一元二次方程
- 格式:doc
- 大小:30.50 KB
- 文档页数:2
一元二次方程公式
一元二次方程的公式是:x=−b±b2−4ac2a(b2−4ac≥0)。
只含有一个未知数(一元),并且未知数项的最高次数是2(二次)的整式方程叫做一元二次方程。
一元二次方程经过整理都可化成一般形式ax+bx+c=0(a≠0)。
其中ax叫作二次项,a是二次项系数;bx叫作一次项,b是一次项系数;c叫作常数项。
一元二次方程的求解方法
1、公式法
在一元二次方程y=ax²+bx+c(a、b、c是常数)中,当△=b²-4ac>0时,方程有两个解,根据求根公式x=(-b±√(b²-4ac))/2a即刻求出结果;△=b²-4ac=0时,方程只有一个解x=-b/2a;△=b²-4ac<0时,方程无解。
2、配方法
将一元二次方程化成顶点式的表达式y=a(x-h)²+k(a≠0),再移项化简为(x-h)²=-k/a,开方后可得方程的解。
3、因式分解法
通过因式分解,把一元二次方程化成两个一次因式的积等于零的形式,即交点式的表达式y=a(x-x1)(x-x2),再分别令这两个因式等于0,它们的解就是原方程的解。
方程的公式是什么?
1、一元一次方程:ax+b=0(a,b为常数,且a≠0)
2、二元一次方程:x=(-b±√(b²-4ac))/2a。
3、一元二次方程:ax+bx+c=0(a≠0)。
其中ax叫作二次项,a是二次项系数;bx叫作一次项,b是一次项系数;c叫作常数项。
4、三元一次方程:ax+by+cz=d。
5、直线方程:
(1)一般式:Ax+By+C=0 (其中A、B不同时为0) 适用于所有直线
直线l1:A1x+B1y+C1=0
直线l2:A2x+B2y+C2=0
两直线平行时:A1/A2=B1/B2≠C1/C2
两直线垂直时:A1A2+B1B2=0
两直线重合时:A1/A2=B1/B2=C1/C2
两直线相交时:A1/A2≠B1/B2
(2)点斜式:知道直线上一点(x0,y0),并且直线的斜率k存在,则直线可表示为y-y0=k(x-x0)。
当k不存在时,直线可表示为x=x0
(3)截距式:若直线与x轴交于(a,0),与y轴交于(0,b),则直线可表示为:x/a+y/ b=1。
所以不适用于和任意坐标轴垂直的直线和过原点的直线。
一元二次方程求根公式德尔塔
我们要找出一元二次方程的求根公式,也就是德尔塔(Δ)的公式。
首先,我们需要了解一元二次方程的一般形式和它的求根公式。
一元二次方程的一般形式是:ax^2 + bx + c = 0,其中a、b、c是常数,a≠0。
这个方程的求根公式是:
x = (-b ± √(Δ)) / (2a)
其中,Δ是德尔塔,它是一个判别式,用于确定方程的根的性质。
德尔塔(Δ)的公式是:
Δ = b^2 - 4ac
这个公式用于计算一元二次方程的根的数量和类型。
现在我们已经知道了一元二次方程的求根公式和德尔塔(Δ)的公式。
计算结果为:德尔塔(Δ) = -4ac + b2
所以,一元二次方程的德尔塔(Δ)的公式是:Δ = b^2 - 4ac。
一元2次方程实数根的判定
一元2次方程实数根的判定方法是:
当Δ=b^2-4ac≥0时,x=[-b±(b^2-4ac)^(1/2)]/2a
当Δ=b^2-4ac<0时,x={-b±[(4ac-b^2)^(1/2)]i}/2a(i是虚数单位)
即Δ大于零,有两个不相等的实根;Δ等于零,有一个实根;Δ小于零,无实根。
因此一元2次方程有实数根,Δ大于或者等于零。
知识拓展
一元二次方程
只含有一个未知数(一元),并且未知数项的最高次数是2(二次)的整式方程叫做一元二次方程。
一元二次方程经过整理都可化成一般形式ax²+bx+c=0(a≠0)。
其中ax²叫作二次项,a是二次项系数;bx叫作一次项,b是一次项系数;c叫作常数项。
一元二次方程成立必须同时满足三个条件:①是整式方程,即等号两边都是整式,方程中如果有分母;且未知数在分母上,那么这个方程就是分式方程,不是一元二次方程,方程中如果有根号,且未知数在根号内,那么这个方程也不
是一元二次方程(是无理方程)。
②只含有一个未知数;③未知数项的最高次数是2 。
、。
四、一元二次方程式就一般而言,凡是使得方程式等号成立的数称之为方程式的解;而使得多项式的值为零的数称之为多项式的根。
因此,一元二次方程式的解就是所对应的二次多项式的根。
所以,我们也称此类方程式的解为根。
我们将首先介绍常见的一元二次方程式的三种解法:因式分解法、配方法和公式解。
然后,利用判别式来探讨两根的特性,最后再讨论根与系数之间的关系。
4-1 一元二次方程式的解法【因式分解法】因为一元二次方程式20ax bx c ++=(a 、b 和c 为实数且a ≠0)的左式为二次多项式,如果我们能将这个多项式因式分解成两个一次多项式的乘积,就很容易求得方程式的解。
我们以下面的例子来说明这种解法。
【范例1】求22151x x +=-的解。
【解】 利用移项可把原方程式改写为 2252x x -+= 0。
由因式分解,可得2252x x -+= (21)(2)x x -- 因此,原方程式改写为(21)(2)x x --= 0 所以,可得210x -=或20x -= 即12x =或2x =。
【类题练习1】求231030x x ++=的解。
【配方法】我们也可以利用平方根的概念来解方程式,例如将2420x x -+=改写为2(2)2x -=的形式,进而解得2x =2420x x -+=⇒242x x -=-两边同加22 ⇒22222222x x -⋅⋅+=-+左式可写成完全平方式 ⇒ 2(2)2x -=∵右式为正,两边开平方 ⇒ 2x -=⇒ 2x =上面的例子是利用配成完全平方式的方法,先将方程式改写成 (x -h )2=k 的形式。
当0≥k 时,我们就可以利用平方根的概念来解题: 即 2()0x h k -=≥两边同时开方 ⇒ x -h =移项 ⇒ x = h注:x = h ±表示x = h x = h我们将这个方法称为配方法,也就是配成完全平方的意思。
以下的例题继续来说明这种解法。
【范例2】求下列各方程式的解:(1) 2680x x -+= (2) 22460x x +-=【解】 (1) 2680x x -+=⇒2238x x -⋅⋅=-⇒22223383x x -⋅⋅+=-+⇒ 2(3)1x -=⇒31x -=±⇒ x -3 = 1或x -3 =-1⇒ x = 2或x = 4(2) 22460x x +-=⇒2230x x +-=⇒223x x +=⇒22221131x x +⋅⋅+=+⇒2(1)4x +=⇒12x +=±⇒12x +=或12x +=-⇒1x =或3x =-在上例中,我们当然也可用十字交乘法来做因式分解。
1元二次方程的公式法一元二次方程啊,这可是数学里的一个重要知识点。
咱们先来说说啥是一元二次方程,它的一般形式是 ax² + bx + c = 0 ,这里的 a、b、c 都是常数,而且 a 还不能等于 0 。
要说一元二次方程的公式法,那可是解决这类问题的一把“万能钥匙”。
公式法就是 x = [-b ± √(b² - 4ac)] / (2a)。
这公式看起来有点复杂,但是只要搞清楚每个字母代表的意思,用起来那叫一个顺手。
我记得有一次给学生们讲这个知识点的时候,有个学生就特别迷糊,怎么都理解不了。
我就拿了个很简单的例子,比如说 x² + 2x - 3 = 0 ,这里 a = 1,b = 2,c = -3 。
咱们把这些数字带进公式里,先算 b² - 4ac ,就是2²- 4×1×(-3)= 16 。
然后再把b 和算出来的这个值带到公式里,x = [-2 ± √16] / (2×1),算出来 x₁ = 1 ,x₂ = -3 。
那孩子眼睛一下子亮了,直说:“老师,原来这么简单!”在实际应用中,公式法可厉害了。
比如说要算一个物体的运动轨迹,或者算一个工程的进度啥的,都可能用到一元二次方程的公式法。
而且啊,这公式法还能检验我们前面用其他方法解出来的答案对不对。
咱再说说怎么能熟练掌握这个公式法。
首先,得把那几个字母代表啥记得牢牢的,可别弄混了。
然后就是多做几道题,俗话说得好,熟能生巧嘛。
还有啊,有些同学一看到根号就害怕,其实没啥好怕的,不就是个数学符号嘛,就把它当成一个普通的运算符号就行。
还有计算的时候要仔细,别粗心大意,一个小数字弄错了,结果可就全错啦。
总的来说,一元二次方程的公式法虽然看起来有点复杂,但只要咱们用心去学,多练习,就一定能掌握好,让它成为我们解决数学问题的有力武器。
就像那个一开始迷糊的同学,后来不也搞明白了嘛。
方程的七种类型方程是数学中的重要概念,它描述了数学对象之间的关系。
在代数学中,方程可分为七种类型,分别是一元一次方程、一元二次方程、一元三次方程、一元四次方程、二元一次方程、二元二次方程和二元三次方程。
本文将分别介绍这七种类型的方程。
一、一元一次方程一元一次方程是最简单的方程类型,它的形式为ax + b = 0,其中a和b是已知常数,x是未知数。
解一元一次方程的关键在于找到x 的值使得等式成立。
通过移项、合并同类项和化简等步骤,可以求解出x的值。
例如,方程2x + 3 = 7的解为x = 2。
二、一元二次方程一元二次方程是形如ax^2 + bx + c = 0的方程,其中a、b、c为已知常数,x是未知数。
解一元二次方程的方法有多种,常用的方法是配方法和求根公式。
配方法通过将方程变形为完全平方式,进而求解出x的值。
求根公式是通过使用二次根式来求解方程。
例如,方程x^2 - 5x + 6 = 0的解为x = 2或x = 3。
三、一元三次方程一元三次方程是形如ax^3 + bx^2 + cx + d = 0的方程,其中a、b、c、d为已知常数,x是未知数。
解一元三次方程的方法有多种,常用的方法是巴斯卡法和牛顿迭代法。
巴斯卡法通过将方程进行化简,然后使用求根公式求解出x的值。
牛顿迭代法是通过逐次逼近方程的解,直到满足一定的精度要求。
例如,方程x^3 - 3x^2 + 3x - 1 = 0的解为x = 1。
四、一元四次方程一元四次方程是形如ax^4 + bx^3 + cx^2 + dx + e = 0的方程,其中a、b、c、d、e为已知常数,x是未知数。
解一元四次方程的方法有多种,常用的方法是费拉里法和求根公式。
费拉里法通过将方程进行变形,进而转化为两个二次方程的形式,然后使用求根公式求解出x的值。
求根公式是通过使用四次根式来求解方程。
例如,方程x^4 - 10x^3 + 35x^2 - 50x + 24 = 0的解为x = 1或x = 2或x = 3或x = 4。
十个从简单到难的方程方程是数学中的基本概念,它描述了数学对象之间的关系。
解方程是数学中的一项重要技能,它可以帮助我们解决各种实际问题。
在本文中,我将介绍十个从简单到难的方程,并提供详细的解答和分析。
1. 一元一次方程:x + 2 = 5解答:将方程两边同时减去2,得到x = 3。
这是一个简单的一元一次方程,只有一个未知数x,并且未知数的次数为1。
2. 一元二次方程:x^2 - 4 = 0解答:将方程移项,得到x^2 = 4。
然后对方程两边开平方,得到x = ±2。
这是一个一元二次方程,未知数的次数为2。
3. 一元三次方程:x^3 - 2x^2 + x = 0解答:将方程因式分解,得到x(x^2 - 2x + 1) = 0。
然后解得x = 0或x^2 - 2x + 1 = 0。
对于x^2 - 2x + 1 = 0,可以继续因式分解为(x - 1)^2 = 0,解得x = 1。
所以方程的解为x = 0或x = 1。
4. 一元高次方程:x^4 - 16 = 0解答:将方程移项,得到x^4 = 16。
然后对方程两边开四次方,得到x = ±2。
这是一个一元高次方程,未知数的次数为4。
5. 二元一次方程组:2x + y = 5,3x - 2y = 4解答:可以使用消元法或代入法解这个方程组。
使用消元法,将第一个方程乘以2,得到4x + 2y = 10。
然后将第二个方程加上第一个方程,得到7x = 14,解得x = 2。
将x = 2代入第一个方程,得到2(2)+ y = 5,解得y = 1。
所以方程组的解为x = 2,y = 1。
6. 二元二次方程组:x^2 + y^2 = 25,x + y = 7解答:可以使用代入法解这个方程组。
将第二个方程改写为y = 7 - x,然后代入第一个方程,得到x^2 + (7 - x)^2 = 25。
展开并整理方程,得到2x^2 - 14x + 24 = 0。
1元二次方程求根公式一元二次方程求根公式是解决一元二次方程的一种方法,可以通过这个公式得出方程的解析解。
在解决实际问题时,我们经常会遇到一元二次方程,因此掌握求根公式是十分重要的。
一元二次方程的一般形式为:ax^2 + bx + c = 0。
其中,a、b、c 为已知系数,x为未知数。
我们通过求根公式可以得到方程的两个根,公式的形式如下:x1 = (-b + √(b^2 - 4ac)) / 2ax2 = (-b - √(b^2 - 4ac)) / 2a这里√(b^2 - 4ac)表示计算平方根,通常我们称为“根号”。
根号下面的内容称为判别式,它代表了根的性质。
接下来,我们将详细解释这个求根公式。
1.第一步:计算判别式方程的判别式Δ(Delta)等于 b^2 - 4ac,根据判别式的值我们可以判断方程的根的性质。
-当Δ>0时,方程有两个不同的实数根。
-当Δ=0时,方程有两个相等的实数根,也称为重根。
-当Δ<0时,方程没有实数解,但有两个复数解。
2.第二步:套用求根公式根据判别式的值,我们可以得到不同的求根公式。
-当Δ>0时:求根公式为x1=(-b+√Δ)/2a,x2=(-b-√Δ)/2a。
这时方程有两个不同的实数根。
-当Δ=0时:求根公式为x1=x2=-b/(2a)。
这时方程有两个相等的实数根。
-当Δ<0时:求根公式为x1=(-b+√(,Δ,)i)/2a,x2=(-b-√(,Δ,)i)/2a。
其中i为虚数单位,这时方程没有实数解,但有两个复数解。
3.第三步:将系数代入求根公式将方程的系数a、b、c代入求根公式后,即可计算出x1和x2的值。
需要注意的是,除数不能为0,即a不能为0,否则方程不再是二次方程。
下面我们通过一个实例来解释求根公式的使用。
例题:解方程2x^2+5x+3=0的根。
解法:根据给定方程,我们可以知道a=2,b=5,c=3计算判别式Δ = b^2 - 4ac = 5^2 - 4*2*3 = 25 - 24 = 1由于Δ>0,所以方程有两个不同的实数根。