罗尔定理定义
- 格式:docx
- 大小:92.60 KB
- 文档页数:1
罗尔定理内容及证明罗尔定理是数学中重要的定理,它在不同的时期有不同的定义、证明和应用,它的定义、证明以及应用在一定程度上表明了拓扑的发展;因此,弄清楚罗尔定理是很有意义的。
本文从定义出发,介绍了罗尔定理的内容,然后讨论了罗尔定理的证明和应用。
一、罗尔定理的定义罗尔定理是拓扑学中的一个重要定理,由美国数学家Joseph L. Roer首次提出,故又称为“罗尔定理”。
它的定义如下:设G是一个有限的无向图,则G的每个非边界顶点都有至少三个邻接顶点。
二、罗尔定理的证明罗尔定理的证明主要分为三个部分:假设反证法、归纳法和极限技巧。
1、假设反证法假设反证法也称证明反述法,是一种常用的证明方法。
它的核心思想是假设目标结论不成立,然后通过合理推理得出一个矛盾结论,这样就可以证明目标结论的正确性。
对于罗尔定理而言,可以用假设反证法来证明:有G是一个有限的无向图,非边界顶点数为n,假设G的每个非边界顶点都有少于三个邻接顶点,也就是存在一个非边界顶点V1,有V1的邻接顶点数小于3;反证矛盾,则有G的其他n-1个非边界顶点必定都有3个邻接顶点,但此时n-1个顶点却只有n-2个,这就与G为有限无向图矛盾,所以假设不成立,即G的每个非边界顶点都有至少三个邻接顶点,即罗尔定理的结论成立。
2、归纳法归纳法是一种总结归纳的推理方法,从已知事实出发,按照归纳逻辑,对一定范围内的所有情况进行逐一分析,可以得出某种普遍结论。
对于罗尔定理而言,可以用归纳法来证明:假设G是一个有限的无向图,非边界结点数为n,那么有G的每个非边界结点的邻接结点数之和为3n,而G的边数必定小于等于3n。
通过归纳推理,可以把上述结论推广到n=1,2,3,…的情况,得出一般的结论,即G的每个非边界顶点至少有三个邻接顶点,即罗尔定理的结论。
3、极限技巧极限技巧也称定向法,是拓扑学中常用的一种证明方法。
它的核心思想是:用数量极限方法可以证明两个无关的定理及其它事实。
罗尔定理的几种类型及其应用1 引言最原始的罗尔定理是由法国数学家罗尔于 1691 年在题为 《任意次方程的一个解法的证明》 的论 文中给出的 (罗尔 1652 年 4 月 21 日生于昂贝尔特, 1719 年 11月 8 日卒于巴黎 ) ,主要内容是 : 在多项式方程 f x =0 的两个相邻的实根之间,方程 f x 0 至少有一个根.在一百多年后, 1846 年尤斯托( Giusto Bellavitis )将这一定理推广到可微函数,尤斯托还 把此定理命名为罗尔定理,这就是现在我们常用的罗尔定理 .2 微分中值定理2.1 罗尔定理1 (P若函数 f x 满足以下条件:( 1)在闭区间 a,b 上连续;( 2)在开区间 a,b 上可导;( 3) fa fb . 则至少存在一个数 a,b ,使得 f 0.罗尔定理的几何意义是:在每一点都可导的一段连续曲线上,如果曲线的两端点高度相同,那 么曲线至少存在一条水平切线 . 罗尔定理是大学微分学中很重要的中值定理, 它演绎了拉格朗日中值 定理与柯西中值定理,这三个定理构成了微分学中值基本理论,在高等数学中占有十分重要的地 位.下面给出拉格朗日中值定理和柯西中值定理的内容和几何意义 .2.2 拉格朗日中值定理x 满足:( 1) 在闭区间 a,b 连续;( 2) 在开区间 a,b 上可导;则至少存在拉格朗日中值定理的几何意义是:在每一点都可导的的连续曲线上,如果两端点也连续,那么 至少存在一个点,该点的切线平行于两端点的连线 .2.3 柯西中值定理 1若函数 f x 和 g x 满足:( 1)在闭区间 a,b 连续;( 2)在开区间 a,b 上可导;( 3) f x 和 g x 不同时为 0;( 4) g a g b 则存在 a,b ;使得fa。
若函数个数 a,b ,使得 ff a f b ab柯西中值定理的几何意义与前两个定理的几何意义类似,只是要把f x 和g x 这两个函数写成以x 为参量的参量方程u g xv f x于是两函数联系在平面uOv 上一段连续曲线上了,若曲线的两端点也连续,则在曲线上至少存在一点,该点的切线与两端点的连线平行。
第六讲 中值定理一、罗尔(Rolle)定理1、引理(费马引理) 设函数()f x 在点0x 的某邻域0()U x 内有定义,若()f x 在点0x 可导,且0()x U x ∀∈有0()()f x f x ≤ (或0()()f x f x ≥).则0()0f x '=.2、定理(罗尔定理) 若函数()f x 满足:(1)在闭区间[,]a b 上连续; (2)在开区间(,)a b 内可导; (3)()()=f a f b , 则至少存在一点(,)∈a b ξ,使()0'=f ξ3、几何意义:例1 验证函数3()3=-f x x x在[内至少存在一点ξ,使得()0'=f ξ,并求出ξ的具体位置例 2 设,,a b c 是任意实数,证明32432ax bx cx a b c ++=++在(0,1)内至少有一个实根.二、拉格朗日(Lagrange)中值定理1、定理(拉格朗日中值定理) 如果函数()f x 满足:(1)在闭区间[,]a b 上连续; (2)在开区间(,)a b 内可导,则至少存在一点(,)∈a b ξ,使得: ()()()-'=-f b f a f b a ξ. 2、几何意义:例3 证明不等式ln --<<b a b b a b a a (0)<<a b . 3. 两个重要推论推论 1 如果函数()f x 在区间(,)a b 内可导,则()f x 在(,)a b 内恒等于常数的充要条件是()0'≡f x .推论2 如果函数()f x 、()g x 在区间(,)a b 内可导,且对任意的(,)∈x a b 有()()''=f x g x ,则在区间(,)a b 内()f x 与()g x 只差一个常数C ,即()()=+f x g x C例4 试证明恒等式:arctan arctan ()2x x e e x π-+=-∞<<+∞课堂练习1. 利用微分中值定理证明下列不等式: (1)sin sin b a b a -≤-;(2)1(0)x x x e xe x <-<>.2. 证明恒等式: arcsin arccos (11)2x x x π+=-≤≤.3. 设()f x 在[0,1]上连续,在(0,1)内可导,且(1)0f =,证明存在一点(0,1)ξ∈,使 ()()0f f ξξξ'+=.。
第四章微分中值定理4.1 微分中值定理微分中值定理在微积分理论中占有重要地位,它建立了函数与导数之间的联系,提供了导数应用的基础理论依据,本节介绍罗尔(Rolle)定理以及拉格朗日(Lagrange)中值定理。
一、罗尔定理我们已经知道,有界闭区间上的连续函数一定有最大值与最小值,但是最大值与最小值不一定是极值,例如当最大值和最小值仅在区间端点处取得时就不是极值,而如果最大值或最小值在区间内部取得时,则一定为极值,因此,如果有界闭区间上的连续函数在两个端点处的函数值相等,那么它的最大值与最小值中至少有一个在开区间内取得,从而一定是极值,如果函数可导的话,相应的极值点一定是驻点,即该点处导数为0,这样,我们自然得到下面的罗尔定理。
定理4.1(罗尔定理)设函数f(x)满足:(1)在闭区间[a、b]上连续;(2)在开区间(a、b)内可导;(3)f(a)=f(b),则至少存在一点罗尔定理也有十分明显的几何意义,设曲线弧(如图4.1所示)的方程为y=f(x)(a≤x≤b),罗尔定理的条件在几何上表示:是一条连续的曲线弧,除了端点外处处有不垂直于x轴的切线,并且两个端点A 和B的纵坐标相同。
定理结论表述了这样的几何事实:曲线弧上至少有一点C,在这点处曲线的切线是水平的,即罗尔定理的几何意义是:当曲线弧在[a、b]上为连续弧段,在(a、b)的曲线弧上每一点均有不垂直于x轴的切线,并且曲线弧两个端点的纵坐标相同,那么曲线弧上至少有一点的切线平行于x轴(如图4.1所示)有必要指出,罗尔定理中的三个条件缺一不可,条件(1)保证了函数f(x)的最大值与最小值的存在性;条件(3)保证了最大值与最小值中至少有一个在开区间内取得,从而是极值;条件(2)保证了该极值点处函数的可导性,因此,如果缺少这三个条件中的任何一个定理都将不成立,读者不妨自己举些反例加以验证。
例1 在区间[-1,1]上满足罗尔定理条件的函数是()[答疑编号10040101:针对该题提问]解:因为在x=0处没定义,所以不连续,故在区间[-1,1]上不满足罗尔定理的条件。
罗尔定理内容及证明罗尔定理(RolleTheorem)是求解单变量函数微分方程的一个基本定理,它最初是由法国数学家特朗罗尔在1691年提出来的。
罗尔定理它说明了在满足某些特定条件的情况下,某一个函数的一阶导数存在且满足某一条件,它是实变函数微分方程的理论和应用的一个基础性定理。
一、罗尔定理的内容罗尔定理是指,设在[a,b]上已知f(a) = f(b),且f(x)在区间[a,b]上连续可导,则存在某个c∈(a,b),使得f(c)= 0。
它概括地说明了,在函数f(x)在区间[a,b]上有f(a)=f(b),并且f(x)在区间[a,b]上连续可导的情况下,那么函数f一定存在极值点,也就是一阶导数f(x)在某一点存在且为零,也就是f(c)=0。
二、罗尔定理的证明设f(x)在区间[a,b]上连续可导,f(a)=f(b)(设f(a)≠f(b),不妨设f(a)>f(b)),证明f(c)=0。
我们假定c∈(a,b),如果f(a)>f(b),那么说明f在[a,b]上是连续的凸函数,其一阶导数f(x)也是连续的,存在一点c∈(a,b),使得f(c)=0。
由此,根据函数微分的定义,可知$$f(c)=lim_{xrightarrowc}frac{f(x)-f(c)}{x-c}=frac{f(b)-f(c)}{b-c}+frac{f(c)-f(a)}{c-a}=frac{f(b)-f(a)}{b-c} +frac{f(a)-f(a)}{c-a}=frac{f(b)-f(a)}{b-a}$$由于f(a)=f(b),以f(c)=0,即c为f(x)的极值点。
综上所述,罗尔定理说明了在满足某些特定条件的情况下,一个函数f一定存在一个极值点,其一阶导数f(x)在某一点存在且为零,由此可以应用在解决实变函数微分方程的应用中,成为实变函数微分方程的理论和应用的一个基础性定理。
详细的推导过程在本文中已经完全说明,罗尔定理在实际中不断发挥着重要作用。
罗尔定理是微分学中的一条重要定理,它被命名为法国数学家米歇尔·罗尔而得名。
该定理的现代形式如下:如果函数f(x)在闭区间上[a,b]连续,在开区间(a,b)上可导,那么在开区间(a,b)内至少存在一点ξ使得f'(ξ)=(f(b)-f(a))/(b-a)。
这个定理的现代证明是基于中值定理(也被称为介值定理或零点定理)。
在这个定理的现代形式中,我们注意到的关键条件是在闭区间上[a,b]的连续性和在开区间(a,b)的可导性。
这两个条件保证了函数在区间内的变化是连续的,并在每一点都有切线。
第三个条件f(a)=f(b)则表明函数在两个端点的值是相等的,这意味着函数在整个区间上的变化是平滑的,没有跳跃。
这些条件一起保证了在开区间(a,b)内至少存在一点ξ使得f'(ξ)=(f(b)-f(a))/(b-a)。
这个定理的应用非常广泛,例如在微分方程、函数的不等式和积分等领域。