通信原理课后练习答案经典.ppt
- 格式:ppt
- 大小:2.21 MB
- 文档页数:64
通信原理课后答案 Document serial number【KKGB-LBS98YT-BS8CB-BSUT-BST108】第一章习题习题 在英文字母中E 出现的概率最大,等于,试求其信息量。
解:E 的信息量:()()b 25.3105.0log E log E 1log 222E =-=-==P P I 习题 某信息源由A ,B ,C ,D 四个符号组成,设每个符号独立出现,其出现的概率分别为1/4,1/4,3/16,5/16。
试求该信息源中每个符号的信息量。
解:习题 某信息源由A ,B ,C ,D 四个符号组成,这些符号分别用二进制码组00,01,10,11表示。
若每个二进制码元用宽度为5ms 的脉冲传输,试分别求出在下列条件下的平均信息速率。
(1) 这四个符号等概率出现; (2)这四个符号出现概率如习题所示。
解:(1)一个字母对应两个二进制脉冲,属于四进制符号,故一个字母的持续时间为2×5ms。
传送字母的符号速率为等概时的平均信息速率为 (2)平均信息量为则平均信息速率为 s b 7.197977.1100B b =⨯==H R R习题 试问上题中的码元速率是多少解:311200 Bd 5*10B B R T -=== 习题 设一个信息源由64个不同的符号组成,其中16个符号的出现概率均为1/32,其余48个符号出现的概率为1/96,若此信息源每秒发出1000个独立的符号,试求该信息源的平均信息速率。
解:该信息源的熵为 =比特/符号因此,该信息源的平均信息速率 1000*5.795790 b/s b R mH === 。
习题 设一个信息源输出四进制等概率信号,其码元宽度为125 us 。
试求码元速率和信息速率。
解:B 6B 118000 Bd 125*10R T -=== 等概时,s kb M R R B b /164log *8000log 22=== 习题 设一台接收机输入电路的等效电阻为600欧姆,输入电路的带宽为6 MHZ ,环境温度为23摄氏度,试求该电路产生的热噪声电压的有效值。
《通信原理》习题参考答案第一章1-1. 设英文字母E 出现的概率为0.105,x 出现的概率为0.002。
试求E 及x 的信息量。
解: )(25.3105.01)(log 2bit E I ==)(97.8002.01)(log 2bit X I == 题解:这里用的是信息量的定义公式)(1log x P I a =注:1、a 的取值:a =2时,信息量的单位为bita =e 时,信息量的单位为nita =10时,信息量的单位为哈特莱2、在一般的情况下,信息量都用bit 为单位,所以a =21-2. 某信息源的符号集由A ,B ,C ,D 和E 组成,设每一符号独立出现,其出现概率分别为1/4,1/8,1/8,3/16和5/16。
试求该信息源符号的平均信息量。
解:方法一:直接代入信源熵公式:)()()()()(E H D H C H B H A H H ++++=516165316163881881441log log log log log 22222++++=524.0453.083835.0++++= 符号)/(227.2bit =方法二:先求总的信息量I)()()()()(E I D I C I B I A I I ++++= 516316884log log log log log 22222++++= 678.1415.2332++++= )(093.12bit =所以平均信息量为:I/5=12.093/5=2.419 bit/符号题解:1、方法一中直接采用信源熵的形式求出,这种方法属于数理统计的方法求得平均值,得出结果的精度比较高,建议采用这种方法去计算2、方法二种采用先求总的信息量,在取平均值的方法求得,属于算术平均法求平均值,得出结果比较粗糙,精度不高,所以尽量不采取这种方法计算注:做题时请注意区分平均信息量和信息量的单位:平均信息量单位是bit/符号,表示平均每个符号所含的信息量,而信息量的单位是bit ,表示整个信息所含的信息量。
第一章习题习题1.1 在英文字母中E 出现的概率最大,等于0.105,试求其信息量。
解:E 的信息量:()()b 25.3105.0log E log E 1log 222E =-=-==P P I习题1.2 某信息源由A ,B ,C ,D 四个符号组成,设每个符号独立出现,其出现的概率分别为1/4,1/4,3/16,5/16。
试求该信息源中每个符号的信息量。
解:b A P A P I A 241log )(log )(1log 222=-=-==b I B 415.2163log 2=-= b I C 415.2163log 2=-= b I D 678.1165log 2=-=习题1.3 某信息源由A ,B ,C ,D 四个符号组成,这些符号分别用二进制码组00,01,10,11表示。
若每个二进制码元用宽度为5ms 的脉冲传输,试分别求出在下列条件下的平均信息速率。
(1) 这四个符号等概率出现; (2)这四个符号出现概率如习题1.2所示。
解:(1)一个字母对应两个二进制脉冲,属于四进制符号,故一个字母的持续时间为2×5ms 。
传送字母的符号速率为Bd 100105213B =⨯⨯=-R等概时的平均信息速率为s b 2004log log 2B 2B b ===R M R R(2)平均信息量为比特977.1516log 165316log 1634log 414log 412222=+++=H则平均信息速率为 s b 7.197977.1100B b =⨯==H R R习题1.4 试问上题中的码元速率是多少? 解:311200 Bd 5*10B B R T -===习题1.5 设一个信息源由64个不同的符号组成,其中16个符号的出现概率均为1/32,其余48个符号出现的概率为1/96,若此信息源每秒发出1000个独立的符号,试求该信息源的平均信息速率。
解:该信息源的熵为96log 961*4832log 321*16)(log )()(log )()(22264121+=-=-=∑∑==i i i i Mi i x P x P x P x P X H=5.79比特/符号因此,该信息源的平均信息速率 1000*5.795790 b/s b R mH === 。
++++++++++++++++++++++++++第一章习题答案1-1解:1-2解:1-3解:1-4 解:1-5 解:1-6 解:1-7 解:1-8 解:第二章习题答案2-1 解:群延迟特性曲线略2-2 解:2-3 解:2-4 解:二径传播时选择性衰落特性图略。
2-5 解:2-6 解:2-7 解:2-8 解:第三章习题答案3-4 解:3-5 解:3-6 解:3-7 解:3-8 解:3-9 解:3-10 解:3-11 解:第四章习题答案4-2 解:4-3 解:4-4 解:4-6 解:4-8 解:4-9 解:4-10 解:4-11 解:4-12 解:4-13 解:4-15 解:4-16 解:4-17 解:第五章习题答案5-1 解:,,,(1)波形(2)5-2 解:,,(1)(2)相干接收时5-3 解:,,(1)相干解调时(2)非相干解调时5-4 解:,,,(1)最佳门限:而:所以:(2)包检:5-5 解:系统,,5-6 解:(1)信号与信号的区别与联系:一路可视为两路(2)解调系统与解调系统的区别与联系:一路信号的解调,可利用分路为两路信号,而后可采用解调信号的相干或包检法解调,再进行比较判决。
前提:信号可分路为两路信号谱不重叠。
5-7 解:系统,,,(1)(2)5-8 解:系统,,,,(1)(2)所以,相干解调时:非相干解调时:5-9 解:5-10 解:(1)信号时1 0 0 1 0(2)1 0 1 0 0,5-12 解:时:相干解调码变换:差分相干解调:,,(1):a:相干解调时解得:b:非相干解调时解得:(2):(同上)a:相干解调时,b:非相干解调时,(3)相干解调时即在保证同等误码率条件下,所需输入信号功率为时得1/4,即(4)a:差分相干解调时即在保证同等误码率条件下,所需输入信号功率为时得1/4,即b:相干解调的码变换后解得:5-16 解:(A方式)0 1 1 0 0 1 1 1 0 1 0 0 ,5-17 解:(1)时所以(2)时所以5-18 解:5-19 解:,::一个码元持续时间,含:个周波个周波。
《通信原理》习题第二章3第二章习题习题2.1 设随机过程X (t )可以表示成:()2cos(2), X t t t πθ=+-∞<<∞式中,θ是一个离散随机变量,它具有如下概率分布:P (θ=0)=0.5,P (θ=π/2)=0.5试求E [X (t )]和X R (0,1)。
解:E [X (t )]=P (θ=0)2cos(2)t π+P (θ=/2)2cos(2)=cos(2)sin 22t t t ππππ+-cos t ω习题2.2 设一个随机过程X (t )可以表示成:()2cos(2), X t t t πθ=+-∞<<∞判断它是功率信号还是能量信号?并求出其功率谱密度或能量谱密度。
解:为功率信号。
[]/2/2/2/21()lim ()()1lim 2cos(2)*2cos 2()T X T T T T T R X t X t dtTt t dtTττπθπτθ→∞-→∞-=+=+++⎰⎰222cos(2)j t j t e e πππτ-==+2222()()()(1)(1)j f j t j t j f X P f R e d e e e d f f πτπππττττδδ∞-∞---∞-∞==+=-++⎰⎰习题2.3 设有一信号可表示为:4exp() ,t 0(){0, t<0t X t -≥=试问它是功率信号还是能量信号?并求出其功率谱密度或能量谱密度。
解:它是能量信号。
X (t )的傅立叶变换为:(1)004()()441j t t j t j tX x t edt e e dt e dt j ωωωωω+∞-+∞--+∞-+-∞====+⎰⎰⎰则能量谱密度 G(f)=2()X f =222416114j f ωπ=++习题2.4 X (t )=12cos 2sin 2x t x t ππ-,它是一个随机过程,其中1x 和2x 是相互统计独立的高斯随机变量,数学期望均为0,方差均为2σ。