届高三数学圆的方程
- 格式:ppt
- 大小:5.83 MB
- 文档页数:51
高三数学圆的标准方程与一般方程试题答案及解析1.以点为圆心且与直线相切的圆的方程是()A.B.C.D.【答案】C【解析】由已知,,故选.【考点】1.圆的方程;2.直线与圆的位置关系;3.点到直线的距离.2.某圆的圆心在直线上,并且在两坐标轴上截得的弦长分别为4和8,则该圆的方程为()A.B.C.或D.或【答案】C【解析】由已知分析可设圆心为,半径为,则有或,解得,故选C.【考点】圆的标准方程以及弦长的基本知识.3.设点,若在圆上存在点N,使得,则的取值范围是( ) A.B.C.D.【答案】A【解析】过M作⊙O切线交⊙O于R,根据圆的切线性质,有∠OMR≥∠OMN=30°.反过来,如果∠OMR≥30°,则⊙O上存在一点N使得∠OMN=30°.∴若圆O上存在点N,使∠OMN=30°,则∠OMR≥30°.∵|OR|=1,∴|OM|>2时不成立,∴|OM|≤2,即=≤4,解得,≤≤,故选A. 考点:直线与圆的位置关系4.若圆C:关于直线对称,则由点向圆所作的切线长的最小值是()A.2B.4C.3D.6【答案】B【解析】由题知圆C的圆心C(-1,2),半径为,因为圆C关于直线对称,所以圆心C在直线上,所以,即,所以由点向圆所作的切线长为===,当时,切线长最小,最小值为4,故选B.【考点】圆的标准方程,圆的切线问题,二次函数最值5.已知M(-2,0),N(2,0),则以MN为斜边的直角三角形的直角顶点P的轨迹方程为() A.x2+y2=2B.x2+y2=4C.x2+y2=2(x≠±2)D.x2+y2=4(x≠±2)【答案】D【解析】MN的中点为原点O,易知|OP|=|MN|=2,∴P的轨迹是以原点O为圆心,以r=2为半径的圆,除去与x轴的两个交点.6.已知圆C:x2+y2+mx-4=0上存在两点关于直线x-y+3=0对称,则实数m的值为() A.8B.-4C.6D.无法确定【答案】C【解析】圆上存在关于直线x-y+3=0对称的两点,则x-y+3=0过圆心(-,0),即-+3=0,∴m=6.7.若圆C的半径为1,圆心在第一象限,且与直线4x-3y=0和x轴都相切,则该圆的标准方程是()A.(x-2)2+(y-1)2=1B.(x-2)2+(y-3)2=1C.(x-3)2+(y-2)2=1D.(x-3)2+(y-1)2=1【答案】A【解析】设圆心坐标为(a,b),由题意知a>0,且b=1.又∵圆和直线4x-3y=0相切,∴=1,即|4a-3|=5,∵a>0,∴a=2.所以圆的方程为(x-2)2+(y-1)2=1.8.已知圆C的圆心在曲线y=上,圆C过坐标原点O,且与x轴、y轴交于A、B两点,则△OAB的面积是()A.2 B.3 C.4 D.8【答案】C【解析】设圆心C的坐标是(t,).∵圆C过坐标原点,∴|OC|2=t2+,设圆C的方程是(x-t)2+(y-)2=t2+.令x=0,得y1=0,y2=,故B点的坐标为(0,).令y=0,得x1=0,x2=2t,故A点的坐标为(2t,0),∴S△OAB=|OA|·|OB|=×||×|2t|=4,即△OAB的面积为4.故选C.9.若圆的半径为1,其圆心与点关于直线对称,则圆的标准方程为_______.【答案】【解析】因为圆心与点关于直线对称,所以圆心坐标为,所以圆的标准方程为:,故答案为【考点】圆的标准方程.10.已知直线与圆心为的圆相交于两点,且,则实数的值为_________.【答案】0或6【解析】圆的标准方程为:所以圆的圆心在,半径又直线与圆交于两点,且所以圆心到直线的距离所以,,整理得:解得:或所以答案应填:0或6.【考点】1、圆的标准方程;2、直线与圆的位置关系;3、点到直线的距离公式.11.若圆C的半径为1,圆心在第一象限,且与直线4x-3y=0和x轴都相切,则该圆的标准方程是()A.(x-2)2+(y-1)2=1B.(x-2)2+(y+1)2=1C.(x+2)2+(y-1)2=1D.(x-3)2+(y-1)2=1【答案】A【解析】设圆心为,半径为,则=1,解得,所以,解得,故圆心坐标为(2,1),所以该圆的标准方程是(x-2)2+(y-1)2=1,选A.12.若圆x2+y2-2kx+2y+2=0(k>0)与两坐标轴无公共点,那么实数k的取值范围为( ) A.-1<k<1B.1<k<C.1<k<2D.<k<2【答案】B【解析】圆的方程为(x-k)2+(y+1)2=k2-1,圆心坐标为(k,-1),半径r=,若圆与两坐标无公共点,即,解得1<k<.故选B.13.若圆的半径为1,圆心在第一象限,且与直线和轴相切,则该圆的标准方程是________.【答案】【解析】由于圆的半径为1且与轴相切,所以可以假设圆心.又圆与直线相切.所以可得.解得,由圆心在第一象限.所以.所以圆的方程为.【考点】1.直线与圆的位置关系.2.直线与圆相切的判定.3.圆的标准方程.14.方程x2+y2-6x=0表示的圆的圆心坐标是________;半径是__________.【答案】(3,0),3【解析】(x-3)2+y2=9,圆心坐标为(3,0),半径为3.15.方程x2+y2+4mx-2y+5m=0表示圆的充要条件是________.【答案】m<或m>1.【解析】由(4m)2+4-4×5m>0得m<或m>1.16.圆心在y轴上,半径为1,且过点(1,2)的圆的方程为______________.【答案】x2+(y-2)2=1【解析】设圆的方程为x2+(y-b)2=1,此圆过点(1,2),所以12+(2-b)2=1,解得b=2.故所求圆的方程为x2+(y-2)2=1.17.如图,已知直角坐标平面上点Q(2,0)和圆C:x2+y2=1,动点M到圆C的切线长与|MQ|的比等于.求动点M的轨迹方程,并说明它表示什么.【答案】(x-4)2+y2=7.它表示圆,【解析】设直线MN切圆于N,则动点M组成的集合是P={M||MN|=|MQ|}.因为圆的半径|ON|=1,所以|MN|2=|MO|2-1.设点M的坐标为(x,y),则,整理得(x-4)2+y2=7.它表示圆,该圆圆心的坐标为(4,0),半径为.18. P(x,y)在圆C:(x-1)2+(y-1)2=1上移动,试求x2+y2的最小值.【答案】3-2【解析】由C(1,1)得OC=,则OPmin =-1,即()min=-1.所以x2+y2的最小值为(-1)2=3-2.19.已知圆C的圆心是直线x-y+1=0与x轴的交点,且圆C与直线x+y+3=0相切,则圆C的方程为()A.(x+1)2+y2=2B.(x-1)2+y2=2C.(x+1)2+y2=4D.(x-1)2+y2=4【答案】A【解析】直线x-y+1=0,令y=0得x=-1,所以直线x-y+1=0与x轴的交点为(-1,0),因为直线x+y+3=0与圆相切,所以圆心到直线的距离等于半径,即r==,所以圆C的方程为(x+1)2+y2=2.20.求圆心在抛物线x2=4y上,且与直线x+2y+1=0相切的面积最小的圆的方程.【答案】(x+1)2+=【解析】设圆心坐标为,半径为r.根据已知得r== (t2+2t+2)= [(t+1)2+1]≥,当t=-1时取等号,此时r最小为,圆心坐标为(-1,),故所求的圆的方程是(x+1)2+=.21.已知点A(-3,0),B(3,0),动点P满足|PA|=2|PB|.(1)若点P的轨迹为曲线C,求此曲线的方程;(2)若点Q在直线l1:x+y+3=0上,直线l2经过点Q且与曲线C只有一个公共点M,求|QM|的最小值.【答案】(1)(x-5)2+y2=16(2)4【解析】(1)设点P的坐标为(x,y),且|PA|=2|PB|,则=2,化简得曲线C:(x-5)2+y2=16.(2)曲线C是以点(5,0)为圆心,4为半径的圆,如图.是此圆的切线,连接CQ,由直线l2则|QM|=,时,|CQ|取最小值,|CQ|=,此时|QM|的最小值为=4.当CQ⊥l122.已知圆C经过A(5,1),B(1,3)两点,圆心在x轴上,则圆C的方程为________.【答案】(x-2)2+y2=10【解析】依题意设所求圆的方程为(x-a)2+y2=r2,把所给两点坐标代入方程,得解得所以所求圆的方程为(x-2)2+y2=10.23.已知半径为2,圆心在直线上的圆C.(Ⅰ)当圆C经过点A(2,2)且与轴相切时,求圆C的方程;(Ⅱ)已知E(1,1),F(1,-3),若圆C上存在点Q,使,求圆心的横坐标的取值范围.【答案】(Ⅰ);(Ⅱ)【解析】(Ⅰ)因为原心在直线上故可设原心为,则可根据圆心和圆上的点的距离为半径列出方程。
《圆的方程》专题练专题1 求圆的方程1.1 求圆的方程1.圆心为(1,1)且过原点的圆的方程是2.以点(3,-1)为圆心,并且与直线3x+4y=0相切的圆的方程是3.已知圆C:x2+y2-2x+4y+1=0,那么与圆C有相同的圆心,且经过点(-2,2)的圆的方程是A.(x-1)2+(y+2)2=5 B.(x-1)2+(y+2)2=25C.(x+1)2+(y-2)2=5 D.(x+1)2+(y-2)2=254.经过点(1,0),且圆心是两直线x=1与x+y=2的交点的圆的方程为5.圆(x+2)2+y2=5关于原点(0,0)对称的圆的方程为6.圆C的圆心在x轴上,并且过点A(-1,1)和B(1,3),则圆C的方程为________.7.圆C的直径的两个端点分别是A(-1,2),B(1,4),则圆C的标准方程为________.8.已知圆C:(x-6)2+(y-8)2=4,O为坐标原点,则以OC为直径的圆的方程为9.过点A(1,-1),B(-1,1)且圆心在直线x+y-2=0上的圆的方程是10.圆C与圆(x-1)2+y2=1关于直线y=-x对称,则圆C的方程为11.圆(x-2)2+y2=4关于直线y=33x对称的圆的方程是12.若圆C的半径为1,圆心在第一象限,且与直线4x-3y=0和x轴都相切,则该圆的标准方程是13.若圆C经过坐标原点与点(4,0),且与直线y=1相切,则圆C的方程是__________________.14.圆心在y轴上,且过点(3,1)的圆与x轴相切,则该圆的方程是15.已知圆M与直线3x-4y=0及3x-4y+10=0都相切,圆心在直线y=-x-4上,则圆M的方程为16.已知圆E经过三点A(0,1),B(2,0),C(0,-1),且圆心在x轴的正半轴上,则圆E的标准方程为17.在平面直角坐标系中,经过三点(0,0),(1,1),(2,0)的圆的方程为18.已知圆心在直线y=-4x上,且圆与直线l:x+y-1=0相切于点P(3,-2),则该圆的方程是19.圆心在直线x-2y=0上的圆C与y轴的正半轴相切,圆C截x轴所得弦的长为23,则圆C的标准方程为________.20.已知圆C的圆心是直线x-y+1=0与x轴的交点,且圆C与直线x+y+3=0相切,则圆C的方程是21.若不同的四点A(5,0),B(-1,0),C(-3,3),D(a,3)共圆,则a的值为________.22.过三点A(1,3),B(4,2),C(1,-7)的圆交y轴于M,N两点,则|MN|=23.已知三点A(1,0),B(0,3),C(2,3),则△ABC外接圆的圆心到原点的距离为1.2 圆的一般式判断1.已知圆C∶x2+y2+mx-4=0上存在两点关于直线x-y+3=0对称,则实数m的值为2.圆x2+y2-2x-8y+13=0的圆心到直线ax+y-1=0的距离为1,则a=3.若方程x 2+y 2+mx -2y +3=0表示圆,则m 的取值范围是4.方程x 2+y 2+4mx -2y +5m =0表示圆的充要条件是5.若x 2+y 2-4x +2y +5k =0表示圆,则实数k 的取值范围是6.若方程(2m 2+m -1)x 2+(m 2-m +2)y 2+m +2=0的图形表示一个圆,则实数m 等于7.若a ∈⎩⎨⎧⎭⎬⎫-2,0,1,34,则方程x 2+y 2+ax +2ay +2a 2+a -1=0表示的圆的个数为( ) A .0 B .1 C .2 D .38.已知a ∈R ,方程a 2x 2+(a +2)y 2+4x +8y +5a =0表示圆,则圆心坐标是________,半径是________.9.当方程x 2+y 2+kx +2y +k 2=0所表示的圆的面积取最大值时,直线y =(k -1)x +2的倾斜角α=________.1.3 点与圆的位置关系1.若点(1,1)在圆(x -a )2+(y +a )2=4的内部,则实数a 的取值范围是2.若原点在圆(x -2m )2+(y -m )2=5的内部,则实数m 的取值范围是________.3.两条直线y =x +2a ,y =2x +a 的交点P 在圆(x -1)2+(y -1)2=4的内部,则实数a 的取值范围是4.圆C 的圆心在x 轴上,并且经过点A (-1,1),B (1,3),若M (m ,6)在圆C 内,则m 的范围为________.5.如果圆(x -a )2+(y -a )2=8上总存在到原点的距离为2的点,则实数a 的取值范围是专题2 与圆有关的最值问题2.1 建立函数关系求最值1.已知实数x ,y 满足(x -2)2+y 2=4,则3x 2+4y 2的最大值为________.2.设点P (x ,y )是圆:x 2+(y -3)2=1上的动点,定点A (2,0),B (-2,0),则P A →·PB →的最大值为________.3.已知圆C 过点P (1,1),且与圆M :(x +2)2+(y +2)2=r 2(r >0)关于直线x +y +2=0对称.(1)求圆C 的方程;(2)设Q 为圆C 上的一个动点,求PQ →·MQ →的最小值.2.1 借助几何性质求最值(多维探究)1.已知实数x, y 满足方程x 2+y 2-4x +1=0.(1求y x的最大值和最小值; (2)求y -x 的最大值和最小值.(3)求x 2+y 2的最大值和最小值.2.已知点P (x ,y )在圆C :x 2+y 2-6x -6y +14=0上,(1)求y x的最大值和最小值; (2)求x +y 的最大值和最小值.3.设P (x ,y )是曲线x 2+(y +4)2=4上任意一点,则(x -1)2+(y -1)2的最大值为4.如果实数x ,y 满足等式(x -2)2+y 2=1,那么y +3x -1的取值范围是________.5.已知点(x ,y )在圆(x -2)2+(y +3)2=1上,则x +y 的最大值和最小值分别为 、 .6.一束光线从点A (-1,1)出发,经x 轴反射到圆C :(x -2)2+(y -3)2=1上的最短路径的长是7.已知两点A (-2,0),B (0,2),点C 是圆x 2+y 2-2x =0上任意一点,则△ABC 面积的最小值是_______8.若直线ax +2by -2=0(a >0,b >0)始终平分圆x 2+y 2-4x -2y -8=0的周长,则1a +2b的最小值为9.圆x 2+y 2+4x -12y +1=0关于直线ax -by +6=0(a >0,b >0)对称,则2a +6b的最小值是10.已知动点P (x ,y )满足x 2+y 2-2|x |-2|y |=0,O 为坐标原点,则x 2+y 2的最大值为________.11.已知实数x ,y 满足(x +2)2+(y -3)2=1,则|3x +4y -26|的最小值为________.专题3 与圆有关的轨迹问题1.方程|y |-1=1-(x -1)2表示的曲线是( )A .一个椭圆B .一个圆C .两个圆D .两个半圆2.点P (4,-2)与圆x 2+y 2=4上任一点连线的中点的轨迹方程是________________.3.动点P 与定点A (-1,0),B (1,0)的连线的斜率之积为-1,则点P 的轨迹方程是( )A .x 2+y 2=1B .x 2+y 2=1(x ≠0)C .x 2+y 2=1(x ≠±1)D .y =1-x 24.动点A在圆x2+y2=1上移动时,它与定点B(3,0)连线的中点的轨迹方程是5.已知圆O:x2+y2=4及一点P(-1,0),则Q在圆O上运动一周,PQ的中点M形成轨迹C的方程为__________.。
高三数学圆的标准方程与一般方程试题1.已知M(-2,0),N(2,0),则以MN为斜边的直角三角形的直角顶点P的轨迹方程为()A.x2+y2=2B.x2+y2=4C.x2+y2=2(x≠±2)D.x2+y2=4(x≠±2)【答案】D【解析】MN的中点为原点O,易知|OP|=|MN|=2,∴P的轨迹是以原点O为圆心,以r=2为半径的圆,除去与x轴的两个交点.2.设圆的方程是x2+y2+2ax+2y+(a-1)2=0,若0<a<1,则原点与圆的位置关系是()A.原点在圆上B.原点在圆外C.原点在圆内D.不确定【答案】B【解析】将原点代入x2+y2+2ax+2y+(a-1)2=(a-1)2>0,所以原点在圆外.3.已知x,y满足x2+y2=1,则的最小值为________.【答案】【解析】表示圆上的点P(x,y)与点Q(1,2)连线的斜率,∴的最小值是直线PQ与圆相切时的斜率.设直线PQ的方程为y-2=k(x-1),即kx-y+2-k=0,由=1,得k=,结合图形可知≥,∴所求最小值为.4.已知平面上点其中,当,变化时,则满足条件的点在平面上所组成图形的面积是()A.B.(C.D.【答案】C【解析】圆心在圆上运动一周,点在平面上所组成图形为以坐标原点为圆心,6为半径的实心圆减去以坐标原点为圆心,2为半径的实心圆的一个圆环,面积是.【考点】圆的方程,动点轨迹5.以抛物线y2=4x的焦点为圆心,且过坐标原点的圆的方程为()A.x2+y2+2x=0B.x2+y2+x=0C.x2+y2﹣x=0D.x2+y2﹣2x=0【答案】D【解析】因为已知抛物线的焦点坐标为(1,0),即所求圆的圆心,又圆过原点,所以圆的半径为r=1,故所求圆的方程为(x﹣1)2+y2=1,即x2﹣2x+y2=0,故选D.6.若圆x2+y2-2kx+2y+2=0(k>0)与两坐标轴无公共点,那么实数k的取值范围为( )A.-1<k<1B.1<k<C.1<k<2D.<k<2【答案】B【解析】圆的方程为(x-k)2+(y+1)2=k2-1,圆心坐标为(k,-1),半径r=,若圆与两坐标无公共点,即,解得1<k<.故选B.7.已知方程x2+y2-2(m+3)x+2(1-4m2)y+16m4+9=0表示一个圆.(1)求实数m的取值范围;(2)求该圆半径r的取值范围;(3)求圆心的轨迹方程.【答案】(1)-<m<1(2)0<r≤(3)y=4(x-3)2-1【解析】(1)方程表示圆的充要条件是D2+E2-4F>0,即有4(m+3)2+4(1-4m2)2-4(16m4+9) >0-<m<1.(2)半径r=0<r≤.(3)设圆心坐标为(x,y),则消去m,得y=4(x-3)2-1.由于-<m<1,所以<x<4.故圆心的轨迹方程为y=4(x-3)2-18. P(x,y)在圆C:(x-1)2+(y-1)2=1上移动,试求x2+y2的最小值.【答案】3-2【解析】由C(1,1)得OC=,则OPmin =-1,即()min=-1.所以x2+y2的最小值为(-1)2=3-2.9.设定点M(-3,4),动点N在圆x2+y2=4上运动,以OM,ON为邻边作平行四边形MONP,则点P的轨迹方程为.【答案】(x+3)2+(y-4)2=4,但应除去两点(-,)和(-,)【解析】设P(x,y),圆上的动点N(x0,y),则线段OP的中点坐标为(,),线段MN的中点坐标为(,),又因为平行四边形的对角线互相平分,所以有可得又因为N(x0,y)在圆上,所以N点坐标应满足圆的方程.即有(x+3)2+(y-4)2=4,但应除去两点(-,)和(-,).10.当a为任意实数时,直线(a-1)x-y+a+1=0恒过定点C,则以C为圆心,为半径的圆的方程为()A.x2+y2-2x+4y=0B.x2+y2+2x+4y=0C.x2+y2+2x-4y=0D.x2+y2-2x-4y=0【答案】C【解析】由(a-1)x-y+a+1=0得(x+1)a-(x+y-1)=0,∴该直线恒过点(-1,2),∴所求圆的方程为(x+1)2+(y-2)2=5.即x2+y2+2x-4y=0.11.设二次函数y=x2-x+1与x轴正半轴的交点分别为A,B,与y轴正半轴的交点是C,则过A,B,C 三点的圆的标准方程是.【答案】(x-2)2+(y-2)2=5【解析】【思路点拨】先由已知求出A,B,C三点坐标,再根据坐标特点选出方程,求方程.由已知三个交点分别为A(1,0),B(3,0),C(0,1),易知圆心横坐标为2,则令圆心为E(2,b),由|EA|=|EC|得b=2,半径为,故圆的方程为(x-2)2+(y-2)2=5.12.已知点P(a,b)关于直线l的对称点为P′(b+1,a-1),则圆C:x2+y2-6x-2y=0关于直线l对称的圆C′的方程为________.【答案】(x-2)2+(y-2)2=10【解析】由圆C:x2+y2-6x-2y=0得,圆心坐标为(3,1),半径r=,所以对称圆C′的圆心为(1+1,3-1)即(2,2),所以(x-2)2+(y-2)2=10.13.已知圆C经过A(5,1),B(1,3)两点,圆心在x轴上,则圆C的方程为________.【答案】(x-2)2+y2=10【解析】依题意设所求圆的方程为(x-a)2+y2=r2,把所给两点坐标代入方程,得解得所以所求圆的方程为(x-2)2+y2=10.14.已知圆:,则下列命题:①圆上的点到的最短距离的最小值为;②圆上有且只有一点到点的距离与到直线的距离相等;③已知,在圆上有且只有一点,使得以为直径的圆与直线相切.真命题的个数为A.B.C.D.【答案】D【解析】已知动圆的圆心的轨迹方程为:,所以动圆构成的轨迹为夹在抛物线和抛物线之间的部分(包括边界),所以①②③都满足题意【考点】圆的方程的性质、点、直线与圆的位置关系及其判断.15.若点为圆的弦的中点,则弦所在直线方程为( )A.B.C.D.【答案】D【解析】化为标准方程为,为圆的弦的中点,∴圆心与点P确定的直线斜率为,∴弦所在直线的斜率为2,∴弦所在直线的方程为,即,故选D.【考点】圆的方程,直线与圆的位置关系,直线的斜率,直线的方程.16.能够把圆:的周长和面积同时分为相等的两部分的函数称为圆的“和谐函数”,下列函数不是圆的“和谐函数”的是()A.B.C.D.【答案】D【解析】只有D答案是偶函数,这个圆的圆心是,则奇函数会是该圆的“和谐函数”.【考点】1.对称性;2.奇偶性.17.已知P是圆C:上的一个动点,A(,1),则的最小值为______.【答案】2(-1) .【解析】如图:作PQ^OA于Q,CD^OA于D,根据向量数量积的几何意义得min =|OA|·|OQ|min=|OA|·|OT|="2" (|OD|-1)=2(-1) .【考点】圆的标准方程及向量数量积.18.已知圆C经过两点,圆心在x轴上,则圆C的方程是A.B.C.D.【答案】D【解析】根据题意,由于圆C经过两点,圆心在x轴上,那么圆心在线段AB的垂直平分线上,可中点为(2,3),斜率为3,则方程为y-3=3(x-2).可知,3x-y-3=0,同时令y=0,x=1,故可知圆心为(1,0),半径为,因此可知方程为,选D.【考点】圆的方程点评:主要是考查了圆的方程的求解,属于基础题。
圆的认识•圆的定义:圆是一种几何图形。
当一条线段绕着它的一个端点在平面内旋转一周时,它的另一个端点的轨迹叫做圆。
在一个个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A随之旋转所形成的图形叫做圆,固定的端点O叫做圆心,线段OA叫做半径。
相关定义:1 在同一平面内,到定点的距离等于定长的点的集合叫做圆。
这个定点叫做圆的圆心。
图形一周的长度,就是圆的周长。
2 连接圆心和圆上的任意一点的线段叫做半径,字母表示为r。
3 通过圆心并且两端都在圆上的线段叫做直径,字母表示为d。
直径所在的直线是圆的对称轴。
4 连接圆上任意两点的线段叫做弦。
最长的弦是直径,直径是过圆心的弦。
5 圆上任意两点间的部分叫做圆弧,简称弧。
大于半圆的弧称为优弧,优弧是用三个字母表示。
小于半圆的弧称为劣弧,劣弧用两个字母表示。
半圆既不是优弧,也不是劣弧。
优弧是大于180度的弧,劣弧是小于180度的弧。
6 由两条半径和一段弧围成的图形叫做扇形。
7 由弦和它所对的一段弧围成的图形叫做弓形。
8 顶点在圆心上的角叫做圆心角。
9 顶点在圆周上,且它的两边分别与圆有另一个交点的角叫做圆周角。
10 圆周长度与圆的直径长度的比值叫做圆周率。
它是一个无限不循环小数,通常用π表示,π=3.14159265……在实际应用中,一般取π≈3.14。
11圆周角等于相同弧所对的圆心角的一半。
12 圆是一个正n边形(n为无限大的正整数),边长无限接近0但不等于0。
圆的集合定义:圆是平面内到定点的距离等于定长的点的集合,其中定点是圆心,定长是半径。
•圆的字母表示:以点O为圆心的圆记作“⊙O”,读作O”。
圆—⊙;半径—r或R(在环形圆中外环半径表示的字母);弧—⌒;直径—d ;扇形弧长—L ;周长—C ;面积—S。
圆的性质:(1)圆是轴对称图形,其对称轴是任意一条通过圆心的直线。
圆也是中心对称图形,其对称中心是圆心。
垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的2条弧。
复习课:圆的标准方程和一般方程教学目标重点:掌握圆的标准方程和一般方程,能根据题目条件选择恰当的形式求圆的方程,理解圆的一般方程和标准方程之间的关系,并能互化.灵活运用圆的几何性质解决问题.了解参数方程的概念,理解圆的参数方程.难点:与圆有关的综合题的求解方法.能力点:等价转化的数学思想、数形结合的数学思想的应用,逻辑推理能力的培养和训练. 自主探究点:了解参数方程的概念,理解圆的参数方程,利用参数方程解决求最值问题. 易错点:运算出现错误,对问题分析不全面导致漏解. 学法与教具1.学法:学生动脑、动手总结规律,梳理知识,解决问题.2.教具:投影仪. 一、【知识梳理】1.圆的定义:平面内与定点的距离等于定长的点的集合(轨迹)叫圆.在平面直角坐标系内确定一个圆需要三个独立条件:如三个点,半径和圆心(两个坐标)等. 2.圆的方程(1)标准式:222()()x a y b r -+-= ,其中r 为圆的半径,(,)a b 为圆心. (2)一般式:22220 (40)x y Dx Ey F D E F ++++=+->,其中圆心为(,)22D E--,半径. (3)过圆与直线(或圆)交点的圆系方程:i) 22()0x y Dx Ey F Ax By C λ+++++++=,ii) 2222111222()0x y D x E y F x y D x E y F λ+++++++++=(1-=λ时为一条过两圆交点的直线,该方程不包括圆C 2)(4)二元二次方程220 Ax By Cxy Dx Ey F +++++=表示圆的充要条件:220,0,40A B C D E AF =≠=+->.二、【范例导航】 题型1:求圆的方程【例1】(1)求经过点(5,2),(3,2)A B ,圆心在直线230x y --=上的圆的方程;(2)求圆心在直线30x y -=上,与y 轴相切,且被直线y x =截得的弦长为. 【分析】本题可以设圆的标准方程,建立关于圆心(,)a b 和半径r 的三个方程构成的方程组. 【解析】(1)解法一:设圆的标准方程为222()()x a y b r -+-=根据题意可得222222(5)(2)(3)(2)230a b r a b r a b ⎧-+-=⎪-+-=⎨⎪--=⎩,解得45a b r ⎧=⎪=⎨⎪=⎩所求圆的方程为22(4)(5)10x y -+-=.解法二:因为圆过(5,2),(3,2)A B 两点,所以圆心在线段AB 的中垂线4x =上,又因为圆心在直线230x y --=上,联立解得4,5a b ==.进而求得圆的半径r =, 圆方程为:22(4)(5)10x y -+-=.(2)因为圆与y 轴相切,且圆心在直线30x y -=上, 故圆方程可设为222(3)()9x b y b b -+-=又因为直线y x =截圆得弦长为,则有2229b +=,解得1b =±, 故所求圆方程为:22(3)(1)9x y -+-=或22(3)(1)9x y +++=【点评】求圆的方程时,根据题目条件选择合适的方程形式,同时注意圆的几何性质的充分利用,如在第(1)问解法二中,利用圆心在线段AB 的中垂线上,可以使简化运算.第(2)问求解时注意两组结果.变式训练:求半径为4,与圆22:4240A x y x y +---=相切,且和直线0y =相切的圆的方程.【解析】由题意,设所求圆的方程为圆222:()()C x a y b r -+-=.圆C 与直线0y =相切,且半径为4,所以圆心C 的坐标为1:(,4)C a 或2:(,4)C a -. 又已知圆22:4240A x y x y +---=的圆心A 的坐标为(2,1),半径为3. 若两圆相切,则两圆心之间的距离437CA =+=或431CA =-=.(1) 当1:(,4)C a 时,222(2)(41)7a -+-=,或222(2)(41)1a -+-= (无解),故可得2a =±.∴所求圆方程为22(2(4)16x y -++-=或22(2(4)16x y --+-=.(2) 当2:(,4)C a -时,222(2)(41)7a -+--=,或222(2)(41)1a -+--= (无解),故2a =±∴所求圆的方程为22(2(4)16x y -+++=或22(2(4)16x y --++=.【点评】对本题,易发生以下误解:(1)忽略圆心在x 轴下方的情形,(2)只考虑两圆相外切的情况.题型2:轨迹问题【例2】(1)已知点M 与两个定点(0,0),(3,0)O A 的距离的比为12,求点M 的轨迹方程. (2) 已知线段AB 的端点B 的坐标是(4,3),端点A 在圆22(1)4x y ++=上运动,求线段AB 的中点M 的轨迹方程.【分析】第(1)问用直接法求轨迹方程,第(2)问用相关点代入法求轨迹方程,所得轨迹都是圆. 【解析】(1)设所求轨迹上任意一点(,),M x y 根据题意:12MO MA =,即:2MO MA =,即= 故所求轨迹方程为:22(1)4x y ++=.(2)设AB 的中点(,)M x y ,点00(,)A x y ,则004232x x y y +⎧=⎪⎪⎨+⎪=⎪⎩,得 002423x x y y =-⎧⎨=-⎩,又因为A 在圆周上运动,故可得:22(241)(23)4x y -++-=,所求轨迹方程为:2233()()122x y -+-=.【点评】本题是比较简单的两道题目,分别用了直接法和相关点代入法求轨迹方程,旨在让学生复习求轨迹方程的方法,同时更进一步了解哪些点的运动轨迹是圆。
高三数学圆的标准方程与一般方程试题答案及解析1.已知圆与直线相交于两点则当的面积最大时此时实数的值为【答案】【解析】因为的面积等于,所以当时的面积最大,此时圆心到直线的距离为,因此【考点】直线与圆位置关系2.已知圆C的圆心在曲线y=上,圆C过坐标原点O,且与x轴、y轴交于A、B两点,则△OAB的面积是()A.2 B.3 C.4 D.8【答案】C【解析】设圆心C的坐标是(t,).∵圆C过坐标原点,∴|OC|2=t2+,设圆C的方程是(x-t)2+(y-)2=t2+.令x=0,得y1=0,y2=,故B点的坐标为(0,).令y=0,得x1=0,x2=2t,故A点的坐标为(2t,0),∴S△OAB=|OA|·|OB|=×||×|2t|=4,即△OAB的面积为4.故选C.3.已知圆C1:(x+1)2+(y-1)2=1,圆C2与圆C1关于直线x-y-1=0对称,则圆C2的方程为()A.(x-1)2+(y+1)2=1 B.(x+2)2+(y-2)2=1 C.(x+1)2+(y-1)2=1 D.(x-2)2+(y+2)2=1【答案】D【解析】圆C1:(x+1)2+(y-1)2=1的圆心为(-1,1).圆C2的圆心设为(a,b),C1与C2关于直线x-y-1=0对称,∴解得圆C2的半径为1,∴圆C2的方程为(x-2)2+(y+2)2=1,选D4.已知圆的圆心是直线与轴的交点,且圆与直线相切,则圆的方程是( )A.B.C.D.【答案】A【解析】根据题意直线与x轴的交点为,因为圆与直线相切,所以半径为圆心到切线的距离,即,则圆的方程为,故选A 【考点】切线圆的方程5.求半径为4,与圆x2+y2-4x-2y-4=0相切,且和直线y=0相切的圆的方程.【答案】(x-2-2)2+(y+4)2=42或(x-2+2)2+(y+4)2=42【解析】由题意,设所求圆的方程为圆C:(x-a)2+(y-b)2=r2.圆C与直线y=0相切,且半径为4,则圆心C的坐标为C1(a,4)或C2(a,-4).又已知圆x2+y2-4x-2y-4=0的圆心A的坐标为(2,1),半径为3.若两圆相切,则|CA|=4+3=7或|CA|=4-3=1.①当C1(a,4)时,有(a-2)2+(4-1)2=72或(a-2)2+(4-1)2=12(无解),故可得a=2±2.∴所求圆方程为(x-2-2)2+(y-4)2=42或(x-2+2)2+(y-4)2=42.②当C2(a,-4)时,(a-2)2+(-4-1)2=72或(a-2)2+(-4-1)2=12(无解),故a=2±2.∴所求圆的方程为(x-2-2)2+(y+4)2=42或(x-2+2)2+(y+4)2=42.6.以两点A(-3,-1)和B(5,5)为直径端点的圆的方程是_________.【答案】(x-1)2+(y-2)2=25【解析】设P(x,y)是所求圆上任意一点.∵A、B是直径的端点,∴·=0.又=(-3-x,-1-y),=(5-x,5-y).由·=0 (-3-x)·(5-x)+(-1-y)(5-y)=0 x2-2x+y2-4y-20=0 (x-1)2+(y-2)2=25.7.点(1,1)在圆(x-a)2+(y+a)2=4内,则实数a的取值范围是________.【答案】(-1,1)【解析】∵点(1,1)在圆的内部,∴(1-a)2+(1+a)2<4,∴-1<a<1.8.如图,圆O1与圆O2的半径都是1,O1O2=4,过动点P分别作圆O1、圆O2的切线PM、PN(M、N分别为切点),使得PM=PN,试建立适当的坐标系,并求动点P的轨迹方程.【答案】(x-6)2+y2=33(或x2+y2-12x+3=0).【解析】以O1O2的中点O为原点,O1O2所在的直线为x轴,建立如图所示平面直角坐标系,则O1(-2,0),O2(2,0).由已知PM=PN,得PM2=2PN2.因为两圆的半径均为1,所以-1=2(-1).设P(x,y),则(x+2)2+y2-1=2[(x-2)2+y2-1],即(x-6)2+y2=33,所以所求轨迹方程为(x-6)2+y2=33(或x2+y2-12x+3=0).9.已知圆M过两点A(1,-1),B(-1,1),且圆心M在x+y-2=0上.(1)求圆M的方程;(2)设P是直线3x+4y+8=0上的动点,PA′、PB′是圆M的两条切线,A′、B′为切点,求四边形PA′MB′面积的最小值.【答案】(1)(x-1)2+(y-1)2=4.(2)2【解析】(1)设圆M的方程为(x-a)2+(y-b)2=r2(r>0),根据题意得解得a =b =1,r =2.故所求圆M 的方程为(x -1)2+(y -1)2=4.(2)由题知,四边形PA′MB′的面积为S =S △PA′M +S △PB′M =|A′M||PA′|+|B′M||PB′|.又|A′M|=|B′M|=2,|PA′|=|PB′|,所以S =2|PA′|,而|PA′|==,即S =2.因此要求S 的最小值,只需求|PM|的最小值即可,即在直线3x +4y +8=0上找一点P ,使得|PM|的值最小,所以|PM|min ==3,所以四边形PA′MB′面积的最小值为S =2=2=210. 已知M(-2,0),N(2,0),则以MN 为斜边的直角三角形的直角顶点P 的轨迹方程为( )A .x 2+y 2=2B .x 2+y 2=4C .x 2+y 2=2(x≠±2)D .x 2+y 2=4(x≠±2)【答案】D【解析】设P(x,y),则|PM|2+|PN|2=|MN|2, 所以x 2+y 2=4(x≠±2).【误区警示】本题易误选B.错误的根本原因是忽视了曲线与方程的关系,从而导致漏掉了x≠±2.11. 设定点M(-3,4),动点N 在圆x 2+y 2=4上运动,以OM,ON 为邻边作平行四边形MONP,则点P 的轨迹方程为 .【答案】(x+3)2+(y-4)2=4,但应除去两点(-,)和(-,)【解析】设P(x,y),圆上的动点N(x 0,y 0),则线段OP 的中点坐标为(,),线段MN 的中点坐标为(,),又因为平行四边形的对角线互相平分,所以有可得又因为N(x 0,y 0)在圆上,所以N 点坐标应满足圆的方程.即有(x+3)2+(y-4)2=4,但应除去两点(-,)和(-,).12. 若原点在圆(x-m)2+(y+m)2=8的内部,则实数m 的取值范围是( ) A .-2<m<2 B .0<m<2 C .-2<m<2 D .0<m<2【答案】C【解析】由已知得m 2+m 2<8,即m 2<4,解得-2<m<2.13. 圆关于直线对称的圆的方程为( ) A .B .C .D .【答案】A 【解析】圆的圆心坐标为,此点关于直线的对称点的坐标为,由于两圆关于直线对称,它们的圆心关于直线对称,大小相等,因此所求的对称圆的圆心坐标为,其半径长为,即为,故选A. 【考点】1.两点关于直线对称;2.圆的标准方程14.已知圆的方程为x2+y2-6x-8y=0,设该圆中过点(3,5)的最长弦和最短弦分别为AC和BD,则四边形ABCD的面积是________.【答案】20【解析】配方可得(x-3)2+(y-4)2=25,其圆心为C(3,4),半径为r=5,则过点(3,5)的最长弦AC=2r=10,最短弦BD=2 =4,且有AC⊥BD,则四边形ABCD的面积为S=AC×BD=20 .15.已知圆(x-a)2+(y-b)2=r2的圆心为抛物线y2=4x的焦点,且与直线3x+4y+2=0相切,则该圆的方程为().A.(x-1)2+y2=B.x2+(y-1)2=C.(x-1)2+y2=1D.x2+(y-1)2=1【答案】C【解析】因为抛物线y2=4x的焦点坐标为(1,0),所以a=1,b=0.又根据=1=r,所以圆的方程为(x-1)2+y2=1.16.如图,在正方体ABCD-A1B1C1D1中,当动点M在底面ABCD内运动时,总有D1A=D1M,则动点M在面ABCD内的轨迹是________上的一段弧.A.圆B.椭圆C.双曲线D.抛物线【答案】A【解析】因为满足条件的动点在底面ABCD内运动时,动点的轨迹是以D1D为轴线,以D1A为母线的圆锥,所以动点M在面ABCD内的轨迹是圆的一部分.17.已知圆:,则下列命题:①圆上的点到的最短距离的最小值为;②圆上有且只有一点到点的距离与到直线的距离相等;③已知,在圆上有且只有一点,使得以为直径的圆与直线相切.真命题的个数为A.B.C.D.【答案】D【解析】已知动圆的圆心的轨迹方程为:,所以动圆构成的轨迹为夹在抛物线和抛物线之间的部分(包括边界),所以①②③都满足题意【考点】圆的方程的性质、点、直线与圆的位置关系及其判断.18.已知圆与x轴切于A点,与y轴切于B点,设劣弧的中点为M,则过点M的圆C的切线方程是()A.B.C.D.【答案】A【解析】由已知得,又切线斜率为1,故切线方程为,即.【考点】1、圆的标准方程;2、圆的切线的性质;3、直线的方程.19.圆心在曲线上,且与直线相切的面积最小的圆的方程是_______。
2019-2019 年高考数学圆的方程专题练习(含答案)圆的标准方程 (x-a)+(y-b)=r 中,有三个参数a、b、r,下边是查词典数学网整理的2019-2019 年高考数学圆的方程专题练习,希望岁考生复习有帮助。
一、填空题1.若圆 C 的半径为 1,圆心在第一象限,且与直线 4x-3y=0 和 x 轴都相切,则该圆的标准方程是________.[ 分析 ] 设圆心 C(a,b)(a0,b0),由题意得 b=1.又圆心 C 到直线 4x-3y=0 的距离 d==1,解得 a=2 或 a=-(舍).所以该圆的标准方程为(x-2)2+(y-1)2=1.[ 答案 ] (x-2)2+(y-1)2=12.(2019 南京质检 )已知点 P(2,1)在圆 C:x2+y2+ax-2y+b=0 上,点 P对于直线 x+y-1=0 的对称点也在圆 C 上,则圆 C 的圆心坐标为________.[ 分析 ] 由于点 P 对于直线 x+y-1=0 的对称点也在圆上,该直线过圆心,即圆心知足方程x+y-1=0 ,所以 -+1-1=0,解得 a=0,所以圆心坐标为 (0,1).[ 答案 ] (0,1)3.已知圆心在直线 y=-4x 上,且圆与直线 l:x+y-1=0 相切于点 P(3,-2),则该圆的方程是 ________.[ 分析 ] 过切点且与 x+y-1=0 垂直的直线为 y+2=x-3 ,与 y=-4x 联立可求得圆心为 (1,-4).半径 r=2,所求圆的方程为 (x-1)2+(y+4)2=8.[ 答案 ] (x-1)2+(y+4)2=84.(2019 江苏常州模拟 )已知实数 x,y 知足 x2+y2-4x+6y+12=0 ,则|2x-y|的最小值为 ________.[ 分析 ] x2+y2-4x+6y+12=0 配方得 (x-2)2+(y+3)2=1 ,令 x=2+cos ,y=-3+sin ,则 |2x-y|=|4+2cos +3-sin |=|7-sin (-7-(tan =2).[答案] 7-5.已知圆 x2+y2+4x-8y+1=0 对于直线 2ax-by+8=0(a0,b0)对称,则 + 的最小值是 ________.[ 分析 ] 由圆的对称性可得,直线2ax-by+8=0 必过圆心 (-2,4),所以a+b=2.所以 +=+=++52+5=9 ,由=,则 a2=4b2,又由 a+b=2,故当且仅当 a=,b=时取等号 .[答案] 96.(2019 南京市、盐城市高三模拟 )在平面直角坐标系 xOy 中,若圆x2+(y-1)2=4 上存在 A,B 两点对于点 P(1,2)成中心对称,则直线AB 的方程为 ________.[ 分析 ] 由题意得圆心与 P 点连线垂直于 AB ,所以 kOP==1,kAB=-1 ,而直线 AB 过 P 点,所以直线 AB 的方程为 y-2=-(x-1) ,即 x+y-3=0. [ 答案 ] x+y-3=07.(2019 泰州质检 )若 a,且方程 x2+y2+ax+2ay+2a2+a-1=0 表示圆,则a=________.[ 分析 ] 要使方程 x2+y2+ax+2ay+2a2+a-1=0表示圆,则a2+(2a)2-4(2a2+a-1)0,解得 -20)对于直线 x+y+2=0 对称 .(1)求圆 C 的方程 ;(2)设 Q 为圆 C 上的一个动点,求的最小值.[ 解] (1)设圆心 C(a,b),由题意得解得则圆 C 的方程为 x2+y2=r2 ,将点 P 的坐标代入得 r2=2,故圆 C 的方程为 x2+y2=2.(2)设 Q(x,y),则 x2+y2=2,=(x-1 ,y-1)(x+2 ,y+2)=x2+y2+x+y-4=x+y-2.令 x=cos ,y=sin ,=x+y-2=(sin +cos )-2=2sin-2,所以的最小值为 -4.10.已知圆的圆心为坐标原点,且经过点(-1,).(1)求圆的方程 ;(2)若直线 l1:x-y+b=0 与此圆有且只有一个公共点,求 b 的值 ;(3)求直线 l2:x-y+2=0 被此圆截得的弦长 .[ 解] (1)已知心 (0,0),半径 r==2,所以的方程x2+y2=4.(2)由已知得 l1 与相切,心 (0,0)到 l1 的距离等于半径2,即=2,解得 b=4.(3)l2 与 x2+y2=4 订交,心 (0,0)到 l2 的距离 d==,所截弦 l=2=2=2. 一般来,“教”观点之形成了十分漫的史。
高三数学圆的标准方程与一般方程试题答案及解析1.已知点,圆:,过点的动直线与圆交于两点,线段的中点为,为坐标原点.(1)求的轨迹方程;(2)当时,求的方程及的面积【答案】(1);(2)的方程为; 的面积为.【解析】(1)先由圆的一般方程与标准方程的转化可将圆C的方程可化为,所以圆心为,半径为4,根据求曲线方程的方法可设,由向量的知识和几何关系:,运用向量数量积运算可得方程:;(2)由第(1)中所求可知M的轨迹是以点为圆心,为半径的圆,加之题中条件,故O在线段PM的垂直平分线上,又P在圆N上,从而,不难得出的方程为;结合面积公式可求又的面积为.试题解析:(1)圆C的方程可化为,所以圆心为,半径为4,设,则,,由题设知,故,即.由于点P在圆C的内部,所以M的轨迹方程是.(2)由(1)可知M的轨迹是以点为圆心,为半径的圆.由于,故O在线段PM的垂直平分线上,又P在圆N上,从而.因为ON的斜率为3,所以的斜率为,故的方程为.又,O到的距离为,,所以的面积为.【考点】1.曲线方程的求法;2.圆的方程与几何性质;3.直线与圆的位置关系2.圆心在直线上的圆与轴的正半轴相切,圆截轴所得弦的长为,则圆的标准方程为 .【答案】【解析】因为圆心在直线上,所以,可设圆心为.因为圆与轴相切,所以,半径,又因为圆截轴所得弦长为所以,.解得,故所求圆的方程为.【考点】圆的方程,直线与圆的位置关系.3.(2011•湖北)如图,直角坐标系xOy所在平面为α,直角坐标系x′Oy′(其中y′与y轴重合)所在的平面为β,∠xOx′=45°.(1)已知平面β内有一点P′(2,2),则点P′在平面α内的射影P的坐标为_________;(2)已知平面β内的曲线C′的方程是(x′﹣)2+2y2﹣2=0,则曲线C′在平面α内的射影C的方程是_________.【答案】(2,2);(x﹣1)2+y2=1.【解析】(1)由题意知点P′在平面上的射影P距离x轴的距离不变是2,距离y轴的距离变成2cos45°=2,∴点P′在平面α内的射影P的坐标为(2,2)(2)设(x′﹣)2+2y2﹣2=0上的任意点为A(x0,y),A在平面α上的射影是(x,y)根据上一问的结果,得到x=x0,y=y,∵,∴∴(x﹣1)2+y2=1,故答案为:(2,2);(x﹣1)2+y2=1.4.以抛物线y2=4x的焦点为圆心,且过坐标原点的圆的方程为()A.x2+y2+2x=0B.x2+y2+x=0C.x2+y2﹣x=0D.x2+y2﹣2x=0【答案】D【解析】因为已知抛物线的焦点坐标为(1,0),即所求圆的圆心,又圆过原点,所以圆的半径为r=1,故所求圆的方程为(x﹣1)2+y2=1,即x2﹣2x+y2=0,故选D.5.已知圆C1:(x+1)2+(y-1)2=1,圆C2与圆C1关于直线x-y-1=0对称,则圆C2的方程为()A.(x-1)2+(y+1)2=1 B.(x+2)2+(y-2)2=1 C.(x+1)2+(y-1)2=1 D.(x-2)2+(y+2)2=1【答案】D【解析】圆C1:(x+1)2+(y-1)2=1的圆心为(-1,1).圆C2的圆心设为(a,b),C1与C2关于直线x-y-1=0对称,∴解得圆C2的半径为1,∴圆C2的方程为(x-2)2+(y+2)2=1,选D6.点(1,1)在圆(x-a)2+(y+a)2=4内,则实数a的取值范围是________.【答案】(-1,1)【解析】∵点(1,1)在圆的内部,∴(1-a)2+(1+a)2<4,∴-1<a<1.7.在平面直角坐标系xOy中,二次函数f(x)=x2+2x+b(x∈R)与两坐标轴有三个交点.记过三个交点的圆为圆C.(1)求实数b的取值范围;(2)求圆C的方程;(3)圆C是否经过定点(与b的取值无关)?证明你的结论.【答案】(1)<1且b≠0.(2)x2+y2+2x-(b+1)y+b=0(3)C必过定点(-2,1)【解析】(1)令x=0,得抛物线与y轴的交点是(0,b),令f(x)=0,得x2+2x+b=0,由题意b≠0且Δ>0,解得b<1且b≠0.(2)设所求圆的一般方程为x2+y2+Dx+Ey+F=0,令y=0,得x2+Dx+F=0,这与x2+2x+b =0是同一个方程,故D=2,F=b,令x=0,得y2+Ey+b=0,此方程有一个根为b,代入得E=-b-1,所以圆C的方程为x2+y2+2x-(b+1)y+b=0.(3)圆C必过定点(0,1),(-2,1).证明:将(0,1)代入圆C的方程,得左边=02+12+2×0-(b+1)×1+b=0,右边=0,所以圆C 必过定点(0,1);同理可证圆C必过定点(-2,1).8. P(x,y)在圆C:(x-1)2+(y-1)2=1上移动,试求x2+y2的最小值.【答案】3-2【解析】由C(1,1)得OC=,则OPmin =-1,即()min=-1.所以x2+y2的最小值为(-1)2=3-2.9.若圆心在x轴上、半径为的圆C位于y轴左侧,且被直线x+2y=0截得的弦长为4,则圆C的方程是()A.(x-)2+y2=5B.(x+)2+y2=5C.(x-5)2+y2=5D.(x+5)2+y2=5【答案】B【解析】设圆心为(a,0)(a<0),因为截得的弦长为4,所以弦心距为1,则d==1,解得a=-,所以,所求圆的方程为(x+)2+y2=5.10.与直线l:x+y-2=0和曲线x2+y2-12x-12y+54=0都相切的半径最小的圆的标准方程是.【答案】(x-2)2+(y-2)2=2【解析】【思路点拨】数形结合得最小圆的圆心一定在过x2+y2-12x-12y+54=0的圆心与直线x+y-2=0垂直的垂线段上.解:∵圆A:(x-6)2+(y-6) 2=18,∴A(6,6),半径r1=3,且OA⊥l,A到l的距离为5,显然所求圆B的直径2r2=2,即r2=,又OB=OA-r1-r2=2,由与x轴正半轴成45°角,∴B(2,2),∴方程为(x-2)2+(y-2)2=2.11.点P(4,-2)与圆x2+y2=4上任一点连线的中点的轨迹方程是() A.(x-2)2+(y+1)2=1B.(x-2)2+(y+1)2=4 C.(x+4)2+(y-2)2=4D.(x+2)2+(y-1)2=1【答案】A【解析】设圆上任一点为Q(x0,y),PQ的中点为M(x,y),则解得又因为点Q在圆x2+y2=4上,所以+=4,即(2x-4)2+(2y+2)2=4,即(x-2)2+(y+1)2=1.12.已知圆的方程为x2+y2-6x-8y=0,设该圆中过点(3,5)的最长弦和最短弦分别为AC和BD,则四边形ABCD的面积是().A.10B.20C.30D.40【答案】B【解析】配方可得(x-3)2+(y-4)2=25,其圆心为C(3,4),半径为r=5,则过点(3,5)的最长弦AC=2r=10,最短弦BD=2=4,且有AC⊥BD,则四边形ABCD的面积为S=AC×BD=20.13.已知点A(-3,0),B(3,0),动点P满足|PA|=2|PB|.(1)若点P的轨迹为曲线C,求此曲线的方程;(2)若点Q在直线l1:x+y+3=0上,直线l2经过点Q且与曲线C只有一个公共点M,求|QM|的最小值.【答案】(1)(x-5)2+y2=16(2)4【解析】(1)设点P的坐标为(x,y),且|PA|=2|PB|,则=2,化简得曲线C:(x-5)2+y2=16.(2)曲线C是以点(5,0)为圆心,4为半径的圆,如图.是此圆的切线,连接CQ,由直线l2则|QM|=,当CQ⊥l时,|CQ|取最小值,|CQ|=,此时|QM|的最小值为=4.114.过点引直线与曲线相交于两点,O为坐标原点,当的面积取最大值时,直线的斜率等于.【答案】-【解析】由得:;表示圆心在原点,半径的圆位于轴下方的部分(含端点);如下图:直线的方程为:,即,所以,当,即,整理得:又因为,所以,.故答案填:【考点】1、圆的标准方程;2、直线与圆的位置关系;3、数形结合.15.圆心在曲线上,且与直线相切的面积最小的圆的方程是_______。