系定理2[5] 若二元函数f 在其定义域内一点00,)(y x 处可微,则f 在该点关于每个自变量的偏导数都存在,且(1)式中的0000,),,)((x y A f y B f y x x ==.证明 因为 (,)z f x y =在点(,)x y 可微,则0000)(,)(,()A z f x x y y f x y x B y ορ++=∆=∆∆-∆+∆+.若令上式中0y ∆= ,则0000(,)(,)(||)z f x x y f x y A x x ο=+∆∆-=∆+∆, 所以 000000(,)(,)(||)lim lim x x A xf x x y f x y x A x ο∆→∆→=∆+∆-∆+=∆. 即A zx=∂∂.类似可证B z y =∂∂. 例4[6]设2222222,0(,)0,0x y x y x yf x y x y ⎧+≠⎪+=⎨⎪+=⎩,则(,)f x y 在点(0,0)偏导数存在,但在该点不可微.解 事实上(1)0(,0)(0,0)(0,0)lim0x x f x f f x →-==,(0,)(0,0)(0,0)lim0y y f y f f y→-==,故 (,)f x y 在点(0,0)偏导数存在. (2)因为200,limlimx y f dfρρ→∆→∆→∆-=,此时若令y k x ∆=∆,则230,0,lim limx y x y ∆→∆→∆→∆→=此极限显然不存在,所以0limf dfρρ→∆-不存在,所以 (,)f x y 在点(0,0)不可微.此例说明: 二元函数中,偏导数存在不一定可微;可微则偏导数存在.这与一元函数中,可微与可导等价有区别. 函数可微与偏导数连续之间的关系定理3[7] 若二元函数(,)z f x y =的偏导数在点00(,)x y 的某邻域内存在,且x f 与yf 在点00(,)x y 处连续,则函数f 在点00(,)x y 处可微.证明 我们把全增量0000,)(,)(y f x y z f x x y ++-∆=∆∆00000000[,),)][,)(,)](((y y y f x y f x x y f x y f x y =++-+++-∆∆∆∆在第一个括号里,它是函数0,)(y f x y +∆关于x 的偏增量;在第二个括号里,则是函数0(,)f x y 关于y 的偏增量.对它们分别应用一元函数的拉格朗日中值定理,得 010002,),(()x y y y z f x x y x f x y y θθ++++∆=∆∆∆∆∆ 12,10θθ<< (2) 由于x f 与y f 在点00(,)x y 处连续,因此有 01000,)(,)(x x y x y f x x y f θα++=+∆∆, (3)00200,(,)()y y y x y f x y f θβ++∆= ,(4)其中 当0,0x y ∆→∆→时,有0,0αβ→→. 将(3) ,(4)代入(2)式,则得0000(,)(,)x y x y x y z f x f y x y αβ=+∆∆∆+∆+∆. 所以 函数f 在点00(,)x y 处可微.例5[8]22()sin (,)(0,0)(,)0,(,)(0,0)x y x y f x y x y ⎧+≠⎪=⎨⎪=⎩在(0,0)处可微,但(,)x f x y 与(,)y f x y 均在(0,0)处不连续.解因为220,0lim ()sin0(0,0)x y x y f →→+==,所以 (,)f x y 在(0,0)处连续.00(,0)(0,0)(0,0)lim 0x x x f x f f x→→-===,同理 (0,0)0y f =.当220x y +≠时,0,0lim 2sinx x y f x →→=极限不存在,故(,)x f x y 在点(0,0)不连续. 同理可证(,)y f x y 在(0,0)处不连续.lim0f dfρρρ→→∆-==,所以(,)f x y 在(0,0)处可微.此例说明 二元函数偏导数连续并不是可微的必要条件.由此可知定理3是可微的充分条件.由此引出定理4,降低函数可微的条件.定理4[9] 若(,)f x y 在0()U P 内(,)x f x y 存在,且(,)x f x y 在00(,)o P x y 连续,(,)y f x y 在0P 存在,证明:f 在0P 可微.证明 0000(,)(,)f f x x y y f x y ∆=+∆+∆-00000000[(,)(,)][(,)(,)]f x x y y f x y y f x y y f x y =+∆+∆-+∆++∆- 由已知 (,)x f x y 存在,且在0(,)o x y 连续,有0000010(,)(,)(,)x f x x y y f x y y f x x y y xθ+∆+∆-+∆=+∆+∆∆11(,)(0)xf x y x x αα=∆+∆→,因为 0000000(,)(,)lim(,)y y f x y y f x y f x y y∆→+∆-=∆,所以 00000022(,)(,)(,)(0)y f x y y f x y f x y y y αα+∆-=∆+∆→ , 又因 1212||||||0x yααααρ∆+∆≤+→,所以 f 在点0P 可微. 注 此定理中(,)x f x y 与(,)y f x y 互换,结论仍然成立. 二元函数连续、偏导数、可微的关系如图二元函数连续二元函数偏导数存在二元函数可微二元函数偏导数连续参考文献[1]常庚哲,史济怀,数学分析[M].北京:高等教育出版社,:97[2]刘文灿,刘夜英,数学分析[M].西安:陕西人民出版社,:116[3]朱正佑,数学分析[M].上海:上海大学出版社,:188[4]黄玉民,李成章,数学分析[M].北京:科学出版社,:61-62[5]华东师范大学数学系. 数学分析(第二版)[M].北京:高等教育出版社,110[6]周良金,王爱国,函数连续及可微的关系[J].高等函授学报,19(5):35[7]陈纪修,於崇华,金路,数学分析(第二版)[M].北京:高等教育出版社,:142-143[8]刘新波,数学分析选讲[M].哈尔滨:哈尔滨工业大学出版社,:151[9]《大学数学名师导学丛书》编写组,数学分析名师导学[M].北京:中国水利水电出版社,2004:147-148致谢感谢老师对本论文从选题、构思、资料收集到最后定稿的各个环节给予的指引和教导,使我对分段函数的分析性质有了更深刻的认识,并最终得以完成毕业论文,对此我表示衷心的感谢,老师严谨的治学态度、丰富渊博的知识、敏锐的学术思维、精益求精的工作态度、积极进取的科研精神以及诲人不倦的师者风范是我毕生的学习楷模.通过这一阶段的努力,我的毕业论文已接近尾声,作为一个本科生的毕业论文,由于经验的匮乏,难免有许多考虑不周全的地方,如果没有老师的亲切关怀和悉心指导,完成本次毕业论文将变得十分困难.老师平日工作繁多,但在这篇论文的写作过程中,老师不辞辛劳,多次就论文中许多核心的问题做深入细致的探讨并给我提出切实可行的指导性建议,才最终得以完成本次毕业论文.老师的这种一丝不苟的负责精神,使我深受感动.在此,请允许我向尊敬的老师表示真挚的谢意.最后,还要感谢我的辅导员在这四年来对我的帮助与鼓励,以及院系的所有领导对我的栽培与支持.并向在百忙中抽出时间对本论文进行评审,并提出宝贵意见的各位老师表示衷心的感谢,致以最崇高的敬意.。
二元函数的连续性、偏导及可微之间的联系二元函数连续性、偏导数存在性、及可微的定义 1.二元函数的连续性定义 设f 为定义在D 上的二元函数,0P D ∈(它或者是D 的聚点,或者是D 的孤立点) ,对于任给的正数ε,总存在相应的正数δ,只要()0;P P D δ∈⋂,就有()()0f P f P ε-<, 则称f 在P 点连续2.二元函数的偏导数定义 设函数(,)z f x y =在点000(,)P x y 的某一邻域内有定义,当y 固定在0y 而x 在0x 处有增量x ∆ 时,相应地函数有增量x z ∆=0000(,)(,)f x x y f x y +∆-如果 00000(,)(,)limx f x x y f x y x∆→+∆-∆存在,则称此极限为函数z (,)f x y =在点000(,)P x y 处对x 的偏导数,记作00(,)x f x y 或()00,x y fx ∂∂对y 的偏导数同理 3.二元函数的可微性定义 设函数(,)z f x y =在点()000,P x y 的某邻域()0U P 内有定义,对于()0U P 中的点()00,(,)P x y f x x y y =+∆+∆,若函数f 在0P 处的全增量z ∆可表示为:()()0000(,),z f x x y y f x y A x B y o ρ∆=+∆+∆-=∆+∆+, (1)其中AB 是仅与点P 0有关的常数,ρ=,()o ρ是较高阶的无穷小量,则称函数f 在点P 0可微.并称(1)中A x B y ∆+∆为f 在点P 0的全微分,记作000(,)P dz df x y A x B y ==∆+∆说明:1)A 、B 是与x ∆y ∆无关的常数,但与0P 可能有关;2) dz 是z ∆的线性主部0lim0z dzρρ→∆-=二元函数连续性、偏导数存在性、及可微的联系多元函数是一元函数的推广,因此它保留着一元函数的许多性质,但也有些差异,这些差异主要是由多元函数的“多元”而产生的.对于多元函数,我们着重讨论二元函数,在掌握了二元函数的有关理论和研究方法之后,在将它推广到一般的多元函数中去.本文将通过具体实例来讨论二元函数连续性、偏导数存在性、及可微的联系. 一、二元函数连续性与偏导存在性间的关系偏导存在不一定连续,反之连续不一定有偏导存在 1)函数(,)f x y 在点000(,)p x y 连续,但偏导不一定存在. 例1.证明函数(,)f xy =(0,0)连续偏导数不存在.证明:∵(,)(0,0)(,)lim (,)lim0(0,0)x y x y f x y f →→===,故函数(,)f x y =(0,0)连续.由偏导数定义:001,(0,0)(0,0)(0,0)limlim 1,x x x x f x f f x x ∆→∆→∆>⎧+∆-===⎨-∆<∆⎩故(0,0)x f 不存在.同理可证(0,0)y f 也不存在.2)函数(,)f x y 在点000(,)P x y 偏导存在,但不一定连续.例 2.证明函数22,0(,)1,0x y xy f x y xy ⎧+==⎨≠⎩在点(0,0)处(0,0)x f ,(0,0)y f 存在,但不连续证明 : 由偏导数定义:00(0,0)(0,0)(0,0)lim lim 0x x x f x f f x x→∆→+∆-==∆=∆ 同理可求得(0,0)0y f =∵22(,)(0,0)(,)(0,0)lim (,)lim ()1(0,0)0x y x y f x y x y f →→=+=≠=故函数22,0(,)1,0x y xy f x y xy ⎧+==⎨≠⎩在点(0,0)处不连续.综上可见,二元函数的连续性与偏导存在性间不存在必然的联系. 二、二元函数的可微性与偏导间的关系1.可微性与偏导存在性1) 可微则偏导存在(可微的必要条件1)若二元函数(,)f x y 在其定义域内一点000(,)P x y 处可微,则f 在该点关于每个自变量的偏导都存在,且000000(,)(,)(,)x y df x y f x y dx f x y dy =+注1 定理1的逆命题不成立,2)偏导存在,不一定可微.例3证明函数22220(,)0,0x y f x y x y +≠=+=⎩在原点两个偏导存在,但不可微.证明 由偏导数定义:00(0,0)(0,0)00(0,0)lim lim 0x x x f x f f xx ∆→∆→+∆--===∆∆同理可求得(0,0)0y f =下面利用可微的定义来证明其不可微性. 用反证法.若函数f 在原点可微,则[](0,0)(0,0)(0,0)(0,0)x y f df f x y f f dx f dy ⎡⎤∆-=+∆+∆--+=⎣⎦应是较ρ=2200lim lim f df x y x y ρρρ→→∆-∆∆=∆+∆ 当动点(,)x y 沿直线y mx =趋于(0,0)时,则(,)(0,0)2222(,)(0,0)lim lim 11x y y mxx y xy m mx y m m →=→==+++ 这一结果说明动点沿不同斜率m 的直线趋于原点时,对应的极限值也不同.因此所讨论的极限不存在.故函数f 在原点不可微.例4. 22220(,)0,x y f x y x y +≠=+=⎪⎩在(0,0)处两个偏导存在,但不可微.证明 由偏导数定义:00(0,0)(0,0)00(0,0)limlim 0x x x f x f f x x∆→∆→+∆--===∆∆ 同理可求得(0,0)0y f =下面利用可微的定义来证明其不可微性.[](0,0)(0,0)(0,0)(0,0)x y f df f x y f f dx f dy ⎡⎤∆-=+∆+∆--+=⎣⎦为此考察极限limf dfρρρ→→∆-=当动点(,)x y 沿直线y =趋于时,则(,)(0,0)(,)limlim x y y mxx y →=→==0≠因此f 在原点不可微例5. 证明函数2222222,0(,)0,0x y x y f x y x y x y ⎧+≠⎪=+⎨⎪+=⎩在(0,0)两个偏导存在,但不可微.证明 由偏导数定义:00(0,0)(0,0)00(0,0)limlim 0x x x f x f f x x∆→∆→+∆--===∆∆ 同理可求得(0,0)0y f =下面利用可微的定义来证明其不可微性.(0,0)(0,0)0,x y df f dx f dy =+= 222(,)(0,0)x yf f x y f x y ∆∆∆=∆∆-=∆+∆从而()222230,(0,0)222limlimlim0()()x y x y f dfx y x y x y x y ρρρρ→→∆∆→∆∆∆-∆∆∆+∆==≠=∆+∆取因此f 在原点不可微注:本题还可以说明连续不一定可微例6.证明函数2222322222,0(,)()0,0x y x y f x y x y x y ⎧+≠⎪=⎨+⎪+=⎩在(0,0)连续,且两个偏导数都存在但不可微.证明(1)∵223222()x y x y ≤+∴0,4,εδεδε∀>∃=<<∴(,)(0,0)lim (,)0(0,0)x y f x y f →==故函数(,)f x y 在点(0,0)连续.(2)又00(,0)(0,0)0(0,0)lim lim 0x x x f x f f xx →→-===00(0,)(0,0)(0,0)lim lim 00y y y f y f f y→→-===(3) (0,0)(0,0)0,x y df f x f y =∆+∆=(,)(0,0)(,)f f x y f f x y ∆=∆∆-=∆∆从而222220limlim ()()f dfx y x y x y ρρρ→→∆-∆∆=∆=∆∆+∆取不存在 故 f 在原点不可微注:本题还可以说明连续不一定可微2. 偏导连续与可微1)偏导连续,一定可微.(可微的充分条件)若二元函数(,)z f x y =的偏导在点000(,)P x y 的某邻域内存在,且x f 与y f 在点000(,)P x y 处连续,则函数(,)f x y 在点000(,)P x y 可微.注2 偏导连续是函数可微的充分而非必要条件.2)可微,偏导不一定连续例7.证明函数()222222221sin ,0(,)0,0x y x y x y f x y x y ⎧++≠⎪+=⎨⎪+=⎩在点(0,0)处可微,但(,)x f x y ,(,)y f x y 在(0,0)处不连续.证明 22(,),0x y x y ∀+≠,有222222121(,)2sincos x x f x y x x y x y x y =-+++222222121(,)2sin cos y y f x y y x y x y x y =-+++ (1)当y=x 时,极限2200111lim (,)lim(2sin cos )22x x x f x x x x x x→→=-不存在,则(,)x f x y 在(0,0)点不连续.同理可证(,)y f x y 在(0,0)点不连续.(2)∵ 200(,0)(0,0)1(0,0)limlim sin 0x x x f x f f x x x→→-===200(0,)(0,0)1(0,0)lim lim sin 0y y y f y f f y y y→→-===则(0,0)(0,0)0,x y df f dx f dy =+=2222222211(,)(0,0)()sinsin ((,):0)f f x y f x y x y x y x y ρρ∆=-=+=∀+≠+ 从而2221sin1limlimlim sin0f dfρρρρρρρρρ→→→∆-===即函数(,)f x y 在点(0,0)可微.例8. 证明函数()2222220(,)0,0x y x y f x y x y ⎧++≠⎪=⎨⎪+=⎩在点(0,0)处可微,但(,)x f x y ,(,)y f x y 在(0,0)处不连续.证明 22(,),0x y x y ∀+≠,有(,)2x f x y x =(,)2y f x y y = (1)当y=x时,极限00lim (,)lim(2x x x f x x x →→=不存在,则(,)x f x y 在(0,0)点间断.同理可证(,)y f x y 在(0,0)点间断.(2)∵00(,0)(0,0)(0,0)limlim 0x x x f x f f x x→→-===00(0,)(0,0)(0,0)lim lim 0y y y f y f f y y→→-===则(0,0)(0,0)0,x y df f dx f dy =+=(,)(0,0)(,)f f x y f f x y ∆=-=从而201cos1limlimlim cos0f dfρρρρρρρρρ→→→∆-===即函数(,)f x y 在点(0,0)可微.例9.证明函数2222221sin ,0(,)0,0xy x y x y f x y x y ⎧+≠⎪+=⎨⎪+=⎩在点(0,0)处可微,但(,)x f x y ,(,)y f x y 在(0,0)处不连续.证明 22(,),0x y x y ∀+≠,有22222222121(,)sin cos ()x x y f x y y x y x y x y =-+++22222222121(,)sin cos ()y xy f x y x x y x y x y =-+++(1)当y=x 时,极限2200111lim (,)lim(sin cos )222x x x f x x x x x x→→=-不存在,则(,)x f x y 在(0,0)点不连续.同理可证(,)y f x y 在(0,0)点不连续.(2)∵ 00(,0)(0,0)(0,0)limlim00x x x f x f f x→→-===00(0,)(0,0)(0,0)lim lim 00y y y f y f f y→→-===则(0,0)(0,0)0,x y df f dx f dy =+=221(,)(0,0)sinf f x y f x y x y ∆=∆∆-=∆∆∆+∆从而()22,1limlimx y f dfx y ρρ→∆∆→∆-=∆+∆=0即函数(,)f x y 在点(0,0)可微.三、二元函数的连续性与可微性间的关系 1)可微,一定连续(可微的必要条件2)二元函数(,)f x y 在000(,)P x y 可微,则必然连续,反之不然.2)连续,不一定可微例10.证明函数3222222,0(,)0,0x x y f x y x yx y ⎧+≠⎪=+⎨⎪+=⎩在(0,0)连续,且偏导存在但不可微. 证明:(1)∵322222,x x x x x y x y=⋅≤++ ∴0,,,x y x εδεδδε∀>∃=<<<当时, ∴(,)(0,0)lim (,)0(0,0)x y f x y f →==故函数(,)f x y 在点(0,0)连续.(2) 00(,0)(0,0)(0,0)limlim 1x x x f x f xf xx →→-===00(0,)(0,0)(0,0)lim lim 00y y y f y f f y→→-===(3) (0,0)(0,0),x y df f x f y x =∆+∆=∆(,)(0,0)(,)f f x y f f x y ∆=∆∆-=∆∆从而20limf dfρρρ→→∆-=不存在即函数(,)f x y 在点(0,0)不可微. 注:本题也可以说明偏导存在但不一定可微.例11.证明函数222222sin(),0(,)0,0x y xy x y x y f x y x y +⎧+≠⎪+=⎨⎪+=⎩在(0,0)连续,且偏导存在但不可微. 证明:(1)∵22sin(),222x y x y x y x y xy xy x y xy ++++≤⋅=≤+∴0,,,2x yx y εδεδδε+∀>∃=<<<当时, ∴(,)(0,0)lim (,)0(0,0)x y f x y f →==故函数(,)f x y 在点(0,0)连续.(2) 00(,0)(0,0)0(0,0)lim lim 0x x x f x f f xx →→-===00(0,)(0,0)(0,0)lim lim 00y y y f y f f y→→-===(3) (0,0)(0,0)0,x y df f x f y =∆+∆=(,)(0,0)(,)f f x y f f x y ∆=∆∆-=∆∆从而0limf dfρρρ→→∆-=取y k x ∆=∆则23320022221sin (1)limlim (1)(1)x f dfk kx k k xk k ρρ→∆→∆-++=⋅=++ 不存在 故函数(,)f x y 在点(0,0)不可微.注:本题也可以说明偏导存在但不一定可微. 例12 .证明函数(,)f x y xy =在点(0,0)连续,但它在点(0,0)不可微.证明:(1)∵00lim (,)lim 0(0,0)x x y y f x y xy f →→→→===故函数(,)f x y xy =在点(0,0)连续.例13.证明函数222222,0(,)0,0xy x y x yf x y x y ⎧+≠⎪+⎪=⎨⎪⎪+=⎩在(0,0)连续 ,但不可微.证明:(1)∵2222222222x y xyx y x y x y++≤=++ ∴00lim (,)0(0,0)x y f x y f →→== 故函数(,)f x y 在点(0,0)连续.(2)不可微见例4综上所述二元函数连续性、偏导存在性及可微性间的关系如图所示:偏导连续可微连续 偏导存在补充1.确定α的值,使得函数()222222221sin ,0(,)0,0x y x y x y f x y x y α⎧++≠⎪+=⎨⎪+=⎩在点(0,0)处可微.2.设函数2222(,)sin 0(,)0,0g x y x y f x y x y ⎧+≠⎪=⎨⎪+=⎩, 证明:(1)若(0,0)0g =,g 在点(0,0)处可微,且(0,0)0dg =,则 f 在点(0,0)处可微,且(0,0)0df =.(2)若g 在点(0,0)处可导,且f 在点(0,0)处可微,则(0,0)0df =.3.确定正整数α的值,使得函数()22220(,)0,0x y x y f x y x y α⎧++≠⎪=⎨⎪+=⎩在点(0,0)处(1)连续,(2)偏导存在,(3)存在一阶连续偏导.4.设函数222222,0()(,)00,0px x y x y f x y p x y ⎧+≠⎪+=>⎨⎪+=⎩,试讨论它在(0,0)点处的连续性.。
存在可导可微连续的关系在数学中,可导、可微和连续是经常被用到的概念。
这些概念是描述函数性质的基石,对于函数的分析和求解都很重要。
在这篇文章中,我们将探讨这三个概念的关系,以及它们之间的联系和区别。
可导和可微是两个相关但不同的概念。
一个函数在某个点处可导,表示该函数在该点处有导数。
导数可以被看作是函数在该点上的斜率。
一个可导的函数必须满足导数存在,即左右导数相等。
如果左右导数不相等,则该函数在该点处不可导。
在一些情况下,可导和可微是等价的概念。
例如,对于一些简单的函数,如$f(x)=x^2$,它在所有的点处都是可导和可微的。
但是在一些复杂的函数,例如绝对值函数 $f(x)=|x|$,可导和可微不是等价的。
在 $x=0$ 的位置,该函数存在导数,但不能够微商。
这是因为 $x=0$ 的左导数为 $-1$,右导数为 $1$。
连续是在数学中比较常见的一个概念,它描述的是函数在一个区间上是否没有断点。
如果一个函数在该区间的每一个点都有极限值,并且极限值等于该点的函数值,则该函数在该区间上连续。
连续和可微之间存在着密切的联系。
在某个点 $x_0$,如果一个函数连续,则该函数必须在该点可微。
这个结论是因为连续性质保证了该函数在 $x_0$ 的极限存在,并且这个极限就是该点处的函数值。
这个极限与该点处的导数相关,因此函数在该点的导数存在,可微。
相反地,可微函数不一定是连续的。
例如,我们可以考虑 $f(x) = x^{1/3}$ 在$x=0$ 的位置的情况。
该函数在 $x=0$ 处可微,但是在该点处不连续。
总结而言,可导、可微、和连续是三个不同但相关的概念。
可导和可微是用来描述函数在某个点的局部性质,它们之间的区别在于可微描述了函数在该点处的线性近似关系。
连续则是描述函数在某个区间上的全局性质,如果一个函数在该区间上连续,则该函数在该区间的每个点都有极限值。
如果一个函数在某个点处可导或可微,则该函数在该点处必须连续,但是可微或可导函数并不一定是连续的。
知识点25可导可微与连续三个概念之间的关系
一、概念介绍
可导:可导指的是函数的可导定义。
函数可导是指一个函数在一些点
存在它的导数。
可微:可微指的是函数的可微定义,即函数在一些区域上的可微定义,这意味着该函数在区域里的每一点都存在导数。
可微函数具有一阶连续性,即如果函数在一点处可微,则它的一阶连续性是成立的,即在邻近的任意
一点处都存在函数的导数。
连续:连续函数是指在它的定义域的任意区域上,函数的值都是连续的,即它的值在它的定义域的任意一点处都可以被无穷小区间所连接到另
一点。
1.连续性是可导和可微的基础:函数可导和可微的前提是连续性,如
果函数不连续,那么它就不能被定义为可导和可微函数,因为可导和可微
函数的定义都要求函数在一些区域上是连续的。
2.可微性是可导的前提条件:如果需要确定函数是否可导,首先要确
定函数是否可微。
只有函数是可微才能被确定为可导函数。
3.连续性是可微函数的充要条件:为了判断函数是否可微,首先要确
定函数是否连续。
只有函数连续,它才能被定义为可微函数;只有连续函
数才能确保在整个定义域上都存在导数,从而满足可微性的定义。
偏导数和可微的关系偏导数和可微的关系是微积分中的重要概念,它们之间存在着密切的联系。
在探讨这个关系之前,我们先来简单了解一下偏导数和可微的概念。
偏导数是多元函数中的导数的一种特殊形式。
当一个函数有多个自变量时,我们可以针对其中一个自变量进行求导,而将其他自变量视作常数。
这就得到了关于该自变量的偏导数。
常用的表示偏导数的符号是∂(读作"del"),例如∂f/∂x表示函数f(x, y)关于x的偏导数。
可微是函数连续可导的一种更严格的条件。
如果一个函数在某一点连续可导,那么它在该点附近可以用一条直线来近似表示,这条直线就称为该点处的切线。
而可微就是指函数在其定义域内每一点都存在切线。
现在我们来探讨偏导数和可微的关系。
如果一个函数在某一点处可微,那么它在该点处的偏导数存在且相等。
换句话说,一个可微函数的偏导数是相等的。
反过来说,如果一个函数在某一点的偏导数存在且相等,那么该点处的函数在该自变量方向上可微。
这意味着函数在该点处可以用一条切线来近似表示。
偏导数和可微的关系可以通过导数的定义来证明。
根据导数的定义,一个函数f(x, y)在某一点(x0, y0)处的导数等于该点的切线斜率。
而切线的斜率由函数关于自变量的变化率决定,即偏导数。
因此,一个可微函数在某一点处的偏导数相等,意味着它在该点处存在切线,即可微的。
需要注意的是,这里我们说的是一个函数在某一点处偏导数相等,而不是在整个定义域内都相等。
一个函数在定义域内每一点处都存在偏导数,但不一定每一点处的偏导数都相等。
只有在可微的点处,函数的偏导数都相等。
综上所述,偏导数和可微之间存在着紧密的联系。
一个可微函数的偏导数是相等的,而偏导数相等,则意味着函数在该点处是可微的。
掌握偏导数和可微的关系,可以帮助我们更深入地理解多元函数的变化规律,并在实际问题中应用微积分的知识。
可导,可微,可积和连续的关系
可导,可微,可积和连续的关系如下:
可导与连续的关系:可导必连续,连续不一定可导。
可微与连续的关系:可微与可导是一样的。
可积与连续的关系:可积不一定连续,连续必定可积。
可导与可积的关系:可导一般可积,可积推不出一定可导。
可微=>可导=>连续=>可积。
函数可导的条件:
如果一个函数的定义域为全体实数,即函数在其上都有定义,那么该函数是不是在定义域上处处可导呢?答案是否定的。
函数在定义域中一点可导需要一定的条件:函数在该点的左右导数存在且相等,不能证明这点导数存在。
只有左右导数存在且相等,并且在该点连续,才能证明该点可导。
可导的函数一定连续;连续的函数不一定可导,不连续的`函数一定不可导。
编号:Xxxxxxxx学校本科毕业论文二元函数连续性、偏导数存在性及可微性的讨论院系:数学科学系姓名:XXXX学号:XXX专业:XXXX年级:2008级指导教师:XXX职称:讲师完成日期:2012年5月摘要二元函数微分学是高等数学的重点之一,理清其基本概念之间的相互关系对于认识二元函数的性质有重要的意义,只有这样才能弄清楚二元函数连续、偏导数及可微之间的关系,才能更好地加以利用.本论文将重点对它们之间的关系加以总结和探讨,并给以证明和应用举例.本论文正文主要介绍了二元函数连续性、偏导数存在性及可微性的基本知识.对它们分别进行了总结证明和进一步讨论,还总结二元函数连续性、偏导数存在性及可微性的简单关系,并举出的例子加以论证支撑.关键词:二元函数;连续;偏导数;可微AbstractBinary Function Differential Calculus is one of the priorities of the higher mathematics, to clarify the basic concepts of the relationship between the significance for understanding the nature of the binary function, the only way to figure out the binary function continuous partial derivatives and differentiability the relationship between, in order to better take advantage of this paper will focus on the relationships between them to be summarized and discussed, and give proof of application example.In this thesis, the text introduces binary function continuity, partial derivatives of the Existence and differentiability of basic knowledge. Them a summary of the proof and further discussion, and also summarizes the continuity of the binary function, the partial derivatives exist and micro of simple relations, citing the examples to demonstrate support.Key words:Dual function; Continuously; Partial derivative; Differentiable目录摘要IABSTRACT II引言21 二元函数的连续、偏导数及可微三个概念的定义31.1二元函数的连续性31.2二元函数的可微性31.3二元函数的偏导数42 二元函数三个概念的结论总结及证明52.1二元函数连续性的结论总结及证明52.2二元函数可微性的结论总结及证明72.3二元函数偏导数存在性的结论总结113 二元函数三个概念之间关系的总结123.1二元函数连续性与偏导数存在性的关系及例证123.1.1 二元函数连续,但偏导不一定存在的举例证明123.1.2 二元函数偏导存在,但不一定连续的举例证明123.2二元函数可微性与偏导数存在性的关系及例证133.2.1 可微与偏导存在关系的举例证明133.2.2 偏导连续与可微关系的举例证明154 二元函数连续性、偏导数存在性及可微性关系的概图22结束语 23参考文献 24致谢 25引言二元函数微分学是一元函数微分学的推广,因此它保留了一元函数微分学的许多性质.但由于自变量由一个增加到两个,从而产生了某些本质上的新的内容.如一元函数微分学中,函数在某点可导,则它在这点可微,反之亦然.但在二元函数微分学中,函数在某点偏导数存在,推不出它在这点可微.又如,一元函数微分学中,函数在某点可导,则它在这点必连续.但在二元函数微分学中,函数在某点的偏导数都存在,却推不出它在这点连续.同时二元函数微分学是高等数学教学中的一个重难点,它涉及的内容实际上是微积分学内容在二元函数中的体现,其中有关二元函数的连续性、偏导数存在性及可微性之间的关系是学生在学习中容易发生概念模糊和难以把握的一个重要知识点.当前,二元函数的连续性、偏导数存在性及可微性之间的关系研究方面已经取得了一定的成果,但是,在国内的许多教材中只是对它们三者的定义作了说明,而对它们之间的关系很少提及或没有提到,在一般的教材中对于该部分内容的介绍比较粗略浅显,在一些学术性论文中也只是对二元函数的连续性、偏导数存在性及可微性的个别关系做了具体的说明,因此在让学生学习这方面的知识时能达到对这方面知识可以做到全面的掌握让是当前教学中的一大难题.本文具体就二元函数的连续性、偏导数存在性及可微性之间的关系通过实例作深入的探讨,就二元函数连续性、偏导数及可微性在教材相关内容的基础上进行进一步的探讨、研究,对教材内容做一些适当的补充和扩展,为后继课程的学习奠定基础.然后总结有关二元函数微分学中这关于二元函数连续性、偏导数存在性及可微性这三个概念之间的关系,并对二元函数具体的实例详细加以证明,建立他们之间的关系图.这样对有效理解和掌握多元函数微积分学知识将起到重要作用.1 二元函数的连续、偏导数及可微性概念二元函数的连续、偏导数及可微的概念都是用极限定义的,不同的概念对应不同的极限.考虑函数()y x f ,在点),(00y x 的情形,它们分别为: 1.1 二元函数的连续性定义1 设f 为定义在点集2D R ⊂上的二元函数,0P D ∈(它或者是D 的聚点,或者是D 的孤立点).对于任给的正数ε,总存在相应的正数δ,只要0(;)P U P D δ∈ ,就有 0()(),f P f P ε-<则称f 关于集合D 在点0P 连续,在不致误解的情况下,也称f 在点0P 连续.若f 在D 上任何点都关于集合D 连续,则称f 为D 上的连续函数. 由上述定义知道:若0P 是D 的孤立点,则0P 必定是f 关于D 的连续点;若0P 是D 的聚点,则f 关于D 在0P 连续等价于()()00lim P f P f DP P P =∈→1.2 二元函数的可微性与一元函数一样,在二元函数微分学中,主要讨论二元函数的可微性及其应用,我们首先建立二元函数可微性概念.定义 2 设函数()y x f z ,=在点()000,y x P 的某邻域()0P U 内有定义,对于()0P U 中的点()()y y x x y x P ∆+∆+=00,,,若函数f 在点0P 处的全增量z ∆可表示为:()()()ρο+∆+∆=-∆+∆+=∆y B x A y x f y y x x f z ,,00,其中A ,B 是仅与点0P 有关的常数,22y x ∆+∆=ρ,()ρο是较ρ高阶的无穷小量,则称函数f 在点0P 处可微,并称上式中关于x ∆,y ∆的线性函数A xB y ∆+∆为函数f 在点0P 的全微分,记作y B x A y x df dz P ∆+∆==),(|000 .由上可知dz 是z ∆的线性主部,特别当x ∆,y ∆充分小时,全微分dz 可作为全增量z ∆的近似值,即()())()(,,0000y y B x x A y x f y x f -+-+≈在使用上,有时也把()()()ρο+∆+∆=-∆+∆+=∆y B x A y x f y y x x f z ,,00写成如下形式y x y B x A z ∆+∆+∆+∆=∆βα,这里()()()()0lim lim 0,0,0,0,==→∆∆→∆∆βαy x y x1.3 二元函数的偏导数由一元函数微分学知道:若()x f 在点0x 可微,则函数增量()()()x x A x f x x f ∆++∆=-∆+ο00,其中()0x f A '=.同样,若二元函数f 在点),(00y x 可微,则f 在),(00y x 处的全增量可由()()()ρο+∆+∆=-∆+∆+=∆y B x A y x f y y x x f z 0000,,表示.现在讨论其中A 、B 的值与函数f 的关系.为此,在式子y x y B x A z ∆+∆+∆+∆=∆βα中令)0(0≠∆=∆x y ,这时得到z ∆关于x 的偏增量z x ∆,且有x x A z x ∆+∆=∆α或者α+=∆∆A xzx 现让0→∆x ,由上式得A 的一个极限表示式()()xy x f y x x f x z A x x x ∆-∆+=∆∆=→∆→∆000000,,lim lim,容易看出,上式右边的极限正是关于x 的一元函数()0,y x f 在0x x =处的导数.类似地,令)0(0≠∆=∆y x , 由yx y B x A z ∆+∆+∆+∆=∆βα又得到()()yy x f y y x f yz B y y x ∆-∆+=∆∆=→∆→∆00000,,l i mlim ,它是关于y 的一元函数()y x f ,0在0y y =处的导数.综上所述,可知函数()y x f z ,=在点),(00y x 处对x 的偏导数,实际上就是把y 固定在0y 看成常数后,一元函数()0,y x f z =在点0x 处的导数,同样,把x 固定在0x ,让y 有增量y ∆,如果极限存在,那么此极限称为函数()y x f z ,=在),(00y x 点处对y 的偏导数.记作()00,y x f y .因此,二元函数当固定其中一个自变量时,它对另一个自变量的导数称为偏导数,可定义如下:定义3 设函数()y x f z ,=,(,)x y D ∈.若00(,)x y D ∈,且()0,y x f 在0x 的某一邻域内有定义,则当极限()()()xy x f y x x f x y x f x x x ∆-∆+=∆∆→∆→∆00000000,,lim ,lim存在时,称这个极限为函数f 在点()00,y x 关于x 的偏导数,记作()00,y x f x 或),(00|y x x f∂∂ 注意 1 这里符号x ∂∂,y ∂∂专用于偏导数算符,与一元函数的导数符号dxd 相仿,但又有差别.注意 2 在上述定义中,f 在点()00,y x 存在关于x (或y )的偏导数,f 至少在{}δ<-=00,|),(x x y y y x (或{}δ<-=00,|),(y y x x y x )上必须有定义.若函数()y x f z ,=在区域D 上每一点()y x ,都存在对x (或对y )的偏导数,则得到函数()y x f z ,=在区域D 上对x (或对y )的偏导数(也简称偏导数),记作()y x f x ,或x y x f ∂∂),((()y x f y ,或yy x f ∂∂),(),也可简单地写作x f ,x z 或x f ∂∂(y f ,y z 或yf∂∂). 2 二元函数三个概念的进一步研究2.1 二元函数连续性的进一步研究一元函数若在某点存在左导数和右导数,则这个一元函数必在这点连续,但对于二元函数()y x f ,来说,即使它在某点()000,y x P 既存在关于x 的偏导数()00,y x f x ,又存在关于y 的偏导数()00,y x f y ,()y x f ,也未必在点()000,y x P 连续.不过,我们却有如下定理:定理1 设函数()y x f z ,=在点()000,y x P 的某邻域()0P U 内有定义,若()y x f ,0作为y 的一元函数在点y =0y 连续,()y x f x ,在()0P U 内有界,则()y x f ,在点()000,y x P 连续.证明 任取()y y x x ∆+∆+00,∈()0P U , 则()()0000,,y x f y y x x f -∆+∆+()()()()00000000,,,,f x x y y f x y y f x y y f x y =+∆+∆-+∆++∆- (1) 由于()y x f x ,在()0P U 存在,故对于取定的y y ∆+0, ()y y x f ∆+0,作为x 的一元函数在以0x 和0x +x ∆为端点的闭区间上可导,从而据一元函数微分学中的拉格朗日中值定理,存在θ∈(0 ,1) ,使()()()x y y x x f y y x f y y x x f x ∆∆+∆+=∆+-∆+∆+000000,,,θ将它代入(1) 式, 得()()0000,,y x f y y x x f -∆+∆+()()()000000,,,x f x x y y x f x y y f x y θ=+∆+∆∆++∆- (2)由于()∈∆+∆+y y x x 00,θ()0P U ,故()y y x x f x ∆+∆+00,θ有界,因而当()()0,0,→∆∆y x 时, 有00(,)0f x x y y x +∆+∆⋅∆→.又据定理的条件知,()y x f ,0在y =0y 连续,故当()()0,0,→∆∆y x 时, 又有0000(,)(,)0f x y y f x y +∆-→.所以, 由(2) 知, 有[]000000lim (,)(,)0x y f x x y y f x y ∆→∆→+∆+∆-=.这说明()y x f ,在点()000,y x P 连续.推论 1 设函数()y x f z ,=在点()000,y x P 的某邻域()0P U 内有定义,若()y x f ,0作为y 的一元函数在点0y y =连续,()y x f x ,在点()000,y x P 连续,则()y x f ,在点()000,y x P 连续.证明 由于()y x f x ,在点()000,y x P 连续,故()y x f x ,必在点()000,y x P 的某邻域内有界,因而据定理1 ,()y x f ,在点()000,y x P 连续.推论 2 设函数()y x f z ,=在点()000,y x P 的某邻域()0P U 内有定义. 若()y x f x ,在()0P U 有界, ()00,y x f y 存在,则()y x f , 在点()000,y x P 连续.证明 由于()00,y x f y 存在,故()y x f ,0作为y 的一元函数在点y =0y 连续,从而据定理1可得 ,()y x f ,在点()000,y x P 连续.推论 3 设函数()y x f z ,=在点()000,y x P 的某邻域()0P U 内有定义,若()y x f x ,在点()000,y x P 连续, ()00,y x f y 存在,则()y x f ,在点()000,y x P 连续.证明 由于()y x f x ,在点()000,y x P 连续,故()y x f x ,必在点()000,y x P 的某邻域内有界. 又由于()00,y x f y 存在,故()y x f ,0作为y 的一元函数在点0y y =连续,因而据定理1可得出 ,()y x f ,在点()000,y x P 连续.同理可证如下的定理2及其推论.定理 2 设函数()y x f z ,=在点()000,y x P 的某邻域()0P U 有定义,()y x f y ,在()0P U 内有界,()0,y x f 作为x 的一元函数在点x =0x 连续,则()y x f ,在()000,y x P连续.推论 1 设函数()y x f z ,=在点()000,y x P 的某邻域内()0P U 有定义, ()y x f y ,在点()000,y x P 连续, ()0,y x f 作为x 的一元函数在点0x x =连续,则()y x f ,在点()000,y x P 连续.推论 2 设函数()y x f z ,=在点()000,y x P 的某邻域内()0P U 有定义,()y x f y ,在()0P U 内有界, ()00,y x f x 存在,则()y x f ,在点()000,y x P 连续.推论 3 设函数()y x f z ,=在点()000,y x P 的某邻域()0P U 有定义, ()y x f y , 在点()000,y x P 连续, ()00,y x f x 存在,则()y x f ,在点()000,y x P 连续.2.2 二元函数可微性的进一步研究众所周知,一元函数中,可微性与可导是一回事,但在二元函数中情况就不同了.定理 3 函数(,)f x y 在点00(,)P x y 可微的充分必要条件是(,)f x y 在点00(,)P x y 的俩个偏导数都存在,且对0ε∀>,0δ∃>,当0000(,)(,)(,)(,)f x y f x y f x y f x y ε--+≤00()x x y y -+-.证明 必要性 已知函数(,)f x y 在点00(,)P x y 可微,故00(,)x f x y 与00(,)y f x y 存在,且00000000(,)(,)(,)()(,)()()x y z f x y f x y f x y x x f x y y y ορ∆=-=-+-+, 其中00()()x x y y ρ=-+-. 即0000(,)(,)(,)(,)f x y f x y f x y f x y --+[]000000(,)()(,)(,)x f x y x x f x y f x y =---+ []00000000(,)(,)()(,)(,)()y y f x y f x y y y f x y f x y ορ+---+于是,当00(,)(,)x y x y ≠时,有000000(,)(,)(,)(,)f x y f x y f x y f x y x x y y --+-+-000000(,)(,)(,)x f x y f x y f x y x x x x ρ--⋅--≤000000(,)(,)(,)()y f x y f x y f x y y y y y ορρρ--⋅--++000000(,)(,)(,)x f x y f x y f x y x x -≤--000000(,)(,)()(,)0(0)y f x y f x y f x y y y ορρρ-+-+→→-从而当0ρ→(即00(,)(,)x y x y →)时,000000(,)(,)(,)(,)0f x y f x y f x y f x y x x y y --+→-+-即0ε∀>,0δ∃>,当0x x δ-<与0y y δ-<且00(,)(,)x y x y ≠时,有000000(,)(,)(,)(,)f x y f x y f x y f x y x x y y ε--+<-+-所以,0ε∀>,0δ∃>,当0x x δ-<与0y y δ-<且00(,)(,)x y x y ≠时,有0000(,)(,)(,)(,)f x y f x y f x y f x y ε--+≤ 00()x x y y -+-.充分性 已知函数(,)f x y 在点00(,)P x y 两个偏导数存在,0ε∀>,0δ∃>,当0x x δ-<与0y y δ-<且00(,)(,)x y x y ≠时,有000000(,)(,)(,)(,)()f x y f x y f x y f x y x x y y ε--+≤-+-令00()()x x y y ρ=-+-,则当0ρ→时,有0000(,)(,)(,)(,)0f x y f x y f x y f x y ρ--+→于是当00(,)(,)x y x y ≠时,有000000(,)()(,)()x y y z f x y x x f x y f y y ∆--+-[]000000000(,)(,)(,)(,)(,)(,)()f x y f x y f x y f x y f x y f x y x x x x ⎡⎤---++-⎢⎥-⎣⎦0000000(,)(,)(,)()y f x y f x y f x y y y y y ⎡⎤-+--⎢⎥-⎣⎦从而有000000(,)()(,)()x y y z f x y x x f x y f y y ρ∆--+-=0000(,)(,)(,)(,)f x y f x y f x y f x y ρ--++0000000(,)(,)(,)()x f x y f x y x x f x y x x ρ⎡⎤---+⎢⎥-⎣⎦ 0000000(,)(,)(,)()0(0)x f x y f x y y y f x y x x ρρ⎡⎤---→→⎢⎥-⎣⎦ 所以,函数(,)f x y 在点00(,)P x y 可微.证毕.定理 4 若函数()y x f z ,=在()00,y x 点处,()y x f x ,连续()00,y x f y 存在(或()00,y x f x 存在,()y x f y ,连续),则函数()y x f z ,=在()00,y x 处可微.由此定理的条件仍有对一个偏导数(二元)连续性的要求.因而用来判断函数的可微性仍有较大的局限性.例如:对于函数2221sin (,)0,x x y f x y ⎧⎪+=⎨⎪⎩002222=+≠+y x y x , ())0(1cos )(21sin 2,2222222322≠+++-+=y x yx y x x y x x y x f x 有 ())0(1cos )(2,22222222≠+++-=y x yx y x y x y x f y ())0(1cos 21sin20,22≠-=x xx x x x f x 从而())0(21cos 21,2≠-=x xx x x f y 由于)0,(lim 0x f x x →和),(lim 0x x f y x →都不存在,因而),(y x f x 和),(y x f y 在点)0,0(都不连续.关于),(y x f 在点)0,0(的可微性,无论是根据教材中所介绍的定理,还是根据上述定理都不能给出肯定的结论.本文给出另一个可微的充分条件,它完全放弃对两个偏导数(二元)连续性的要求,因而对某些函数可微性的判定有独到的作用.为了叙述方便,引入如下概念.定义 如果对于函数),(y x f z =存在0>η,使得当η<∆y 时,),(00y y x f x ∆+存在,且当0→∆x 时,变量000000(,)(,)(,)(0),(,)0(0),x f x x y y f x y y f x y y x x y xx α+∆+∆-+∆⎧-+∆∆≠⎪∆∆=∆⎨⎪∆=⎩ 关于y ∆一直趋向于0,即对任意的0>ε,存在0>δ,当δ<∆<x 0时,对任意y ∆(y η∆<)都有(,)x y αε∆∆<成立,我们就称函数(,)z f x y =在点00(,)x y 关于y 对x 一致可导.类似地可定义),(y x f z =在点),(00y x 关于x 对y 一致可导.定理 5 若函数),(y x f z =在点),(00y x 有:),(00y x f y 存在,),(y x f 关于y 对x 一致可导,且),(y x f o x 在0y 连续,则),(y x f z =在点),(00y x 可微.证明: 因),(00y x f y 及),(00y y x f x ∆+)(η<∆y 存在,故有),(),(),(000000y x f y y x x f y x y -∆+∆+=∆),(),(),(),(00000000y x f y y x f y y x f y y x x f -∆++∆+-∆+∆+=[][]y y y x f x y x y y x f y x ∆∆++∆∆∆+∆+=)(),(),(),(0000βαy y y y x f x y x x y y x f y x ∆∆+∆+∆∆∆+∆∆+=)(),(),(),(0000βα(3)其中),(y x ∆∆α如前述定义,而0)(→∆y β()0,0→∆→∆y x ), 于是有0)(lim22=∆+∆∆⋅∆→∆→∆yx yy y x β (4)又因为),(0y x f x 在0y 连续,故有),(),(lim 000000y x f y y x f x y x x =∆+→∆→∆ (5)再由),(y x ∆∆α所具备的性质知,对任意0>ε,存在)(0ηδδ<>,当δδ<∆<∆y x ,且022≠∆+∆y x 时,有εα<∆∆),(y x 此即0),(lim 00=∆∆→∆→∆y x y x α从而0),(lim220=∆+∆∆∆∆→∆→∆yx xy x y x α (6)综合(3)——(6)式即得[]0),(),(),(lim2200000000=∆+∆∆+∆-∆→∆→∆y x yy x f x y x f y x f y x y x可见),(y x f 于),(00y x 可微.显然,调换定理条件中x f 和y f 的位置,结论仍然成立.指出,尽管定理5已完全放弃对两个偏导数的(二元)连续性要求,但它所给出的条件仍然不是可微的必要条件.因此,如何用两个偏导数所应具备的性质来等价地刻画二元函数的可微性,就需要进一步的探讨,这对以后仍是大我们还要有裨益的.1. 若果f 在点),(00y x 处不连续或偏导数不存在,则f 在点),(00y x 处不可微.2. 若果f 在点),(00y x 处连续,存在),(00y x f x 、),(00y x f y ,则f 在点),(00y x 处可微的充分必要条件是满足下列等价的任一式: (1) ),(),(0000y x f y y x x f z -∆+∆+=∆220000(),(),(y x y y x f x y x f y x ∆+∆+∆+∆=ε其中0→ε(当0,0→∆→∆y x )(2) ),(),(0000y x f y y x x f z -∆+∆+=∆y x y y x f x y x f y x ∆=∆+∆+∆=210000),(),(εε 其中120,0εε→→(当0,0→∆→∆y x 时)推论 4 若二元函数(,)z f x y =在00(,)x y 处两个偏导数00(,)x f x y ,00(,)y f x y 均存在,且00(,)xy f x y 或者00(,)yx f x y 存在,则函数(,)f x y 在00(,)x y 处可微.证明 不妨设00(,)xy f x y 存在(00(,)yx f x y 存在的情形可作类似证明).因为000000(,)(,)(,)limx x xy y y f x y f x y f x y y y →-=-所以000lim (,)(,)x x y y f x y f x y →=,即0(,)x f x y 在0y y =处连续.根据定理3可知函数(,)f x y 在00(,)x y 处连续. 2.3 二元函数偏导数存在性进一步研究二元函数()y x f ,在点),(0o y x 的两个偏导数有明显的几何意义:设)),(,,(00000y x f y x M 为曲面),(y x f z =上的一点,过0M 作平面0y y =,截此曲面得一曲线,此曲线在平面0y y =上的方程为),(0y x f z =,则导数0|),(0x x y x f dxd→, 即偏导数),(00y x f x ,就是这曲线在点0M 处的切线x T M 0对x 轴的斜率.同样,偏导数),(00y x f y 的几何意义是曲面被平面0x x =所截得的曲线在点0M 处的切线y T M 0对y 轴的斜率.我们已经知道,如果一元函数在某点具有导数,则它在该点必定连续.但对于二元函数来说,即使各偏导数在某点都存在,也不能保证函数在该点连续.这是因为各偏导数存在只能保证点P 沿着平行于坐标轴的方向趋于0P 时,函数值)(p f 趋于)(0p f ,但不能保证点P 按任何方式趋于0P 时,函数值)(p f 都趋于)(0p f .3 二元函数三个概念之间关系的总结3.1 二元函数连续性与偏导数存在性的关系及例证对一元函数来说,可导必连续.但对二元函数来说,即使x f ,y f 存在但f 也不一定连续.事实上,对于二元函数来说,函数在一点处的偏导数存在和函数在该点处连续是没有必然联系的.下面加以说明这个问题. 3.1.1 二元函数连续,但偏导不一定存在的举例证明例 1 讨论函数()22,y x y x g +=在点()0,0处的连续性和偏导数是否存在? 解: 由()()()()()220,0,0,0,lim,lim y x y x g y x y x +=→→0=(0,0)g =可知函数()22,y x y x g +=在点()0,0连续. 而由偏导数定义:0(0,0)(0,0)(00)limx x g x g f x∆→+∆-=∆2001,0lim lim 1,0x x x x x x x x ∆→∆→∆>∆⎧∆===⎨-∆<∆∆⎩该极限()0,0x g 不存在,同理可证()0,0y g 也不存在. 所以函数),(y x g 在()0,0点的偏导数不存在. 由此说明,二元函数在一点连续,偏导数未必存在. 3.1.2 二元函数偏导存在,但不一定连续的举例证明例 2 函数()22,,1,x y f x y ⎧+=⎨⎩ 00≠=xy xy 在点()0,0处()0,0x f ,()0,0y f存在,但不连续.证明 由偏导数定义:()()()xf x f f x x ∆-∆+=→∆0,00,0lim 0,00 0lim x x ∆→=∆0= 同理可求得 ()0,00y f = 因为()()()()()()()22,0,0,0,0lim,lim00,01x y x y f x y x y f →→=+=≠=故函数()22,,1,x y f x y ⎧+=⎨⎩00≠=xy xy 在点()0,0处不连续.综上可见,对于二元函数()y x f ,在某点()00,y x 的连续性与偏导数存在,两者之间没有必然的联系,即()y x f ,在某点()00,y x 偏导数存在与否,与其在该点是否连续无关.但如果假定函数的各个偏导数有界,即有下面命题:命题 1 如果二元函数f 在点00(,)P x y 的某邻域()U P 内的偏导数x f ,y f 有界,则f 在()U P 内连续.证明 由x f ,y f 在()U P 内有界,设此邻域为1(,)U P δ,存在0M >,使x f M <,y f M < ,在1(,)U P δ内成立,由于12(,)(,)(,)(,)x y Z f x x y y f x y f x x y y x f x y y y M x M yθθ∆=+∆+∆-=+∆+∆∆++∆∆≤∆+∆(其中120,1θθ≤≤).所以对任意的正数ε,存在1,2(1)M εδδ⎧⎫=⎨⎬+⎩⎭,当,x y δδ∆<∆<时,有(,)(,)f x x y y f x y ε+∆+∆-<,故f 在(,)U P δ内连续.3.2 二元函数可微性与偏导数存在性的关系及例证 3.2.1 可微与偏导存在关系的举例证明定理 6 (可微的必要条件)若二元函数()y x f z ,=在其定义域内一点()000,y x P 处可微,则f 在该点关于每个自变量的偏导数都存在,且()()()000000|,,,x x d x y f x y dx f x y dy =+ ,()00,y x f A x =,()00,y x f B y =. 证明 由于()y x f ,在点),(000y x P 可微,则())(),(,0000ρο+∆+∆=-∆+∆+=∆y B x A y x f y y x x f z其中,y x ∆∆,为自变量y x ,的该变量,B A ,仅与点),(000y x P 有关,而与y x ∆∆,无关,22y x ∆+∆=ρ.若令0y y =即0=∆y ,于是x ∆=ρ,故)(x x A z ∆+∆=∆ο可见xx A x z∆∆+=∆∆)(ο,Axx A x zy x f x y x x =∆∆+=∂∂=→∆))((lim |),(0),(0000ο,即()A y x f x =00,,类似可证()B y x f y =00,.可见,对于二元函数,偏导数的存在是函数),(y x f z =可微分的必要条件.但是偏导数的存在不是函数可微分的充分条件.事实上,当一个二元函数),(y x f z =在点),(y x 处的偏导数yzx z ∂∂∂∂,都存在时,尽管形式上可以写成式子y y zx x z ∆∂∂+∆∂∂,但是它与z ∆之间可以不是22y x ∆+∆=ρ的高阶无穷小,因而由定义,此时函数),(y x f z =在点),(y x 处是不可微的.注 1:定理5的逆命题不成立.即二元函数()y x f ,在点()000,y x P 处的偏导数即使存在也不一定可微.下面用例3说明函数在一点的偏导数存在,但函数在该点却不可微.例 3 证明函数()22,,0,xy x y f x y ⎧⎪+=⎨⎪⎩002222=+≠+y x y x 在原点两个偏导数存在,但不可微.证明 由偏导数的定义:()()()xf x f f x x ∆-∆+=→∆0,00,0lim0,00=000lim0x x∆→-=∆同理可证()0,00y f =,即在原点关于x 与y 的偏导数存在. 下面利用可微的定义来证明其不可微 用反证法:若函数f 在原点可微,则())(()()00,00,00,00,0y f df f x y f f dx f dy ⎡⎤⎡⎤∆-=+∆+∆--+⎣⎦⎣⎦ 22x y x y∆∆=∆+∆应是较22y x ∆+∆=ρ的高阶无穷小量,为此考察极限2200limlimy x yx dff ∆+∆∆∆=-∆→→ρρρ当动点()y x ,沿直线mx y =趋于()0,0时, 则()()()()220,0,220,0,11lim limm mm m y x xy y x mx y y x +=+=+→=→ 这一结果说明动点沿不同斜率m 的直线趋于原点时,对应的极限值也不同,因此所讨论的极限不存在.故函数f 在原点不可微. 3.2.2 偏导连续与可微关系的举例证明定理 7 (可微的充分条件) 若二元函数()y x f z ,=的偏导在点()000,y x P 的某邻域内存在且x f 与y f 在点()000,y x P 处连续,则函数()y x f ,在点()000,y x P 可微.可微的充分条件可以改进: 如果函数()y x f z ,=满足以下条件: 1. (,)x f x y 在点00(,)x y 处存在;2. (,)y f x y 在点00(,)x y 的某个邻域内存在;3. (,)y f x y 在点00(,)x y 处连续; 则(,)f x y 在点00(,)x y 处可微.证明 由于00(,)x f x y 存在,即有:0000000(,)(,)lim (,)x x f x x y f x y f x y x ∆→+∆-=∆ 即:0000(,)(,)(,)x f x x y f x y f x y xα+∆-=+∆(其中0lim 0x α∆→=)则000000(,)(,)(,)x f x x y f x y f x y x x α+∆-=⋅∆+⋅∆由于(,)x f x y 在点00(,)x y 的某个邻域内存在,不妨设(,)y f x y 在ω={01(,)|x y x x ψ-<且02y y ψ-<}内存在设0()(,)g y f x x y =+∆并规定1x ψ∆<则()g y 在20|2y y y ψ⎧⎫-≤⎨⎬⎩⎭上每一点都存在,从而()g y 在20|2y y y ψ⎧⎫-≤⎨⎬⎩⎭上每一点都连续,规定:22y ψ∆≤则根据中值定理存在1y ,使得:001()()()g y y g y g y y +∆-=∆(其中10y y y -≤∆)即:000001(,)(,)(,)y f x x y y f x x y f x x y y +∆+∆-+∆=+∆⋅∆当220x y ∆+∆→且0y ∆→ 从而有00x x x +∆→,10y y →又由于0100(,)(,)y y f x x y f x y +∆=在点00(,)x y 处连续0100(,)(,)y y f x x y f x y β+∆=+其中220lim 0x y β∆+∆→=则000000(,)(,)(,)y f x x y y f x x y f x y y y β+∆+∆-+∆=⋅∆+⋅∆综上所述有:0000(,)(,)f x x y y f x y +∆+∆-[][]00000000(,)(,)(,)(,)f x x y y f x y f x x y y f x y =+∆+∆-++∆+∆- 0000(,)(,)x y f x y x x f x y y y αβ=∆+⋅∆+∆+⋅∆又由于2222lim0x y x yx yαβ∆+∆→⋅∆+⋅∆=∆+∆故(,)f x y 在点00(,)x y 点可微.证毕.教材中关于二元函数的微分一般只是分别给出了必要条件和充分条件,对可微的充要条件涉及比较少.偏导数的存在是函数可微的必要条件而不是充分条件,但是,如果在假设函数的各个偏导数连续,则函数是可微的.但此条件给的太强,于是我们总结了判别二元函数在某点可微的一个充分条件,可对此定理的条件进行减弱,得出:定理 8 若函数()y x f z ,=在点()000,y x P 的邻域G 内()y x f x ,连续,()00,y x f y存在,则函数f 在点()00,y x 可微.证明 全增量()),(,0000y x f y y x x f z -∆+∆+=∆[][]),(),(),(),(00000000y x f y y x f y y x f y y x x f -∆++∆+-∆+∆+=这里第一个括号是当y y y ∆+=0时函数关于x 的增量,而第二个括号则是当0x x =时函数关于y 的增量,对于它们分别应用一元函数的拉格朗日中值定理,得()y y y x f x y y x x f z y x ∆∆++∆∆+∆+=∆),(,200010θθ )1,0(21<<θθ 由于()y x f x ,,()00,y x f y 在点()00,y x 连续,因而有()αθ+=∆+∆+),(,00010y x f y y x x f x x ,()βθ+=∆+),(,00200y x f y y x f y y , 其中当)0),((→∆∆y x 时,0,0→→βα.所以()()y x y y x f x y y x f z y x ∆+∆+∆+∆=∆βα0000,, 令22y x ∆+∆=ρ,则当0→ρ时,ερρβραρβα⋅=∆+∆=∆+∆)(yxy x 是关于ρ的高阶无穷小.事实上,由于βαρβραε+≤∆+∆=yx而当0→ρ时0→ε,即)(ροερβα=⋅=∆+∆y x .这就证明了),(y x f z =在点),(00y x 是可微的.例 4 求证21sin ,0(,)0,0x e y y y f x y y ⎧≠⎪=⎨⎪=⎩在点(0,0)可微.证明 因为0(,)(,)(,)lim x f f x x y f x y x y x x∆→∂+∆-=∂∆22011sin sin limx x x x e y e y y yx+∆∆→-=∆201sin (1)limx xx e y e yx∆∆→-=∆21sin(0)x e y y y=≠0(,)(,)limy f f x y y x y x y∆→∂+∆=∂∆ 22011()sin sin limx x y e y y e y y y yy∆→+∆-+∆=∆11112sincos (2sin cos )x x x e y e e y y y y y=-=-.(0)y ≠ 00(,0)(,0)00(,0)lim lim 0x x f f x x f x x x xx ∆→∆→∂+∆--===∂∆∆同理(0,)0fy y∂=∂ 即21sin ,0(,)0,0x e y y f y x y x y ⎧≠∂⎪=⎨∂⎪=⎩ 11(2sin cos ),0(,)0,0xe y yf y y x y x y ⎧-≠∂⎪=⎨∂⎪=⎩于是(0,0)(0,0)0x y f f == 又2001lim sin0x x y e y y∆→X →=, 所以(,)x f x y 在点(0,0)连续. 但0011lim (2sincos )x x y e y y y∆→X →-不存在,即(,)y f x y 在(0,0)点不连续. 又定理8可知(,)f x y 在点(0,0)可微.显然,与传统的判别方法相比,这个充分条件更加减弱了判别条件,进一步阐明了二元函数偏导数与可微性的关系,使适用范围扩大,适用性加强.注意 这个条件是可微的充分条件并非必要条件,即()y x f z ,=在()00,y x 的邻域G 内()00,y x f y 存在但()y x f x ,不连续,但()y x f ,在点()00,y x 也可微.下面我们用例5说明函数在一点可微,但它的偏导数在该点却不连续. 例 5 求函数()()22221sin ,,0,x y x y f x y ⎧+⎪+=⎨⎪⎩ 002222=+≠+y x y x ,在原点()0,0处,(1)()0,0y f 是否存在 (2)x f 是否连续(3)是否可微.解 (1) 由定义知()()()0,0,00,0limx y f y f f y∆→∆-=∆221sinlim 0y y y y∆→∆∆==∆所以()0,0y f 存在.(2) 因为当022≠+y x 时,()y x f ,偏导数存在,故()⎪⎩⎪⎨⎧⎪⎪⎭⎫⎝⎛++-+=,0,1cos 11sin 2,222222y x y x y x x y x f x 002222=+≠+y x y x , 而()y x f x y x ,lim 00→→不存在,故()y x f ,在原点不连续.(3)法 1:因()()200,00,01(0,0)limlim sin 0x x x f x f f x x x→→-=== ()()2000,0,01(0,0)limlim sin 0y y y f y f f y y y→→-=== 则()()0,00,00x y df f dx f dy =+=()22221,(0,0)()sinf f x y f x y x y∆=-=++ 221sinρρ=(()22,:0x y x y ∀+≠)从而2221sin1limlimlim sin0f dfρρρρρρρρρ→→→∆-===即函数(),f x y 在点()0,0可微.法 2:(0,0)0x f =,(0,0)0y f =,(0,)(0,0)(0,0)lim00x x xy y f y f f y →-==-即(0,0)x f ,(0,0)y f 存在,且(0,0)xy f 存在.根据推论4可知题设所给函数(,)f x y 在(0,0)处可微.3.3 二元函数连续性与可微性的关系及例证类似于一元函数的连续性与可导性间的关系,即二元函数(),f x y 在点()000,P x y 可微,则必连续.反之不然.定理 9 若二元函数()y x f ,在其定义域内一点()y x ,可微,则f 在该点必然连续.证明 事实上()ρο+B∆+A∆=∆y x z ,0lim 0=∆→z ρ,()()[]()y x f z y x f y y x x f y x ,,lim ,lim 0=∆+=∆+∆+→→∆→∆ρ故f 在()y x ,连续.注意 函数()y x f ,在某点()y x ,可微,则()y x f ,在该点连续;但()y x f ,在某点()y x ,连续,函数在该点却不一定可微.例 6 证明函数(),||f x y xy =在点()0,0连续,但它在点()0,0不可微.证明 (1) 因为()()000lim ,lim ||00,0x x y y f x y xy f →→→→===,故函数(),||f x y xy =在点()0,0连续.(2) 因为(0,0)(0,0)||||f f x y f x y ∆=+∆+∆-=∆∆()()0,00,00x y df f dx f dy =+=所以 2200||||limlim()()x y x y f dfx y ρρ→∆→∆→∆∆∆-=∆+∆当动点(),x y 沿直线y x =趋于()0,0时,有2200||||1lim02()()x y x y x y ∆→∆→∆∆=≠∆+∆ 即0lim0f dfρρ→∆-≠,故(),f x y 在原点()0,0不可微.例 7 函数y x y x f +=),(在点)0,0(处连续,但在)0,0(点不可微. 解: 因为()()()()())0,0(0)(lim ,lim0,0,0,0,f y x y x f y x y x ==+=→→所以y x y x f +==),(在点)0,0(处连续. 又因为xx x f x f f x x x ∆∆=∆-∆+=→∆→∆00l i m )0,0()0(l i m)0,0(,此极限不存在;同理)0,0(y f 的极限也不存在.因此不能把)(ρο+∆+∆=∆y B x A z 的形式.4 二元函数连续性、偏导数存在性及可微性关系的概图如果函数(),z f x y ∆=在点(,)x y 可微分,则函数在该点必连续,反之不一定成立.如果函数(),z f x y ∆=在点(,)x y 可微分,则函数在该点的偏导数必存在,反之一定成立.如果函数(),z f x y ∆=在点(,)x y 连续,则偏导不一定存在. 如果函数(),z f x y ∆=在点(,)x y 偏导存在,则不一定连续.如果函数(),z f x y ∆=在点(,)x y 偏导连续,则函数在该点必可微,反之不一定成立.综上所述二元函数连续性、偏导数存在性及可微性的关系如下图所示.偏导连续可微连续偏导存在结束语本文对二元函数连续性、偏导数存在性及可微性之间关系的讨论,根据分析可以看出二元函数连续性、偏导数存在性及可微性之间的关系比一元函数连续、导数存在及可微之间的关系要复杂的多,究其原因主要在于二元函数极限比一元函数极限对自变量的要求更高、更复杂.如0lim ()x x f x →只要求在x 从0x 的左右俩侧趋向于0x 时,()f x 趋于同一值.而对()()()00,,lim,x y x y f x y →要求点(),x y 以任何方式趋向于点()00,x y 时,(),f x y 都趋向于同一极限,任何方式包含了x 与y 的不同关系以及趋向时的不同路径,从而导致二元函数产生了二重极限与累次极限的区别,正是由于二元函数极限的这种复杂性导致了二元函数诸多关系的复杂性.依据本文的分析得出它们三者之间的关系,不但对学习是一种积极的推动作用,有助于使学生对这方面的知识不会产生干扰,能较好地辨别它们之间的本质区别,使得原有知识更加牢固,也同时抓住了函数的本质.这方面的知识繁多,证明的方法难易悬殊,使用技巧各异,而且同一问题也可用多种不同方法来解决. 二元函数连续性、偏导数存在性及可微性之间关系的知识是人类智慧最伟大的成就之一,是数学上的伟大创造,它现在广泛影响着生产技术和科学的发展,如今已是广大科学工作者以及技术人员不可缺少的工具.以上我从比较初等的方法入手,进而对二元函数连续性、偏导数存在性及可微性的若干概念、定理、性质等内容这一方面的内容作了浅显的论述,将初等数学和高等数学的有关内容衔接起来,从而在整体上更好地理解有关这方面的知识.至于解决具体问题时个人可依据知识的储备、问题的要求来进行方法的选择.本文列举了二元函数连续性、偏导数存在性及可微性这方面的知识和证明方法,根据证明方法、举例、适用范围进行了归纳总结,力求有理论依据、有例题参考、有实用价值.从定义出发证明是最“原始”的做法,不易被人想到,但它在证明中确有其优势.证明的方法应该还有很多,对于其它新的方法有待于进一步探索与研究.为此,我们有必要学习好、掌握好二元函数连续性、偏导数存在性及可微性之间的关系这方面的知识,配以先进的管理观念和现代化的通信、网络、计算机技术,尽可能的把这些知识灵活运用推广,满足其他行业对这些知识的需要,创造更好的经济效益和社会效益.参考文献[1] 华东师范大学数学系. 数学分析(下)[M] . 北京: 高等教育出版社,2001: 100 –112[2] 吉米多维奇. 数学分析习题集[M] . 北京: 人民教育出版社, 1958: 62-78[3]马振民. 数学分析的方法与技巧选讲[M]. 兰州: 兰州大学出版社, 1999: 36-54.[4] 裴礼文. 数学分析中的典型问题与方法[M]. 北京: 北京高等教育出版社, 1993: 86-97.[5] 华东师范大学数学系. 数学分析[M] . 北京: 人民教育出版社, 1981: 137-160.[6] 李超. 有关多元函数连续性的几个新结论[J]. 韶关学院学报(自然科学版).2002,23(6): 1-6.[7] 周良正,王爱国. 偏导数存在,函数连续及可微的关系[J]. 高等函授学报(自然科学版).2005,19(5): 1-4.[8] 何鹏,余文辉,雷敏敛. 二元函数连续、可偏导、可微等诸条件间关系的研究[J]. 南昌高专学报. 2005,61(6): 1-2.[9] 黄梅英. 浅谈二元函数可微性[J]. 三名师专学报. 2000,17(1): 1-5.[10] 龚俊新. 二元函数连续、偏导、可微之间的关系[J]. 湖北师范学院学报(自然科学版).2000.23-24.[11] 同济大学数学教研室主编.高等数学(下册)(第四版)[M]. 高等教育出版社,.2000,20(3): 1-3.[12] 张郑严. 关于二元函数可微性定理的探讨[J]. 西北建筑工程学院报,.1993.4,46-48.[13] 高敏艳. 二元函数可微性定理的一个新的证明[J]. 天津师范大学学报(自然科学版),1999,19(3): 71-72.[14] 吴良森,等. 数学分析学习指导书.高等教育出版社, 2004.9.[15] 刘玉琏,傅沛仁. 数学分析讲义(三版).高等教育出版社, 2001.2.[16] 刘玉琏,等. 数学分析讲义学习辅导书(二版).高等教育出版社, 2004.7.[17] 罗炳荣. 《数学》(报考理工科研究生复习指导丛书).湖南科学技术出版社,.高等教育出版社,1985.327.。
多元函数可导与可微与连续的关系多元函数是指含有多个自变量的函数。
在数学中,我们常常研究多元函数的可导性、可微性和连续性。
这三个概念在多元函数的研究中非常重要,它们之间存在着一定的关系和区别。
我们来看可导性和可微性的关系。
可导性是指函数在某一点处存在导数,而可微性是指函数在某一点处可导且导数连续。
也就是说,可微性是可导性的一种更强的要求。
具体来说,对于一个多元函数,如果它在某一点处可导,那么它在该点的所有偏导数都存在。
而如果函数在某一点处可微,那么它在该点的所有偏导数都存在且连续。
可微性要求的是函数的所有偏导数的连续性,这是比可导性更高的要求。
可导性和可微性的区别可以用一个简单的例子来说明。
考虑一个二元函数f(x,y)=|x|+|y|,我们可以验证该函数在原点(0,0)处的所有偏导数都存在,因此它在原点处可导。
然而,如果我们计算该函数在原点处的偏导数,会发现它们并不连续,因此该函数在原点处不可微。
接下来,我们来讨论多元函数的连续性。
对于一个二元函数f(x,y),如果它在某一点处的极限等于该点处的函数值,那么我们称该函数在该点处连续。
换句话说,连续性要求的是函数在某一点处的极限与函数值的一致性。
在多元函数的研究中,连续性是一个非常重要的性质。
如果一个函数在定义域的每一个点处都连续,那么我们称该函数在整个定义域上连续。
连续性保证了函数在定义域上的平滑性和稳定性,使得我们能够更好地研究函数的性质。
与可导性和可微性不同的是,连续性并不要求函数的所有偏导数都存在或连续。
也就是说,一个函数可以是连续的,但不可导或不可微。
例如,我们可以构造一个二元函数f(x,y)=xy/(x^2+y^2),该函数在原点处连续,但不可导。
总结一下,多元函数的可导性、可微性和连续性是多元函数研究中的重要概念。
可微性是可导性的一种更强要求,要求函数的所有偏导数连续。
连续性是函数在某一点处的极限与函数值一致的性质。
这三个概念在数学中有着广泛的应用,对于研究多元函数的性质和求解问题都起着重要的作用。
目录摘要 (1)关键词 (1)Abstract (1)Key words (1)引言 (1)1二元函数连续、偏导数、可微三个概念的定义 (1)2二元函数连续、偏导数、可微三个概念之间的关系 (2)2.1二元函数连续与偏导数存在之间的关系 (2)2.2二元函数连续与可微之间的关系 (3)2.3二元函数可微与偏导数存在之间的关系 (3)2.4二元函数可微与偏导数连续之间的关系 (4)二元函数连续、偏导数、可微的关系图 (6)参考文献 (7)致谢 (8)本科生毕业论文2二元函数的连续、偏导数、可微之间的关系摘要 一元函数可微与可导等价,可导必连续.但二元函数并非如此,以下文章给出了二元函数连续、偏导数、可微之间的关系,并给出了简单的证明,且用实例说明了它们之间的无关性和在一定条件下所具有的共性.关键词 二元函数 连续 偏导数 可微The Relationship among Continuation, Partial Derivatives andDifferentiability in Binary FunctionAbstract Unary function differentiable with derivative equivalent, will be continuously differentiable. But the dual function is not the case, the following article gives a continuous function of two variables, partial derivatives, can be said the relationship between them, and gives a simple show, and illustrated with examples related between them and under certain conditions have in common..Key words binary function continuation partial derivatives differentiability引言 二元函数的偏导数存在、函数连续、可微是二元函数微分学的三个重要概念.对于学习数学分析的人来说,必须弄清三者之间的关系,才能学好、掌握与之相关的理论知识.本文详细讨论这三者之间的关系.1 二元函数连续、偏导数、可微三个概念的定义定义1 设为定义在点集上的二元函数,(或者是的聚点,f 2D R ⊂0D P ∈0P D 或者是的孤立点),对于任给的正数,总存在相应的正数,只要D εδ,就有,则称关于集合在点连续.0,)(D P U P δ⋂∈0)||()(f P f P ε<-f D 0P 定义2 设函数,若且在的某一邻域(,),(,)z f x y x y D =∈00,)(y D x ∈0,)(y f x 0x 内有定义,则当极限存在时,则称这个00000000(,))(,)(,limlim x x x f x y f x y f x x y x x∆→∆→+-=∆∆∆∆本科生毕业论文3极限为函数在点关于的偏导数,记作.f 00,)(y x x 0(,)|x y fx∂∂定义3 设函数在点某邻域内有定义,对于中的(,)z f x y =000,)(y P x 0()U P 0()U P 点,若函数在点处的全增量可表示为00,)(,)(y P x y x x y ++=∆∆f 0P ,其中、是仅与点有关0000)(,)(,()A z f x x y y f x y x B y ορ++=∆=∆∆-∆+∆+A B0P 的常数,是较高阶的无穷小量,则称函数在点处可微.()ορρ=ρf 0P 2 二元函数连续、偏导数、可微三个概念之间的关系2.1 二元函数连续与偏导数存在之间的关系例 在偏导数存在但不连续.[1]122,(,)(0,0)(,)0,(,)(0,0)xyx y x y f x y x y ⎧≠⎪+=⎨⎪=⎩(0,0)证明 因为 ,00(,0)(0,0)00(0,0)limlim 0x x x f x f f x x→→--===同理可知 . 所以 在偏导数存在.(0,0)0y f =(,)f x y (0,0)因为 极限不存在,所以 在不连续.220,0limx y xyx y →→+(,)f x y (0,0)例在点连续,但不存在偏导数.2[2](,)f x y =(0,0)证明 因为 ,0,00,lim (,)lim0(0,0)x y x y f x y f →→→→===所以 在点连续,(,)f x y =(0,0)因为 ,该极限不存在,00(,0)(0,0)(0,0)lim x x x f x f f x →→-==同理 也不存在.(0,0)y f 所以 在点连续,但不存在偏导数.(,)f x y =(0,0)此二例说明: 二元函数连续与偏导数存在不等价,偏导数存在不一定连续,连续不一定偏导数存在.这与一元函数不同.一元函数中,可导一定连续,连续不一定可导.2.2 二元函数连续与可微之间的关系本科生毕业论文4定理 若在点可微,则在点一定连续.1[3](,)z f x y =(,)x y (,)z f x y =(,)x y 证明 在点可微,(,)z f x y =(,)x y (1)0000)(,)(,()A z f x x y y f x y x B y ορ++=∆=∆∆-∆+∆+所以 当时,有,即 在该点连续.0,0x y ∆→∆→0z ∆→(,)z f x y =例 证明在点连续,3[4](,)(0,0)(,)0,(,)(0,0)x y f x y x y ≠==⎩(0,0)但在点不可微.(0,0)证明 令,则.cos ,sin x r y r θθ==(,)00x y r →⇔→因为,2cos sin |||cos sin |0(0)r r r r r θθθθ==≤→→所以在点连续.(,)f x y (0,0)按偏导数定义,00(,0)(0,0)0(0,0)limlim 0x x x f x f f xx ∆→∆→∆-===∆∆同理 .(0,0)0y f =若在点可微,则(,)f x y(0,0)(0,0)(0,0)(0,0)(0,0)x y z dz f x y f f x f y ∆-=+∆+∆--∆-∆=应是较高阶的无穷小量.ρ=因为 该极限不存在,所以在点不可微.220limlimz dzx yx y ρρρ→→∆-∆∆=∆+∆(,)f x y (0,0)此例说明: 二元函数在某点连续,不一定可微,但可微一定连续.这与一元函数有相同的结论.2.3 二元函数可微与偏导数存在之间的关系定理 若二元函数在其定义域内一点处可微,则在该点关于每个2[5]f 00,)(y x f本科生毕业论文5自变量的偏导数都存在,且(1)式中的.0000,),,)((x y A f y B f y x x ==证明 因为 在点可微,则(,)z f x y =(,)x y .0000)(,)(,()A z f x x y y f x y x B y ορ++=∆=∆∆-∆+∆+若令上式中 ,则,0y ∆=0000(,)(,)(||)z f x x y f x y A x x ο=+∆∆-=∆+∆所以 .000000(,)(,)(||)limlim x x A xf x x y f x y x A x ο∆→∆→=∆+∆-∆+=∆即.类似可证.A zx=∂∂B z y =∂∂例 设,则在点偏导数存在,但在该4[6]2222222,0(,)0,0x y x y x y f x y x y ⎧+≠⎪+=⎨⎪+=⎩(,)f x y (0,0)点不可微.解 事实上(1),(,0)(0,0)(0,0)lim0x x f x f f x→-==,(0,)(0,0)(0,0)lim0y y f y f f y→-==故 在点偏导数存在.(,)f x y (0,0)(2)因为 ,0,limlimx y f dfρρ→∆→∆→∆-=此时若令,则,y kx ∆=∆0,0,limlimx y x y ∆→∆→∆→∆→=此极限显然不存在,所以不存在,limf dfρρ→∆-所以 在点不可微.(,)f x y (0,0)此例说明: 二元函数中,偏导数存在不一定可微;可微则偏导数存在.这与一元函数中,可微与可导等价有区别.2.4 函数可微与偏导数连续之间的关系定理若二元函数的偏导数在点的某邻域内存在,且与3[7](,)z f x y =00(,)x y x f本科生毕业论文6在点处连续,则函数在点处可微.y f 00(,)x y f 00(,)x y 证明 我们把全增量0000,)(,)(y f x y z f x x y ++-∆=∆∆ 00000000[,),)][,)(,)](((y y y f x y f x x y f x y f x y =++-+++-∆∆∆∆在第一个括号里,它是函数关于的偏增量;在第二个括号里,则是函数0,)(y f x y +∆x 关于的偏增量.0(,)f x y y 对它们分别应用一元函数的拉格朗日中值定理,得 (2)010002,),(()x y y y z f x x y x f x y y θθ++++∆=∆∆∆∆∆12,10θθ<<由于与在点处连续,x f y f 00(,)x y 因此有 , (3)01000,)(,)(x x y x y f x x y f θα++=+∆∆ , (4)00200,(,)()y y y x y f x y f θβ++∆=其中 当时,有.0,0x y ∆→∆→0,0αβ→→将(3) ,(4)代入(2)式,则得.0000(,)(,)x y x y x y z f x f y x y αβ=+∆∆∆+∆+∆所以 函数在点处可微.f 00(,)x y 例在处可微,但与5[8]22()sin (,)(0,0)(,)0,(,)(0,0)x y x y f x y x y ⎧+≠⎪=⎨⎪=⎩(0,0)(,)x f x y 均在处不连续.(,)y f x y (0,0) 解 因为,220,0lim ()sin0(0,0)x y x y f →→+==所以 在处连续.(,)f x y (0,0),00(,0)(0,0)(0,0)lim 0x x x f x f f x→→-===本科生毕业论文7同理 .(0,0)0y f =当时,极限不存在,220x y +≠0,0lim 2x x y f x →→=故在点不连续. 同理可证在处不连续.(,)x f x y (0,0)(,)y f x y (0,0),lim0f dfρρρ→→∆-==所以在处可微.(,)f x y (0,0)此例说明 二元函数偏导数连续并不是可微的必要条件.由此可知定理3是可微的充分条件.由此引出定理4,降低函数可微的条件.定理若在内存在,且在连续,4[9](,)f x y 0()U P (,)x f x y (,)x f x y 00(,)o P x y 在存在,证明:在可微.(,)y f x y 0P f 0P 证明 0000(,)(,)f f x x y y f x y ∆=+∆+∆- 00000000[(,)(,)][(,)(,)]f x x y y f x y y f x y y f x y =+∆+∆-+∆++∆-由已知 存在,且在连续,(,)x f x y 0(,)o x y 有0000010(,)(,)(,)x f x x y y f x y y f x x y y xθ+∆+∆-+∆=+∆+∆∆ ,11(,)(0)xf x y x x αα=∆+∆→因为 ,0000000(,)(,)lim(,)y y f x y y f x y f x y y∆→+∆-=∆所以 ,00000022(,)(,)(,)(0)y f x y y f x y f x y y y αα+∆-=∆+∆→又因 ,所以 在点可微.1212||||||0x yααααρ∆+∆≤+→f 0P 注 此定理中与互换,结论仍然成立.(,)x f x y (,)y f x y 二元函数连续、偏导数、可微的关系如图二元函数连续二元函数偏导数存在本科生毕业论文8二元函数可微二元函数偏导数连续参考文献[1]常庚哲,史济怀,数学分析[M].北京:高等教育出版社,2003.6:97[2]刘文灿,刘夜英,数学分析[M].西安:陕西人民出版社,2004.9:116[3]朱正佑,数学分析[M].上海:上海大学出版社,2001.7:188[4]黄玉民,李成章,数学分析[M].北京:科学出版社,1995.5:61-62[5]华东师范大学数学系. 数学分析(第二版)[M].北京:高等教育出版社,110[6]周良金,王爱国,函数连续及可微的关系[J].高等函授学报2005.10,19(5):35[7]陈纪修,於崇华,金路,数学分析(第二版)[M].北京:高等教育出版社,2004.10:142-143[8]刘新波,数学分析选讲[M].哈尔滨:哈尔滨工业大学出版社,2009.3:151[9]《大学数学名师导学丛书》编写组,数学分析名师导学[M].北京:中国水利水电出版社,2004:147-148致谢感谢老师对本论文从选题、构思、资料收集到最后定稿的各个环节给予的指引和教导,使我对分段函数的分析性质有了更深刻的认识,并最终得以完成毕业论文,对此我表示衷心的感谢,老师严谨的治学态度、丰富渊博的知识、敏锐的学术思维、精益求精的工作态度、积极进取的科研精神以及诲人不倦的师者风范是我毕生的学习楷模.通过这一阶段的努力,我的毕业论文已接近尾声,作为一个本科生的毕业论文,由于经验的匮乏,难免有许多考虑不周全的地方,如果没有老师的亲切关怀和悉心指导,完成本次毕业论文将变得十分困难.老师平日工作繁多,但在这篇论文的写作过程中,老师不辞辛劳,多次就论文中许多核心的问题做深入细致的探讨并给我提出切实可行的指导性建议,才最终得以完成本次毕业论文.老师的这种一丝不苟的负责精神,使我深受感动.在此,请允许我向尊敬的老师表示真挚的谢意.最后,还要感谢我的辅导员在这四年来对我的帮助与鼓励,以及院系的所有领导本科生毕业论文对我的栽培与支持.并向在百忙中抽出时间对本论文进行评审,并提出宝贵意见的各位老师表示衷心的感谢,致以最崇高的敬意.9。
多元函数连续,可导,可微之间的关系多元函数是描述多维空间中点集合间关系的函数,可以看作是一种把多维空间上的点映射到实数空间的函数。
它在许多领域中有着重要的应用,特别是在几何学和微积分学中。
数字计算和机器学习方面也有广泛的应用。
因此,了解多元函数的连续性、可导性和可微性之间的关系,对于我们理解多元函数以及使用多元函数进行数字计算是非常有必要的。
连续性是指任意一个点附近的任意一条线段都可以无穷接近这个点,也就是说,这个点的函数值可以无穷接近函数的连续点。
一个函数如果在点上有连续性,可以被认为是“连续的”。
对于多元函数来说,要满足连续性,那么它的每一个变量都应该是连续的,而且它的每一阶偏导数也都应该是连续的。
可导性是指函数的每一阶偏导数都是可积分的,一般来说,如果函数的偏导数都为连续函数,那么其是可积分的。
对于多元函数来说,要想让多元函数可导,就要其偏导数矩阵(Jacobian matrix)可逆,也就是说,多元函数的每一阶偏导数都要是连续、可积分的。
可微性是指函数的每一阶偏导数都是可微的,也就是说,多元函数的每一阶偏导数都要是可积分的。
而且,这个函数的偏导数矩阵(Hessian matrix)也要可逆,也就是说,多元函数的每一阶偏导数都要是可微的。
从上述可以看出,多元函数的连续性、可导性和可微性之间是存在紧密关联的。
当一个多元函数满足连续性时,它就一定满足可导性;而当一个多元函数满足可导性时,它就一定满足可微性。
也就是说,如果一个函数满足连续性,那么它就一定满足可微性。
另外,多元函数的可微性也就是它的可导性的延伸,它的可微性的满足要求比可导性的要求更为严格。
因此,一般来说,如果一个函数不满足可微性,那么它就一定不满足可导性,而满足可导性并不一定满足可微性。
从上述可以看出,多元函数的连续性、可导性和可微性之间是有着密切关系的,这些性质对于我们理解和使用多元函数都具有重要意义。
首先,连续性是多元函数的基础。
即设y=f(x)就是一个单变量函数, 如果y在x=x0处存在导数y′=f′(x),则称y在x=x[0]处可导。
如果一个函数在x0处可导,那么它一定在x0处就是连续函数。
函数可导定义:
(1)设f(x)在x0及其附近有定义,则当a趋向于0时,若[f(x0+a)-f(x0)]/a 的极限存在, 则称f(x)在x0处可导。
(2)若对于区间(a,b)上任意一点(m,f(m))均可导,则称f(x)在(a,b)上可导。
连续函数可导条件:函数在该点的左右偏导数都存在且相等。
即就就是一个函数在某一点求极限,如果极限存在,则为可导,若所得导数等于函数在该点的函数值,则函数为连续可导函数,否则为不连续可导函数
2、连续
函数连续必须同时满足三个条件:函数在x0处有定义;x->x0极限limf(x)存在;x->x0时limf(x)=f(x0)
定理有:函数可导必然连续;不连续必然不可导。
定义:设函数y= f(x),若自变量在点x的改变量Δx与函数相应的改变量Δy有关系Δy=A×Δx+ο(Δx)
其中A与Δx无关,则称函数f(x)在点x可微,并称AΔx为函数f(x)在点x 的微分,记作dy,即dy=A×Δx
当x= x0时,则记作dy∣x=x0、
可微条件:
必要条件:若函数在某点可微,则该函数在该点对x与y的偏导数必存在。
充分条件:若函数对x与y的偏导数在这点的某一邻域内都存在,且均在这点连续,则该函数在这点可微。
4、可积函数定义
如果f(x)在[a,b]上的定积分存在,我们就说f(x)在[a,b]上可积。
即f(x)就是[a,b]上的可积函数。
函数可积的充分条件
定理1设f(x)在区间[a,b]上连续,则f(x)在[a,b]上可积。
定理2设f(x)在区间[a,b]上有界,且只有有限个第一类间断点,则f(x)在[a,b]上可积。
定理3设f(x)在区间[a,b]上单调有界,则f(x)在[a,b]上可积。
可积的必要条件:
被积函数在闭区间上有界。
总结:
对于一元函数:
函数连续不一定可导例如y=|x|
可导一定连续即连续就是可导的必要不充分条件,可导就是连续的充分不必要条件
函数可导必然可微
可微必可导即可导就是可微的必要充分条件。