60道一元二次方程
- 格式:doc
- 大小:27.00 KB
- 文档页数:3
一元二次方程100道计算题练习(含答案)1、(x+4)=5(x+4)解:将等式两边展开,得到x+4=5x+20,移项化简得4x=-16,因此x=-4.2、(x+1)=4x解:将等式两边展开,得到x+1=4x,移项化简得3x=1,因此x=1/3.3、(x+3)=(1-2x)2解:将等式两边展开,得到x+3=1-4x+4x2,移项化简得4x2-4x-2=0,因此x=1+√3或x=1-√3.4、2x2-10x=3解:将等式两边移项化简,得到2x2-10x-3=0,利用求根公式得到x=(5+√37)/2或x=(5-√37)/2.5、(x+5)2=16解:将等式两边展开,得到x2+10x+25=16,移项化简得x2+10x+9=0,因此x=-1或x=-9.6、2(2x-1)-x(1-2x)=0解:将等式两边展开,得到4x-2-x+2x2=0,移项化简得2x2+3x-2=0,因此x=1/2或x=-2.7、x2+6x-5=0解:利用求根公式得到x=(-6±√56)/2,化简得到x=-3+√14或x=-3-√14.8、5x2-2/5=0解:将等式两边乘以5,得到25x2-2=0,移项化简得到x=±√(2/25)=±2/5.9、8(3-x)2-72=0解:将等式两边移项化简,得到8(3-x)2=72,化简得到(3-x)2=9,因此x=0或x=6.10、3x(x+2)=5(x+2)解:将等式两边移项化简,得到3x(x+2)-5(x+2)=0,因此(3x-5)(x+2)=0,因此x=5/3或x=-2.11、(1-3y)2+2(3y-1)=0解:将等式展开化简,得到9y2-18y+9+6y-2=0,移项化简得到9y2-12y+7=0,利用求根公式得到y=(6±√12)/9.12、x2+2x+3=0解:利用求根公式得到x=(-2±√(-8))/2,因为无实数解,所以方程无解。
完整版)一元二次方程100道计算题练习(附答案)1、(x+4)=5(x+4)^22、(x+1)=4x3、(x+3)=(1-2x)^24、2x^2-10x=35、x^2=646、(x+5)^2=167、2(2x-1)-x(1-2x)=08、5x^2-2/5=09、8(3-x)^2-72=010、3x(x+2)=5(x+2)11、(1-3y)^2+2(3y-1)=012、x^2+2x+3=013、x^2+6x-5=014、x^2-4x+3=015、x^2-2x-1=016、2x^2+3x+1=017、3x^2+2x-1=018、5x^2-3x+2=019、3x-3=020、-2x+12=021、x^2-6x+9=022、3x-2=2x+323、x-2x-4=024、x=3/425、3x^2+8x-3=026、3x^2+11x+14=027、x=-9 or x=-228、2(x-3)^2=x^2-929、-3x^2+22x-24=030、4t^2-4t+1=031、(2x-3)^2-121=032、x^2-4x=033、(x+2)^2=8x34、x=1/3 or x=-235、7x^2+2x-36=036、x=1 or x=-1 or x=3/237、4(x-3)^2+x(x-3)=038、6x^2-31x+35=039、x=1/2 or x=140、2x^2-23x+65=0这是一组一元二次方程的计算题练,需要用不同的方法来解决这些问题。
为了方便,我们可以将这些方程按照不同的方法分类。
一种方法是因式分解法,另一种方法是开平方法,还有一种方法是配方法,最后一种方法是公式法。
根据不同的题目,我们可以选择不同的方法来解决问题。
例如,对于方程(x-2)^2=(2x-3)^2,我们可以使用因式分解法来解决。
将方程化简后,得到x=5/3或x=-1/3.对于方程2x^2-5x+2=0,我们可以使用配方法来解决。
将方程化简后,得到x=1/2或x=2.对于方程-3x^2+22x-24=0,我们可以使用公式法来解决。
一元二次方程100道计算题练习(含答案)214、x — 4x+ 3=02 15、x 2— 2x — 1 =0213、x + 6x — 5=01、(x 4)2 5(x 4)2、(x 1)2 4x3、(x 3)2 (1 2x)22 4、2x 10x 35、 (x+5) 2=166、2 (2x — 1)- x (1 — 2x ) =07、x 2 =64 8 5x 2 - 2=059、8 (3 -x ) 2 勺2=010、3x(x+2)=5(x+2)11、(1 — 3y ) 2+2 (3y — 1) =0212、x + 2x + 3=016、2x2+3x+1=0 17、3x2+2x—1 =0 18、5x2—3x+2 =0219、7x -4x-3 =0220、-x2 -x+12 =0221、x2-6x+9 =022、(3x 2)2(2x 3)223、x2-2x-4=0 24、x2-3=4x 25、3x 2+ 8 x—3= 0 (配方法) 26、(3x + 2)(x+ 3)= x+ 14 27、(x+1)(x+8)=-1228、2(x—3) 2= x 2—9 29、—3x 2+22x—24=30、(2x-1) 2 +3(2x-1) +2=031、2x 2—9x+8=32、3( x-5) 2=x(5-x) 33、(x+2) 2=8x34、(x—2) 2= (2x+3)2235、7x22x 0236、4t 24t 1 0237、4 x 3 x x 3 0238、6x231x 35 0239 、2x 3 121 0240、2x 23x 65 0补充练习: (x — 2) 2 = (2x-3)2 2x 4x 0X 2-2 -73 x+3=0 2x 5二、利用开平方法解下列方程 2(2y 1)2 5 4( x-3)、利用因式分解法解下列方程 3x( x 1) 3x 38x5 16 02=25(3x 2)2 24、利用配方法解下列方程3x26x 12 0X25 2x 2 0x27x 10 0四、利用公式法解下列方程3X2+5(2X+1)=0 —3x 2+ 22x —24= 0 2x (x—3) =x—3.五、选用适当的方法解下列方程(x+ 1) 2—3 (x + 1)+ 2 = 0 (2x 1)29(x 3)2x22x 3 0x(x 1)1 (x 1)( x 2)34x (x + 1)— 5x = 0. 3x(x — 3) = 2(x — 1) (x + 1).应用题:1、某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利40元,为扩大销售增加盈利,尽快减少库存,商场决定采取适当的降价措施,经调查发现,如果每件衬衫每降价一元,市场每天可多 售2件,若商场平均每天盈利 1250元,每件衬衫应降价多少元2、两个正方形,小正方形的边长比大正方形的边长的一半多 面积的2倍少32平方厘米,求大小两个正方形的边长3、如图,有一块梯形铁板 ABCD, AB // CD,/ A=90°, AB=6 m , CD=4 m , AD=2 m ,现在梯形中裁 出一x 2 3x -2(3x 11)(x 2)2 4 cm ,大正方形的面积比小正方形的内接矩形铁板AEFG使E在AB上, F在BC上, G在AD上,若矩形铁板的面积为 5 m2,则矩形的一边EF 长为多少4、如右图,某小在长32米,区规划宽20米的矩形场地ABCD上修建三条同样宽的3条小路,使其中两条与AD平行,一条与AB平行,其余部分种草,若使草坪的面积为566米2,问小路应为多宽D5、某商店经销一种销售成本为每千克40元的水产品,据市场分析,若按每千克50元销售一个月能售出500千克;销售单价每涨1元,月销售量就减少10千克,商店想在月销售成本不超过1万元的情况下,使得月销售利润达到8000元,销售单价应定为多少6•某工厂1998年初投资100万元生产某种新产品,1998年底将获得的利润与年初的投资的和作为1999年初的投资,到1999年底,两年共获利润56万元,已知1999年的年获利率比1998年的年获利率多10个百分点,求1998年和1999年的年获利率各是多少思考:1、关于x的一元二次方程 a 2 x2x a2 4 0的一个根为0,贝U a的值为_______________2、若关于x的一元二次方程x2 2x k0没有实数根,则k的取值范围是___________________2 3 23、如果x x 1 0,那么代数式x 2x 7的值4、五羊足球队举行庆祝晚宴,出席者两两碰杯一次,共碰杯990次,问晚宴共有多少人出席5、某小组每人送他人一张照片,全组共送了90张,那么这个小组共多少人6、将一条长20cm的铁丝剪成两段,并以每一段铁丝的长度为周长作成一个正方形。
一元二次方程50道计算题1. 解方程:x^2 - 7x + 10 = 02. 解方程:3x^2 + 2x - 5 = 03. 解方程:2x^2 - 5x - 3 = 04. 解方程:4x^2 + 4x + 1 = 05. 解方程:x^2 - 9x + 20 = 06. 解方程:5x^2 - 8x - 3 = 07. 解方程:3x^2 + 6x + 9 = 08. 解方程:2x^2 - 4x - 2 = 09. 解方程:x^2 + 5x + 6 = 010. 解方程:4x^2 - 12x + 9 = 011. 解方程:2x^2 + 7x + 3 = 012. 解方程:x^2 - 4x + 4 = 013. 解方程:3x^2 - x - 2 = 014. 解方程:4x^2 + 3x - 2 = 015. 解方程:x^2 + 2x + 1 = 016. 解方程:2x^2 - 10x + 12 = 018. 解方程:x^2 - 6x + 9 = 019. 解方程:3x^2 + 5x + 2 = 020. 解方程:2x^2 - 9x + 5 = 021. 解方程:x^2 + 3x - 4 = 022. 解方程:4x^2 - x - 3 = 023. 解方程:x^2 + 2x - 15 = 024. 解方程:3x^2 - 10x + 8 = 025. 解方程:2x^2 + 8x + 5 = 026. 解方程:x^2 - 5x + 6 = 027. 解方程:4x^2 - 2x - 1 = 028. 解方程:x^2 - 7x + 12 = 029. 解方程:3x^2 + 9x + 6 = 030. 解方程:2x^2 - 7x - 3 = 031. 解方程:x^2 + 4x + 4 = 032. 解方程:5x^2 - 3x - 2 = 033. 解方程:4x^2 + 11x + 6 = 035. 解方程:3x^2 + 4x - 4 = 036. 解方程:2x^2 + 6x + 4 = 037. 解方程:x^2 - 3x - 10 = 038. 解方程:5x^2 - 13x + 6 = 039. 解方程:4x^2 + x - 6 = 040. 解方程:x^2 - 4x + 3 = 041. 解方程:3x^2 + 10x + 8 = 042. 解方程:2x^2 - 5x - 2 = 043. 解方程:x^2 + x - 12 = 044. 解方程:4x^2 - 9x + 2 = 045. 解方程:5x^2 + 2x - 1 = 046. 解方程:x^2 - 6x + 9 = 047. 解方程:2x^2 + 3x - 2 = 048. 解方程:3x^2 - 4x - 4 = 049. 解方程:x^2 + 7x + 10 = 050. 解方程:4x^2 - 8x + 4 = 0以上是一元二次方程的50道计算题。
以下是一些一元二次方程的例子:1. 求解X2 + 5x + 6 = 0答案:x=-2 或x=-32. 求解2x^2 - 5x + 2 = 0答案:x=1/2 或x=23. 求解x^2 - 9 = 0答案:x=3 或x=-34. 求解3x^2 + 2x - 1 = 0答案:x=1/3 或x=-15. 求解2x^2 + 7x + 3 = 0答案:x=-1 或x=-3/26. 求解x^2 + 4x + 4 = 0答案:x=-27. 求解x^2 - 8x + 15 = 0答案:x=3 或x=58. 求解4x^2 + 4x + 1 = 0答案:x=-1/2 或x=-1/29. 求解5x^2 - 11x + 2 = 0答案:x=1/5 或x=210. 求解x^2 - 4x - 5 = 0答案:x=5 或x=-111. 求解2x^2 + 5x - 3 = 0答案:x=-3 或x=1/212. 求解x^2 - 6x + 5 = 0答案:x=1 或x=513. 求解x^2 - 3x - 18 = 0答案:x=6 或x=-314. 求解2x^2 - 7x - 15 = 0答案:x=5/2 或x=-315. 求解x^2 - 10x + 25 = 0答案:x=516. 求解x^2 + 2x - 3 = 0答案:x=-3 或x=117. 求解4x^2 - 4x - 3 = 0答案:x=3/2 或x=-1/218. 求解3x^2 - 10x + 7 = 0答案:x=1 或x=7/319. 求解x^2 - 7x + 10 = 0答案:x=2 或x=520. 求解2x^2 + 3x - 9 = 0答案:x=-3 或x=3/2.21. 求解x^2 + 3x - 10 = 0答案:x=2 或x=-522. 求解2x^2 + 4x - 6 = 0答案:x=-1+√7 或x=-1-√723. 求解x^2 + 6x + 8 = 0答案:x=-2 或x=-424. 求解3x^2 - 4x - 1 = 0答案:x=1/3 或x=-125. 求解x^2 - 5x - 14 = 0答案:x=7 或x=-226. 求解2x^2 - 8x + 6 = 0答案:x=1+√2 或x=1-√227. 求解x^2 + 2x - 35 = 0答案:x=5 或x=-728. 求解x^2 - 11x + 30 = 0答案:x=5 或x=629. 求解2x^2 - 5x - 12 = 0答案:x=4/2 或x=-3/230. 求解x^2 - 8x + 16 = 0答案:x=431. 求解x^2 - 2x - 63 = 0答案:x=9 或x=-732. 求解x^2 - 13x + 40 = 0答案:x=8 或x=533. 求解2x^2 + 11x + 5 = 0答案:x=-5 或x=-1/234. 求解x^2 + 8x + 15 = 0答案:x=-3 或x=-535. 求解x^2 - 4x - 32 = 0答案:x=-4 或x=836. 求解2x^2 + 9x + 7 = 0答案:x=-1 或x=-7/237. 求解x^2 - 3x - 40 = 0答案:x=8 或x=-538. 求解x^2 + 2x - 48 = 0答案:x=6 或x=-839. 求解x^2 - 12x + 32 = 0答案:x=8 或x=440. 求解2x^2 + 7x + 3 = 0答案:x=-1/2 或x=-341. 求解x^2 - 6x + 9 = 0答案:x=342. 求解4x^2 - 4x - 1 = 0答案:x=(2+√3)/2 或x=(2-√3)/243. 求解x^2 + 7x + 10 = 0答案:x=-2 或x=-544. 求解3x^2 + 8x - 3 = 0答案:x=-1 或x=1/345. 求解x^2 + 4x + 3 = 0答案:x=-1 或x=-346. 求解2x^2 - 3x - 5 = 0答案:x=1 或x=-5/247. 求解x^2 + 5x - 6 = 0答案:x=1 或x=-648. 求解3x^2 + 2x - 1 = 0答案:x=1/3 或x=-149. 求解x^2 - 10x + 24 = 0答案:x=4 或x=650. 求解2x^2 - 7x + 3 = 0答案:x=3/2 或x=1/251. 求解x^2 - 8x + 12 = 0答案:x=2 或x=652. 求解2x^2 + 3x - 2 = 0答案: x=1/2 或x=-253. 求解x^2 - 11x + 28 = 0答案:x=4 或x=754. 求解3x^2 - 7x - 6 = 0答案:x=2/3 或x=-355. 求解x^2 + 2x - 15 = 0答案:x=3 或x=-556. 求解x^2 - 5x + 6 = 0答案:x=3 或x=257. 求解2x^2 - 11x + 12 = 0答案:x=4 或x=3/258. 求解x^2 + 3x - 4 = 0答案:x=1 或x=-459. 求解4x^2 - 17x + 15 = 0答案:x=3/4 或x=560. 求解2x^2 + 5x + 3 = 0答案:x=-3 或x=-1/261. 求解x^2 - 2x - 3 = 0答案:x=-1 或x=362. 求解3x^2 - 4x - 3 = 0答案:x=1 或x=-1/363. 求解x^2 + 6x + 5 = 0答案:x=-1 或x=-564. 求解2x^2 + x - 1 = 0答案:x=1/2 或x=-165. 求解x^2 - 4x + 3 = 0答案:x=1 或x=366. 求解x^2 - 3x - 10 = 0答案:x=-2 或x=567. 求解2x^2 - 5x - 3 = 0答案:x=3 或x=-1/268. 求解x^2 + 4x - 21 = 0答案:x=3 或x=-769. 求解3x^2 + 4x - 4 = 0答案:x=1 或x=-4/370. 求解x^2 - 7x + 12 = 0答案:x=3 或x=471. 求解x^2 + 2x - 3 = 0答案:x=1 或x=-372. 求解2x^2 - 3x - 9 = 0答案:x=3 或x=-3/273. 求解x^2 - 6x + 9 = 0答案:x=374. 求解4x^2 + 5x - 6 = 0答案:x=3/4 或x=-275. 求解x^2 - 9x + 20 = 0答案:x=4 或x=576. 求解x^2 + 5x + 6 = 0答案:x=-3 或x=-277. 求解2x^2 - 7x + 6 = 0答案:x=3/2 或x=278. 求解x^2 + 7x + 10 = 0答案:x=-2 或x=-579. 求解x^2 + 8x + 15 = 0答案:x=-3 或x=-580. 求解3x^2 + 5x - 2 = 0答案:x=1/3 或x=-281. 2x^2 - 7x + 3 = 0,解为x=1或x=1.582. x^2 - 5x + 6 = 0,解为x=2或x=383. 4x^2 - 4x - 3 = 0,解为x=1/2+(1/2)sqrt(7)或x=1/2-(1/2)sqrt(7)84. x^2 + 2x - 8 = 0,解为x=2或x=-485. x^2 + 3x + 2 = 0,解为x=-1或x=-286. 3x^2 + 4x - 1 = 0,解为x=1/3或x=-187. x^2 - 2x - 24 = 0,解为x=6或x=-488. 2x^2 - 3x - 2 = 0,解为x=2或x=-0.589. x^2 - 7x + 10 = 0,解为x=2或x=590. 4x^2 + 4x + 1 = 0,解为x=-0.591. 2x^2 - 5x + 3 = 0,解为x=1或x=1.592. x^2 + 4x - 12 = 0,解为x=2或x=-693. 3x^2 + 2x - 1 = 0,解为x=1/3或x=-194. x^2 - 9x + 14 = 0,解为x=2或x=795. 4x^2 + 8x + 3 = 0,解为x=-0.75或x=-1.596. x^2 - 6x + 9 = 0,解为x=397. 2x^2 + x - 1 = 0,解为x=0.5或x=-198. x^2 - 4x - 21 = 0,解为x=-3或x=799. 3x^2 - x - 2 = 0,解为x=-1或x=2/3100. x^2 + 6x + 9 = 0,解为x=-3。
2 13、x + 6x — 5=02 14、x — 4x+ 3=0 215、x 2 —2x — 1 =02216、2x 2+3x+1=0一兀一次方程 100道计算题练习1、(x 4)2=5(x 4)2 2、(x 1)2;=4x2 2 3、(x 3)2= (1 — 2x)224、2x …10x = 35、(x+5 ) 2 =166、2 ( 2x — 1)— x (1 — 2x )7、x 2 =64r 28、5x 2-5=0 9、8 (3 -x ) 2 刁2=0=010、3x(x+2)=5(x+2)11、(1 — 3y ) 2+2 ( 3y — 1) =0212、x + 2x + 3=017、3x 2 +2x —1 =0218、5x2—3x+2 =0219、7x —4x —3=0 20、2-x -x+12 =0221、x2—6x+9 =022、(3x _2)2=(2x _3)223、x2-2x-4=0 24、x2-3=4x25、3x 2+ 8 x —3 = 0 (配方法)26、(3x + 2)(x + 3) = x+ 14 27、(x+1)(x+8)=-1228、2(x —3) 2= x 2—9 29、—3x 2+ 22x —24 = 0 30、(2x-1 ) 2 +3 (2x-1 ) +2=040、2x 2 -23x 65 =0补充练习:一、利用因式分解法解下列方程 (x — 2) 2 = (2x-3) 231、2x 2 — 9x + 8 = 0 32、3 (x-5) 2=x(5-x) 33、(x + 2) 2 = 8x34、(x — 2) 2 = (2x + 3)2 2 35、7x 2x =0 236、4t 一 4t 1 = 0237、4 x -3 x x -3]=0238、6x -31x 35 = 0239、 2x-3 -12仁0x 2 -4x =03x(x 1)=3x 3x2-2、、3X+3=0(x—5$ —8(x—5)+16 = 0、利用开平方法解下列方程12(2y -1)4 (x-3) 2=25 (3x 2)2 = 24三、利用配方法解下列方程x^ -5 2x 2 = 0 3x? -6x -12 = 0 - -- x2-7x 10=0四、利用公式法解下列方程(3x -11)(x -2) =2 x (x + 1) - 5x = 0. 3x(x —3) = 2(x —1) (x + 1).—3x 2+ 22x —24 = 0 2x (x —3) =x —3 .3X2+5(2X+1)=0五、选用适当的方法解下列方程(x + 1) 2—3 (x + 1) + 2 = 0 2 2(2x 1) =9(X-3) X2-2X-3 =02?-5x-7 = 0x23x 1 =0 2 池亠"1)(x 2)3 4应用题:1、某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利40元,为扩大销售增加盈利,尽快减少库存,商场决定采取适当的降价措施,经调查发现,如果每件衬衫每降价一元,市场每天可多售2件,若商场平均每天盈利1250元,每件衬衫应降价多少元?2、两个正方形,小正方形的边长比大正方形的边长的一半多 4 cm,大正方形的面积比小正方形的(3x -11)(x -2) =2 x (x + 1) - 5x = 0. 3x(x —3) = 2(x —1) (x + 1).面积的2倍少32平方厘米,求大小两个正方形的边长3、如图,有一块梯形铁板 ABCD , AB CD ,ZA =90 °,AB =6 m , CD =4 m , AD =2 m ,现在梯形中 裁出一内接矩形铁板 AEFG ,使E 在AB 上,F 在BC 上,G 在AD 上,若矩形铁板的面积为 5 m 2, 则矩形的一边EF 长为多少?4、如右图,某小在长 32米,区规划宽20米的矩形场地 ABCD 上修建三条同样宽的 3条小路,使 其中两条与AD 平行,一条与 AB 平行,其余部分种草,若使草坪的面积为 566米2,问小路应为多 宽?能售出500千克;销售单价每涨 1元,月销售量就减少 10千克,商店想在月销售成本不超过 1万元的情况下,使得月销售利润达到8000元,销售单价应定为多少?舀5、某商店经销一种销售成本为每千克40元的水产品,据市场分析,若按每千克50元销售一个月6.某工厂1998年初投资100万元生产某种新产品,1998年底将获得的利润与年初的投资的和作为1999年初的投资,到1999年底,两年共获利润56万元,已知1999年的年获利率比1998年的年获利率多10个百分点,求1998年和1999年的年获利率各是多少?思考:1、关于x的一元二次方程a -2 x2• x • a2-4 =0的一个根为0,贝U a的值为________________________2、若关于x的一元二次方程x2•2x-k=0没有实数根,则k的取值范围是________________________3、如果x2x -^0 ,那么代数式x32X2-7的值4、五羊足球队举行庆祝晚宴,出席者两两碰杯一次,共碰杯990次,问晚宴共有多少人出席?5、某小组每人送他人一张照片,全组共送了90张,那么这个小组共多少人?6、将一条长20cm的铁丝剪成两段,并以每一段铁丝的长度为周长作成一个正方形。
一元二次方程100道计算题练习(含答案)1、)4(5)4(2+=+x x2、x x 4)1(2=+3、22)21()3(x x -=+4、31022=-x x5、(x+5)2=166、2(2x -1)-x (1-2x )=07、x 2 =648、5x 2 - 52=0 9、8(3 -x )2 –72=010、3x(x+2)=5(x+2)11、(1-3y )2+2(3y -1)=0 12、x 2+ 2x + 3=013、x 2+ 6x -5=014、x 2-4x+ 3=0 15、x 2-2x -1 =016、2x 2+3x+1=017、3x 2+2x -1 =0 18、5x 2-3x+2 =019、7x 2-4x -3 =0 20、 -x 2-x+12 =0 21、x 2-6x+9 =022、22(32)(23)x x -=- 23、x 2-2x-4=0 24、x 2-3=4x25、3x 2+8 x -3=0(配方法) 26、(3x +2)(x +3)=x +14 27、(x+1)(x+8)=-1228、2(x -3) 2=x 2-9 29、-3x 2+22x -24=0 30、(2x-1)2 +3(2x-1)+2=031、2x 2-9x +8=0 32、3(x-5)2=x(5-x) 33、(x +2) 2=8x34、(x -2) 2=(2x +3)2 35、2720x x += 36、24410t t -+=37、()()24330x x x -+-= 38、2631350x x -+= 39、()2231210x --=40、2223650x x -+=补充练习:一、利用因式分解法解下列方程(x -2) 2=(2x-3)2 042=-x x 3(1)33x x x +=+x 2-23x+3=0 ()()0165852=+---x x二、利用开平方法解下列方程51)12(212=-y 4(x-3)2=25 24)23(2=+x三、利用配方法解下列方程25220x x -+= 012632=--x x 01072=+-x x四、利用公式法解下列方程-3x 2+22x -24=0 2x (x -3)=x -3. 3x 2+5(2x+1)=0五、选用适当的方法解下列方程(x +1) 2-3 (x +1)+2=0 22(21)9(3)x x +=- 2230x x --=21302x x ++= 4)2)(1(13)1(+-=-+x x x x2)2)(113(=--x x x (x +1)-5x =0. 3x (x -3) =2(x -1) (x +1).应用题:1、某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利40元,为扩大销售增加盈利,尽快减少库存,商场决定采取适当的降价措施,经调查发现,如果每件衬衫每降价一元,市场每天可多售2件,若商场平均每天盈利1250元,每件衬衫应降价多少元?2、两个正方形,小正方形的边长比大正方形的边长的一半多4 cm,大正方形的面积比小正方形的面积的2倍少32平方厘米,求大小两个正方形的边长.3、如图,有一块梯形铁板ABCD,AB∥CD,∠A=90°,AB=6 m,CD=4 m,AD=2 m,现在梯形中裁出一内接矩形铁板AEFG,使E在AB上,F在BC上,G在AD上,若矩形铁板的面积为5 m2,则矩形的一边EF长为多少?4、如右图,某小在长32米,区规划宽20米的矩形场地ABCD上修建三条同样宽的3条小路,使其中两条与AD平行,一条与AB平行,其余部分种草,若使草坪的面积为566米2,问小路应为多宽?5、某商店经销一种销售成本为每千克40元的水产品,据市场分析,若按每千克50元销售一个月能售出500千克;销售单价每涨1元,月销售量就减少10千克,商店想在月销售成本不超过1万元的情况下,使得月销售利润达到8000元,销售单价应定为多少?6.某工厂1998年初投资100万元生产某种新产品,1998年底将获得的利润与年初的投资的和作为1999年初的投资,到1999年底,两年共获利润56万元,已知1999年的年获利率比1998年的年获利率多10个百分点,求1998年和1999年的年获利率各是多少?思考:1、关于x 的一元二次方程()04222=-++-a x x a 的一个根为0,则a 的值为 。
一元二次方程100道计算题练习1、)4(5)4(2+=+x x 2、x x 4)1(2=+ 3、22)21()3(x x -=+4、31022=-x x 5、(x+5)2=16 6、2(2x -1)-x (1-2x )=07、x 2 =64 8、5x 2 - 52=0 9、8(3 -x )2 –72=010、3x(x+2)=5(x+2) 11、(1-3y )2+2(3y -1)=0 12、x 2+ 2x + 3=013、x 2+ 6x -5=0 14、x 2-4x+ 3=0 15、x 2-2x -1 =016、2x 2+3x+1=0 17、3x 2+2x -1 =0 18、5x 2-3x+2 =019、7x 2-4x -3 =0 20、 -x 2-x+12 =0 21、x 2-6x+9 =022、22(32)(23)x x -=- 23、x 2-2x-4=0 24、x 2-3=4x25、3x 2+8 x -3=0(配方法) 26、(3x +2)(x +3)=x +14 27、(x+1)(x+8)=-1228、2(x -3) 2=x 2-9 29、-3x 2+22x -24=0 30、(2x-1)2+3(2x-1)+2=031、2x 2-9x +8=0 32、3(x-5)2=x(5-x) 33、(x +2) 2=8x34、(x -2) 2=(2x +3)2 35、2720x x += 36、24410t t -+=37、()()24330x x x -+-= 38、2631350x x -+= 39、()2231210x --=40、2223650x x -+=一、用因式分解法解下列方程(x -2) 2=(2x-3)2 042=-x x 3(1)33x x x +=+x 2-23x+3=0 ()()0165852=+---x x二、利用开平方法解下列方程51)12(212=-y 4(x-3)2=25 24)23(2=+x三、利用配方法解下列方程25220x x -+= 012632=--x x01072=+-x x四、利用公式法解下列方程-3x 2+22x -24=0 2x (x -3)=x -3. 3x 2+5(2x+1)=0五、选用适当的方法解下列方程(x +1) 2-3 (x +1)+2=0 22(21)9(3)x x +=- 2230x x --=21302x x ++= 4)2)(1(13)1(+-=-+x x x x--xx x(x+1)-5x=0. 3x(x-3) =2(x-1) (x+1). 3(=11)2)(2答案第二章 一元二次方程备注:每题2.5分,共计100分,配方法、公式法、分解因式法,方法自选,家长批阅,错题需在旁边纠错。
一元二次方程100道计算题练习(含答案)1、2、3、)4(5)4(2+=+x x x x 4)1(2=+22)21()3(x x -=+4、5、(x+5)2=166、2(2x -1)-x (1-2x )=031022=-x x 7、x 2 =64 8、5x 2 -=0 9、8(3 -x )2 –72=05210、3x(x+2)=5(x+2) 11、(1-3y )2+2(3y -1)=012、x + 2x + 3=0213、x + 6x -5=014、x -4x+ 3=015、x -2x -1 =022216、2x +3x+1=017、3x +2x -1 =018、5x -3x+2 =022219、7x -4x -3 =020、 -x -x+12 =021、x -6x+9 =022222、 23、x 2-2x-4=0 24、x 2-3=4x22(32)(23)x x -=-25、3x 2+8 x -3=0(配方法)26、(3x +2)(x +3)=x +14 27、(x+1)(x+8)=-1228、2(x -3) 2=x 2-9 29、-3x 2+22x -24=030、(2x-1)2 +3(2x-1)+2=031、2x 2-9x +8=0 32、3(x-5)2=x(5-x) 33、(x +2) 2=8x34、(x -2) 2=(2x +3)235、 36、2720x x +=24410t t -+=37、 38、 39、()()24330x x x -+-=2631350x x -+=()2231210x --=40、2223650x x -+=补充练习:一、利用因式分解法解下列方程(x -2) 2=(2x-3)2042=-x x3(1)33x x x +=+ x 2x+3=0()()0165852=+---x x二、利用开平方法解下列方程51)12(212=-y4(x-3)2=2524)23(2=+x 三、利用配方法解下列方程012632=--x x220x -+=01072=+-x x四、利用公式法解下列方程-3x 2+22x -24=02x (x -3)=x -3.3x 2+5(2x+1)=0五、选用适当的方法解下列方程(x +1) 2-3 (x +1)+2=02230x x --=22(21)9(3)x x +=- 21302x x ++=4)2)(1(13)1(+-=-+x x x x x (x +1)-5x =0.3x (x -3) =2(x -1) (x +1).2)2)(113(=--x x 应用题:1、某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利40元,为扩大销售增加盈利,尽快减少库存,商场决定采取适当的降价措施,经调查发现,如果每件衬衫每降价一元,市场每天可多售2件,若商场平均每天盈利1250元,每件衬衫应降价多少元?2、两个正方形,小正方形的边长比大正方形的边长的一半多4 cm ,大正方形的面积比小正方形的面积的2倍少32平方厘米,求大小两个正方形的边长.3、如图,有一块梯形铁板ABCD ,AB ∥CD ,∠A =90°,AB =6 m ,CD =4 m ,AD =2 m ,现在梯形中裁出一内接矩形铁板AEFG ,使E 在AB 上,F 在BC 上,G 在AD 上,若矩形铁板的面积为5 m 2,则矩形的一边EF长为多少?4、如右图,某小在长32米,区规划宽20米的矩形场地ABCD 上修建三条同样宽的3条小路,使其中两条与AD 平行,一条与AB 平行,其余部分种草,若使草坪的面积为566米2,问小路应为多宽?5、某商店经销一种销售成本为每千克40元的水产品,据市场分析,若按每千克50元销售一个月能售出500千克;销售单价每涨1元,月销售量就减少10千克,商店想在月销售成本不超过1万元的情况下,使得月销售利润达到8000元,销售单价应定为多少?6.某工厂1998年初投资100万元生产某种新产品,1998年底将获得的利润与年初的投资的和作为1999年初的投资,到1999年底,两年共获利润56万元,已知1999年的年获利率比1998年的年获利率多10个百分点,求1998年和1999年的年获利率各是多少?思考:1、关于x 的一元二次方程的一个根为0,则a 的值为 。
一元二次方程的应用专项练习60题(有答案)1.某单位组织职工观光旅游,旅行社的收费标准是:如果人数不超过25人,人均旅游费用为100元;如果超过25人,每增加1人,人均旅游费用降低2元,但人均旅游费用不得低于70元.该单位按旅行社的收费标准组团,结束后,共支付给旅行社2700元.求该单位这次共有多少人参加旅游?2.2009年4月7日国务院公布了《医药卫生体制改革近期重点实施方案(2009~2011年》.某市政府决定2009年用于改善医疗卫生服务的经费为6000万元,并计划2011年提高到7260万元.若从2009年到2011年每年的资金投入按相同的增长率递增,求2009年到2011年的平均增长率.3.某商场按定价销售某种电器时,每台可获利48元,按定价的九折销售该电器6台与将定价降低30元销售该电器9台所获得的利润相等,(1)该电器每台进价、定价各是多少元?(2)按(1)的定价该商场一年可销售这种电器1000台.经市场调查:每降低一元一年可多卖该种电器出10台.如果商场想在一年中使该种电器获利32670元,那么商场应按几折销售?4.2008年5月1日,目前世界上最长的跨海大桥﹣﹣杭州湾跨海大桥通车了.通车后,苏南A地准备开辟宁波方向的外运路线,即货物从A地经杭州湾跨海大桥到宁波港,再从宁波港运到B地.若有一批货物(不超过10车)从A地按外运路线运到B地的运费需8320元,其中从A地经杭州湾跨海大桥到宁波港的每车运输费用是每车380元,从宁波港到B地的海上运费对一批不超过10车的货物计费方式是:一车800元,当货物每增加1车时,每车的海上运费就减少20元.若设问这批货物有x车.(1)用含x的代数式表示每车从宁波港到B地的海上运费;(2)求x的值.5.有一块矩形铁皮,长100cm,宽50cm,在它的四角各切去一个同样大的正方形,然后将四周突出部分折起,就能制作成一个无盖的方盒.如果制成的无盖方盒的底面积为3600cm2,那么铁皮各角应切去多大的正方形?6.近年来,我市某乡的蔬菜产值不断增加,2003年蔬菜的产值是640万元,2005年产值达到1000万元.(l)求2004年,2005年该乡蔬菜产值的年平均增长率是多少?(2)若2006年蔬菜产值继续稳步增长(即年增长率与前两年的年增长率相同).那么请你计算2006年这个乡的蔬菜产值将达到多少万元?7.改革开放以来,泉州人民创造性地执行党的路线方针政策,把握机遇,发挥优势,艰苦创业,经济社会发生了天翻地覆的变化.2006年泉州市农村居民人均收入为6123元,到2008年增长至7244元.(1)求这两年中,农村居民人均收入平均每年的增长率.(精确至0.1%)(2)按此增长率预测,到2010年,农村居民人均收入可达多少元?8.金丰商场在服装销售旺季购进某服装1000件,以每件超出进价50元的价格出售,在一个月中销售此服装800件,之后由于进入淡季,每件降价20%,这样的售价比进价低10%,结果全部售出,请你帮助算一下,该商场在这一次买卖中共获利多少元?9.在一个50m长、30m宽的矩形荒地上,要设计改造成花园,并要使花坛所占的面积恰为荒地地面积的一半,试给出你的一种设计方案.10.某学校运动会长跑比赛中,某运动员从距终点90m处开始,以8m/s的速度匀加速冲刺,到达终点时速度为10m/s.(1)求该运动员冲刺所需要的时间?(2)求从开始冲刺起,经5s后运动员的速度?(3)求该运动员到达距终点40m处时所需要的时间?11.景苑小区住宅设计时,准备在两幢楼房之间,开辟面积为700平方米的一块长方形绿地,并且宽比长少15米.但考虑到以后过往群众的方便,又计划在长方形绿地四周铺设宽度均为50cm的道路,问当铺设完成后原绿地面积将减少多少平方米?12.广场上有一个32m2的矩形水池,在节日中为了游客的安全,广场管理员准备用一根长为22m的绳子紧靠水池的四周将它围起来(绳子围成矩形状).试问用这根绳子能够将水池的四周围起来吗?请通过计算后回答.(不考虑其他因素)13.某工业企业2008年完成工业总产值440亿元,如果要在2010年达到743.6亿元,那么2008年到2010年的工业总产值年平均增长率是多少?要使2011年工业总产值要达到960亿元,继续保持上面的增长率,该目标是否可以完成?14.一张正方形硬纸片,其边长为60cm,要在它的四个角上各截取一个小正方形后(截取的小正方形边长相等)折成一个底面积为1600cm2的无盖的长方体盒子,求截取的小正方形的边长.15.水资源是人类最为最重要的资源,为提高水资源的利用率,光明小区安装了循环用水装置,现在的用水量比原来每天少了10吨,经测算,原来500吨水的时间现在只需要用水300吨,求这个小区现在每天用水多少吨?16.2008年7月,育英中学举办迎奥运绘画展,小鹏所绘长为90cm,宽为40cm的图画被选中去参加展览,图画四周加上等宽的金边装裱制成挂图后,图画的面积是整个挂图面积的72%,你知道金边有多宽吗?17.如图所示,有一农户用24米长的篱笆围成一面靠墙(墙长为12米)的矩形鸡场ABCD,由大小相等且彼此相连的三个矩形组成,鸡场的总面积为32米2,求出AB边的长.18.欢欢家装修客厅,铺地面砖32.4平方米,用去正方形的地面砖90块,请你算出所用地面砖的边长.19.某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利40元,为了扩大销量,增加盈利,尽量减少库存,商场决定采取适当的降价措施.经调查发现,每件衬衫每降价1元,商场平均每天可多售出2件,试用函数表示当商场降价x元后该商场每天的盈利额y元;若商场每天要盈利1200元,请你帮助商场算一算,每件衬衫应降价多少元?20.2008年农户李刚承包种植了4亩田的西瓜,亩产量为2000kg,根据市场需求,今年李刚扩大了承包面积,并且全部种植了高产的新品种西瓜,已知西瓜种植面积的增长率是亩产量增长率的,今年西瓜的总产量为21000kg,求西瓜亩产量的增长率.21.A市的房价由前年的每平方米1800元涨到今年每平方米2592元,求A市的房价平均每年涨价百分之几?22.小丽想用一块面积为400cm2的正方形纸片,沿着边的方向裁出一块面积为300cm2的长方形纸片,使它的长宽之比为3:2,他是否能实现这一想法?请说明理由.23.如图所示,在长和宽分别是a、b的矩形纸片的四个角都剪去一个边长为x的正方形后做成一个无盖的盒子.(1)用a,b,x表示纸片剩余部分的面积;(2)当a=10,b=8且剪去的面积是剩余的面积的三分之一时,求盒子的容积.(结果精确到0.1)24.某城市出租车的收费标准如下,不超过3km,收基本价N元,超过3km,每km单价为元.某人乘车去办事,停车后打出的电子收费单为:“里程13km,收费25元.”求基本价N(N<12).25.某农场有一块长30米,宽20米的场地,要在这块场地上建一个鱼池为正方形,使它的面积为场地面积的一半,问能否建成?若能建成,鱼池的边长为多少?(精确到0.1米)26.用大小完全相同的192块正方形地砖,铺一间长8m,宽6m的长方形客厅,求每块正方形地砖的边长.27.已知三角形的两边长分别是方程x2﹣3x+2=0的两根,第三边的长是方程2x2﹣5x+3=0的根,求这个三角形的周长.28.某宾馆有客房90间,当每间客房的定价为每天140元时,客房会全部住满.经调查发现,每间客房每天的定价每涨10元,就会有5间客房空闲,如果旅客居住客房,宾馆需对每间客房每天支出60元的各种费用,若在尽可能节约资源的前提下,每天想获利8000元,每间客房应涨价多少元?29.(A)某商场以每件20元的价格购进一种商品,试销中发现,这种商品每天的销售量m(件)与每件的销售价x (元)满足关系:m=140﹣2x,(1)写出商场卖这种商品每天的销售利润y与每件的销售价x间的函数关系式.(2)如果商场要想每天获得最大的销售利润,每件商品的售价定为多少最合适?最大销售利润为多少?(B)某商场以每件20元的价格购进一种商品,试销中发现,这种商品每天的销售量m(件)与每件的销售价x(元)满足关系:m=140﹣2x.商场每件商品的售价定为多少时商场的销售利润为1250元?30.某农场要建一个长方形的养鸡场,鸡场的一边靠墙(墙长25m),另三边用木栏围成,木栏长40m.①鸡场的面积能达到180m2吗?能达到200m2吗?②鸡场的面积能达到250m2吗?如果能,请你给出设计方案;如果不能,请说明理由.31.水果店花1000元购进了一批橘子,按50%的利润定价,由于受“蛆橘风波”影响,无人购买.决定打折出售,但仍无人购买,风波稍平息后又一次打折才售完.经结算,这批橘子共亏损265元.若两次打折相同,每次打了几折?32.某公园旅游的收费标准是:旅游人数不超过25人,门票为每人100元,超过25人,每超过1人,每张门票降低2元,但每张门票不低于70元,一个旅游团共支付2700元,求这个旅游团共多少人?33.如图,在△ABC中,AB=6cm,BC=7cm,∠ABC=30°,点P从A点出发,以1cm/s的速度向B点移动,点Q从B 点出发,以2cm/s的速度向C点移动.如果P、Q两点同时出发,经过几秒后△PBQ的面积等于4cm2?34.小红用一张周长为40cm的长方形白纸做一张贺卡,白纸的四周涂上宽为2cm的彩色花边.(1)求彩色花边的面积;(2)小红想让中间白色部分的面积大于彩色花边面积,她能做得到吗?请说明理由.35.如图,在△ABC中,∠C=90°,AC=8cm,AB=10cm,点P,Q同时由A,C两点出发,分别沿AC,CB方向移动,他们的速度都是1cm/s,经过几秒,P,Q相距cm?并求此时△PCQ的面积.36.据调查,北京市机动车拥有量2005年底达到了近260万辆,截至2007年底,北京市机动车拥有量已达到了近314.6万辆,有专家预测2008年底北京市机动车拥有量将达到近350万辆,如果假设2005年至2007年北京市机动车拥有量每年的增长率相同,按此增长率,请你通过计算验证专家的预测是否准确.37.一个长为3cm,宽为2cm的矩形,若该矩形的长和宽同时增加相同的长度,使得增加后的矩形面积是原矩形面积的2倍,问:长和宽同时增加了多少厘米?38.如图所示,在△ABC中,∠C=90°,AC=6cm,BC=8cm,点P从点A出发沿边AC向点C以1cm/s的速度移动,点Q从C点出发沿CB边向点B以2cm/s的速度移动.(1)如果P、Q同时出发,几秒钟后,可使△PCQ的面积为8cm2?(2)若点P从点A出发沿边AC﹣CB向点B以1cm/s的速度移动,点Q从C点出发沿CB﹣BA边向点A以2cm/s的速度移动.当点P在CB边上,点Q在BA边上,是否存在某一时刻,使得△PBQ的面积14.4cm2?39.某城市对商品房的销售进行了如下统计,2004年商品房售出了5000套,2006年售出了7200套,这两年平均每年销售商品房的增长率是多少?40.某西瓜经销商以4元/千克的价格购进一批“黑美人”西瓜,以6元/千克的价格出售,每天可售出200千克.为了促销,该经销商决定降价销售,经调查发现,这种西瓜如果每降价0.2元/千克,每天可多售出20千克.(1)当降价0.6元/千克时,每天可盈利多少元?(2)该经销商若要每天盈利384元,应将每千克西瓜的售价降低多少元?41.某商店以每件50元的价格购进某种品牌衬衫100件,为使这批衬衫尽快出售,该商店先将进价提高到原来的2倍,共销售了10件,再降低相同的百分率作二次降价处理;第一次降价标出了“出厂价”,共销售了40件,第二次降价标出“亏本价”,结果一抢而光,以“亏本价”销售时,每件衬衫仍有14元的利润.(1)求每次降价的百分率;(2)在这次销售活动中商店获得多少利润?请通过计算加以说明.42.秋末冬初,慈善人士李先生到某商场购买一批棉被准备送给偏远山区的孩子.该商场规定:如果购买棉被不超过60条,那么每条售价120元;如果购买棉被超过60条,那么每增加1条,所出售的这批棉被每条售价均降低0.5元,但每条棉被最低售价不得少于100元,最终李先生共支付棉被款8800元,请问李先生一共购买了多少条棉被?43.如图,在一张边长为40cm的正方形硬纸板的四角各剪掉一个同样大小的正方形,剩余部分折成一个无盖的长方体盒子(纸板的厚度忽略不计).要使折成的长方体盒子的四个侧面的面积之和为800cm2,求剪掉的正方形的边长.44.每件商品的成本是120元,试销了一阶段后,发现每件售价x(元)与产品的日销售量y(件)始终存在下表中的数量关系,但每天的盈利(元)却不一样.每件售价x(元)130 150 165每日销量y(件)70 50 35(1)写出产品的日销售量y(件)与每件售价x(元)的关系式为:_________ .(2)为找到每件产品的最佳定价,商场经理请一位营销策划员通过计算,在上述每件售价(元)与日销售量(件)之间数量关系的情况下,把每件售价定为m元时,每日盈利可达到最佳数1600元.请你求出m的值是多小?45.广州塔是广州的新地标,旅行社为吸引游客推出了广州塔一日游,具体资费标准如下:如果人数不超过25人,人均消费180元;如果人数超过25人,每增加1人,则全体参加人员人均费用降低4元,但人均费用不得低于130元.某公司组织员工参加广州塔一日游,共支付旅行社一日游费用4800元,请问该公司这次共组织了多少员工参加广州塔一日游?46.“强健身体,绿色上学”,自行车是同学们喜爱的交通工具,某车行的自行车销售量自2013年下半年起逐月增加,据统计,该车行6月份销售自行车64辆,8月份销售了100辆.(1)求该车行6月份至8月份的自行车销量的月平均增长率;(2)该车行预计9月份开学月卖出120辆自行车,若9月份自行车销量保持前两月的月平均增长率,该目标能否实现?请通过计算说明理由.47.某服装商店用9600元购进了某种时装若干套,第一个月每套按进价增加30%作为售价,售出了100套,第二个月换季降价处理,每套比进价低10元销售,售完了余下的时装,结果在买卖这种服装的过程中共盈利2200元,求每套时装的进价.48.“校安工程”关乎生命、关乎未来,目前我省正在强力推进这一重大民生工程.2009年,我市在省财政补助的基础上再投入600万元的配套资金用于“校安工程”,计划以后每年以相同的增长率投入配套资金,2011年我市计划投入“校安工程”配套资金1176万元.(1)求我市投入“校安工程”配套资金的年平均增长率;(2)从2009年到2011年,我市三年共投入“校安工程”配套资金多少万元?(3)为加大“校安工程”的宣传力度,请你为“校安工程”设计一句宣传口号.49.高盛超市准备进一批季节性小家电,每个进价为40元,经市场预测,销售定价为50元,可售出400个;定价每增加1元,销售量将减少10个.(1)设每个小家电定价增加x元,每售出一个小家电可获得的利润是多少元?(用含x的代数式表示)(2)当定价增加多少元时,商店获得利润6000元?50.我县为争创“城乡环境综合治理先进单位”,在2009年县政府对城区绿化工程投入资金是2000万元,2011年投入资金是2420万元,且从2009年到2011年的两年间,每年投入资金的年平均增长率相同.(1)求县政府对城区绿化工程投入资金的年平均增长率;(2)如果县政府投入资金的年平均增长率保持不变,那么在2012年需投入资金多少万元?51.某水果经销商销售一种新上市的水果,进货价为5元/千克,售价为10元/千克,月销售量为1000千克.(1)经销商降价促销,经过两次降价后售价定为8.1元/千克,请问平均每次降价的百分率是多少?(2)为增加销售量,经销商决定本月降价促销,经过市场调查,每降价0.1元,能多销售50千克,请问降价多少元才能使本月总利润达到6000元?52.在政府没有出台房价调控政策之前,从化某山庄的别墅今年9月份的均价是8000元/m2,11月份的均价是9680元/m2.(1)求10、11两月均价平均每月增长的百分率是多少?(2)如果房价继续上升,按此增长的百分率,你预测到12月份此山庄的别墅成交均价是否会突破10000元/m2?请说明理由.53.为了建设生态园林城市,某市大力开展植树造林活动.该市林业部门调查情况如下表:年份2009年底2011年底15 21.6全市森林拥有面积(万亩)(1)求2009年底至2011年底该市森林拥有面积的年平均增长率;(2)为了缓解木材短缺,从2012年初起,该市林业部门拟砍伐部分森林,每年砍伐的森林面积是上年底森林拥有面积的10%.假定在这种情况下每年新增森林面积相同,若到2013年底全市森林拥有面积不超过23.196万亩;请你计算出该市每年新增森林面积最多不能超过多少万亩.54.“美化城市,改善人民居住环境”是城市建设的一项重要内容.某市近年来,通过植草、栽树、修建公园等措施,使城区绿地面积不断增加,2011年底该市城区绿地总面积约为75公顷,截止到2013年底,该市城区绿地总面积约为108公顷,求从2011年底至2013年底该市城区绿地总面积的年平均增长率.55.小岛A在码头B的正西方向,A、B相距40海里.上午9点,一渔船和一游艇同时出发,渔船以20海里/时的速度从B码头向正北出海作业,游艇以25海里/时的速度从A岛返回B码头.一段时间后,渔船因故障停航在C处并发出讯号.游艇在D处收到讯号后直接向渔船驶去,上午11点到达C处.游艇在上午几点收到讯号?56.经过18个月的精心酝酿和290多万首都市民投票参与,2011年11月1日,“北京精神”表述语“爱国、创新、包容、厚德”正式向社会发布.为了更好地宣传“北京精神”,小明同学参加了由街道组织的百姓宣讲小分队,利用周末时间到周边社区发放宣传材料.第一周发放宣传材料300份,第三周发放宣传材料363份.求发放宣传材料份数的周平均增长率.57.随着人民生活水平的不断提高,家庭轿车的拥有量逐年增加.据统计,某小区2010年底拥有家庭轿车256辆,2012年底家庭轿车的拥有量达到400辆.(1)若该小区2010年底到2012年底家庭轿车拥有量的年平均增长率都相同,求该小区到2013年底家庭轿车将达到多少辆?(2)为了缓解停车矛盾,该小区决定投资15万元再建造若干个停车位.据测算,建造费用分别为室内车位5000元/个,露天车位1000元/个,考虑到实际因素,计划露天车位的数量不少于室内车位的2倍,但不超过室内车位的2.5倍,求该小区最多可建两种车位各多少个?试写出所有可能的方案.58.截止2009年底,西北某地已治理荒漠化土地800公顷,其中的40%为植树造林、60%为建设草场.同时该市还有未经治理的荒漠化土地400公顷.根据治理规划,在2010和2011两年中,若这400公顷荒漠化土地每年比上一年减少一个相同的百分数x,治理方式仍按40%为植树造林、60%为建设草场.根据调查,每治理2公顷荒漠化土地,将创造100个就业岗位.截止2011年底,仅植树造林的土地总共可以创造22000个就业岗位.请解决下列问题:(1)求截止2011年底,植树造林的土地总共有多少公顷;(2)求x的值.59.某市一楼盘准备以每平方米6300元的均价对外销售,由于国务院有关房地产的新政策出台后,购房者持币观望.为了加快资金周转,房地产开发商对价格经过两次下调后,决定以每平方米5103元的均价开盘销售.(1)求平均每次下调的百分率;(2)王先生准备以开盘均价购买一套100平方米的房子,开发商还给予以下两种优惠方案以供选择:①打9.8折销售;②不打折,送两年物业管理费,物业管理费是每平方米每月1.5元.计算说明哪种方案对于王先生更优惠?60.随着人民生活水平的不断提高,我市家庭轿车的拥有量逐年增加.据统计,某小区2007年底拥有家庭轿车64辆,2009年底家庭轿车的拥有量达到100辆.(1)若该小区2007年底到2009年底家庭轿车拥有量的年平均增长率相同,试求该小区家庭轿车拥有量的年平均增长率;(2)若2010年该小区的家庭轿车拥有量的年平均增长率与2009年保持不变,在(1)的基础上预计该小区到今年年底家庭轿车将达到多少辆?(3)为了缓解停车矛盾,该小区决定投资15万元再建造若干个停车位.据测算,建造费用分别为室内车位5000元/个,露天车位1000元/个,考虑到实际因素,计划露天车位的数量不少于室内车位的2倍,但不超过室内车位的2.5倍,求该小区最多可建两种车位各多少个?并写出所有可能的方案.参考答案:1.解:设该单位这次参加旅游的共有x人.∵100×25<2700,∴x>25.[100﹣2(x﹣25)]x=2700,x2﹣75x+1350=0,解得x1=30,x2=45,当x=30时,100﹣2(x﹣25)=90>70,符合题意;x=45时,100﹣2(x﹣25)=60<70,不符合题意;答:该单位这次参加旅游的共有30人2.解:设2009年到2011年的平均增长率为x,根据题意列方程得,6000(1+x)2=7260,解得x1=0.1,x2=﹣2.1(不合题意,舍去);答:2009年到2011年的平均增长率为10%3.解:(1)设该电器每台的进价为x元,定价为y元,由题意得,解得:.答:该电器每台的进价是162元,定价是210元;(2)设商场降低a元销售,由题意,得(48﹣a)(1000+10a)=32670,整理,得a2+52a﹣1533=0,解得a1=21,a2=﹣73(不合题意舍去).=0.9=9折.答:如果商场想在一年中使该种电器获利32670元,那么商场应按九折销售4.解:(1)依题意得800﹣20(x﹣1);(2)由题意得x[800﹣20(x﹣1)]+380x=8320,整理得x2﹣60x+416=0,解得x1=8,x2=52(不合题意,舍去),答:这批货物有8车5.解:设铁皮的各角应切去边长为xcm的正方形,根据题意得(100﹣2x)(50﹣2x)=3600,(x﹣50)(x﹣25)=900,x2﹣75x+350=0,(x﹣5)(x﹣70)=0,解得x=5或x=70(不合题意,应舍去).答:切去边长为5cm的正方形6.解:(1)设2004年,2005年蔬菜产值的年平均增长率为x,则2004年,2005年蔬菜产值640(1+x)2,即1000万元,依题意得640(1+x)2=1000,解得:(不合题意,舍去).答:2004年,2005年蔬菜产值的年平均增长率为25%;(2)1000(1+25%)=1250.答:2006年这个乡的蔬菜产值将达到1250万元7.解:(1)设这两年中,农村居民人均收入平均每年的增长率x,则2008年增长至6123(1+x)2元,由题意得:6123(1+x)2=7244,解得,x1≈0.088=8.8%,x2≈﹣2.088(不符合题意舍去)所以,这两年中,农村居民人均收入平均每年的增长率为:8.8%.(2)按此增长率预测,到2010年,农村居民人均收入可达:7244(1+8.8%)2≈8580元8.解:设该服装进价为每件x元,据题意列方程得:(x+50)×(1﹣20%)=x×90%解之得:x=400(元),450×800+450×(1﹣20%)×200﹣400×1000=32000(元)答:该商场在这一次买卖中共获利32000元9.解:方案一:可设计其中花园四周小路的宽度相等.(2分)设小路宽为x米,列方程为:(50﹣2x)(30﹣2x)=×50×30(4分)解:(舍)(6分)四周小路宽为m.(8分)方案二:设扇形的半径为x米,列方程为:πx2=×50×30.x1=,x2=﹣(不合题意舍去)其中花园的四个角上均为相同的扇形,半径为米10.解:(1)依题意得t=90÷=10(s);(2)∵每秒速度增加=0.2(m/s),∴5s后运动员的速度为8+0.2×5=9(m/s);(3)设该运动员到达距终点40m处时所需要的时间为x 秒,依题意得•x=50,解得x=﹣50+20或﹣50﹣20,但是﹣50﹣20<0,所以x=﹣50+20.∴该运动员到达距终点40m处时所需要的时间(20﹣50)s11.解:设绿地长为x米,则宽为(x﹣15)米,依题意,得x(x﹣15)=700(x﹣35)(x+20)=0解得:x1=35,x2=﹣20(不合题意,舍去)∴x=35,x﹣15=20,∴绿地的长和宽分别为35米,20米;∴在长方形绿地的四周铺设宽度为50cm的道路后,减少的面积为35×20﹣(35﹣0.5×2)×(20﹣0.5×2)=54(米2)答:当铺设完成后原绿地面积将减少54平方米12.解:设矩形的水池长为x,那么矩形的水池宽为(11﹣x),依题意得x(11﹣x)=32,∴x2﹣11x+32=0,∴△=121﹣4×32=﹣7<0,∴原方程没有实数根,即不存在这样的实数x,因此不能用这根绳子将水池的四周围起来13.解:设2008年到2010年的工业总产值年平均增长率是x,依题意得440(1+x)2=743.6,∴1+x≈1.3(负值舍去),∴x≈30%.∴2011年工业总产值为:743.6×(1+30%)≈966.68亿元<960亿元,∴该目标不可以完成.答:2008年到2010年的工业总产值年平均增长率是30%,要使2011年工业总产值要达到960亿元,继续保持上面的增长率,该目标不可以完成14.解:设截取的小正方形的边长为:xcm,则截取后底面的边长为:(60﹣2x)cm,由题意得:(60﹣2x)(60﹣2x)=1600解之得,x1=10,x2=50(不合题意,舍去)所以,截取的小正方形的边长为10cm15.解:设这个小区现在每天用水x吨.=解得x=15故现在每天用水15吨16.解:设金边宽为xcm,则(90+2x)(40+2x)×72%=90×40,即x2+65x﹣350=0,解x1=﹣70(舍去),x2=5.∴金边的宽度为5cm17.解:设垂直墙的一边AB为x米,依题意得:x(24﹣4x)=32,即x2﹣6x+8=0,解得:x1=2,x2=4,经检验:x1=2,x2=4都是方程的根,但当x=2时,24﹣4x=16>12,所以x=2不合题意,舍去.所以x=4,24﹣4x=8,答:AB边长为4米18.解:设地面砖的边长为x米,由题意得90x2=32.4 解得x=0.6,x=﹣0.6(不合题意舍去)答:地面砖的边长为0.6米19.解:y=(20+2x)(40﹣x)=﹣2x2+60x+800当y=1200时,﹣2x2+60x+800=1200,解之得,x1=20,x2=10.考虑尽量减少库存x=20(元).所以每件衬衫应降价20元20.解:设西瓜亩产量的增长率x,则西瓜种植面积的增长率,根据题意得2000(1+x)•4(1+)=21000,化简得12x2+20x﹣13=0(6分)解之得x1==50%,x2=(负值舍去).答:西瓜亩产量的增长率为50%21.解:设A市的房价平均每年增长率为x,则:1800(1+x)2=2592,解得x1=0.2 x2=﹣2.2 (应舍去),∴A市的房价平均每年涨价20%22.解:不能.设长方形纸片的长为3xcm,宽为2xcm,则3x•2x=300,6x2=300,x2=50,∴长方形的长为cm.∵50>49,∴,即,但正方形纸片的边长只有20cm,∴这一想法不能实现23.解:(1)ab﹣4x2。
1、(x 4)2 5(x 4) 4、2x2 10x 3 7、 2 x =64 一元二次方程100 道计算题练习、(x 1)2 4x 、(x 3)2(1 2x)22、(x+5)2=162、5x2=05、2(2x-1)-x(1-2x)=02、8(3 -x )2–72=010、3x(x+2)=5(x+2) 11 2、(1-3y)2+2(3y-1)=0 12 、x2+ 2x + 3=0213、x2+ 6x -5=0 142、x 2-4x+3=015 2、x2-2x-1 =0216、2x2+3x+1=0 172、3x2+2x-1 =0 182、5x 2-3x+2=0219、7x2-4x-3 =0 202、-x 2-x+12 =0 212、x2-6x+9 =022、(3x 2)2 (2x 3)223、x2-2x-4=0 24 、x2-3=4x25、3x 2+8 x -3=0(配方法)26 (3x +2)(x +3) =x+14 27 、(x+1)(x+8)=-1228、2(x -3)2=x 2-9 29 、-3x 2+22x-24=0 30 2x-1 )2 +3(2x-1 )+2=0231、2x 2-9x+8=0 322、3(x-5 )2=x(5-x) 332、(x +2)2=8x2 234、(x -2)2=(2x +3)235、7x2 2x 0 36 、4t2 4t 1 0237、4 x 3 x x 3 0238 、6x2 31x 35 0 3922x 3 2121 040、2x2 23x 65 0一、用因式分解法解下列方程2 2(x -2) 2=(2x-3) 2x 2 4x 0、利用开平方法解下列方程 1 12 (2y 1)、利用配方法解下列方程x 2 5 2x 2 0 3x 6x 12 0 x 2 7x 10 0x 2-2 3 x+3=02x 528 x 5 16 03x(x 1) 3x 32x-3 ) 2=25(3x 2) 2 24四、利用公式法解下列方程2-3x 2+22x -24=0 2x ( x - 3) =x - 3.3x 2+5(2x+1)=0五、选用适当的方法解下列方程2(x +1) 2-3 (x +1)+2=0 (2x 1)2 9(x 3)2 x 2 2x 3 0x 2 3x 12x(x 1) 1 (x 1)(x 2)3 1 4x(x+1)-5x=0. 3 x(x-3)=2(x-1)( x+1).(3x 11)(x 2) 2答案第二章 一元二次方程备注:每题 2.5 分,共计 100 分,配方法、公式法、分解因式法,方法自选,家长批阅,错题需在旁边纠错。