电子技术基础数字部分第一章数字逻辑概论
- 格式:ppt
- 大小:1.84 MB
- 文档页数:12
第1章 数字逻辑概论1.1 复习笔记一、模拟信号与数字信号 1.模拟信号和数字信号 (1)模拟信号在时间上连续变化,幅值上也连续取值的物理量称为模拟量,表示模拟量的信号称为模拟信号,处理模拟信号的电子电路称为模拟电路。
(2)数字信号 与模拟量相对应,在一系列离散的时刻取值,取值的大小和每次的增减都是量化单位的整数倍,即时间离散、数值也离散的信号。
表示数字量的信号称为数字信号,工作于数字信号下的电子电路称为数字电路。
(3)模拟量的数字表示①对模拟信号取样,通过取样电路后变成时间离散、幅值连续的取样信号; ②对取样信号进行量化即数字化;③对得到的数字量进行编码,生成用0和1表示的数字信号。
2.数字信号的描述方法(1)二值数字逻辑和逻辑电平在数字电路中,可以用0和1组成的二进制数表示数量的大小,也可以用0和1表示两种不同的逻辑状态。
在电路中,当信号电压在3.5~5 V 范围内表示高电平;在0~1.5 V 范围内表示低电平。
以高、低电平分别表示逻辑1和0两种状态。
(2)数字波形①数字波形的两种类型非归零码:在一个时间拍内用高电平代表1,低电平代表0。
归零码:在一个时间拍内有脉冲代表1,无脉冲代表0。
②周期性和非周期性周期性数字波形常用周期T 和频率f 来描述。
脉冲波形的脉冲宽度用W t 表示,所以占空比100%t q T=⨯W③实际数字信号波形在实际的数字系统中,数字信号并不理想。
当从低电平跳变到高电平,或从高电平跳到低电平时,边沿没有那么陡峭,而要经历一个过渡过程。
图1-1为非理想脉冲波形。
图1-1 非理想脉冲波形④时序图:表示各信号之间时序关系的波形图称为时序图。
二、数制 1.十进制以10为基数的计数体制称为十进制,其计数规律为“逢十进一”。
任意十进制可表示为:()10iDii N K ∞=-∞=⨯∑式中,i K 可以是0~9中任何一个数字。
如果将上式中的10用字母R 代替,则可以得到任意进制数的表达式:()iR ii N K R ∞=-∞=⨯∑2.二进制(1)二进制的表示方法以2为基数的计数体制称为二进制,其只有0和1两个数码,计数规律为“逢二进一”。
1.1 数字电路与数字信号第一章 数字逻辑习题1.1.2 图形代表的二进制数MSBLSB 0 1 211 12(ms )解:因为图题所示为周期性数字波,所以两个相邻的上升沿之间持续的时间为周期,T=10ms 频率为周期的倒数,f=1/T=1/=100HZ占空比为高电平脉冲宽度与周期的百分比,q=1ms/10ms*100%=10% 数制1.2.2 将下列十进制数转换为二进制数,八进制数和十六进制数(要求转换误差不大于 2 (2)127 (4)解:(2)(127)D=27-1=()B-1=(1111111)B =(177)O=(7F )H (4)()D=B=O=H 二进制代码1.4.1 将下列十进制数转换为 8421BCD 码: (1)43 (3) 解:(43)D=(01000011)BCD1.4.3 试用十六进制写书下列字符繁荣 ASC Ⅱ码的表示:P28 (1)+ (2)@ (3)yo u (4)43解:首先查出每个字符所对应的二进制表示的 ASC Ⅱ码,然后将二进制码转换为十六进制 数表示。
(1)“+”的 ASC Ⅱ码为 0101011,则(00101011)B=(2B )H (2)@的 ASC Ⅱ码为 1000000,(01000000)B=(40)H(3)you 的 ASC Ⅱ码为本 1111001,1101111,1110101,对应的十六进制数分别为79,6F,75 (4)43 的 ASC Ⅱ码为 0110100,0110011,对应的十六紧张数分别为 34,33 逻辑函数及其表示方法解: (a)为与非, (b)为同或非,即异或第二章逻辑代数习题解答2.1.1 用真值表证明下列恒等式(3) A⊕B AB AB(A⊕B)=AB+AB解:真值表如下A B A⊕BAB AB A⊕BAB+AB0 0 1 11111111111A (1BC ) ACDCDEA ACDCDEACD CDEACD E2.1.4 用代数法化简下列各式(3) ABC B C)A⋅B A⋅B(A B)(A B)1BAB ABABBABAB(9) ABC DABD BC D ABCBD BC解: ABC DABDBC DABCBD BCB ( ACD )L D ( AC)2(3)(L AB)(C D)2.2.2 已知函数 L(A,B,C,D)的卡诺图如图所示,试写出函数 L 的最简与或表达式解:L( A, B, C, D) BC D BCD B C D ABD2.2.3 用卡诺图化简下列个式(1)ABCD ABCD AB AD ABC3解:ABCD ABCD AB AD ABCABCD ABCD AB CC DDAD B B CCABC D D)()()()()(ABCD ABCD ABC D ABCD ABC D ABC D ABC D(6)L( A, B, C, D ) ∑m解:(0, 2, 4, 6,9,13)∑d(1, 3, 5, 7,11,15)L AD(7)L( A, B, C , D )∑m 解: (0,13,14,15)∑d(1, 2, 3, 9,10,11)L AD AC AB42.2.4 已知逻辑函数L AB BC C A,试用真值表,卡诺图和逻辑图(限用非门和与非门)表示解:1>由逻辑函数写出真值表A11112>由真值表画出卡诺图B1111C1111L1111113>由卡诺图,得逻辑表达式L AB BC AC 用摩根定理将与或化为与非表达式L AB BC AC AB⋅B C⋅AC4>由已知函数的与非-与非表达式画出逻辑图5第三章习题MOS逻辑门电路3.1.1 根据表题所列的三种逻辑门电路的技术参数,试选择一种最合适工作在高噪声环境下的门电路。
数字电子部分习题解答第1章 数字逻辑概论1.2.2 将10进值数127、2.718转换为2进制数、16进制数解:(2) (127)D = (1111111)B 此结果由127除2取余直至商为0得到。
= (7F)H 此结果为将每4位2进制数对应1位16进制数得到。
(4) (2.718)D = (10.1011)B 此结果分两步得到:整数部分--除2取余直至商为0得到;小数部分—乘2取整直至满足精度要求.= (2.B)H 此结果为以小数点为界,将每4位2进制数对应1位16进制数得到。
1.4.1 将10进值数127、2.718转换为8421码。
解:(2) (127)D = (000100100111)8421BCD 此结果为将127中每1位10进制数对应4位8421码得到。
(4) (2.718)D = (0010.0111 0001 1000)8421BCD 此结果为将2.718中每1位10进制数对应4位8421码得到。
第2章 逻辑代数2.23 用卡诺图化简下列各式。
解:(4) )12,10,8,4,2,0(),,,(∑=m D C B A LD C AB D C B A D C B A D C B A D C B A D C B A +++++= 对应卡诺图为:化简结果: D B D C L +=解:(6) ∑∑+=)15,11,55,3,1()13,9,6,4,2,0(),,,(d m D C B A L对应卡诺图为:化简结果: D A L +=第4章 组合逻辑电路4.4.7 试用一片74HC138实现函数ACD C AB D C B A L +=),,,(4.4.7 试用一片74HC138实现函数ACD C AB D C B A L +=),,,(。
解:将输入变量低3位B 、C 、D 接至74HC138的地址码输入端A 2、A 1、A 0 ,将输入变量高位A 接至使能端E 3,令012==E E ,则有:i i i Am m E E E Y ==123。