陕西师范大学物理化学精品课程
- 格式:pdf
- 大小:168.76 KB
- 文档页数:7
复习试题一1.有一系统在某一过程中,吸热30J ,对外做功50J ,则内能变化量为 ;2.已知反应C(s)+O 2(g)=CO 2(g) 的标准平衡常数为K 1;CO(g)+1/2O 2(g)=CO 2(g)的标准平衡常数为K 2; 2C(s)+O 2(g)=2CO(g) 的标准平衡常数为K 3;则K 3与K 1、K 2的关系为 _____________ ; 3.某理想气体在20℃、100kPa 下的摩尔体积为 ;4.焓、吉布斯自由能的定义式分别为 、;1.下列各种条件下,CO 2在水中溶解度最大的是( )A 高压低温B 低压低温C 高压高温D 低压高温2.在 400K ,液体A 的蒸气压为4×104 Pa ,液体B 的蒸气压为6×104 Pa ,两者组成理想液态混合物。
当气-液平衡时,在溶液中A 的摩尔分数为0.6,则在气相中B 的摩尔分数应为( ) A 0.31 B 0.40 C 0.50 D 0.603.在0.1 kg 水中含 0.0045 kg 某纯非电解质的溶液,于272.685 K 时结冰,水的凝固点降低常数 K f 为1.86 K.mol -1.kg -1,则该溶质的摩尔质量大约为( ) A 0.135 kg/mol B 0.172 kg/molC 0.090 kg/molD 0.180 kg/mol4. PCl 5的分解反应是PCl 5(g )=PCl 3(g) + Cl 2(g),在473 K 达到平衡时, PCl 5(g)有48.5%分解,在573 K 达到平衡时,有97%分解,则此反应为( )A 放热反应B 吸热反应C 即不放热也不吸热D 这两个温度下的平衡常数相等一、填空题(共4小题,将适当的内容填入题中划线处。
每空3分,满分15分)二、选择题( 共4题,将判断结果填入题后的括号中。
每题3分,满分12分)( )1. 某一化学反应的标准摩尔吉布斯函数△r G m $> 0,这就说明该反应不能自发进行; ( )2. 在通常情况下,对于二组分系统平衡共存时最多相数为3; ( )3. 米和面混合的十分均匀,再也无法彼此分开,则该系统有一个相; ( )4. 水的三相点和水的冰点不是一回事;( )5. 标准平衡常数改变了,平衡一定会移动。
物理化学实验课程中学生综合能力的培养薛敏;杨菊香;刘振【摘要】物理化学实验课是化学相关专业的一门重要的基础课程.探讨了如何在物理化学实验教学中培养学生的综合能力.结合具体的教学过程,重点从培养学生的动手能力、数据处理能力以及创新能力等几个方面介绍了一些方法和经验.实践证明,采用这些方法实施教学,大大的提高了学生的学习兴趣,培养了学生各方面的综合能力.【期刊名称】《广州化工》【年(卷),期】2013(041)012【总页数】2页(P222-223)【关键词】物理化学实验;综合能力;创新思维【作者】薛敏;杨菊香;刘振【作者单位】西安文理学院化学与化学工程学院,陕西西安710065;西安文理学院化学与化学工程学院,陕西西安710065;西安文理学院化学与化学工程学院,陕西西安710065【正文语种】中文【中图分类】G642.423物理化学实验是化学化工及其相关专业的一门理论性和实践性都很强的基础课程,是化学实验学科的重要分支,它综合了化学领域中各分支学科所需要的基本研究技术和方法。
学生在上完无机化学实验、分析化学实验和有机化学实验课程后的最后一门基础实验课就是物理化学实验。
物理化学实验课程的主要目的是巩固并加深对物理化学理论课所学知识的理解;掌握物理化学实验的基本方法和物理化学实验仪器的使用;培养学生动手能力、思维能力和分析实验结果的能力等。
但是,如何才能在物理化学实验课程的教学中,真正实现以上的目的,并且能够培养出高素质、创新性、能够适应现代社会激烈竞争的综合性人才,是所有教师都面临的重要课题[1-3]。
为了锻炼学生的各种综合能力,为了培养出高素质的综合性人才,使学生在走上工作岗位或继续深造时能够具有更强的竞争力,我们在物理化学实验教学中做出了一定的尝试,具体阐述如下。
1 注重学生动手能力的培养物理化学实验课要求学生在深入理解物理化学相关理论知识的基础上,还必须具有很强的动手能力和使用仪器的能力。
通过物理化学实验课程,培养学生的动手能力,了解各种仪器的构造、功能和使用,使学生在毕业后能更顺利的完成工作或科研任务,在激烈的竞争中立于不败之地。
建设高水平教学团队不断提升课程教学质量摘要:陕西师范大学物理化学教学团队针对传统物理化学课程在创新性人才培养需求的局限性,构建以物理化学基础课程群和拓展课程群为特色的现代物理化学教学体系,提高学生对物理化学及相关课程的关联性认识和物理化学理论与其实际应用相结合的能力;以物理化学为核心整合相关课程师资队伍,强化教学团队整体实力;以改进传统物理化学实验与创建学生深入教师科研的创新性实验教学模式相结合,提升学生综合素养;以扩大学术交流,提升教学团队水平和学术影响力。
上述教学团队建设实践对于教学改革具有积极的借鉴意义。
关键词:物理化学;教学团队;教学改革2007年初,教育部提出“加强本科教学团队建设,重点遴选和建设一批教学质量高、结构合理的教学团队,建立有效的团队合作机制,推动教学内容与教学方法的改革和研究,促进教学研讨和教学经验交流,开发教学资源,推进教学工作的老中青相结合,发扬传、帮、带的作用,加强青年教师培养”。
这一举措对高校教学质量提高起到了特别积极的作用。
陕西师范大学物理化学(含结构化学)教学团队坚持“以学科核心凝聚团队力量,以人才培养新需求开拓创新”的团队建设与发展理念,经过多年努力,教学团队建设取得了显著成绩。
该教学团队开设的物理化学课程先后被评为陕西省精品课程、国家精品课程。
2008年物理化学(含结构化学)教学团队获国家级教学团队称号。
2009年结构化学被评为省级精品课程。
教学团队建设一方面促进了教学水平的提高,另一方面也使教学团队的学术影响力得到显著提升。
一、适应创新人才培养需求,构建新的教学体系学生的创新能力培养得到社会广泛关注,然而,如何在教学中实施创新能力的培养仍然是当今高等教育的主题嘲。
我们认为,创新人才就是具有创新素质的人。
创新素质是在人的基本素质基础上形成的一种能够用灵活多样的方式去创造新事物、解决新问题的高级的、复杂的、综合的能力素质。
创新人才应达到以下基本要求:(1)扎实的专业基础知识和灵活运用专业知识的能力。
第七章电解质溶液本章内容:介绍电化学的基本概念和法拉第定律、离子的电迁移数、测定迁移数的常用方法;电导、电导率、摩尔电导率的意义;离子独立移动定律及电导测定的一些应用,强电解质溶液理论(主要是离子氛的概念),并会使用德拜-休克尔极限公式。
第一节电化学的基本概念和法拉第定律一、基本概念1. 导体:能导电的物质称为导电体简称导体(1) 第一类导体: 电子导体(如金属、石墨及某些金属的化合物等)。
导电机理: 靠自由电子的定向运动而导电,在导电过程中本身可能发热,但不发生化学变化。
特性: 随温度的升高,由于质点的热运动加剧,阻碍了自由电子的定向运动,因而电阻增大,导电能力降低。
(2) 第二类导体: 离子导体(如电解质溶液或熔融的电解质等)。
导电机理: 靠离子的定向运动而导电,即依赖正、负两种离子各向反方向迁移以运输电量,当插入电解质溶液中的两电极间存在电位差时,正离子移向阴极,负离子移向阳极,同时在电极上有化学变化发生。
特性: 温度升高时,由于溶液的粘度降低,离子运动速度加快,在水溶液中离子水化作用减弱等原因,导电能力增强。
2. 电池: 由第一类导体联结两个电极并使电流在两极间通过,构成外电路的装置叫做电池。
3.电解池: 在外电路中并联一个有一定电压的外加电源,则将有电流从外加电源流入电池,迫使电池中发生化学变化,这种将电能转变为化学能的电池称为电解池4.原电池: 电池能自发地在两极上发生化学反应,并产生电流,此时化学能转化为电能,则该电池就称为原电池。
5.正极和负极: 电势较高的极称为正极,电势较低的极称为负极。
电流总是由正极流向负极,电子的流向与之相反。
6.阳极和阴极: 发生氧化反应的电极称为阳极,发生还原反应的电极称为阴极。
两种电化学装置的正、负极和阴、阳极之间的对应关系: 在电解池中,与外电源负极相接的电极接受电子,电势较低,发生还原反应,所以该电极是负极也是阴极;与外加电源正极相接的电极,电势较高,发生氧化反应,所以该电极是正极也是阳极。
陕西师范大学物理化学精品课程第十二章 界面现象本章内容:介绍表面吉布斯自由能和表面张力的概念;固体表面吸附的兰缪尔公式和BET 公式;明确弯曲表面附加压力产生的原因,介绍杨-拉普拉斯公式和开尔文公式;了解一些常见的表面现象和表面活性剂的作用。
第一节 表面吉布斯自由能和表面张力一、表面吉布斯自由能和表面张力由于表面层分子的状咬与本体中不同,因此如果要把一个分从内部移到界面(或者说增大表面积)时,就必须克服体系内部分子这间的吸引力而对体系作功。
在温度、压力和组成恒下时,可逆地使表面积增加d A 所需要对体系做的功,叫做表面功,可以表示为A W d f γ=δ ( 12–1 )式中是比例常数,它在数值上等地当T、p 及组成恒定的条件下,增加单位表面积时所必体系做的可逆非膨胀功。
γ由于,所以上式又可以表示为p T,G W d f =δ A G p T,d d γ= 或 p T,AG )(∂∂=γ ( 12–2 ) 可以看出,的物理意义是:在定温不定定压条件下,可逆地增加单位表面积引起体系吉布斯自由能的增量。
单位为。
γ2m J −⋅γ称为表面吉布斯自由能或比表面能。
从另一个角度来考虑,如果观察到表面上处处存在着一种张力,称之为表面张力(surface tension )。
它作用在表面的边界线上,垂直于边界线向着表面的中心并与表面相切,或者是作用在液体表面上任一条线的两侧,垂直于该线,沿着液面拉向两侧。
例如,把金属丝弯成U 形框架,放在肥皂膜,由于表面张力的作用,会肥可滑动的金属丝拉上去,一直到框架顶部,如在金属丝下面吊一重物W ,如果与可滑动金属丝的质量W 之和(即W +W)与向上的表面张力平衡时,金属丝就保持不同志滑动。
22W 112在图12.2中,虽然肥皂膜很薄,但和分子的大小相比,还具有一定的厚度,可以认为肥皂膜有一定的体积,在金属丝框架的正反两面具有两个表面,所以表面张力在总长度为的边界上作用,由于表面上张力的指垂直地作用于单位长度的表面边沿,并指向表面中心的力,所以肥皂膜将金属丝向上拉的力(即等于向下的重力(+)g)为2γ1W 2W 12= 2= ( + ) F l W W g γ这里称为表(界)面张力,其单位为,这是从另一角度来理解的(表面自由能的单位是,由于,所以的单位也可表示为,N 为牛顿,是力的单位,所以表面自由能也可以看作是垂直用于单位长度相界面上的力即表面张力)。
Pure Appl. Chem., Vol. 72, No. 7, pp. 1357–1363, 2000.© 2000 IUP AC1357*Pure Appl. Chem. V ol. 72, No. 7, 2000. A special topic issue on green chemistry.Frontiers in green chemistry utilizing carbondioxide for polymer synthesis and applications*Jennifer L. Y oung and Joseph M. DeSimoneDepartment of Chemistry, Venable and Kenan Laboratories, University of NorthCarolina, Chapel Hill, NC 27599-3290 USAAbstract : In the last ten years, there has been incredible growth in research involving the use of carbon dioxide as an environmentally benign solvent. This article will highlight polymer synthesis, characterization, and applications in CO 2 and place this research in the context of both green chemistry and the latest developments in CO 2 technology.INTRODUCTIONIn recent years, the use of liquid and supercritical CO 2 as a green, environmentally benign solvent for chemical reactions and polymerizations has become a widespread, growing reality, both in academia and in industry [1–5]. CO 2 is a nontoxic, nonflammable, and inexpensive solvent. Although CO 2 is a “greenhouse gas”, CO 2 can be acquired from natural reservoirs or recovered as a by-product of industrial chemical processes, so no new production of CO 2 is necessary and there will be no additional contribution to the greenhouse gases. While CO 2 is a gas at ambient conditions, its liquid and supercritical states are easily attained by compression and heat. The critical conditions of 31.1 °C and 73.8 bar are relatively low. Liquid CO 2 is a compressible fluid, while supercritical CO 2 has relatively high liquid-like densities and low gas-like viscosities. Both liquid and supercritical CO 2 have a tuneable density (and dielectric constant) that increases with increasing pressure or decreasing temperature [6]. The solvency of supercritical CO 2 is often compared to that of fluorocarbon solvents. Many small molecules are soluble in CO 2 [7], including high vapor pressure solvents like methanol, acetone, and tetrahydrofuran, many vinyl monomers, and azo- and peroxy-initiators. Water and ionic compounds are insoluble [8,9], as are most polymers. Only two classes of polymers are soluble in CO 2 at relatively mild conditions (T < 100 °C, P < 350 bar), amorphous or low-melting fluoropolymers and silicone-based polymers[10]. Herein, polymer synthesis, characterization, and applications in CO 2 will be described, highlighting the environmental benefits of using CO 2.POL YMER SYNTHESISIn CO 2, few polymers, typically amorphous fluoropolymers, can be synthesized by a homogeneous,solution polymerization. Many insoluble polymers can be synthesized by a heterogeneous chain-growth process, such as precipitation, emulsion, dispersion, or suspension. Due to the solubility of many vinyl monomers and free-radical initiators in CO 2 and the ability to design appropriate CO 2-soluble polymeric surfactants, dispersion polymerization is a common heterogeneous polymerization method in CO 2. Step-growth polymerizations can also be conducted in CO 2 with advantages over other processes. Most of the polymers synthesized in CO 2 to date can be classified into three categories: fluoropolymers, dispersion polymers, and step-growth polymers.陕西师范大学物理化学精品课程1358J. L. YOUNG AND J. M. DESIMONE© 2000 IUP AC, Pure and Applied Chemistry 72, 1357–1363FluoropolymersFluoropolymer synthesis in CO 2, which is the subject of a recent chapter review [11], will now be discussed in the context of green chemistry. The synthesis of fluoropolymers in CO 2 is environmentally advantageous since these polymers are typically prepared in chlorofluorocarbons (CFCs) and other fluorinated solvents as well as in water. The association of CFCs with ozone layer destruction and the environmentally harmful nature and expense of fluorinated solvents necessitate the search for replacement solvents. Many fluoropolymerizations cannot be conducted in hydrocarbon solvents because of the detrimental side reactions arising from radical abstraction of hydrogen atoms from the solvent. Since CO 2 has no hydrogens to abstract, there is no chain transfer to CO 2. Amorphous fluoropolymers, such as highly fluorinated (meth)acrylates and perfluoropolyethers, are highly soluble in CO 2 and have been synthesized by solution polymerizations in supercritical CO 2 [12,13]. Low-molecular-weight oligomers of poly(tetrafluoroethylene) (PTFE) and poly(1,1-difluoroethylene) (PVDF), which remain soluble in CO 2 below a limiting molecular weight, have been synthesized by telomerizations in CO 2 [14,15]. Semi-crystalline, high-melting-temperature fluoropolymers, such as PTFE and PVDF, are insoluble in CO 2due to their crystallinity and are polymerized by various heterogeneous methods in CO 2 [16–18].Fluorinated acrylate polymers have been synthesized by homogeneous, solution polymerizations in CO 2 [12]. Using azobis(isobutyronitrile) (AIBN) as the thermal free-radical initiator, 1,1-dihydroperfluorooctyl acrylate (FOA) was polymerized at 60 °C, 207 bar. The high-molecular-weight polymer, PFOA, remained soluble in supercritical CO 2 and was identical to that polymerized in a CFC.It was also shown that statistical copolymers containing FOA and either methyl methacrylate, styrene,butyl acrylate, or ethylene, could be polymerized under homogeneous, solution polymerization condi-tions in CO 2. PFOA and CO 2-soluble copolymers containing PFOA are useful polymeric surfactants for applications including dispersion polymerizations and extractions, as will be shown later in this review.Perfluoropolyethers, which find applications as high-performance lubricants and heat-transfer fluids, constitute another class of fluoropolymers that have been synthesized in CO 2 [13]. The photooxi-dation of hexafluoropropylene (HFP) was performed in liquid CO 2 at –40 °C to yield perfluoropolyethers soluble in CO 2. This study showed that CO 2 is a viable solvent replacement for the dichlorodifluo-romethane currently used in some commercial fluoroolefin photooxidations.Tetrafluoroethylene (TFE) polymerizations in CO 2 are sensible because this dangerous, poten-tially explosive monomer is safely stored and handled as a pseudo-azeotrope with CO 2 [19,20]. Copo-lymerizations of TFE with perfluoro(propyl vinyl ether) (PPVE) or HFP in CO 2 have produced poly-mers with levels of comonomer incorporation similar to commercial polymers [16]. The TFE-PPVE copolymers also contained an unprecedented 0–3 acid endgroups per 106 carbon atoms, which are comparable to copolymers synthesized in CFCs and treated with a harsh fluorination process. TFE was also polymerized to high molecular weights in a biphasic mixture of CO 2 and water by heterogeneous methods similar to the industrial suspension and dispersion processes [17]. Using a persulfate initiator in the absence of a surfactant, aggregates with diameters of 0.5–3 m m were produced and resemble the granular PTFE formed commercially by suspension polymerization in water. In the presence of a CO 2-soluble surfactant, particles with diameters of 100–200 nm were produced and are similar to those made commercially by conventional aqueous dispersion polymerization.In the first continuous polymerizations in CO 2 reported recently [18], PVDF and poly(acrylic acid) were produced by continuous precipitation polymerization. A continuous polymerization process is much more commercially and environmentally viable than a batch polymerization, producing a larger amount of polymer in a given amount of time. The PVDF was formed at 75 °C, 275 bar and collected in a filter after polymerization residence times of between 15 and 40 min in the continuous stirred tank reactor.陕西师范大学物理化学精品课程Green chemistry utilizing carbon dioxide for polymers1359© 2000 IUP AC, Pure and Applied Chemistry 72, 1357–1363Dispersion polymers CO 2 is well suited as a reaction medium for dispersion polymerizations because many vinyl monomers and polymerization initiators are soluble in CO 2 while the polymers formed are insoluble [1,21].Surfactants for steric stabilization of the colloidal polymer particles in CO 2 must be soluble and must adsorb or chemically graft to the polymer particles and can consist of homopolymers, block, graft, and random copolymers, and reactive macromonomers. Polymer latexes produced in CO 2 eliminate volatile organic compound (VOC) emissions and can significantly reduce the energy-intensive drying process since CO 2 has a heat of vaporization which is low in the liquid state and zero in the supercritical state.Furthermore, polymer can be shipped dry as 100% solids and later be redispersed to save energy and money in shipping rather than shipping a heavy water latex.Initial studies illustrated the dispersion polymerization of methyl methacrylate (MMA) using PFOA as the stabilizer [22,23]. The next study of MMA dispersion polymerizations focused on the use of another class of surfactants, based on poly(dimethyl siloxane) (PDMS), which are less expensive than fluoropolymer-based surfactants [24]. Initial attempts of styrene dispersion polymerizations in CO 2 with PFOA and PDMS homopolymer stabilizers gave low yields and latex instability, but the block copolymers PS-b -PFOA and PS-b -PDMS produced submicron-sized PS particles [25,26]. Block co-polymer surfactants containing poly(vinyl acetate) (PV Ac), PV Ac-b -PDMS and PV Ac-b -PFOA, were effective stabilizers for dispersion polymerizations of vinyl acetate and copolymerizations of vinyl ac-etate and ethylene [27]. These dispersion polymerizations are summarized more extensively in a recent review with other examples [1].Recently, PFOA and its methacrylate analog PFOMA were found to be effective stabilizers for PS at higher CO 2 pressures (370 bar) [28] while PFOA was ineffective at lower pressures of 204 bar [25].Random copolymers, PS-co -PFOMA and PS-co -TMSOSPMA (3-[tris(trimethylsilyloxy)silyl]propyl methacrylate), are also effective stabilizers, producing micron-sized PS particles [29]. Such random copolymer surfactants, which can be prepared by a free-radical polymerization, are easier to synthesize than block copolymer surfactants, which must be prepared by “controlled” radical polymerization or living anionic polymerization. Recently, several other monomers have been polymerized by dispersion polymerizations, including 1-vinyl-2-pyrrolidone [30], acrylonitrile [31], hydroxyethyl methacrylate[32], and glycidyl methacrylate [33]. These examples extend the dispersion polymerizations into water-soluble, polar polymers and functionalized polymers.A new concept for the preparation of water-dispersible polymer particles in CO 2 has been devel-oped by Johnston [34]. PMMA was synthesized in CO 2 using an “ambidextrous” surfactant. The surfac-tant contains a water-soluble polymer block that anchors to the particle in CO 2 but becomes the electro-static stabilizer in water and a PDMS block that is the steric stabilizer in CO 2 but collapses and anchors to the particle in water. The PDMS-b -poly(methacrylic acid) surfactant was less effective during the dispersion polymerization of MMA in CO 2, but up to 10 wt% of the PMMA particles formed could be redispersed in water at pH 8 or 11. The other surfactant, PDMS-g -poly(pyrrolidonecarboxylic acid) was more effective during the dispersion polymerization, but the PMMA particles formed could not be redispersed in water.A recent report demonstrates the synthesis of highly cross-linked polymer particles in supercritical CO 2 [35]. Even in the absence of a stabilizer, the polymerization of divinylbenzene and ethylvinylbenzene produced polymer particles 1–5 m m in diameter. Addition of a block copolymer containing PMMA and a fluorinated polymethacrylate produced submicron-sized, monodisperse particles. Two other cross-linking monomers, ethylene glycol dimethacrylate (EGDM) and trimethylolpropane trimethacrylate (TRM) formed agglomerates of particles when polymerized in the absence of a stabilizer. At higher EGDM and TRM monomer concentrations (40–60%), continuous macroporous polymer monoliths were produced and pore diameters could be varied from 7880 to 20 nm by varying the monomer con-centration and CO 2 pressure [36].陕西师范大学物理化学精品课程1360J. L. YOUNG AND J. M. DESIMONE© 2000 IUP AC, Pure and Applied Chemistry 72, 1357–1363The chain-growth polymerizations discussed so far in this paper have been free-radical polymer-izations, typically initiated by AIBN. Using “controlled” free-radical polymerization techniques, such as atom transfer radical polymerization (A TRP), it is possible to obtain polymer chains with a very narrow molecular weight distribution and to synthesize block copolymers. Using Cu(0), CuCl, a functionalized bipyridine ligand, and an alkyl halide initiator, the block copolymers containing PMMA or PDMAEMA (DMAEMA = 2-(dimethylamino)ethyl methacrylate) were synthesized in CO 2 [37].Also in this report the dispersion polymerization in CO 2 of MMA with PFOA as the stabilizer was conducted by A TRP . The resulting PMMA had a relatively narrow molecular weight distribution (M w /M n = 1.4) in comparison to the same dispersion polymerization initiated by AIBN (M w /M n = 2-3) [23].Step-growth polymersThe recent advances in step-growth polymerizations in CO 2 have focused on poly(bisphenol A carbonate).One of the two primary industrial methods for polycarbonate synthesis uses methylene chloride, which is environmentally unfriendly, and phosgene, which is highly toxic. The other method, melt-phase polymerization, uses no solvent, but is limited by the high polymer melt viscosities and the high temperatures necessary for polymerization and processing. The presence of CO 2 in a melt polymerization plasticizes the polymer and reduces the viscosity, so the condensate can be removed more easily and higher molecular weight polymer can be achieved. The condensate, phenol, is soluble in sc CO 2 and can be efficiently extracted from the polymer by supercritical fluid extraction. Low-molecular-weight polycarbonate was shown to swell up to 55% at 235 °C, 350 bar [38]. Also, in this study, bisphenol A and diphenyl carbonate were polymerized to produce molecular weights up to 13 kg/mol. Under each reaction conditions, higher molecular weights were achieved by sc CO 2 extraction as opposed to phenol removal by argon.Solid-state polymerization of polycarbonate has also been studied using sc CO 2 to crystallize the polymer and to remove the phenol condensate [39,40]. In a solid-state polymerization, low-molecular-weight, semi-crystalline step-growth polymer beads are heated between the polymer Tg and Tm to allow for condensate and chain mobility for further chain extension reactions. Following the crystalliza-tion of beads of low-molecular-weight polycarbonate prepolymer by sc CO 2, solid-state polymeriza-tions were conducted. The polymerization rates in the solid state were found to be always greater with condensate removal facilitated by sc CO 2 as opposed to nitrogen under comparable conditions. Also,since the Tg of polycarbonate is decreased by over 70 °C in the presence of sc CO 2, the polymerization can be run at much lower temperatures, saving energy and suppressing the side reactions that lead to unwanted polymer discoloration.CHARACTERIZATIONIn order to study polymers and polymerization mechanisms in sc CO 2, analytical techniques have been modified for high pressure. Methods including IR, UV-vis, and NMR spectroscopies and scattering techniques are now possible at high pressures. This paper will focus on scattering techniques, including small-angle neutron scattering (SANS), small-angle X-ray scattering (SAXS), and light scattering.Both SANS and SAXS are powerful tools for determining the polymer radius of gyration, the second virial coefficient, A 2, which indicates the solvent quality for the polymer, and block copolymer micelle formation. SANS studies have shown that CO 2 is a good solvent for PFOA, a theta solvent for poly(hexafluoropropylene oxide), and a poor solvent for PDMS [41,42]. More recently, SANS research has shown a temperature- and pressure-induced theta point for PDMS in CO 2 [43]. At conditions above the theta point, CO 2 becomes a good solvent for PDMS. The aggregation behavior of three different amphiphiles in CO 2 was studied by SAXS [44]. The graft copolymer with a PFOA backbone and poly(ethylene oxide) (PEO) grafts formed micelles which stabilized water in CO 2, while the PTFE-b -PEO copolymer formed reverse micelles, and F(CF 2)10(CH 2)10H formed small aggregates of at most陕西师范大学物理化学精品课程Green chemistry utilizing carbon dioxide for polymers 1361© 2000 IUP AC, Pure and Applied Chemistry 72, 1357–1363four chains. The block copolymer PS-b -PFOA forms micelles in CO 2 with a PS core and a PFOA shell and the data fits a polydisperse spherical core-shell model [45,46]. With an increase in CO 2 density, the change in polydispersity suggests the existence of a critical micelle density, or a density of CO 2 above which the micelles are broken up into soluble unimers.High pressure static and dynamic light scattering were used to confirm the existence of a critical micelle density for block copolymers of PV Ac and poly(1,1,2,2-tetrahydroperfluoroalkyl acrylate)(PTAN) [47]. The block copolymer is insoluble at low CO 2 densities, forms spherical micelles at inter-mediate densities, and exists as unimers, or free polymer chains in solution, at high CO 2 densities. The transition of micelles-to-unimers was found to be very sharp, with the aggregation number decreasing from 120 to 1 with an increase in density.The in situ analysis of dispersion polymerizations in CO 2 has provided insight into the mecha-nism of the polymerizations. Turbidimetry, tensiometry, and dynamic light scattering confirmed that the critical flocculation density occurred at the theta point of the surfactant for poly(2-ethylhexyl acrylate)dispersed and sterically stabilized in CO 2 [48,49]. Turbidimetry was also used to study the dispersion polymerizations of vinyl acetate [27]. This in situ technique for measuring the polymer particle size is particularly useful since the PV Ac particle shape is lost during the removal of CO 2 due to the low Tg of the polymer. The dispersion polymerization of MMA stabilized by PDMS-monomethacrylate has also been the subject of mechanistic investigations [50,51]. The particle formation mechanism, studied by turbidimetry, involved coagulative nucleation and controlled coagulation [51]. The results obtained during the particle formation and particle growth stages agreed with the previous experimental study of Shaffer et al . [24].APPLICATIONS AND OUTLOOKWith the design of specific polymers as surfactants for CO 2, numerous environmentally benign applications for this clean, green solvent can be realized, of which extractions, cleaning, and coatings are just a few examples. For extractions and cleaning, the surfactant acts as a detergent to bring the insoluble species or contaminant into the CO 2 phase. Depressurization of the CO 2 or changing the CO 2density will cause the contaminant to be released from the surfactant. For example, a block copolymer was used to extract deuterated oligomers into CO 2 [45], and a dendrimer was used to extract a water soluble, CO 2-insoluble dye from the water phase into the CO 2 phase [52]. Detergents for CO 2 can be used for cleaning applications, such as “dry cleaning” using liquid CO 2 as the solvent instead of the common perchloroethylene, a probable human carcinogen [53]. In coating, the polymer to be delivered from the CO 2 can be soluble, such as a fluoropolymer, or an insoluble dispersed species. The application of coatings from CO 2 has been demonstrated by three different methods, including spray, spin, and free-meniscus coating, and extends CO 2 into areas such as microlithography, hard disk lubrication, and protective coatings [54]. Clearly, CO 2 can be used widely as an environmentally benign solvent for polymer synthesis and for numerous polymer-based applications.REFERENCES1.J. L. Kendall, D. A. Canelas, J. L.Y oung, J. M. DeSimone. Chem. Rev. 99, 543–563 (1999).2.P . G. Jessop and W. Leitner. Chemical Synthesis Using Supercritical Fluids , Wiley-VCH, Weinheim;Chichester (1999).3.W. Leitner. In Modern Solvents in Organic Chemistry , pp 107–132, Springer-V erlag, Berlin (1999).4.A. I. Cooper. J. Mater . Chem. 10, 207–234 (2000).5.J. M. DeSimone, W. Tumas, J. L. Y oung, P . A. Anastas. Green Chemistry Using Liquid and Supercritical Carbon Dioxide , Oxford University Press, Oxford, submitted for publication (2000).6. F. G. Keyes and J. G. Kirkwood. Phys. Rev. 36, 754 (1930).陕西师范大学物理化学精品课程1362J. L. YOUNG AND J. M. DESIMONE© 2000 IUP AC, Pure and Applied Chemistry 72, 1357–13637.J. A. Hyatt. J. Org. Chem. 49, 5097–5101 (1984).8.H. H. Lowry and W. R. Erickson. J. Am. Chem. Soc. 49, 2729 (1927).9.M. B. King, A. Mubarak, J. D. Kim, T. R. Bott. J. Supercrit. Fluids 5, 296 (1992).10.M. A. McHugh and V . J. Krukonis. Supercritical Fluids Extraction: Principles and Practice ; 2nd ed.; Butterworth-Heinemann, Boston (1994).11.J. P . DeY oung, T. J. Romack, J. M. DeSimone. In Fluoropolymers 1: Synthesis , Hougham, et. al.,(Eds.), pp 191–205. Plenum Press, New Y ork (1999).12.J. M. DeSimone, Z. Guan, C. S. Eisbernd. Science 257, 945–947 (1992).13.W. C. Bunyard, T. J. Romack, J. M. DeSimone. Macromolecules , 32 8224–8226 (1999).14.T. J. Romack, J. R. Combes, J. M. DeSimone. Macromolecules 28, 1724–1726 (1995).15.J. R. Combes, Z. Guan, J. M. DeSimone. Macromolecules 27, 865–867 (1994).16.T. J. Romack, J. M. DeSimone, T. A. Treat. Macromolecules 28, 8429–8431 (1995).17.T. J. Romack, B. E. Kipp, J. M. DeSimone. Macromolecules 28, 8432–8434 (1995).18.P . A. Charpentier, K. A. Kennedy, J. M. DeSimone, G. W. Roberts. Macromolecules 32, 5973–5975 (1999).19.S. V . Gangal. In Encyclopedia of Polymer Science and Engineering , p 577. Wiley-Interscience,New Y ork (1988).20.D. J. V an Bramer, M. B. Shiflett, A.Y okozeki. U.S. Patent 5 345 013, 1994.21.D. A. Canelas and J. M. DeSimone. Adv. Polym. Sci. 133, 103–140 (1997).22.J. M. DeSimone, E. E. Maury, Y . Z. Menceloglu, J. B. McClain, T. R. Romack, J. R. Combes.Science 265, 356–359 (1994).23.Y .-L. Hsiao, E. E. Maury, J. M. DeSimone, S. M. Mawson, K. P . Johnston. Macromolecules 28,8159–8166 (1995).24.K. A. Shaffer, T. A. Jones, D. A. Canelas, J. M. DeSimone, S. P . Wilkinson. Macromolecules 29,2704–2706 (1996).25.D. A. Canelas, D.E. Betts, J. M. DeSimone. Macromolecules 29, 2818–2821 (1996).26.D. A. Canelas and J. M. DeSimone. Macromolecules 30, 5673–5682 (1997).27.D. A. Canelas, D.E. Betts, J. M. DeSimone, M. Z. Yates, K. P . Johnston. Macromolecules 31,6794–6805 (1998).28.H. Shiho and J. M. DeSimone. J. Polym. Sci. Part A: Polym. Chem. 37, 2429–2437 (1999).29.H. Shiho and J. M. DeSimone. J. Polym. Sci. Part A: Polym. Chem. 38, 1146–1153 (2000).30.T. Carson, J. Lizotte, J. M. DeSimone. Macromolecules 33, 1917–1920 (2000).31.H. S. Shiho and J. M. DeSimone. Macromolecules 33, 1565–1569 (2000).32.H. Shiho and J. M. DeSimone. J. Polym. Sci. Part A: Polym. Chem., submitted (2000).33.H.Shiho and J. M. DeSimone. Macromolecules , submitted (2000).34.M. Z. Yates, G. Li, J. J. Shim, S. Maniar, K. P . Johnston, K. T. Lim, S. Webber. Macromolecules 32, 1018–1026 (1999).35.A. I. Cooper, W. P . Hems, A.B. Holmes. Macromolecules 32, 2156–2166 (1999).36.A. I. Cooper and A.B. Holmes. Adv. Mater . 11, 1270 (1999).37.J. H. Xia, T. Johnson, S. G. Gaynor, K. Matyjaszewski, J. DeSimone. Macromolecules 32, 4802–4805 (1999).38.S. M. Gross, R. D. Givens, M. Jikei, J. R. Royer, S. Khan, J. M. DeSimone, P . G. Odell, G. K.Hamer. Macromolecules 31, 9090–9092 (1998).39.S. M. Gross, D. Flowers, G. Roberts, D. J. Kiserow, J. M. DeSimone. Macromolecules 32, 3167–3169 (1999).40.S. M. Gross, G. W. Roberts, D. J. Kiserow, J. M. DeSimone. Macromolecules 33, 40–45 (2000).陕西师范大学物理化学精品课程Green chemistry utilizing carbon dioxide for polymers1363© 2000 IUP AC, Pure and Applied Chemistry 72, 1357–136341.J. B. McClain, D. Londono, J. R. Combes, T. J. Romack, D. A. Canelas, D. E. Betts, G. D. Wignall,E. T. Samulski, J. M. DeSimone. J. Am. Chem. Soc. 118, 917–918 (1996).42. D. Chillura-Martino, R. Triolo, J. B. McClain, J. R. Combes, D. E. Betts, D. A. Canelas, E. T.Samulski, J. M. DeSimone, H. D. Cochran, J. D. Londono, G. D. Wignall J. Mol. Struct. 383, 3–10 (1996).43.Y . B. Melnichenko, E. Kiran, G. D. Wignall, K. D. Heath, S. Salaniwal, H. D. Cochran, M. Stamm.Macromolecules 32, 5344–5347 (1999).44.J. L. Fulton, D. M. Pfund, J. B. McClain, T. J. Romack, E. E. Maury, J. R. Combes, E. T. Samulski,J. M. DeSimone, M. Capel. Langmuir 11, 4241–4249 (1995).45.J. B. McClain, D. E. Betts, D. A. Canelas, E. T. Samulski, J. M. DeSimone, J. D. Londono, H. D.Cochran, G. D. Wignall, D. Chillura-Martino, R. Triolo. Science 274, 2049–2052 (1996).46.J. D. Londono, R. Dharmapurikar, H. D. Cochran, G. D. Wignall, J. B. McClain, D. E. Betts, D. A.Canelas, J. M. DeSimone, E. T. Samulski, D. Chillura-Martino, R. Triolo. J. Appl. Crystallogr . 30,690–695 (1997).47.E. Buhler, A. V . Dobrynin, J. M. DeSimone, M. Rubinstein. Macromolecules 31, 7347–7355(1998).48.M. L. O’Neill, M. Z. Yates, K. L. Harrison, K. P . Johnston, D. A. Canelas, D. E. Betts, J. M.DeSimone, S. P . Wilkinson. Macromolecules 30, 5050–5059 (1997).49.M. Z. Y ates, M. L. O’Neill, K. P . Johnston, S. Webber, D. A. Canelas, D. E. Betts, J. M. DeSimone.Macromolecules 30, 5060–5067 (1997).50.M. L. O’Neill, M. Z. Yates, K. P . Johnston, C. D. Smith, S. P. Wilkinson. Macromolecules 31,2838–2847 (1998).51.M. L. O’Neill, M. Z. Yates, K. P . Johnston, C. D. Smith, S. P. Wilkinson. Macromolecules 31,2848–2856 (1998).52.A. I. Cooper, J. D. Londono, G. Wignall, J.B. McClain, E. T. Samulski, J. S. Lin, A. Dobrynin, M.Rubinstein, A. L.C. Burke, J. M. J. Fréchet, J. M. DeSimone. Nature 389, 368 (1997).53.G. Stewart. In Green Chemistry Using Liquid and Supercritical Carbon Dioxide , J. M. DeSimone,W. Tumas, J. L. Y oung, and P. A. Anastas, (Eds.), Oxford University Press, Oxford, submitted for publication (2000).54.Y . Chernyak, F. Henon, E. Hoggan, B. Novick, J. DeSimone, R. Carbonell. In Green ChemistryUsing Liquid and Supercritical Carbon Dioxide , J. M. DeSimone, W. Tumas, J. L. Y oung, P . A.Anastas (Eds.), Oxford University Press, Oxford, submitted for publication (2000).陕西师范大学物理化学精品课程。