高考数学压轴题解题技巧和方法之欧阳语创编
- 格式:doc
- 大小:2.30 MB
- 文档页数:44
数列的项na 与前n 项和nS 的关系:11(1)(2)n n n s n a s s n -=⎧=⎨-≥⎩ 数列求和的常用方法:1、拆项分组法:即把每一项拆成几项,重新组合分成几组,转化为特殊数列求和。
2、错项相减法:适用于差比数列(如果{}n a 等差,{}n b 等比,那么{}n n a b 叫做差比数列)即把每一项都乘以{}n b 的公比q ,向后错一项,再对应同次项相减,转化为等比数列求和。
3、裂项相消法:即把每一项都拆成正负两项,使其正负抵消,只余有限几项,可求和。
适用于数列11n n a a +⎧⎫⎨⎬⋅⎩⎭和⎧⎫(其中{}n a 等差)可裂项为:111111()n n n n a a d a a ++=-⋅,1d=等差数列前n 项和的最值问题:1、若等差数列{}n a 的首项10a >,公差0d <,则前n 项和n S 有最大值。
(ⅰ)若已知通项n a ,则n S 最大⇔10n n a a +≥⎧⎨≤⎩;(ⅱ)若已知2n S pn qn =+,则当n 取最靠近2qp-的非零自然数时n S 最大;2、若等差数列{}n a 的首项10a <,公差0d >,则前n 项和n S 有最小值(ⅰ)若已知通项n a ,则n S 最小⇔10n n a a +≤⎧⎨≥⎩;(ⅱ)若已知2n S pn qn =+,则当n 取最靠近2qp-的非零自然数时n S 最小; 数列通项的求法:⑴公式法:①等差数列通项公式;②等比数列通项公式。
⑵已知n S (即12()n a a a f n +++=)求n a ,用作差法:{11,(1),(2)n n n S n a S S n -==-≥。
已知12()n a a a f n =求n a ,用作商法:(1),(1)(),(2)(1)n f n f n a n f n =⎧⎪=⎨≥⎪-⎩。
⑶已知条件中既有n S 还有n a ,有时先求n S ,再求n a ;有时也可直接求n a 。
高考数学压轴题解法与技巧高考数学压轴题,一直以来都是众多考生心中的“拦路虎”。
然而,只要我们掌握了正确的解法与技巧,就能在这场挑战中脱颖而出。
首先,我们要明确什么是高考数学压轴题。
通常来说,压轴题是指在高考数学试卷的最后几道题目,它们综合性强、难度较大,往往涵盖了多个知识点,对考生的思维能力、计算能力和综合运用知识的能力都有很高的要求。
一、掌握扎实的基础知识要解决高考数学压轴题,扎实的基础知识是关键。
这包括对数学概念、定理、公式的深入理解和熟练掌握。
例如,函数的性质、导数的应用、数列的通项公式与求和公式、圆锥曲线的方程与性质等。
只有在基础知识牢固的基础上,我们才能在复杂的题目中找到解题的突破口。
以函数为例,要理解函数的定义域、值域、单调性、奇偶性、周期性等基本性质,并且能够熟练运用求导的方法来研究函数的单调性和极值。
如果对这些基础知识掌握不扎实,在面对压轴题中涉及函数的问题时,就会感到无从下手。
二、培养良好的数学思维1、逻辑思维在解决压轴题时,清晰的逻辑思维至关重要。
我们需要从题目中提取关键信息,分析已知条件和所求问题之间的逻辑关系,逐步推导得出结论。
比如,在证明一个数学命题时,要先明确证明的方向,然后根据已知条件选择合适的定理和方法进行推理。
在推理过程中,要保证每一步都有依据,逻辑严密,不能出现跳跃和漏洞。
2、逆向思维有时候,正向思考难以解决问题,我们可以尝试逆向思维。
即从所求的结论出发,反推需要满足的条件,逐步逼近已知条件。
例如,对于一些存在性问题,我们可以先假设存在满足条件的对象,然后根据假设进行推理,如果能够推出与已知条件相符的结果,那么假设成立;否则,假设不成立。
3、分类讨论思维由于压轴题的综合性较强,往往需要根据不同的情况进行分类讨论。
比如,对于含参数的问题,要根据参数的取值范围进行分类,分别讨论在不同情况下的解题方法。
在分类讨论时,要做到不重不漏,条理清晰。
每一类的讨论都要独立进行,最后综合各类的结果得出最终答案。
高考数学压轴题的技巧高考数学压轴题的技巧策略一、缺步解答——化繁为简,能做多少算多少如果遇到一个很困难的问题,确实啃不动,一个聪明的解题策略是,将它们分解为一系列的步骤,或者是一个个小问题,先解决问题的一部分,能解决多少就解决多少,能演算几步就写几步,尚未成功不等于失败。
特别是那些解题层次明显的题目,或者是已经程序化了的方法,每进行一步得分点的演算都可以得分,最后结论虽然未得出,但分数却已过半,这叫“大题巧拿分”。
策略二、跳步解答——左右逢源,会做哪问做哪问解题过程中卡在某一过渡环节上是常见的.这时,我们可以先承认中间结论,往后推,看能否得到结论.若题目有两问,第(1)问想不出来,可把第(1)问当作“已知”,先做第(2)问,跳一步解答。
策略三、逆向解答——逆水行舟,往往也能解决问题对一个问题正面思考发生思维受阻时,用逆向思维的方法去探求新的解题途径,往往能得到突破性的进展。
顺向推有困难就逆推,直接证有困难就反证。
策略四、退步解答——以退为进,列出相关内容也能得分“以退求进”是一个重要的解题策略。
对于一个较一般的问题,如果你一时不能解决所提出的问题,那么,你可以从一般退到特殊,从抽象退到具体,从复杂退到简单,从整体退到部分,从参变量退到常量,从较强的结论退到较弱的结论。
总之,退到一个你能够解决的问题,通过对“特殊”的思考与解决,启发思维,达到对“一般”的解决。
高三数学教师高考总结又是一年一度的高考总结会,去年的这个时候,在会场下面,何xx老师悄悄地对我说:“明年这个时候,希望在台上发言的人是你啊!”我很荣幸地说,我们没有辜负何总的期望,今年高考我们数学取得了很好的成绩,理科全市第二,文科全市第三!这对于我们数学组来说具有非同寻常的意义,因为我们被压抑得太久了,我们盼这个结果盼得太久了。
曾几何时我们的数学失去了往日的优势,在大大小小的统考中我们被比较着,来自于其他学校的压力让我们无所适从,数学常常处于被动状态。
高考数学压轴题解题技巧高考数学压轴题是所有数学题目中最重要的一道题目,考察的不仅仅是学生的数学能力,还考查学生对于数学思想和思维能力的掌握情况。
因此,在考场上若要顺利完成这道题,学生不仅需要对于数学基础知识有扎实的理解掌握,还需要拥有一定的解题技巧。
本文旨在介绍高考数学压轴题的解题技巧,帮助广大考生在考场上顺利解答。
第一,审题应当仔细。
在进行高考数学压轴题解题之前,考生首先要仔细审题。
了解所给出的题目内容以及题目所要求的答案,这将对学生的解题过程起到关键作用。
如果考生没有对题目进行仔细审阅,就会导致对题目的主题和核心思想没有深入的认识,因此,无论如何都不会成功地进行解答。
所以我们在考试最初的时候要耐心地阅读,仔细研究每一个问题,弄清题目的要求,并牢记题目信息,不遗漏任何重要的条件。
第二,多思考并构思问题。
高考数学压轴题都是由一些较为抽象的问题组成的,在考试期间,只凭空造作很难得到正确的答案。
因此,我们需要花时间构思问题。
在阅读完题目之后,我们应该停下来,思考一下。
通过思考,可以使我们更快的解决问题。
并且要注意的是,做题思考不光在解决这道题时有用,随时思考和练习也能启发我们,从而提高我们的思考能力,让我们对数学产生浓厚的兴趣和热情。
第三,运用合适的公式和方法。
在考试中,我们需要善于运用公式和方法,寻找最优解方案。
可以先把题目中的数据列出来,然后尝试用刚学过的公式去套用。
通过这样的方式,我们可以找到最合适的解题方法。
同时,在进行数学压轴题的过程中,我们也可以将所学的知识进行紧密的结合,各种知识点之间的联系也是需要学生进行深入的思考的。
最后,做高考数学压轴题的时间是比较紧张的,因此我们需要合理分配时间来解答。
在考试期间,学生必须坚定自己的信念,保持镇静,不要慌乱,冷静分析题目,在规定时间内尽可能地得到答案。
总之,高考数学压轴题是考察学生数学素养的重要环节之一,在考试期间,如果我们能够采用上述的方法,注重审题,多思考构思,运用合适的公式和方法解题,以及合理分配时间,相信我们一定能够顺利地完成数学压轴题目,取得好成绩。
高考数学压轴题的答题技巧在高考数学中,压轴题往往是考察学生综合能力和运用能力的重要一环。
良好的答题技巧不仅可以在紧张的考场上提高答题效率,也能够帮助我们在平时的备考中更好地掌握数学知识。
以下是一些关于高考数学压轴题的答题技巧,希望能够对广大学生有所帮助。
一、认真审题高考数学压轴题通常具有较大的难度和复杂度,因此在解题时需要认真审题。
不同的题目可能会有不同的条件和限制,我们首先需要理清题目所给的条件和背景,确定所求的量或答案,并考虑问题的解决方法。
对于一些有条件的(条件比较多)的题型,写下或画出给出的条件和限制,能够帮助我们更容易地理清思路,从容而答。
二、选比做当我们在看到一道题目时,首先要想到的是应该按什么方法来解答。
总结一下,解一道高考数学题的主要方法有以下几种:1.数论方法2.代数方法3.几何方法4.统计方法5.逻辑方法根据自身的优势,我们可以根据题目的特点选择最合适的方法来解题。
在选择方法时,我们不应当一味追求难度,而是应该借助我们自身的优势,满足题目所给出的条件,选择更简洁、更直观的方法。
三、画图辅助分析在一些几何题目中,我们可以通过画出几何图形的方式更直观地理解题目,并为下一步的解题提供帮助。
我们可以在空白页上用简单的尺规画出几何图形,标出每个角度和线段长度,以便于后序的分析和计算。
当我们画图时,应该注意几点:1.图形应尽量简洁,不要过于复杂。
2.图中的角度和线段长度应该用尺规标明,保证清晰可见。
3.可以通过在图中标明各个角的度数或者边的长度来推导出未知角度或长度。
通过画图加深对问题的理解,有利于我们更快地开展解题工作。
四、熟练掌握公式和算法高考数学考试中,我们需要掌握大量的公式和算法。
由于压轴题具有较高的难度,更加考察我们的基本能力和应用能力。
因此,我们需要在平时的学习中,熟练掌握各项公式和算法,并能熟练地运用到解题中,才能在考场中更加从容应对。
五、不要忽视细节在做题时,我们应该注意到所有细节,并尽可能地避免犯错。
高考数学压轴题的答题技巧高考数学压轴题的答题技巧首先同学们要正确认识压轴题压轴题主要出在函数,解几,数列三部分内容,一般有三小题。
记住:第一小题是容易题!争取做对!第二小题是中难题,争取拿分!第三小题是整张试卷中最难的题目!也争取拿分!其实对于所有认真复习迎考的同学来说,都有才能与实力在压轴题上拿到一半左右的分数,要获取这一半左右的分数,不需要大量针对性训练,也不需要复杂艰深的考虑,只需要你有正确的心态!信心很重要,勇气不可少。
同学们记住:心理素质高者胜!第二重要心态:千万不要分心其实高考的时候怎么可能分心呢?这里的分心,不是指你做题目的时候想着考好去哪里玩。
高考时,你是不可能这么想的。
你可以回忆高三以往考试,问一下自己:在做最后一道题目的时候,你有没有想“最后一道题目难不难?不知道能不能做出来”“我要不要赶快看看最后一题,做不出就去检查前面题目”“前面不知道做的怎样,会不会粗心错”……这就是影响你解题的“分心”,这些就使你不专心。
专心于如今做的题目,如今做的步骤。
如今做哪道题目,脑子里就只有做好这道题目。
如今做哪个步骤,脑子里就只有做好这个步骤,不去想这步之前对不对,这步之后怎么做,做好当下!第三重要心态:重视审题你的心态就是珍惜题目中给你的条件。
数学题目中的条件都是不多也不少的,一道给出的题目,不会有用不到的条件,而另一方面,你要相信给出的条件一定是可以做到正确答案的。
所以,解题时,一切都必须从题目条件出发,只有这样,一切才都有可能。
在数学家波利亚的四个解题步骤中,第一步审题格外重要,审题步骤中,又有这样一个技巧:当你对整道题目没有思路时,步骤〔1〕将题目条件推导出“新条件”;步骤〔2〕将题目结论推导到“新结论”;步骤〔1〕就是不要理会题目中你不理解的部分,只要你根据题目条件把能做的.先做出来,能推导的先推导出来,从而得到“新条件”。
步骤〔2〕就是想要得到题目的结论,我需要先得到什么结论,这就是所谓的“新结论”。
一、数学很重要:有一天和一个朋友去必胜客吃饭,点了一个12寸的披萨,结果服务员说没了,就说给我们一个9寸的外加一个6寸的来抵换,我的朋友觉得还好,立马同意了,我说,慢着,让我想想?我拿起圆珠笔和草稿纸算了一下:一个 12寸的披萨的面积是=圆周率X半径(12寸的半径是6寸)的平方=3.1415926X6X6=113.0973 平方寸。
一个9寸的披萨的面积是=圆周率X半径(9寸的半径为4.5寸)的平方=3.1415926X4.5X4.5=63.62 平方寸一个6寸的披萨的面积是=圆周率X半径(6寸的半径为3寸)的平方=3.1415926X3X3= 28.274平方寸。
所以,一个9寸的披萨加上一个6寸的披萨,总共的面积只有=63.62+28.274=91.894 平方寸!只有大约92平方寸!而一个12寸的披萨面积有113平方寸!我们实际上吃了很大的亏了。
结论:凡事不能光看表面,想当然!学好数学真的很重要!!!数学很重要,“学好数学,走遍天下都不怕”。
学经济需要数学,学信息安全也要数学,人工智能要数学,统计要数学,线形规划要数学,好像还没有不用数学的,从头恶补,连小学奥数的一起补。
生活中处处都需要数学,算账,运筹,甚至连早上起床都要算算,几分钟穿好衣服,几分钟叠好被子,几分钟洗刷好,几分钟走到食堂,几分钟吃完饭,几分钟走到教室,几分钟接水,然后求和,用8点减,就是差不多几点起床。
二、数学可以学好:在这里,我首先想给大家讲一个故事。
从前有一位进京赶考的书生,考前,一个晚上他断断续续做了一个梦。
这个梦大概是这样的,他梦见自己在种青菜,但是这菜呢,是种在墙头上的。
书生百思不得其解。
每二天他便去请教了算命先生。
算命先生倒是一个老实人,长叹一口气说,算了算了,你这钱我也不收你的了,这次大考你是没有一点希望的啦,赶快卷铺盖回家吧。
书生不解。
算命的说,种菜种到墙头上去了,你这不是找错地方了吗没戏没戏。
回家去吧。
书生觉得很有道理,就收了铺盖要回家。
2019年高考数学答题技巧之压轴题解题方法由查字典数学网编辑老师精心提供,2019高考数学答题技巧高考数学压轴题解题方法,因此老师及家长请认真阅读,关注孩子的成长。
压轴题的解题方法,具体题目还是要具体分析,不能一一而谈,总体来说,思路如下:1. 复杂的问题简单化,就是把一个复杂的问题,分解为一系列简单的问题,把复杂的图形,分成几个基本图形,找相似,找直角,找特殊图形,慢慢求解,高考是分步得分的,这种思考方式尤为重要,能算的先算,能证的先证,踏上要点就能得分,就算结论出不来,中间还是有不少分能拿。
2. 运动的问题静止化,对于动态的图形,先把不变的线段,不变的角找到,有没有始终相等的线段,始终全等的图形,始终相似的图形,所有的运算都基于它们,在找到变化线段之间的联系,用代数式慢慢求解。
3. 一般的问题特殊化,有些一般的结论,找不到一般解法,先看特殊情况,比如动点问题,看看运动到中点怎样,运动到垂直又怎样,变成等腰三角形又会怎样,先找出结论,再慢慢求解。
另外,还有一些细节要注意,三角比要善于运用,只要有直角就可能用上它,从简化运算的角度来看,三角比优于比例式优于勾股定理,中考命题不会设置太多的计算障碍,如果遇上繁难运算要及时回头,避免钻牛角尖。
如果遇到找相似的三角形,要切记先看角,再算边。
遇上找等腰三角形同样也是先看角,再看底边上的高(用三线合一),最后才是边。
这都是能大大简化运算的。
还有一些小技巧,比如用斜边上中线找直角,用面积算垂线等不一而足具体方法较多,如果有时间,我会举实例进行分析。
最后说一下初中需要掌握的主要的数学思想:1. 方程与函数思想利用方程解决几何计算已经不能算难题了,建立变量间的函数关系,也是经常会碰到的,常见的建立函数关系的方法有比例线段,勾股定理,三角比,面积公式等2. 分类讨论思想这个大家碰的多了,就不多讲了,常见于动点问题,找等腰,找相似,找直角三角形之类的。
3. 转化与化归思想观察内容的选择,我本着先静后动,由近及远的原则,有目的、有计划的先安排与幼儿生活接近的,能理解的观察内容。
高考数学压轴题的答题技巧介绍高考数学压轴题的答题技巧介绍无论是身处学校还是步入社会,许多人都写过试卷吧,下面是店铺帮大家整理的高考数学压轴题的答题技巧介绍,欢迎大家分享。
首先同学们要正确认识压轴题压轴题主要出在函数,解几,数列三部分内容,一般有三小题。
记住:第一小题是容易题!争取做对!第二小题是中难题,争取拿分!第三小题是整张试卷中最难的题目!也争取拿分!其实对于所有认真复习迎考的同学来说,都有能力与实力在压轴题上拿到一半左右的分数,要获取这一半左右的分数,不需要大量针对性训练,也不需要复杂艰深的思考,只需要你有正确的心态!信心很重要,勇气不可少。
同学们记住:心理素质高者胜!第二重要心态:千万不要分心其实高考的时候怎么可能分心呢?这里的分心,不是指你做题目的时候想着考好去哪里玩。
高考时,你是不可能这么想的。
你可以回顾高三以往考试,问一下自己:在做最后一道题目的时候,你有没有想“最后一道题目难不难?不知道能不能做出来”“我要不要赶快看看最后一题,做不出就去检查前面题目”“前面不知道做的怎样,会不会粗心错”……这就是影响你解题的“分心”,这些就使你不专心。
专心于现在做的'题目,现在做的步骤。
现在做哪道题目,脑子里就只有做好这道题目。
现在做哪个步骤,脑子里就只有做好这个步骤,不去想这步之前对不对,这步之后怎么做,做好当下!第三重要心态:重视审题你的心态就是珍惜题目中给你的条件。
数学题目中的条件都是不多也不少的,一道给出的题目,不会有用不到的条件,而另一方面,你要相信给出的条件一定是可以做到正确答案的。
所以,解题时,一切都必须从题目条件出发,只有这样,一切才都有可能。
在数学家波利亚的四个解题步骤中,第一步审题格外重要,审题步骤中,又有这样一个技巧:当你对整道题目没有思路时,步骤(1)将题目条件推导出“新条件”,步骤(2)将题目结论推导到“新结论”,步骤(1)就是不要理会题目中你不理解的部分,只要你根据题目条件把能做的先做出来,能推导的先推导出来,从而得到“新条件”。
专题三立体几何专题时间:2021.03.09 创作:欧阳法【命题趋向】高考对空间想象能力的考查集中体现在立体几何试题上,着重考查空间点、线、面的位置关系的判断及空间角等几何量的计算.既有以选择题、填空题形式出现的试题,也有以解答题形式出现的试题.选择题、填空题大多考查概念辨析、位置关系探究、空间几何量的简单计算求解,考查画图、识图、用图的能力;解答题一般以简单几何体为载体,考查直线与直线、直线与平面、平面与平面的位置关系,以及空间几何量的求解问题,综合考查空间想象能力、推理论证能力和运算求解能力.试题在突出对空间想象能力考查的同时,关注对平行、垂直关系的探究,关注对条件或结论不完备情形下的开放性问题的探究.【考点透析】立体几何主要考点是柱、锥、台、球及其简单组合体的结构特征、三视图、直观图,表面积体积的计算,空间点、直线、平面的位置关系判断与证明,空间向量在平行、垂直关系证明中的应用,空间向量在计算空间角中的应用等.【例题解析】题型1 空间几何体的三视图以及面积和体积计算例1某几何体的一条棱长为7,在该几何体的正视图中,这条棱的投影是长为6的线段,在该几何体的侧视图与俯视图中,这条棱的投影分别是长为a 和b 的线段,则a b +的最大值为A . 22B . 32C . 4D . 52分析:想像投影方式,将问题归结到一个具体的空间几何体中解决.解析:结合长方体的对角线在三个面的投影来理解计算,如图设长方体的高宽高分别为,,m n k ,由题意得2227m n k ++=,226m k +=1n ⇒=,21k a +=,21m b +=,所以22(1)(1)6a b -+-=228a b ⇒+=,22222()282816a b a ab b ab a b +=++=+≤++=∴4a b ⇒+≤当且仅当2a b ==时取等号.点评:本题是高考中考查三视图的试题中难度最大的一个,我们通过移动三个试图把问题归结为长方体的一条体对角线在三个面上的射影,使问题获得了圆满的解决.例2下图是一个几何体的三视图,根据图中数据,可得该几何体的表面积是A .9πB .10πC .11πD .12π分析:想像、还原这个空间几何体的构成,利用有关的计算公式解答.解析:这个空间几何体是由球和圆柱组成的,圆柱的底面半径是1,母线长是3,球的半径是1,故其表面积是22213214112ππππ⨯⨯+⨯⨯+⨯=,答案D .点评:由三视图还原空间几何体的真实形状时要注意“高平齐、宽相等、长对正”的规则.例3已知一个正三棱锥P ABC -的主视图如图所示,若32AC BC ==, 6PC =,则此正三棱锥的全面积为_________.分析:正三棱锥是顶点在底面上的射影是底面正三角形的中心的三棱锥,根据这个主试图知道,主试图的投影方向是面对着这个正三棱锥的一条侧棱,并且和底面三角形的一条边垂直,这样就知道了这个三棱锥的各个棱长.解析:这个正三棱锥的底面边长是3、高是6,故底面正三角形的中心到一个顶点的距离是23333⨯⨯=,故这个正三棱锥的侧棱长是22363+=,由此知道这个正三棱锥的侧面也是边长为3的正三角形,故其全面积是2343934⨯⨯=,答案93.点评:由空间几何体的一个视图再加上其他条件下给出的问题,对给出的这“一个视图”要仔细辨别投影方向,这是三视图问题的核心.题型2 空间点、线、面位置关系的判断例4已知n m ,是两条不同的直线,βα,为两个不同的平面,有下列四个命题:①若βα⊥⊥n m ,,m n ⊥,则βα⊥;②若n m n m ⊥,//,//βα,则βα//;③若n m n m ⊥⊥,//,βα,则βα//;④若βαβα//,//,n m ⊥,则n m ⊥.其中正确的命题是(填上所有正确命题的序号)_______________.分析:根据空间线面位置关系的判定定理和性质定理逐个作出判断.解析:我们借助于长方体模型解决.①中过直线,m n 作平面γ,可以得到平面,αβ所成的二面角为直二面角,如图(1),故βα⊥①正确;②的反例如图(2);③的反例如图(3);④中由,m ααβ⊥可得m β⊥,过n 作平面γ可得n 与交线g 平行,由于m g ⊥,故m n ⊥.答案①④.点评:新课标的教材对立体几何处理的基本出发点之一就是使用长方体模型,本题就是通过这个模型中提供的空间线面位置关系解决的,在解答立体几何的选择题、填空题时合理地使用这个模型是很有帮助的.例5设,m n 是两条不同的直线,,αβ是两个不同的平面,下列命题正确的是A .若,,//m n m n αβ⊥⊥,则//αβB .若//,//,//,m n αβαβ则//m nC .若,//,//m n αβαβ⊥,则m n ⊥D .若//,//,//,m n m n αβ则//αβ分析:借助模型、根据线面位置关系的有关定理逐个进行分析判断.解析:对于//αβ,结合,//,m n αβ⊥则可推得m n ⊥.答案C .点评:从上面几个例子可以看出,这类空间线面位置关系的判断类试题虽然形式上各异,但本质上都是以空间想象、空间线面位置关系的判定和性质定理为目标设计的,主要是考查考生的空间想象能力和对线面位置关系的判定和性质定理掌握的程度.题型3 空间平行与垂直关系的证明、空间几何体的有关计算(文科解答题的主要题型)例6.如图所示,在棱长为2的正方体1111ABCD A B C D -中,E 、F 分别为1DD 、DB 的中点.(1)求证:EF //平面11ABC D ;(2)求证:1EF B C ⊥;(3)求三棱锥EFC B V -1的体积.分析:第一问就是找平行线,最明显的就是1EF BD ;第二问转化为线面垂直进行证明;第三问采用三棱锥的等积变换解决.解析:(1)连结1BD ,如图,在B DD 1∆中,E 、F 分别为1D D ,DB 的中点,则111111////EF D BD B ABC D EF EF ABC D ⎫⎪⊂⇒⎬⎪⊄⎭平面平面平面11ABC D .(2)(3)CF ⊥平面11BDD B ,1CF EFB ∴⊥平面且2CF BF ==,1132EF BD ==,222211(2)26B F BF BB =+=+=,∴22211EF B F B E += 即190EFB ∠=,11113B EFC C B EF B EF V V S CF --∆∴==⋅⋅=11132EF B F CF ⨯⋅⋅⋅=11362132⨯⨯⨯⨯= .点评:空间线面位置关系证明的基本思想是转化,根据线面平行、垂直关系的判定和性质,进行相互之间的转化,如本题第二问是证明线线垂直,但问题不能只局限在线上,要把相关的线归结到某个平面上(或是把与这些线平行的直线归结到某个平面上,通过证明线面的垂直达到证明线线垂直的目的,但证明线面垂直又得借助于线线垂直,在不断的相互转化中达到最终目的.立体几何中的三棱柱类似于平面几何中的三角形,可以通过“换顶点”实行等体积变换,这也是求点面距离的基本方法之一.例7.在四棱锥P ABCD -中,90ABC ACD ∠=∠=,60BAC CAD ∠=∠=,PA ⊥平面ABCD ,E 为PD 的中点,22PA AB ==.(1)求四棱锥P ABCD -的体积V ;(2)若F 为PC 的中点,求证PC ⊥平面AEF ;(3)求证CE ∥平面PAB .分析:第一问只要求出底面积和高即可;第二问的线面垂直通过线线垂直进行证明;第三问的线面平行即可以通过证明线线平行、利用线面平行的判定定理解决,也可以通过证明面面平行解决,即通过证明直线CE 所在的一个平面和平面PAB 的平行解决.解析:(1)在ABC ∆Rt 中,1,60AB BAC =∠=,∴3BC =,2AC =.在ACD Rt Δ中,2,60AC ACD =∠=,∴23,4CD AD ==.∴1122ABCD S AB BC AC CD =⋅+⋅115132233222=⨯⨯+⨯⨯=.则155323323V =⨯⨯=. (2)∵PA CA =,F 为PC 的中点,∴AF PC ⊥. ∵PA ⊥平面ABCD ,∴PA CD ⊥,∵AC CD ⊥,PA AC A =,∴CD ⊥平面PAC ,∴CD PC ⊥. ∵E 为PD 中点,F 为PC 中点,∴EF ∥CD ,则EF CD ⊥,∵AF EF F =,∴PC ⊥平面AEF .(3)证法一:取AD 中点M ,连,EM CM .则EM ∥PA ,∵EM ⊄平面PAB ,PA ⊂平面PAB ,∴EM ∥平面PAB .在ACD ∆Rt 中,60CAD ∠=,2AC AM ==,∴60ACM ∠=.而60BAC ∠=,∴MC ∥AB .∵MC ⊄平面PAB ,AB ⊂平面PAB ,∴MC∥平面PAB.∵EM MC M=,∴平面EMC∥平面PAB.∵EC⊂平面EMC,∴EC∥平面PAB.证法二:延长,DC AB,设它们交于点N,连PN.∵60∠=∠=,AC CDNAC DAC⊥,∴C为ND的中点.∵E为PD中点,∴EC∥PN.∵EC⊄平面PAB,PN⊂平面PAB,∴EC∥平面PAB.点评:新课标高考对立体几何与大纲的高考有了诸多的变化.一个方面增加了空间几何体的三视图、表面积和体积计算,拓展了命题空间;另一方面删除了三垂线定理、删除了凸多面体的概念、正多面体的概念与性质、球的性质与球面距离,删除了空间向量,这就给立体几何的试题加了诸多的枷锁,由于这个原因课标高考文科的立体几何解答题一般就是空间几何体的体积和表面积的计算、空间线面位置关系的证明(主要是平行与垂直). 题型4 空间向量在立体几何中的应用例8.如图,在棱长为2的正方体1111ABCD A B C D -中,E F 、分别为11A D 和1CC 的中点.(1)求证:EF ∥平面1ACD ;(2)求异面直线EF 与AB 所成的角的余弦值;(3)在棱1BB 上是否存在一点P ,使得二面角P AC P --的大小为30?若存在,求出BP 的长;若不存在,请说明理由.【解析】解法一:如图分别以1,,DA DC DD 所在的直线为x 轴、y 轴、z 轴建立空间直角坐标系D xyz -,由已知得()0,0,0D 、()2,0,0A 、()2,2,0B 、()0,2,0C 、()12,2,2B 、()10,0,2D ()1,0,2E 、、()0,2,1F .(1)取1AD 中点G ,则()1,0,1G ,()1,2,1CG =-,又()1,2,1EF =--,由EF CG =-,∴EF 与CG 共线.从而EF ∥CG ,∵CG ⊂平面1ACD , EF ⊄平面1ACD ,∴EF ∥平面1ACD .(2)∵()0,2,0AB =,cos ,3||||2EF AB EF AB EF AB ⋅===⋅ ∴异面直线EF 与AB 所成角的余弦值为36.(3)假设满足条件的点P 存在,可设点()2,2,P t (02t <≤),平面ACP 的一个法向量为(),,n x y z =, 则0,0.n AC n AP ⎧⋅=⎪⎨⋅=⎪⎩ ∵()0,2,AP t =()2,2,0AC =-,∴220,20,x y y tz -+=⎧⎨+=⎩ 取2(1,1,)n t=-. 易知平面ABC 的一个法向量1(0,0,2)BB =, 依题意知,1,30BB n=或150, ∴14||cos ,2BB N -==,即22434(2)4t t =+,解得t= ∵(0,2],∴在棱1BB 上存在一点P ,当BP 的长为3P AC B --的大小为30.解法二:(1)同解法一知()1,2,1EF =-- ,()12,0,2AD =-,()2,2,0AC =-,∴112EF AC AD =-,∴EF 、AC 、1AD 共面.又∵EF ⊄平面1ACD ,∴EF ∥平面1ACD .(2)、(3)同解法一.解法三:易知平面1ACD 的一个法向量是()12,2,2DB =.又∵()1,2,1EF =--,由10EF DB ⋅=·, ∴1EF DB ⊥,而EF ⊄平面1ACD ,∴EF ∥平面1ACD . (2)、(3)同解法一.点评:本题主要考查直线与直线、直线与平面的位置关系、二面角的概念等基础知识;考查空间想像能力、推理论证能力和探索问题、解决问题的能力.利用空间向量证明线面平行的方法基本上就是本题给出的三种,一是证明直线的方向向量和平面内的一条直线的方向向量共线,二是证明直线的方向向量和平面内的两个不共线的向量共面、根据共面向量定理作出结论;三是证明直线的方向向量与平面的一个法向量垂直.例9已知几何体A BCED -的三视图如图所示,其中俯视图和侧视图都是腰长为4的等腰直角三角形,正视图为直角梯形.(1)求异面直线DE 与AB 所成角的余弦值;(2)求二面角A ED B --的正弦值;(3)求此几何体的体积V 的大小.【解析】(1)取EC 的中点是F ,连结BF ,则BF DE ,∴FBA ∠或其补角即为异面直线DE 与AB 所成的角.在BAF ∆中,42AB =,25BF AF ==10cos ABF ∠=.∴异面直线DE 与AB 所成的角的余弦值为105.(2)AC ⊥平面BCE ,过C 作CG DE ⊥交DE 于G ,连结AG .可得DE ⊥平面ACG ,从而AG DE ⊥,∴AGC ∠为二面角A ED B --的平面角.在ACG ∆Rt 中,90ACG ∠=,4AC =,55CG =,∴5tan 2AGC ∠=. ∴5sin AGC ∠=.∴二面角A ED B --5(3)1163BCED V S AC =⋅⋅=,∴几何体的体积V 为16. 方法二:(坐标法)(1)以C 为原点,以,,CA CB CE 所在直线为,,x y z 轴建立空间直角坐标系.则()4,0,0A ,(0,4,0)B ,(0,4,2)D ,()0,0,4E ,(0,4,2),(4,4,0)DE AB =-=-, ∴10cos ,5DE AB <>=- ∴异面直线DE 与AB 10(2)平面BDE 的一个法向量为(4,0,0)CA =,设平面ADE 的一个法向量为(,,)n x y z =,∴0,0n AD n DE ==从而4420,420x y z y z -++=-+=,令1y =,则(2,1,2)n =, 2cos ,3CA n <>= ∴二面角A ED B --5 (3)1163BCED V S AC =⋅⋅=,∴几何体的体积V 为16.点评:本题考查异面直线所成角的求法、考查二面角的求法和多面体体积的求法.空间向量对解决三类角(异面直线角、线面角、面面角)的计算有一定的优势.对理科考生来说除了要在空间向量解决立体几何问题上达到非常熟练的程度外,不要忽视了传统的方法,有些试题开始部分的证明就没有办法使用空间向量.题型5 距离(点到平面,线与线、线与面、面与面)求点到平面的距离就是求点到平面的垂线段的长度,其关键在于确定点在平面内的垂足,当然别忘了转化法与等体积法的应用.典型例题例10如图,正三棱柱111ABC A B C -的所有棱长都为2,D 为1CC 中点. (Ⅰ)求证:1AB ⊥平面1A BD ; (Ⅱ)求二面角1A A D B --的三角函数值; (Ⅲ)求点C 到平面1A BD 的距离. 考查目的:本小题主要考查直线与平面的位置关系,二面角的大小,点到平面的距离等知识,考查空间想象能力、逻辑思维能力和运算能力. AB CD 1A1C 1B解答过程:解法一:(Ⅰ)取BC中点O,连结AO.ABC△为正三角形,AO BC∴⊥.正三棱柱111ABC A B C-中,平面ABC⊥平面11BCC B,AO∴⊥平面11BCC B.连结1B O,在正方形11BB C C中,O D,分别为1BC CC,的中点,1B O BD∴⊥,1AB BD∴⊥.在正方形11ABB A中,11AB A B⊥,1AB∴⊥平面1A BD.(Ⅱ)设1AB与1A B交于点G,在平面1A BD中,作1GF A D⊥于F,连结AF,由(Ⅰ)得1AB⊥平面1A BD.1AF A D∴⊥,AFG∴∠为二面角1A A D B--的平面角.在1AA D△中,由等面积法可求得AF=又112AG AB=sin AGAFGAF∴==∠.所以二面角1A A D B--(Ⅲ)1A BD△中,111A BDBD A D A B S===△,1BCDS=△.在正三棱柱中,1A到平面11BCC B设点C到平面1A BD的距离为d.由11A BCD C A BDV V--=,得111333BCD A BDS S d=△△,1A BDd∴==△ABCD1A1C1BOF∴点C 到平面1A BD.解法二:(Ⅰ)取BC 中点O ,连结AO . ABC △为正三角形,AO BC ∴⊥.在正三棱柱111ABC A B C -中,平面ABC ⊥平面11BCC B , AD ∴⊥平面11BCC B . 取11B C 中点1O ,以O 为原点,OB ,1OO ,OA 的方向为x y z ,,(110)D -,,,1(0A ,(00A ,1(120)B ,,, 1(12AB ∴=,,(210)BD =-,,,1(12BA =-. 12200AB BD =-++=,111430AB BA =-+-=, 1AB BD ∴⊥,11AB BA ⊥.1AB ∴⊥平面1A BD . (Ⅱ)设平面1A AD 的法向量为()x y z =,,n .(11AD =-,,,1(020)AA =,,.AD ⊥n ,1AA ⊥n ,令1z =得(1)=,n 为平面1A AD 的一个法向量.由(Ⅰ)知1AB ⊥平面1A BD , 1AB ∴为平面1A BD 的法向量.cos <n ,11133222AB AB AB -->===n n∴二面角1A A D B --的大小为 (Ⅲ)由(Ⅱ),1AB 为平面1A BD 法向量,1(200)(12BC AB =-=,,,,.∴点C 到平面1A BD 的距离1122BC AB d AB -==小结:本例中(Ⅲ)采用了两种方法求点到平面的距离.解法二采用了平面向量的计算方法,把不易直接求的B 点到平面1AMB 的距离转化为容易求的点K 到平面1AMB 的距离的计算方法,这是数学解题中常用的方法;解法一采用了等体积法,这种方法可以避免复杂的几何作图,显得更简单些,因此可优先考虑使用这一种方法.例2. 如图,已知两个正四棱锥P -ABCD 与Q -ABCD 的高分别为1和2,AB =4.(Ⅰ)证明PQ ⊥平面ABCD ;(Ⅱ)求点P 到平面QAD 的距离.命题目的:本题主要考查直线与平面的位置关系及点到平面的距离基本知识,考查空间想象能力、逻辑思维能力和运算能力.过程指引:方法一关键是用恰当的方法找到所求的空间距离和角;方法二关键是掌握利用空间向量求空间距离和角的一般B C PA D O M方法.解答过程:方法一 (Ⅰ)取AD 的中点,连结PM ,QM . 因为P -ABCD 与Q -ABCD 都是正四棱锥, 所以AD ⊥PM ,AD ⊥QM . 从而AD ⊥平面PQM . 又⊂PQ 平面PQM ,所以PQ ⊥AD .同理PQ ⊥AB ,所以PQ ⊥平面ABCD .(II)连结OM ,则112.22OM AB OQ === 所以∠MQP =45°.由(Ⅰ)知AD ⊥平面PMQ ,所以平面PMQ ⊥平面QAD . 过P 作PH ⊥QM 于H ,PH ⊥平面QAD .从而PH的长是点P 到平面QAD 的距离.又03,sin 45PQ PO QO PH PQ =+=∴==. 即点P 到平面QAD的距离是2. 方法二 (Ⅰ)连结AC 、BD ,设O BD AC = .由P -ABCD 与Q -ABCD 都是正四棱锥,所以PO ⊥平面ABCD ,QO ⊥平面ABCD .从而P 、O 、Q 三点在一条直线上,所以PQ ⊥平面ABCD .(Ⅱ)点D 的坐标是(0,-22,0),)0,22,22(--=AD , (0,0,3)PQ =-,设),,(z y x n =是平面QAD 的一个法向量,由⎪⎩⎪⎨⎧=⋅=⋅00AD n AQ n 得⎪⎩⎪⎨⎧=+=+002y x z x . 取x =1,得)2,1,1(--=n .所以点P 到平面QAD 的距离322PQ nd n ⋅==. 题型6 割补法:割补法主要是针对平面图形或空间图形所采用的一种几何变换,其主要思想是把不规则问题转化为规则问题,这个方法常常用来求不规则平面图形的面积或不规则空间几何体的体积.例6.1若三棱锥的三条侧棱两两垂直,且侧棱长,则其外接球的表面积是.分析:将其补成一个正方体. 解析:这样的三棱锥实际上是正方体被一个平面所截下来的,我们考虑在原来的正方体中解决这个问题.设原来的正方体的棱长为,则本题中的三棱锥和原来的正方体具有同一个外接球,这个球的直径就是正方体的体对角线,长度为3=,即球的半径是32,故这个球的表面积是23492ππ⎛⎫= ⎪⎝⎭. 点评:三条侧棱两两垂直的三棱锥习惯上称为“直角三棱锥”,它就隐含在正方体之中,在解题中把它看作正方体的一个部分,在整个正方体中考虑问题,往往能化难为易,起到意想不到的作用.例6.2如图,已知多面体ABC DEFG -中,AB AC AD ,,两两互相垂直,平面ABC ∥平面DEFG ,平面BEF ∥平面ADGC ,2AB AD DC ===,1AC EF ==,则该多面体的体积为A.2 B.4 C.6 D.8 分析:这个几何体即可以看作两个三棱柱拼合而成的,也可以看作是从一个正方体割下来的. 解析一(割):如图,过点C 作CH DG ⊥于H ,连结EH ,这样就把多面体分割成一个直三棱柱DEH ABC -和一个斜三棱柱BEF CHG -.于是所求几何体的体积为DEH BEF V S AD S DE =⨯+⨯△△11212212422⎛⎫⎛⎫=⨯⨯⨯+⨯⨯⨯= ⎪ ⎪⎝⎭⎝⎭. 解析二(补):如图,将多面体补成棱长为2的正方体,那么显然所求的多面体的体积即为该正方体体积的一半.于是所求几何体的体积为31242V =⨯=. 点评:割补法是我们解决不规则空间几何体体积的最主要的技巧,其基本思想是利用割补将其转化为规则空间几何体加以解决.【专题训练与高考预测】一、选择题1.如图为一个几何体的三视图,尺寸如图所示,则该几何体的表面积为(不考虑接触点)( )A .6π+B . 184πC . 18π+D . 32π+2.某几何体的三视图如图所示,根据图中数据,可得该几何体的体积是( ) A ... 3.已知一个几何体的主视图及左视图均是边长为2的正三角形,俯视图是直径为2的圆,则此几何体的外接球的表面积为( )A .π34B .π38C .π316D .π3324.一个水平放置的平面图形的斜二测直观图是一个底角为45,腰和上底长均为1的等腰梯形,则这个平面图形的面积是 ( )A .2221+B .221+C .21+D .22+5. 一个盛满水的三棱锥容器S ABC -,不久发现三条侧棱上各有一个小洞,,D E F ,且知:::2:1SD DA SE EB CF FS ===,若仍用这个容器盛水,则最多可盛原来水的( )A .2923B .2719C .3130D .27236. 点P 在直径为2的球面上,过P 作两两垂直的三条弦,若其中一条弦长是另一条弦长的2倍,则这三条弦长之和为最大值是( )A B C7.正方体''''ABCD A B C D -中,AB 的中点为M ,'DD 的中点为N ,异面直线'B M 与CN 所成的角是( )A .30B .90C .45D .608.已知异面直线a 和b 所成的角为50,P 为空间一定点,则过点P 且与,a b 所成角都是30的直线有且仅有( )A . 1条B . 2条C . 3条D . 4条9.如图所示,四边形ABCD 中,//,,45,90AD BC AD AB BCD BAD =∠=∠=,将△ABD 沿BD 折起,使平面ABD ⊥平面BCD ,构成三棱锥A BCD -,则在三棱锥A BCD -中,下列命题正确的是( )A .平面ABD ⊥平面ABCB .平面ADC ⊥平面BDCC .平面ABC ⊥平面BDCD .平面ADC ⊥平面ABC10.设x 、y 、z 是空间不同的直线或平面,对下列四种情形:① x 、y 、z 均为直线;② x 、y 是直线,z 是平面;③ z 是直线,x 、y 是平面;④ x 、y 、z 均为平面.其中使“x ⊥z 且y ⊥z ⇒x ∥y ”为真命题的是( )A . ③ ④ B. ① ③ C. ② ③D. ① ②11.已知三条不重合的直线m 、n 、l 两个不重合的平面α、β,有下列命题①若//,m n n α⊂,则//m α;②若l α⊥,m β⊥且l m ,则αβ;③若,m m αα⊂⊂,,m n ββ,则αβ;④若αβ⊥,m αβ=,n β⊂,n m ⊥,则n α⊥.中正确的命题个数是( ) A .1 B . 2C .3D .4 12.直线AB 与直二面角l αβ--的两个面分别交于,A B两点,且,A B 都不在棱上,设直线AB 与平面,αβ所成的角分别为,θϕ,则θϕ+的取值范围是 ( )A .(0,)2πB .0,2π⎛⎤ ⎥⎝⎦C .(,)2ππD .{}2π 二、填空题13. 在三棱锥P ABC -中,2PA PB PC ===,30APB BPC CPA ∠=∠=∠=,一只蚂蚁从A 点出发沿三棱锥的侧面绕一周,再回到A 点,则蚂蚁经过的最短路程是.14.四面体的一条棱长为x ,其它各棱长为1,若把四面体的体积V 表示成x 的函数()f x ,则()f x 的增区间为,减区间为.15. 如图,是正方体平面展开图,在这个正方体中:① BM 与ED 平行; ② CN 与BE 是异面直线;③CN 与BM 成60角; ④DM 与BN 垂直. 以上四个说法中,正确说法的序号依次是.16. 已知棱长为1的正方体1111ABCD A B C D -中,E 是11A B的中点,则直线AE 与平面11ABC D 所成的角的正弦值是.三、解答题17.已知,如图是一个空间几何体的三视图.(1)该空间几何体是如何构成的;(2)画出该几何体的直观图;(3)求该几何体的表面积和体积.18.如图,已知等腰直角三角形RBC ,其中90RBC ∠=,2==BC RB .点,A D 分别是RB ,RC 的中点,现将RAD ∆沿着边AD 折起到PAD ∆位置,使PA AB ⊥,连结PB 、PC .(1)求证:BC PB ⊥;(2)求二面角P CD A --的平面角的余弦值.19.如下图,在正四棱柱1111ABCD A B C D -中,112AA AB =,点,E M 分别为11,A B CC 的中点,过点1,,A B M 三点的平面1A BMN交11C D 于点N . (1)求证:EM 平面1111A B C D ;(2)求二面角11B A N B --的正切值;(3)设截面1A BMN 把该正四棱柱截成的两个几何体的体积分别为12,V V (12V V <),求12:V V 的值.20. 如图,在四棱锥ABCD P -中,底面为直角梯形,//,90AD BC BAD ︒∠=,PA 垂直于底面ABCD ,N M BC AB AD PA ,,22====分别为PB PC ,的中点.(1)求证:DM PB ⊥;(2)求BD 与平面ADMN 所成的角;(3)求截面ADMN 的面积.21.如图,正方形ACDE 所在的平面与平面ABC 垂直,M 是CE 和AD 的交点,BC AC ⊥,且BC AC =.(1)求证:⊥AM 平面EBC ;(2)求直线AB 与平面EBC 所成的角的大小;(3)求二面角C EB A --的大小.22.已知斜三棱柱111ABC A B C -,90BCA ∠=,2AC BC ==,1A 在底面ABC 上的射影恰为AC 的中点D ,又知11BA AC ⊥.(1)求证:1AC ⊥平面1A BC ;(2)求1CC 到平面1A AB的距离;(3)求二面角1A A B C --的一个三角函数值.【参考答案】1.解析:C 该几何体是正三棱柱上叠放一个球.故其表面积为2213232241842ππ⎛⎫⨯⨯+⨯+⨯=+ ⎪⎝⎭. 2.解析:B的正方形、高为的四棱柱,上半部分是一个底面边长为的正方形、高为的四棱锥,故13=. 3.解析:C 由三视图知该几何体是底面半径为1,.4.解析:D 如图设直观图为''''O A B C ,建立如图所示的坐标系,按照斜二测画法的规则,在原来的平面图形中OC OA ⊥,且2OC =,1BC =,121OA =+=(112222⋅++⋅=+5.解析:D 当平面EFD 处于水平位置时,容器盛水最多 最多可盛原来水得42312727-=. 6.解析:A 设三边长为,2,x x y ,则2254xy +=,令,2sin ,32sin x y x y θθθθ==∴+=+ 7.解析:B 如图,取'AA 的中点P ,连结BP ,在正方形''ABB A 中易证'BP B M ⊥.8.解析:B 过点P 作a a ',b b ',若P a ∈,则取a 为a ',若Pb ∈,则取b 为b '.这时a ',b '相交于P 点,它们的两组对顶角分别为50和130. 记a ',b '所确定的平面为α,那么在平面α内,不存在与a ',b '都成30的直线. 过点P 与a ',b '都成30角的直线必在平面α外,这直线在平面α的射影是a ',b '所成对顶角的平分线.其中射影是50对顶角平分线的直线有两条l 和l ',射影是130对顶角平分线的直线不存在.故答案选B .9.解析:D 如图,在平面图形中CD BD ⊥,折起后仍然这样,由于平面ABD ⊥平面BCD ,故CD ⊥平面ABD ,CD AB ⊥,又AB AD ⊥,故AB ⊥平面ADC ,所以平面ADC ⊥平面ABC .10.解析:C x 、y 、z 均为直线,显然不行;由于垂直于同一个平面的两条直线平行,故②,可以使“x ⊥z 且y ⊥z ⇒x ∥y ”为真命题;又由于垂直于同一条直线的两个平面平行,故③可以使“x ⊥z 且y ⊥z ⇒x ∥y ”为真命题;当x 、y 、z 均为平面时,也不能使“x ⊥z 且y ⊥z ⇒x ∥y ”为真命题.11.解析:B ①中有m α⊂的可能;l m 且l α⊥,可得m α⊥,又m β⊥,故αβ,②正确;③中当m n 时,结论不成立;④就是面面垂直的性质定理,④正确.故两个正确的.12.解析:B 如图,在Rt ADC ∆中,cos ,sin AD AB AC AB θϕ==,而AD AC >,即cos sin cos 2πθϕϕ⎛⎫>=- ⎪⎝⎭,故2πθϕ<-,即2πθϕ+<,而当AB l ⊥时,2πθϕ+=.13.解析:将如图⑴三棱锥P ABC -,沿棱PA 展开得图⑵,蚂蚁经过的最短路程应是A A ',又∵30APB BPC CPA ∠=∠=∠=,'90APA ∠=,∴A A '=22.14.解析:⎛ ⎝⎦,⎪⎪⎭⎫⎢⎣⎡326,()f x =,利用不等式或导数即可判断.15.解析:③④ 如图,逐个判断即可.16取CD 的中点F ,连接EF 交平面11ABC D 于O ,连AO .由已知正方体,易知EO ⊥平面11ABC D ,所以EAO ∠为所求.在EOA ∆Rt 中,11122EO EF A D ===,AE,sin EO EAO AE ∠==.所以直线AE 与平面11ABC D 所成.17.解析:(1)这个空间几何体的下半部分是一个底面边长为2的正方形高为1的长方体,上半部分是一个底面边长为2的正方形高为1的四棱锥.(2)按照斜二测的规则得到其直观图,如图.(3)由题意可知,该几何体是由长方体''''ABCD A B C D -与正四棱锥''''P A B C D -构成的简单几何体.由图易得:2,'1,'1AB AD AA PO ====,取''A B 中点Q ,连接PQ ,从而PQ ==何体表面积 体积11622122133V =⨯⨯+⨯⨯⨯=. 18.解析:(1)∵点A 、D 分别是RB 、RC 的中点,∴BC AD BC AD 21,//=.∴90PAD RAD RBC ∠=∠=∠=,∴ADPA ⊥.∴BC PA ⊥,∵A AB PA AB BC =⊥ ,,∴BC ⊥平面PAB . ∵⊂PB 平面PAB ,∴PB BC ⊥.(2)取RD的中点F,连结AF、PF . ∵1==AD RA ,∴RC AF ⊥.∵AD AP AR AP ⊥⊥,,∴⊥AP 平面RBC . ∵⊂RC 平面RBC ,∴AP RC ⊥. ∵,A AP AF = ∴⊥RC 平面PAF . ∵⊂PF 平面PAF ,∴PF RC ⊥.∴AFP ∠是二面角P CD A --的平面角.在RAD ∆Rt 中, 22212122=+==AD RA RD AF , 在PAF ∆Rt 中, 2622=+=AF PA PF ,332622cos ===∠PF AF AFP . ∴ 二面角P CD A --的平面角的余弦值是33.19.解析:(1)设11A B 的中点为F ,连结1,EF FC .∵E 为1A B 的中点,∴EF 112BB . 又1C M112BB ,∴EF 1MC .∴四边形1EMC F为平行四边形.∴1EMFC .∵EM⊄平面1111A B C D ,1FC ⊂平面1111A B C D ,∴EM 平面1111A B C D .(2)作11B H A N ⊥于H ,连结BH ,∵1BB ⊥⊥平面1111A B C D ,∴1BH A N ⊥.∴1BHB ∠为二面角11B A N B --的平面角. ∵EM ∥平面1111A B C D ,EM⊂平面1A BMN,平面1A BMN平面11111A B C D A N = ,∴1EM A N .又∵1EM FC ,∴11A N FC .又∵11A F NC ,∴四边形11A FC N是平行四边形.∴11NC A F =.设1AA a =,则112A B a =,1D N a =. 在11A D N∆Rt 中,1A N ==,∴sin∠A 1ND 1=11111sin A D A ND A N ∠==.在11A B H ∆Rt中,11111sin 2B H A B HA B a =∠== 在1BB H ∆Rt 中,111tan 44BB a BHB B H ∠===. (3)延长1A N 与11B C 交于P ,则P ∈平面1A BMN ,且P ∈平面11BB C C .又∵平面1A BMN平面11BB C C BM =,∴P BM ∈,即直线111,,A N B C BM 交于一点P . 又∵平面1MNC ∥平面11BA B ,∴几何体111MNC BA B -为棱台.∵112122A BBS a a a ∆=⋅⋅=,12111224MNC S a a a ∆=⋅⋅=, 棱台111MNC BA B -的高为112B C a =,故22311172346V a a a a ⎛⎫=⋅= ⎪ ⎪⎝⎭,3327172266V a a a a a =⋅⋅-=,.∴12717V V =.20.解析:(1)因为N 是PB 的中点,AB PA =, 所以PB AN ⊥. 由PA ⊥底面ABCD ,得PA AD ⊥,又90BAD ︒∠=,即BA AD ⊥,∴⊥AD 平面PAB ,所以PB AD ⊥ ,∴⊥PB 平面ADMN , ∴DM PB ⊥.(2)连结DN , 因为⊥BP 平面ADMN ,即⊥BN 平面ADMN ,所以BDN ∠是BD 与平面ADMN 所成的角. 在ABD ∆Rt 中,BD ==,在PAB∆Rt 中,PB ==,故12BN PB ==,在BDN ∆Rt 中, 21sin ==∠BD BN BDN ,又02BDN π≤∠≤,故BD 与平面ADMN 所成的角是6π. (3)由,M N 分别为PB PC ,的中点,得//MN BC ,且1122MN BC ==,又//AD BC ,故//MN AD ,由(1)得⊥AD 平面PAB ,又AN ⊂平面PAB ,故AD AN ⊥,∴四边形ADMN 是直角梯形,在Rt PAB∆中,PB ==,12AN PB ==,∴截面ADMN 的面积111()(2)2224S MN AD AN =+⨯=+=.法二: (1)以A 点为坐标原点建立空间直角坐标系A xyz -,如图所示(图略)由22====BC AB AD PA ,得(0,0,0)A ,1(0,0,2),(2,0,0),(1,,1),(0,2,0)2P B M D因为3(2,0,2)(1,,1)2PB DM ⋅=--0= ,所以DM PB ⊥.(2)因为(2,0,2)(0,2,0)PB AD ⋅=-⋅0=,所以PB AD ⊥,又DM PB ⊥ ,故PB ⊥平面ADMN ,即(2,0,2)PB =-是平面ADMN 的法向量.设BD 与平面ADMN 所成的角为θ,又(2,2,0)BD =-.则||1sin |cos ,|2||||4BD PB BD PB BD PB θ⋅=<>===,又[0,]2πθ∈,故6πθ=,即BD 与平面ADMN 所成的角是6π.因此BD 与平面ADMN 所成的角为6π. (3)同法一.21.解析:法一:(1)∵四边形ACDE 是正方形,EC AM AC EA ⊥⊥∴,.∵平面⊥ACDE 平面ABC ,又∵AC BC ⊥,⊥∴BC 平面EAC .⊂AM 平面EAC ,⊥∴BC AM . ⊥∴AM 平面EBC . (2)连结BM ,⊥AM 平面EBC ,ABM ∠∴是直线AB 与平面EBC 所成的角.设a BC AC EA 2===,则a AM 2=,a AB 22=,21sin ==∠∴AB AM ABM , ︒=∠∴30ABM . 即直线AB 与平面EBC 所成的角为︒30(3)过A 作EB AH ⊥于H ,连结HM . ⊥AM 平面EBC ,EB AM ⊥∴.⊥∴EB 平面AHM .AHM ∠∴是二面角C EB A --的平面角.∵平面⊥ACDE 平面ABC ,⊥∴EA 平面ABC .⊥∴EA AB .在EAB Rt ∆中, EB AH ⊥,有AH EB AB AE ⋅=⋅.由(2)所设a BC AC EA 2===可得a AB 22=,a EB 32=,322aEB AB AE AH =⋅=∴. 23sin ==∠∴AH AM AHM .︒=∠∴60AHM .∴二面角C EB A --等于︒60.法二: ∵四边形ACDE 是正方形 ,EC AM AC EA ⊥⊥∴,,∵平面⊥ACDE 平面ABC ,⊥∴EA 平面ABC , ∴可以以点A 为原点,以过A 点平行于BC 的直线为x 轴,分别以直线AC 和AE 为y 轴和z 轴,建立如图所示的空间直角坐标系xyz A -. 设2===BC AC EA ,则),0,2,2(),0,0,0(B A )2,0,0(),0,2,0(E C ,M是正方形ACDE 的对角线的交点,)1,1,0(M ∴.(1)=AM )1,1,0(,)2,2,0()2,0,0()0,2,0(-=-=EC ,)0,0,2()0,2,0()0,2,2(=-=,0,0=⋅=⋅∴, CB AM EC AM ⊥⊥∴,⊥∴AM 平面EBC .(2) ⊥AM 平面EBC ,AM ∴为平面EBC 的一个法向量,)0,2,2(),1,1,0(== ,21==∴AM AB .︒=60.∴直线AB 与平面EBC 所成的角为︒30.(3)设平面EAB 的法向量为),,(z y x n =,则AE n ⊥且AB n ⊥,0=⋅∴AE n 且0=⋅AB n .⎩⎨⎧=⋅=⋅∴.0),,()0,2,2(,0),,()2,0,0(z y x z y x 即⎩⎨⎧=+=.0,0y x z ,取1-=y ,则1=x , 则)0,1,1(-=n .又∵AM 为平面EBC 的一个法向量,且)1,1,0(=,21-==∴AM n ,设二面角C EB A --的平面角为θ,则21cos cos ==θ,︒=∴60θ.∴二面角C EB A --等于︒60.22.解析:法一:(1)因为1A D ⊥平面ABC ,所以平面11AA C C ⊥平面ABC ,又BC AC ⊥,所以BC ⊥平面11AAC C ,得1BC AC ⊥,又11BA AC ⊥,所以1AC ⊥平面1A BC ;(2)因为11AC A C ⊥,所以四边形11AAC C 为 菱形,故12AA AC ==,又D 为AC 中点,知160A AC ∠=.取1AA 中点F ,则1AA ⊥平面BCF ,从而面1A AB ⊥面BCF , 过C 作CH BF ⊥于H ,则CH ⊥面。
导数结合洛必达法则巧解高考压轴题时间:2021.03.02创作:欧阳数第一部分:历届导数高考压轴题(全国2理)设函数f (x )=(x +1)ln(x +1),若对所有的x ≥0,都有f (x )≥ax 成立,求实数a 的取值范围.(全国1理)已知函数()11axx f x e x-+=-. (Ⅰ)设0a >,讨论()y f x =的单调性;(Ⅱ)若对任意()0,1x ∈恒有()1f x >,求a 的取值范围. (全国1理)设函数()e e x x f x -=-. (Ⅰ)证明:()f x 的导数()2f x '≥;(Ⅱ)若对所有0x ≥都有()f x ax ≥,求a 的取值范围. (全国2理)设函数sin ()2cos xf x x=+.(Ⅰ)求()f x 的单调区间;(Ⅱ)如果对任何0x ≥,都有()f x ax ≤,求a 的取值范围.(辽宁理)设函数ln ()ln ln(1)1xf x x x x=-+++. ⑴求()f x 的单调区间和极值;⑵是否存在实数a ,使得关于x 的不等式()f x a 的解集为(0,)+∞?若存在,求a 的取值范围;若不存在,试说明理由.(新课标理)设函数)(x f =21x e x ax ---. (Ⅰ)若0=a ,求)(x f 的单调区间;(Ⅱ)若当x ≥0时)(x f ≥0,求a 的取值范围. (新课标文)已知函数2()(1)x f x x e ax =--.(Ⅰ)若()f x 在1x =-时有极值,求函数()f x 的解析式; (Ⅱ)当0x ≥时,()0f x ≥,求a 的取值范围. (全国大纲理)设函数()1x f x e -=-. (Ⅰ)证明:当1x >-时,()1xf x x ≥+; (Ⅱ)设当0x ≥时,()1xf x ax ≤+,求a 的取值范围. (新课标理)已知函数ln ()1a x bf x x x =++,曲线()y f x =在点(1,(1))f 处的切线方程为230x y +-=.(Ⅰ)求a 、b 的值;(Ⅱ)如果当0x >,且1x ≠时,ln ()1x kf x x x>+-,求k 的取值范围.例题:若不等式3sin x x ax >-对于(0,)2x π∈恒成立,求a 的取值范围第二部分:泰勒展开式1.2311,1!2!3!!(1)!n n xxx x x x x e e n n θ+=+++++++其中(01)θ<<; 2.231ln(1)(1),2!3!!nn n x x x x x R n -+=-+-+-+其中111(1)()(1)!1n nn n x R n xθ++=-++;3.35211sin (1)3!5!(21)!k k nx x x x x R k --=-+-+-+-,其中21(1)cos (21)!k kn xR x k θ+=-+;4.24221cos 1(1)2!4!(22)!k k nx x x x R k --=-+-+-+-,其中2(1)cos (2)!kkn x R x k θ=-;第三部分:洛必达法则及其解法 洛必达法则:设函数()f x 、()g x 满足:(1)lim ()lim ()0x a x af xg x →→==;(2)在()U a 内,()f x '和()g x '都存在,且()0g x '≠;(3)()lim ()x af x Ag x →'=' (A 可为实数,也可以是±∞).则()()lim lim ()()x a x af x f x Ag x g x →→'=='. 1.(新课标理)已知函数ln ()1a x bf x x x=++,曲线()y f x =在点(1,(1))f 处的切线方程为230x y +-=.(Ⅰ)求a 、b 的值;(Ⅱ)如果当0x >,且1x ≠时,ln ()1x kf x x x>+-,求k 的取值范围.常规解法(Ⅰ)略解得1a =,1b =.(Ⅱ)方法一:分类讨论、假设反证法由(Ⅰ)知ln 1()1x f x x x=++,所以22ln 1(1)(1)()()(2ln )11x k k x f x x x x x x---+=+--. 考虑函数()2ln h x x =+2(1)(1)k x x--(0)x >,则22(1)(1)2'()k x xh x x -++=.(i)当0k ≤时,由222(1)(1)'()k x x h x x +--=知,当1x ≠时,'()0h x <.因为(1)0h =,所以当(0,1)x ∈时,()0h x >,可得21()01h x x ⋅>-;当(1,)x ∈+∞时,()0h x <,可得21()01h x x ⋅>-,从而当0x >且1x ≠时,ln ()()01x kf x x x-+>-,即ln ()1x k f x x x>+-;(ii )当01k <<时,由于当1(1,)1x k∈-时,2(1)(1)20k x x -++>,故'()0h x >,而(1)0h =,故当1(1,)1x k∈-时,()0h x >,可得21()01h x x ⋅<-,与题设矛盾.(iii )当1k ≥时, '()0h x >,而(1)0h =,故当(1,)x ∈+∞时,()0h x >,可得21()01h x x⋅<-,与题设矛盾.综上可得,k 的取值范围为(0]-∞,.注:分三种情况讨论:①0k ≤;②01k <<;③1k ≥不易想到.尤其是②01k <<时,许多考生都停留在此层面,举反例1(1,)1x k∈-更难想到.而这方面根据不同题型涉及的解法也不相同,这是高中阶段公认的难点,即便通过训练也很难提升.洛必达法则解法当0x >,且1x ≠时,ln ()1x k f x x x >+-,即ln 1ln 11x x kx x x x+>++-, 也即2ln 1ln 2ln 1111x x x x x x k x x x x <+-=++--,记22ln ()11x x g x x=+-,0x >,且1x ≠则2222222222(1)ln 2(1)2(1)1'()=(ln )(1)(1)1x x x x x g x x x x x ++-+-=+--+, 记221()ln 1x h x x x -=++,则22222214(1)'()+=0(1+)(1+)x x h x x x x x --=>, 从而()h x 在(0,)+∞上单调递增,且(1)0h =,因此当(0,1)x ∈时,()0h x <,当(1,)x ∈+∞时,()0h x >;当(0,1)x ∈时,'()0g x <,当(1,)x ∈+∞时,'()0g x >,所以()g x 在(0,1)上单调递减,在(1,)+∞上单调递增. 由洛必达法则有2211112ln 2ln 2ln 2lim ()lim(1)1lim 1lim 0112x x x x x x x x x g x x x x→→→→+=+=+=+=---,即当1x →时,()0g x →,即当0x >,且1x ≠时,()0g x >. 因为()k g x <恒成立,所以0k ≤.综上所述,当0x >,且1x ≠时,ln ()1x kf x x x>+-成立,k 的取值范围为(0]-∞,. 注:本题由已知很容易想到用分离变量的方法把参数k 分离出来.然后对分离出来的函数22ln ()11x x g x x=+-求导,研究其单调性、极值.此时遇到了“当=1x 时,函数()g x 值没有意义”这一问题,很多考生会陷入困境.如果考前对优秀的学生讲洛必达法则的应用,再通过强化训练就能掌握解决此类难题的这一有效方法.2.(新课标理)设函数2()1x f x e x ax =---. (Ⅰ)若0a =,求()f x 的单调区间;(Ⅱ)当0x ≥时,()0f x ≥,求a 的取值范围. 应用洛必达法则和导数(Ⅱ)当0x ≥时,()0f x ≥,即21x e x ax --≥. ①当0x =时,a R∈;②当0x >时,21x e x ax --≥等价于21x e x a x --≤.记21()x e x g x x --= (0+)x ∈∞,,则3(2)2'()x x e x g x x-++=. 记()(2)2x h x x e x =-++(0+)x ∈∞,,则'()(1)1x h x x e =-+,当(0+)x ∈∞,时,''()0x h x xe =>,所以'()(1)1x h x x e =-+在(0+)∞,上单调递增,且'()'(0)0h x h >=,所以()(2)2xh x x e x =-++在(0+)∞,上单调递增,且()(0)0h x h >=,因此当(0+)x ∈∞,时,3()'()0h x g x x=>,从而21()x e x g x x --=在(0+)∞,上单调递增. 由洛必达法则有,即当0x →时,1()2g x →,所以当(0+)x ∈∞,时,所以1()2g x >,因此12a ≤.综上所述,当12a ≤且0x ≥时,()0f x ≥成立.例题:若不等式3sin x x ax >-对于(0,)2x π∈恒成立,求a 的取值范围.应用洛必达法则和导数当(0,)2x π∈时,原不等式等价于3sin x xa x ->. 记3sin ()x x f x x -=,则43sin cos 2'()x x x xf x x--=. 记()3sin cos 2g x x x x x =--,则'()2cos sin 2g x x x x =+-.因为''()cos sin cos (tan )g x x x x x x x =-=-,'''()sin 0g x x x =-<,所以''()g x 在(0,)2π上单调递减,且''()0g x <,所以'()g x 在(0,)2π上单调递减,且'()0g x <.因此()g x 在(0,)2π上单调递减,且()0g x <,故4()'()0g x f x x =<,因此3sin ()x xf x x -=在(0,)2π上单调递减.由洛必达法则有320000sin 1cos sin cos 1lim ()limlim lim lim 3666x x x x x x x x x x f x x x x →→→→→--=====, 即当0x →时,1()6g x →,即有1()6f x <.故16a ≥时,不等式3sin x x ax >-对于(0,)2x π∈恒成立.通过以上例题的分析,我们不难发现应用洛必达法则解决的试题应满足:① 可以分离变量;②用导数可以确定分离变量后一端新函数的单调性; ③出现“0”型式子. (海南宁夏文)已知函数2()(1)x f x x e ax =--.(Ⅰ)若()f x 在1x =-时有极值,求函数()f x 的解析式;(Ⅱ)当0x ≥时,()0f x ≥,求a 的取值范围.解:(Ⅰ)略(Ⅱ)应用洛必达法则和导数 当0x ≥时,()0f x ≥,即2(1)x x e ax -≥. ①当0x =时,a R ∈;②当0x >时,2(1)xx e ax -≥等价于1xe ax -≥,也即1x e a x-≤.记1()x e g x x-=,(0,)x ∈+∞,则(1)1'()x x e g x x -+=.记()(1)1x h x x e =-+,(0,)x ∈+∞,则'()0x h x xe =>,因此()(1)1x h x x e =-+在(0,)+∞上单调递增,且()(0)0h x h >=,所以()'()0h x g x x=>,从而1()x e g x x -=在(0,)+∞上单调递增. 由洛必达法则有0001lim ()lim lim 11x xx x x e e g x x→→→-===, 即当0x →时,()1g x → 所以()1g x >,即有1a ≤.综上所述,当1a ≤,0x ≥时,()0f x ≥成立.(全国大纲理)设函数()1x f x e -=-. (Ⅰ)证明:当1x >-时,()1xf x x ≥+; (Ⅱ)设当0x ≥时,()1xf x ax ≤+,求a 的取值范围. 解:(Ⅰ)略(Ⅱ)应用洛必达法则和导数 由题设0x ≥,此时()0f x ≥. ①当0a <时,若1x a>-,则01x ax <+,()1xf x ax ≤+不成立; ②当0a ≥时,当0x ≥时,()1x f x ax ≤+,即11x xe ax --≤+; 若0x =,则a R ∈;若0x >,则11xxe ax --≤+等价于111x e x ax --≤+,即1x x x xe e a xe x -+≤-. 记1()x xx xe e g x xe x-+=-,则2222221'()=(2)()()x x x xx x x x e x e e e g x e x e xe x xe x ---+=--+--. 记2()2x x h x e x e -=--+,则'()2x x h x e x e -=--,''()+20x x h x e e -=->. 因此,'()2x x h x e x e -=--在(0)+∞,上单调递增,且'(0)0h =,所以'()0h x >,即()h x 在(0)+∞,上单调递增,且(0)0h =,所以()0h x >.因此2'()=()0()xx e g x h x xe x >-,所以()g x 在(0)+∞,上单调递增.由洛必达法则有000011lim ()lim lim lim 122x x x x x x x x x x x x x x xe e xe e xe g x xe x e xe e xe →→→→-++====-+-+,即当0x →时,1()2g x →,即有1()2g x >,所以12a ≤.综上所述,a 的取值范围是1(,]2-∞.(全国2理)设函数sin ()2cos xf x x =+.(Ⅰ)求()f x 的单调区间;(Ⅱ)如果对任何0x ≥,都有()f x ax ≤,求a 的取值范围. 解:(Ⅰ)22(2cos )cos sin (sin )2cos 1()(2cos )(2cos )x x x x x f x x x +--+'==++.当2π2π2π2π33k x k -<<+(k ∈Z )时,1cos 2x >-,即()0f x '>;当2π4π2π2π33k x k +<<+(k ∈Z )时,1cos 2x <-,即()0f x '<.因此()f x 在每一个区间2π2π2π2π33k k ⎛⎫-+ ⎪⎝⎭,(k ∈Z )是增函数,()f x 在每一个区间2π4π2π2π33k k ⎛⎫++ ⎪⎝⎭,(k ∈Z )是减函数.解:(Ⅰ)略(Ⅱ)应用洛必达法则和导数 若0x =,则a R ∈; 若0x >,则sin 2cos xax x≤+等价于sin (2cos )x a x x ≥+,即sin ()(2cos )xg x x x =+则222cos 2sin sin cos '()(2cos )x x x x x xg x x x --+=+. 记()2cos 2sin sin cos h x x x x x x x =--+,因此,当(0,)x π∈时,'()0h x <,()h x 在(0,)π上单调递减,且(0)0h =,故'()0g x <,所以()g x 在(0,)π上单调递减,而000sin cos 1lim ()lim lim (2cos )2+cos sin 3x x x x x g x x x x x x →→→===+-.另一方面,当[,)x π∈+∞时,sin 111()(2cos )3x g x x x x π=≤≤<+,因此1a ≥.。
高考数学压轴题解题技巧(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如演讲稿、总结报告、合同协议、方案大全、工作计划、学习计划、条据书信、致辞讲话、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, this shop provides you with various types of classic sample essays, such as speech drafts, summary reports, contract agreements, project plans, work plans, study plans, letter letters, speeches, teaching materials, essays, other sample essays, etc. Want to know the format and writing of different sample essays, so stay tuned!高考数学压轴题解题技巧考试铃声刚落音,考场之内静无声。
数列及其通项时间2021.03.10创作:欧阳治例1设{}n a 是首项为1的正项数列,且()011221=+-+++n n n n a na na a n (n =1,2,3,…),则它的通项公式是n a = .分析本题由递推式求通项公式,考虑到填空题特点:即只要结果不要过程,故采用不完全归纳法(由特殊到一般).也可化简递推式,从而求得通项公式. 解法一:由条件,11=a ()011221=+-+++n n n n a na na an ,可得212=a ,313=a ,414=a ,(负值舍去)由此可猜想nan1=. 解法二:由()011221=+-+++n n n n a na na an ,可得()0)](1[11=+-+++n n n n a a na a n因为0>n a ,所以)(1>++n n a a 故只有()011=-++n n na an ,即11+=+n na a n n 所以=n a 1-n n a a ⋅⋅--21n n a a ⋅--32n n a a …112a a a ⋅=n1链接①形如)(1n q a a n n +=+的递归式,其通项公式求法为:1111111()()n n n k k k k a a a a a q k --+===+-=+∑∑②形如n n a n p a )(1=+的递归式,其通项公式求法为:na =例2 . 已知an =n -98n -99 ( n∈N* ),则在数列{an }的前20项中,最大项和最小项分别是() A.a9,a8 . B.a10,a9 . C.a8,a9 . A.a9,a10 . 分析因为an =1+99-98n -99所以a1,a2 ,…,a9组成递减数列,a1最大,a10最小;a10,a11 ,…,a20组成递减数列,a10,最大,a20,最小,计算a1< a10, a9< a20.所以在数列{ an }前20项中,最大项为a10,最小项为a9,故选B.说明要确定数列{ an }的最大项和最小项,一种思路是先判断数列的单调性,另一种思路是画图观察.等差数列与等比数列例1.设无穷等差数列{an}的前n 项和为Sn.数k ;(Ⅱ)求所有的无穷等差数列{an},使得对于一切正整.【答案】解:(I)当时,由,即(II)设数列{an}的公差为d,则在,2,得若成立;若故所得数列不符合题意。
圆锥曲线的解题技巧一、常规七大题型:(1)中点弦问题具有斜率的弦中点问题,常用设而不求法(点差法):设曲线上两点为(,)x y 11,(,)x y 22,代入方程,然后两方程相减,再应用中点关系及斜率公式(当然在这里也要注意斜率不存在的请款讨论),消去四个参数。
如:(1))0(12222>>=+b a b y a x 与直线相交于A 、B ,设弦AB 中点为M(x 0,y 0),则有02020=+k b y a x 。
(2))0,0(12222>>=-b a b y a x 与直线l 相交于A 、B ,设弦AB 中点为M(x 0,y 0)则有02020=-k b y a x (3)y 2=2px (p>0)与直线l 相交于A 、B 设弦AB 中点为M(x 0,y 0),则有2y 0k=2p,即y 0k=p.典型例题 给定双曲线x y 2221-=。
过A (2,1)的直线与双曲线交于两点P 1 及P 2,求线段P 1P 2的中点P 的轨迹方程。
(2)焦点三角形问题椭圆或双曲线上一点P ,与两个焦点F 1、F 2构成的三角形问题,常用正、余弦定理搭桥。
典型例题 设P(x,y)为椭圆x a y b 22221+=上任一点,F c 10(,)-,F c 20(,)为焦点,∠=PF F 12α,∠=PF F 21β。
(1)求证离心率βαβαsin sin )sin(++=e ;(2)求|||PF PF 1323+的最值。
(3)直线与圆锥曲线位置关系问题直线与圆锥曲线的位置关系的基本方法是解方程组,进而转化为一元二次方程后利用判别式、根与系数的关系、求根公式等来处理,应特别注意数形结合的思想,通过图形的直观性帮助分析解决问题,如果直线过椭圆的焦点,结合三大曲线的定义去解。
典型例题抛物线方程,直线与轴的交点在抛物线准线的右边。
y p x p x y t x 210=+>+=()()(1)求证:直线与抛物线总有两个不同交点(2)设直线与抛物线的交点为A 、B ,且OA ⊥OB ,求p 关于t 的函数f(t)的表达式。
③()()()[]222222b a 21a c cb ca bc ab c b a +++++=+++++ ④ax2+bx +c =a(x2+b x a )+c =a(x2+b x a +224b a )+c -24b a 224()24b b ac a x a a -=++ 4解某些复杂的特型方程要用到‘换元法’。
换元法解方程的一般步骤是:设元→换元→解元→还元5待定系数法是在已知对象形式的条件下求对象的一种方法。
适用于求点的坐标、函数解析式、曲线方程等重要问题的解决。
其解题步骤是:(1)设(2)列(3)解(4)写6复杂代数等式型条件的使用技巧:左边化零,右边变形。
①因式分解型:()()0---------= 两种情况为或型②配成平方型:()()0---------22=+ 两种情况为且型7数学中两个最伟大的解题思路:(1)求值的思路−−−−→−方程思想与方法列欲求值字母的方程或方程组 (2)求取值范围的思路−−−−−→−不等式思想与方法列欲求范围字母的不等式或不等式组8化简二次根式m 的基本思路是:把m 化成完全平方式。
即:m −−→−=2m a 2a =a−−−−−→−的情况分类讨论按a 结果 9化简b 2a ±的方法是观察法:a b ±=(x y ±)2 其中,xy=b,x+y=a 且x>y>0 10代数式求值的方法有:(1)直接代入法 (2)化简代入法 3)适当变形法(和积代入法)⎧⎪⎪⎪⎧⎪⎨⎪⎨⎩⎪⎪⎪⎪⎪⎩①定义域 图像在x 轴上对应的部分②值 域 图像在y 轴上对应的部分从左向右看,连续上升的一段在x 轴上对应的区间是增区间③单调性从左向右看,连续下降的一段在x 轴上对应的区间是减区间④最 值 图像最高点处有最大值,图像最低点处有最小值。
⑤奇偶性 图像关于y 轴对称是偶函数;图像关于原点对称是奇函数⑥周期性 图像每隔定长重复出现是周期函数。
生命是永恒不断的创造,因为在它内部蕴含着过剩的精力,它不断流溢,越出时间和空间的界限,它不停地追求,以形形色色的自我表现的形式表现出来。
--泰戈尔导数题型分析及解题方法一、考试内容导数的概念,导数的几何意义,几种常见函数的导数;两个函数的和、差、基本导数公式,利用导数研究函数的单调性和极值,函数的最大值和最小值。
二、热点题型分析题型一:利用导数研究函数的极值、最值。
1.32()32f x x x =-+在区间[]1,1-上的最大值是 22.已知函数2)()(2=-==x c x x x f y 在处有极大值,则常数c= 6 ;3.函数331x x y -+=有极小值 -1 ,极大值 3题型二:利用导数几何意义求切线方程1.曲线34y x x =-在点()1,3--处的切线方程是2y x =-2.若曲线xx x f -=4)(在P 点处的切线平行于直线3=-y x ,则P 点的坐标为 (1,0)3.若曲线4y x =的一条切线l 与直线480x y +-=垂直,则l 的方程为430x y --= 4.求下列直线的方程: (1)曲线123++=x xy 在P(-1,1)处的切线; (2)曲线2x y =过点P(3,5)的切线;解:(1)123|y k 23 1)1,1(1x /2/23===∴+=∴++=-=-上,在曲线点-x x y x x y P所以切线方程为02 11=+-+=-y x x y 即,(2)显然点P (3,5)不在曲线上,所以可设切点为),(00y x A ,则200x y =①又函数的导数为xy 2/=,所以过),(00y x A 点的切线的斜率为/2|0x y k x x ===,又切线过),(00y x A 、P(3,5)点,所以有352000--=x y x ②,由①②联立方程组得,⎩⎨⎧⎩⎨⎧====255 110000y x y x 或,即切点为(1,1)时,切线斜率为;2201==x k ;当切点为(5,25)时,切线斜率为10202==x k ;所以所求的切线有两条,方程分别为2510 12 )5(1025)1(21-=-=-=--=-x y x y x y x y 或即,或题型三:利用导数研究函数的单调性,极值、最值 1.已知函数))1(,1()(,)(23f P x f y c bx ax x x f 上的点过曲线=+++=的切线方程为y=3x+1 (Ⅰ)若函数2)(-=x x f 在处有极值,求)(x f 的表达式;(Ⅱ)在(Ⅰ)的条件下,求函数)(x f y =在[-3,1]上的最大值; (Ⅲ)若函数)(x f y =在区间[-2,1]上单调递增,求实数b 的取值范围 解:(1)由.23)(,)(223b ax x x fc bx ax x x f ++='+++=求导数得过))1(,1()(f P x f y 上点=的切线方程为:而过.13)]1(,1[)(+==x y f P x f y 的切线方程为上故⎩⎨⎧-=-=+⎩⎨⎧-=-=++3023323c a b a c a b a 即∵124,0)2(,2)(-=+-∴=-'-==b a f x x f y 故时有极值在③由①②③得 a=2,b=-4,c=5 ∴① ②.542)(23+-+=x x x x f(2)).2)(23(443)(2+-=-+='x x x xx f当;0)(,322;0)(,23<'<≤->'-<≤-x f x x f x 时当时13)2()(.0)(,132=-=∴>'≤<f x f x f x 极大时当又)(,4)1(x f f ∴=在[-3,1]上最大值是13。
17年高考一轮复习之数学压轴题答题技巧数学压轴题答题技巧,具体题目还是要具体分析,不能一一而谈,总体来说,思路如下:1. 复杂的问题简单化,就是把一个复杂的问题,分解为一系列简单的问题,把复杂的图形,分成几个基本图形,找相似,找直角,找特殊图形,慢慢求解,高考是分步得分的,这种思考方式尤为重要,能算的先算,能证的先证,踏上要点就能得分,就算结论出不来,中间还是有不少分能拿。
2. 运动的问题静止化,对于动态的图形,先把不变的线段,不变的角找到,有没有始终相等的线段,始终全等的图形,始终相似的图形,所有的运算都基于它们,在找到变化线段之间的联系,用代数式慢慢求解。
3. 一般的问题特殊化,有些一般的结论,找不到一般解法,先看特殊情况,比如动点问题,看看运动到中点怎样,运动到垂直又怎样,变成等腰三角形又会怎样,先找出结论,再慢慢求解。
另外,还有一些细节要注意,三角比要善于运用,只要有直角就可能用上它,从简化运算的角度来看,三角比优于比例式优于勾股定理,中考命题不会设置太多的计算障碍,如果遇上繁难运算要及时回头,避免钻牛角尖。
如果遇到找相似的三角形,要切记先看角,再算边。
遇上找等腰三角形同样也是先看角,再看底边上的高(用三线合一),最后才是边。
这都是能大大简化运算的。
还有一些小技巧,比如用斜边上中线找直角,用面积算垂线等不一而足具体方法较多,如果有时间,我会举实例进行分析。
最后说一下初中需要掌握的主要的数学思想:1. 方程与函数思想利用方程解决几何计算已经不能算难题了,建立变量间的函数关系,也是经常会碰到的,常见的建立函数关系的方法有比例线段,勾股定理,三角比,面积公式等2. 分类讨论思想这个大家碰的多了,就不多讲了,常见于动点问题,找等腰,找相似,找直角三角形之类的。
3. 转化与化归思想要练说,先练胆。
说话胆小是幼儿语言发展的障碍。
不少幼儿当众说话时显得胆怯:有的结巴重复,面红耳赤;有的声音极低,自讲自听;有的低头不语,扯衣服,扭身子。
圆锥曲线的解题技巧一、常规七大题型:(1)中点弦问题具有斜率的弦中点问题,常用设而不求法(点差法):设曲线上两点为(,)x y 11,(,)x y 22,代入方程,然后两方程相减,再应用中点关系及斜率公式(当然在这里也要注意斜率不存在的请款讨论),消去四个参数。
如:(1))0(12222>>=+b a b y a x 与直线相交于A 、B ,设弦AB中点为M(x 0,y 0),则有02020=+k by a x 。
(2))0,0(12222>>=-b a b y a x 与直线l 相交于A 、B ,设弦AB中点为M(x 0,y 0)则有02020=-k b y a x (3)y 2=2px (p>0)与直线l 相交于A 、B 设弦AB 中点为M(x 0,y 0),则有2y 0k=2p,即y 0k=p.典型例题 给定双曲线x y 2221-=。
过A (2,1)的直线与双曲线交于两点P 1 及P 2,求线段P 1P 2的中点P 的轨迹方程。
(2)焦点三角形问题椭圆或双曲线上一点P ,与两个焦点F 1、F 2构成的三角形问题,常用正、余弦定理搭桥。
典型例题 设P(x,y)为椭圆x a y b22221+=上任一点,F c 10(,)-,F c 20(,)为焦点,∠=PF F 12α,∠=PF F 21β。
(1)求证离心率βαβαsin sin )sin(++=e ;(2)求|||PF PF 1323+的最值。
(3)直线与圆锥曲线位置关系问题直线与圆锥曲线的位置关系的基本方法是解方程组,进而转化为一元二次方程后利用判别式、根与系数的关系、求根公式等来处理,应特别注意数形结合的思想,通过图形的直观性帮助分析解决问题,如果直线过椭圆的焦点,结合三大曲线的定义去解。
典型例题抛物线方程,直线与轴的交点在抛物线准线的右边。
y p x p x y t x 210=+>+=()()(1)求证:直线与抛物线总有两个不同交点(2)设直线与抛物线的交点为A 、B ,且OA ⊥OB ,求p 关于t 的函数f(t)的表达式。
(4)圆锥曲线的相关最值(范围)问题圆锥曲线中的有关最值(范围)问题,常用代数法和几何法解决。
<1>若命题的条件和结论具有明显的几何意义,一般可用图形性质来解决。
<2>若命题的条件和结论体现明确的函数关系式,则可建立目标函数(通常利用二次函数,三角函数,均值不等式)求最值。
(1),可以设法得到关于a的不等式,通过解不等式求出a的范围,即:“求范围,找不等式”。
或者将a表示为另一个变量的函数,利用求函数的值域求出a的范围;对于(2)首先要把△NAB的面积表示为一个变量的函数,然后再求它的最大值,即:“最值问题,函数思想”。
最值问题的处理思路:1、建立目标函数。
用坐标表示距离,用方程消参转化为一元二次函数的最值问题,关键是由方程求x、y的范围;2、数形结合,用化曲为直的转化思想;3、利用判别式,对于二次函数求最值,往往由条件建立二次方程,用判别式求最值;4、借助均值不等式求最值。
典型例题已知抛物线y2=2px(p>0),过M(a,0)且斜率为1的直线L与抛物线交于不同的两点A、B,|AB|≤2p(1)求a的取值范围;(2)若线段AB的垂直平分线交x轴于点N,求△NAB面积的最大值。
(5)求曲线的方程问题1.曲线的形状已知--------这类问题一般可用待定系数法解决。
典型例题已知直线L过原点,抛物线C 的顶点在原点,焦点在x轴正半轴上。
若点A(-1,0)和点B(0,8)关于L的对称点都在C上,求直线L和抛物线C的方程。
2.曲线的形状未知-----求轨迹方程典型例题已知直角坐标平面上点Q(2,Array 0)和圆C:x2+y2=1, 动点M到圆C的切线长与|MQ|的比等于常数λ(λ>0),求动点M的轨迹方程,并说明它是什么曲线。
(6)存在两点关于直线对称问题在曲线上两点关于某直线对称问题,可以按如下方式分三步解决:求两点所在的直线,求这两直线的交点,使这交点在圆锥曲线形内。
(当然也可以利用韦达定理并结合判别式来解决)典型例题 已知椭圆C 的方程x y 22431+=,试确定m 的取值范围,使得对于直线y x m =+4,椭圆C 上有不同两点关于直线对称(7)两线段垂直问题 圆锥曲线两焦半径互相垂直问题,常用k k y y x x 1212121···==-来处理或用向量的坐标运算来处理。
典型例题已知直线l 的斜率为k ,且过点P (,)-20,抛物线C y x :()241=+,直线l 与抛物线C 有两个不同的交点(如图)。
(1)求k 的取值范围;(2)直线l 的倾斜角θ为何值时,A 、B 与抛物线C 的焦点连线互相垂直。
四、解题的技巧方面:在教学中,学生普遍觉得解析几何问题的计算量较大。
事实上,如果我们能够充分利用几何图形、韦达定理、曲线系方程,以及运用“设而不求”的策略,往往能够减少计算量。
下面举例说明:(1)充分利用几何图形解析几何的研究对象就是几何图形及其性质,所以在处理解析几何问题时,除了运用代数方程外,充分挖掘几何条件,并结合平面几何知识,这往往能减少计算量。
典型例题 设直线340x y m ++=与圆x y x y 2220++-=相交于P 、Q 两点,O 为坐标原点,若OP OQ ⊥,求m 的值。
(2)充分利用韦达定理及“设而不求”的策略我们经常设出弦的端点坐标而不求它,而是结合韦达定理求解,这种方法在有关斜率、中点等问题中常常用到。
典型例题 已知中心在原点O ,焦点在y 轴上的椭圆与直线y x =+1相交于P 、Q 两点,且OP OQ ⊥,||PQ =102,求此椭圆方程。
(3)充分利用曲线系方程利用曲线系方程可以避免求曲线的交点,因此也可以减少计算。
典型例题 求经过两已知圆C x y x y 122420:+-+=和C x y y 22224:+--=0的交点,且圆心在直线l :2410x y +-=上的圆的方程。
(4)充分利用椭圆的参数方程椭圆的参数方程涉及到正、余弦,利用正、余弦的有界性,可以解决相关的求最值的问题.这也是我们常说的三角代换法。
典型例题 P 为椭圆22221x y a b +=上一动点,A 为长轴的右端点,B 为短轴的上端点,求四边形OAPB 面积的最大值及此时点P 的坐标。
(5)线段长的几种简便计算方法①充分利用现成结果,减少运算过程一般地,求直线与圆锥曲线相交的弦AB 长的方法是:把直线方程y kx b =+代入圆锥曲线方程中,得到型如ax bx c 20++=的方程,方程的两根设为x A ,x B ,判别式为△,则||||AB k x x A B =+-=12·||12a k △·+,若直接用结论,能减少配方、开方等运算过程。
例求直线x y -+=10被椭圆x y 22416+=所截得的线段AB 的长。
②结合图形的特殊位置关系,减少运算在求过圆锥曲线焦点的弦长时,由于圆锥曲线的定义都涉及焦点,结合图形运用圆锥曲线的定义,可回避复杂运算。
例 F 1、F 2是椭圆x y 222591+=的两个焦点,AB 是经过F 1的弦,若||AB =8,求值||||22B F A F +③利用圆锥曲线的定义,把到焦点的距离转化为到准线的距离例 点A (3,2)为定点,点F 是抛物线y x 24=的焦点,点P 在抛物线y 2=4x 上移动,若||||PA PF +取得最小值,求点P 的坐标。
圆锥曲线解题方法技巧归纳第一、知识储备:1. 直线方程的形式(1)直线方程的形式有五件:点斜式、两点式、斜截式、截距式、一般式。
(2)与直线相关的重要内容①倾斜角与斜率tan ,[0,)k ααπ=∈②点到直线的距离d =③夹角公式:2121tan 1k k k k α-=+(3)弦长公式直线y kx b =+上两点1122(,),(,)A x y B x y 间的距离:12AB x =-= 或12AB y y =-(4)两条直线的位置关系①1212l l k k ⊥⇔=-1 ②212121//b b k k l l ≠=⇔且2、圆锥曲线方程及性质(1)、椭圆的方程的形式有几种?(三种形式)标准方程:221(0,0)x y m n m n m n +=>>≠且2a =参数方程:cos ,sin x a y b θθ==(2)、双曲线的方程的形式有两种标准方程:221(0)x y m n m n+=⋅<距离式方程:2a =(3)、三种圆锥曲线的通径你记得吗?(4)、圆锥曲线的定义你记清楚了吗?如:已知21F F 、是椭圆13422=+y x 的两个焦点,平面内一个动点M 满足221=-MF MF 则动点M 的轨迹是( )A 、双曲线;B 、双曲线的一支;C 、两条射线;D 、一条射线(5)、焦点三角形面积公式:122tan 2F PF P b θ∆=在椭圆上时,S(其中2221212121212||||4,cos ,||||cos ||||PF PF c F PF PF PF PF PF PF PF θθθ+-∠==•=⋅) (6)、记住焦半径公式:(1)00;x a ex a ey ±±椭圆焦点在轴上时为焦点在y 轴上时为,可简记为“左加右减,上加下减”。
(2)0||x e x a ±双曲线焦点在轴上时为(3)11||,||22p p x x y ++抛物线焦点在轴上时为焦点在y 轴上时为 (6)、椭圆和双曲线的基本量三角形你清楚吗?第二、方法储备1、点差法(中点弦问题)设()11,y x A 、()22,y x B ,()b a M ,为椭圆13422=+y x 的弦AB 中点则有 1342121=+y x ,1342222=+y x ;两式相减得()()03422212221=-+-y y x x⇒()()()()3421212121y y y y x x x x +--=+-⇒AB k =ba 43- 2、联立消元法:你会解直线与圆锥曲线的位置关系一类的问题吗?经典套路是什么?如果有两个参数怎么办? 设直线的方程,并且与曲线的方程联立,消去一个未知数,得到一个二次方程,使用判别式0∆≥,以及根与系数的关系,代入弦长公式,设曲线上的两点1122(,),(,)A x y B x y ,将这两点代入曲线方程得到○1○2两个式子,然后○1-○2,整体消元······,若有两个字母未知数,则要找到它们的联系,消去一个,比如直线过焦点,则可以利用三点A 、B 、F 共线解决之。