初高中数学衔接知识点专题(一)数与式的运算
- 格式:doc
- 大小:400.00 KB
- 文档页数:6
初高衔接第一章数与式的运算在初中,我们已学习了实数,知道字母可以表示数,用代数式也可以表示数,我们把实数和代数式简称为数与式。
代数式中有整式(包括多项式与单项式)、分式、根式。
它们具有实数的属性,可以进行运算。
在多项式的乘法运算中,我们学习了乘法公式(平方差公式与完全平方公式),并且知道乘法公式可以使多项式的运算简便.由于在高中学习中还会遇到更复杂的多项式乘法运算,因此本章中我们将拓展乘法公式的内容,补充立方和、立方差等公式,在根式的运算中,我们已学过被开方数是实数的根式运算,而在高中数学学习中,经常会接触到被开方数是字母的情形,但在初中却没有涉及,因此本章中将补充这方面内容以及二次根式的化简方法,基于同样的原因,还要补充“繁分式”等有关内容. 一.乘法公式的加强我们在初中已经学习过了下列一些乘法公式: (1)平方差公式 (a+b)(a-b)=a 2-b 2; (2)完全平方公式 (a ±b)2=a 2±2ab+b 2. 我们还可以通过证明得到下列乘法公式:(1)立方和公式(a+b)(a 2-ab+b 2)=a 3+b 3; (2)立方差公式(a-b)(a 2+ab+b 2)=a 3-b 3; (3)三数和平方公式(a+b+c)2=a 2+b 2+c 2+2(ab+bc+ac);(4)两数和立方公式(a+b)3=a 3+3a 2b+3ab 2+b 3; (5)两数差立方公式(a-b)3=a 3-3a 2b+3ab 2-b 3. 对上面列出的五个公式,有兴趣的同学可以自己去证明.在实际应用中,还会用到公式的变形:a 2+b 2=(a ±b)2+̅2ab; ab=14[(a+b)2-(a-b)2]; a 3+b 3=(a+b)3-3ab(a+b). 例1计算(x 2-√2x+13)2. 例2(1)已知a=2020,b=2021,c=2022,求a 2+b 2+c 2-ab-bc-ac 的值. (2)已知x 2-3x+1=0,求x 3+1x3的值例3计算:(1)(4+m)(16-4m+m 2) (2)(15m-12n)(125m 2+110mm+14n 2) (3)(a+2)(a-2)(a 4+4a 2+16) (4)(x 2+2xy+y 2)(x 2-xy+y 2)2[随堂练习1]1.填空(1)19a 2-14b 2=(12b+13a)( ); (2)(4m+ )2= 16m 2+4m+( );(3)(a+2b-c)2=a 2+4b 2+c 2+( ); (4)1125m 3-18n 3=(15m-12n)( ).2.设x=(t+1t)3,y=t 3+1t3+6,则对于任意的t>0,x 与y 的大小关系为( ) A. x>y B. x<y C. x ≥y D. x ≤y3.已知a+b+c=0,求a(1b +1c)+b(1c +1a)+c(1a +1b)的值.二.二次根式:一般地,形如√a (a ≥0)的代数式叫做二次根式。
目录第一章数与式1.1数与式的运算1.1.1 1.1.2 1.1.3 1.1.4绝对值乘法公式二次根式分式1.2分解因式第二章二次方程与二次不等式2.1 一元二次方程2.1.1根的判别式2.1.2根与系数的关系2.2 二次函数2.2.1二次函数y二ax2+bx+c的图像和性质2.2.2二次函数的三种表达方式2.2.3二次函数的应用2.3方程与不等式2.3.1二元二次方程组的解法第三章相似形、三角形、圆3.1相似形3.1.1平行线分线段成比例定理3.1.2相似三角形形的性质与判定3.2三角形3.2.1三角形的五心3.2.2解三角形:钝角三角函数、正弦定理和余弦定理及其应用3.3圆3.3.1直线与圆、圆与圆的位置关系:圆幕定理3.3.2点的轨迹3.3.3四点共圆的性质与判定3.3.4直线和圆的方程(选学)1.1数与式的运算1.1.1 .绝对值绝对值的代数意义:正数的绝对值是它的本身,负数的绝对值是它的相反数,零的绝对值仍是零.即a, a 0,|a| 0, a 0,a, a 0.绝对值的几何意义:一个数的绝对值,是数轴上表示它的点到原点的距离. 两个数的差的绝对值的几何意义:|a b表示在数轴上,数a和数b之间的距离.例1解不等式:|x 1 x 3 >4.解法一:由x 1 0 ,得x 1 ;由x 3 0,得x 3 ;①若x 1,不等式可变为(x 1) (x 3) 4 ,即2x 4 >4,解得X V0,又x v 1 ,二x v 0;②若1 x 2,不等式可变为(x 1) (x 3) 4 ,即1> 4,二不存在满足条件的x;③若x 3,不等式可变为(x 1) (x 3) 4 ,即2x 4 >4,解得x>4.又x>3二x>4.综上所述,原不等式的解为x V0, 或x>4.解法二:如图1. 1- 1, x 1表示x轴上坐标为x的点P到坐标为1的点A之间的距离|RA|,即|RA| = |x- 1|; |x-3|表示x轴上点P到坐标为2的点B之间的距离|PB|,即|PB|= |x- 3|.所以,不等式x 1 x 3 >4的几何意义即为|RA| + |PB|> 4.由|AB|= 2,可知点P在点C(坐标为0)的左侧、或点P在点D(坐标为4)的右侧.x V0,或x>4.P 丄CL A 丄BLDL---- x0134x V|x-3||x- 1|图1. 1-12.2练 1. 2.3. 习 填空: (1) 若 x (2) 如果|a b 选择题: 下 )(A )(C )化简: 5,贝y x= 5,且a _若x 则b =4,贝y x= _____ ;若 1 c 2,则 C =若a 若a|x — 5|—|2X — 13| (x >5). 1.1.2.乘法公式 我们在初中已经学习过了下列一些乘法公式: (1) 平方差公式 (a b)(a b) a 2 b 2 ; (2) 完全平方公式 (a b)2 a 2 2ab b 2.我们还可以通过证明得到下列一些乘法公式:b , b ,则 a b (B) (D) 若a b ,贝S a 若a b ,则a解法 :原式= (x 2 1) (x 21)2 x 2 = (x 2 1)(x4 2x1)= 6x 1 .解法 *■.原式=(x 1)(x 2 x 2 1)(x 1)(x x 1)=(x 3 1)(x 3 1)= 6 x 1 .例2 已知a b c 4 , ab bc ac 4,求 a 2 b 2 c 2 的值解: 2 a .2 2b c (a b c)2 2(ab bc ac) 8 . 练 习1. 填空: (1) 1 2 a 1.2 b ( 4 b ;a)( );9 4 2 3(2) (4 m)2 16m 24m ( );(3 ) (a 2b c)2 a 2 4b 2 c 2 ( ). 1). 选择题:有兴趣的同学可以自己去证明. 例 1 计算:(x 1)(x 1)( x 2x 1)(x 2 x (1 )x 2 Imx k平方式,(1) 立方和公式 (a b)(a 2 ab b 2) 3 a .3 b ; (2) 立方差公式 (a b)(a 2 ab b 2) 3 a 3b ;(3) 三数和平方公式 (a b c)2 a 2 b 2 2 c 2(ab bc(4) 两数和立方公式 (a b)3 a 3 3a 2b 3ab 2 b 3;(5) 两数差立方公式 (a b)3 a 3 3a 2b3ab 2 b 3 .ac);对上面列出的五个公式,(A) m2(B) - m2(C) - m2(D)丄m24 3 16((2 ) 不论a , b为何实数,a2 b2 2a 4b 8 的值((A )总是正数(B )总是负数(C)可以是零(D)可以是正数也可以是负数1.1.3.二次根式一般地,形如,a(a 0)的代数式叫做二次根式.根号下含有字母、且不能够开得尽方的式子称为无理式.例如3a「a?—b 2b , . a^b2等是无理式,而.2x2彳x 1 , x2、2x y , ■■ a2等是有理式.1.分母(子)有理化把分母(子)中的根号化去,叫做分母(子)有理化.为了进行分母(子)有理化,需要引入有理化因式的概念.两个含有二次根式的代数式相乘,如果它们的积不含有二次根式,我们就说这两个代数式互为—有理化因式,例如J2与.2 , 3'、a 与,-. 3 .6 与方.6 , 2-. 3 3',2 与 2.3 3-2,等等. 一般地,ax与x , a、、x b. y与a、、x b y , a、、x b与a、、x b互为有理化因式.分母有理化的方法是分母和分子都乘以分母的有理化因式,化去分母中的根号的过程;而分子有理化则是分母和分子都乘以分母的有理化因式,化去分子中的根号的过程在二次根式的化简与运算过程中,二次根式的乘法可参照多项式乘法进行,运算中要运用公式. ab(a 0,b 0);而对于二次根式的除法,通常先写成分式的形式,然后通过分母有理化进行运算;二次根式的加减法与多项式的加减法类似,应在化简的基础上去括号与合并同类二次根式.2 .二次根式-a2的意义a, a 0, aa, a 0.例1将下歹J式子化为最简一次根式:(1) 両; (2) VOb(a0);(3) J4x6y(x 0).解:(1) ^A2b2顶;(2) Ja2b a 7b aVb(a 0);(3) 』4x6y 2 x^/y 2X3TT(X0).例2计算:暑(3 73).解法- -.73 (33 V3初中升高中数学教材变化分析解法二:解:=-3 (3 . 3)(3 . 3)(3、、3)=3^3 39 3=3(、、3 1)6=.3 12.3 (3、、3)=—3 V3试比较下列各组数的大小: (1) ..12 '.诃禾口、、仃110 ;(1) V J2.1112 11111 1011 -101= 丽3^3 1)_ 1 = _______________ = .3 1(.3 1)C 3 1)J 2)_ 6^ _ 、石)(.12 ;11)和 2.2— 6 . .12 ,11(、石 *10)(、11 ”10) 、石;10又. .12、一 11 5^ ,10 ,••• .,12 ,11 v .11.(2).. 2运—庇 2屁苗212-46)(242+46)又 4>2 2, _• ° •号 6 + 4 > . 6 + 2 习 2,• 一2 v 2、、2—•、6..6 4化简:C.3 , 2)2004 ( -.. 3 . 2) 2005解:(、、3 , 2)2004 ( .3、、2严=,2)2004 ( -.3 ,2)2004 (-. 3= C3、、2 C3 =12004(4 2、2+ 6 ,3 11 .12 11 ' __ 1 ___ 11 '一 10 '2,2+「6’.2 ) 2004 (「3.2)5化简:2) = .3、、2 .(1) .9 4*5 ;(2)x 2解: (1)原式(2)原式={(x *).(5)2 2 2 -5 221 x••• 06 已知xx 1 ,-丄3 2 、3 2 ,y1 22(0 x 1).x7(2 V5)2 2 71 x ,所以,原式=-x密茫,求3x 2 5xy 3y 2的值.、3 <2解:「X y :3 : ;〕2 (―2)2do , 32 3 2Xy.3, 2 , 3 . 2 1,2 2 2 2…3X 5xy 3y 3(X y) 11xy 3 1011 289 .练 习1.1.4 .分式1.分式的意义 形如A 的式子,若B 中含有字母,且B 0,则称A 为分式.当MHO 时,分BB式A 具有下列性质:BA A MA A MB B M 'B B M *上述性质被称为分式的基本性质. 2.繁分式a像_^ , m n p 这样,分子或分母中又含有分式的分式叫做 繁分式. c d _2m_n P例1若空匕 A —,求常数A,B 的值.X (X 2) X X 21. 填空:1 (1)(2) (3) (4) 13若.、(5 x)(x 3)2 (X 3)、、亍,则X 的取值范围是4.24 6,54 3 .96 2. 150 若X 巨,则、厂 ''厂22. 选择题:.立3. 4.(B )1U ,求 a a 1比较大小:2— 3 _______ ; 5— 4 (填b 的值. (C )N”.(D )0X 2解:~A B• ____ _x x 2.A B 5,2A 4,(1)试证: A(x 2) Bx (A B)x 2A 5x 4 x(x 2) 解得 x(x 2) x(x 2) 2,B 1.2. 3.4.(1) (2) (2)(3) 证明:1 n 12 3证明:对任意大于 计算: 1 n(n 1) 1 1 2(其中n 是正整数);1 9 10 '的正整数n ,有二 —2 3 3 41n(n 1)解:由 1 2(3)证明:..1 1• -------n n 1. 1n(n 1)(1)可知丄L2 31 12 3 3 41 n(n 1), (其中n 是正整数)成立.n n(n 1) 1 n 1 (n 1)19 10 1 1 1 -)( )1 2 2 31 1 1 1— _ (― 一)(— n(n 1) 2 3 31又n 》2且n 是正整数,二.11, 1 1 • • LV2 3 3 4 n(n 1)2且 e >1, 2c 2 — 5ac + 2a 2_0, 解:在2c 2— 5ac + 2a 2_0两边同除以a 2,得2呂—5e + 2_ 0,• (2e — 1)(e — 2)_ 0,1• e _ 2 V 1,舍去; •- e _ 2.或 e = 2. 一定为正数,求e 的值.丄 10910_丄_ 2习填空题: 选择题: 若) (A)对任意的正整数 2x yx正数x,y 满足 x 2 n ,1n(n 2)(丄n(B)2xy ,求 54x yx的值.y(C ) 4(D)计算丄- 99 100习题1. 1 A 组1.解不等式:(1) (3) 2 .已知x y 1 , x 1 3;(2) x 3x 27 ;x 1 x 1 6 .3xy 的值. 求 x 3 y 3 3. 填空:(1) (2) (3)(2 .3)18(2若,(T 1 .2a)21,(1 a)22 , 1__ ?则a 的取值范围是1 4「51.填空:(1) a2.1.(2)若 x 2xy 2y 2已知:x 1 2,y3a 2 2 3a 5ab 2b2小0,则—xy yx y _x . y ab 2 _________________22 _ __ ---------y」y _的值.x yC 组选择题: ((A ) a b(B ) a b(C ) a b 0 (D ) b a 0( 2)计算a :等于( )(A) < ~(B ) ■- a (C )-(D ) 、、a2.解方程2(x 2丄)13(x -)1 0 .x x3.计算:-——-1 L 1.132 43 59 114.试证:对任意的正整数 n ,有1L -1 1 —<-.b 2 一 ab 、、b a若 则)a () n(n 1)(n2) 2 3 41 2 3 1.2因式分解因式分解的主要方法有:十字相乘法、提取公因式法、公式法、分组分解 法,另外还应了解求根法及待定系数法. 1.十字相乘法例1分解因式: (1) x 2-3x + 2;(2) x 2 + 4x —(3) x 2 (a b )xy aby 2 ; (4) xy 1 x y .解:(1)如图1. 1- 1,将二次项x 2分解成图中的两个x 的积,再将常数项 2分解成一1与一2的乘积,而图中的对角线上的两个数乘积的和为一 3x ,就是 x 2-3x + 2中的一次项,所以,有x 2- 3x + 2 = (x - 1)(x - 2).说明:今后在分解与本例类似的二次三项式时,可以直接将图1. 1- 1中的两个x 用1来表示(如图1. 1-2所示).(2) 由图1. 1-3,得x 2 + 4x - 12 = (x - 2)(x + 6).(3) 由图1. 1-4,得2 2x (a b)xy aby = (x ay)(x by) x―1(4) xy 1 x y = xy + (x - y) — 1y ”1=(x - 1) (y+1)(如图 1. 1-5 所示).图 1. 1-5课堂练习一、填空题:1、把下列各式分解因式: (1) 2 x 5x 6 。
数学学科初高中知识点衔接清单近年来,除了中考,初高中数学教学衔接的问题成了我们数学教学的另一个关注重点。
因为我们不仅关心学生的中考成绩,还关心初中的数学学习能否为高中的继续学习打下一个良好的基础。
根据《教育部办公厅初中数学超前培训负面清单》梳理了一些初中数学教师在教学中需要重点关注,为后续的高中数学学习打基础的知识点。
制定基于初中数学超前培训视角下的初高中衔接点清单。
专题一:数与式的运算1.绝对值[1]绝对值的代数意义:.[2]绝对值的几何意义:[3]两个数的差的绝对值的几何意义:2.乘法公式[1]平方差公式:;[2]完全平方和公式:;[3]完全平方差公式:.3.根式[1]0)a ≥叫做二次根式,其性质如下:(1)2=;=;=;=.[2]平方根与算术平方根的概念:叫做a 的平方根,记作0)x a =≥(0)a ≥叫做a 的算术平方根.[3]立方根的概念:叫做a 的立方根,记为x =4.分式[1]分式的意义形如A B 的式子,若B 中含有字母,且0B ≠,则称A B为分式. 专题二:一元二次方程根与系数的关系一元二次方程的根与系数的关系定理:如果一元二次方程20 (0)ax bx c a ++=≠的两个根为12,x x ,那么:1212,x x x x +==专题三:平面直角坐标系一次函数、反比例函数12.函数图象[1]一次函数: y kx b =+(k 、b 是常数,k ≠0)特别的,当b =0时,称y 是x 的正比例函数。
[2]正比例函数的图象与性质:函数y =kx (k 是常数,k ≠0)的图象是的一条直线,[3]一次函数的图象与性质:函数y kx b =+(k 、b 是常数,k ≠0)的图象是过点(0,b )且与直线y =kx 平行的一条直线.[4]反比例函数的图象与性质:函数k y x=(k ≠0)是双曲线,当k>0时,图象在第一、第三象限,在每个象限中,y 随x 的增大而减小;当k<0时,图象在第二、第四象限,在每个象限中,y 随x 的增大而增大.双曲线是轴对称图形,对称轴是直线y x =与y x =-;又是中心对称图形,对称中心是原点.专题四:二次函数1.二次函数y =ax 2+bx +c (a ≠0)的性质:2.二次函数的三种表示方式:(1).一般式:(2)顶点式:(3)交点式:专题五: 二次函数的最值问题1.二次函数2 (0)y ax bx c a =++≠的最值.2.二次函数(x 为全体实数时)最大值或最小值的求法.3.求二次函数在某一范围内的最值.。
专题一、数与式的运算课时一:乘法公式一、初中知识1.实数运算满足如下运算律:加法交换律,加法结合律,乘法交换律,乘法结合律,乘法对加法的分配律。
2.乘法公式平方差公式: (a +b)(a -b) =a 2-b 2完全平方公式: (a ±b)2=a 2± 2ab +b 2二、目标要求1.理解字母可以表示数,代数式也可以表示数,并掌握数与式的运算。
2.掌握平方差公式和完全平方公式的灵活运用,理解立方和与差公式,两数和与差的立方公式以及三数和的完全平方公式。
三、必要补充根据多项式乘法法则推导出如下乘法公式(1)(x +a)(x +b) =x 2+ (a +b)x +ab(2)(ax +b)(cx +d ) =acx2+ (ad +bc)x +bd(3)立方和公式: (a +b)(a 2-ab +b 2 ) =a3+b3(4)立方差公式: (a -b)(a 2+ab +b 2 ) =a 3-b3(5)两数和的立方公式:(a +b)3=a3+ 3a 2b + 3ab2+b3(6)两数差的立方公式:(a -b)3=a3- 3a 2b + 3ab 2-b3(7)三数和的平方公式:(a +b +c)2=a 2+b 2+c 2+ 2ab + 2bc + 2ac四、典型例题例1、计算:(1)(x + 2)(x - 5) (3)(2x -1)3(2)(2x + 3)(3x - 2) (4)(2a +b -c)2例2:已知x +y = 3 ,xy = 8 ,求下列各式的值(1)x 2y 2;(2)x 2xy y 2;(3)( x y)2;(4)x 3y 3分析:(1)x 2y 2( x y)2 2 xy(2)x 2xy y 2( x y)2 3 xy(3)( x y)2( x y)2 4 xy(4)x 3y 3( x y)( x 2xy y 2 ) ( x y)[( x y)2 3 xy] 例3:已知a +b +c = 4 ab +bc +ac = 4 求a 2+b 2+c 2的值分析: a2+b2+c2= (a +b +c)2- 2(ab +bc +ac) = 8变式:已知:x2- 3x +1= 0 ,求x3+1x3的值。
第一讲数与式的运算第二讲因式分解知识篇数与式的运算1、实数;2、代数式;3、乘法公式;4、分式;5、二次根式因式分解1、提取公因式;2、运用公因式;3、分组分解法;4、十字相乘法;5、配方法笔记:归纳小结:数与式的运算1 、已知 的公式表示试写出用21121,,111R ,R R R R R R R ≠+=2、设X=,3232-+ Y=,3232+- 求33Y X +的值3、化简下列各式1)221-32-3)()(+ 2)22x -2x -1)()(+ (X ≥1)4、已知a+b+c=4,ab+bc+ac=4,求a2+b2+c2的值。
分解因式1、提公因式法,运用公因式法(1)3a3b-81b4(2)a7-ab62、分组分解法(3)2ax-10ay+5by-bx (4)ab(c2-d2)-(a2-b2)cd (5)x2-y2+ax+ay (6)2x2+4xy+2y2-8z23、十字相乘(7)x2-7x+6 (8)x2+13x+36(9)x2+xy-6y2(10)(x2+x)2-8(x2+x)+12 (11)12x2-5x-2 (12)5x2+6xy-8y24、配方法(13)x2+12x+16 (14)a4+a2b2+b45、其他方法添项、拆项法、分解因式(15)x 3-3x 2+4 (16)(x 2-5x+2)(x 2-5x+4)-8二、因式分解的应用 1、已知a+b=32,ab=2,求代数式 a 2b+2a 2b 2+ab 2的值2、计算12345678921234567890-123456789112345678902)(ab o作业篇一选择1、二次根式,a -=2a 成立的条件是 ( )A 、a >0,B 、a <0,C 、a ≤0,D 、a 是任意实数2、若x <3,则6x 6x -92--+x 的值是 ( ) A 、-3, B 、3, C 、-9, D 、93、数轴上有两点A ,B 分别表示实数a ,b ,则线段AB 的长度是 ( ) A 、a-b , B 、a+b , C 、b -a ,D 、b +a4、实数a ,b 在数轴上的位置如图所示,则下列结论正确的是 ( ) A 、a+b >a >b >a-b , B 、a >a+b >b >a-b C 、a-b >a >b >a+b , D 、a-b >a >a+b >b5、若等于,则yy x y x322x =+- ( ) A 、1, B 、45, C 、54, D 、56二化简1、19183-232)()(+ 2、313-1+3、1-32-23121++4、38a -5、aa 1-⨯三、已知x+y=1,求x 3+y 3+3xy四、若2)1()1(22=++-a a ,求a 的取值范围。
初高中数学衔接知识总汇(总68页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--第一章 数与式的运算1、1 绝对值知识清单1.绝对值的代数意义:正数的绝对值是它的本身,负数的绝对值是它的相反数,零的绝对值仍是零,即(0)0(0)(0)a a a a a a >⎧⎪==⎨⎪-<⎩2.绝对值的几何意义:一个数的绝对值,是数轴上表示它的点到原点的距离。
3.两个数的差的绝对值的几何意义:b a -表示在数轴上,数a 和数b 之间的距离。
4.两个重要绝对值不等式:a x a x a a x a x >或<)>(>,<<)>(<-⇔-⇔0a x 0a a问题导入:问题1:化简:(1):12-x (2) : 31-+-x x问题2:解含有绝对值的方程(1)642=-x ; (2): 5223=--x问题3:至少用两种方法解不等式 41>-x知识讲解例1:化简下列函数,并分别画出它们的图象:(1)x y =; (2)32+-=x y .例2:解不等式:431>-+-x x巩固拓展:1.(1)若等式a a -= , 则成立的条件是----------(2)数轴上表示实数 x 1,x 2 的两点A,B 之间的距离为--------2.已知数轴上的三点A,B,C 分别表示有理数a ,1,-1,那么1+a表示( )A 、 A,B 两点间的距离 B 、 A,C 两点间的距离C 、 A,B 两点到原点的距离之和D 、 A,C 两点到原点的距离之和3.如果有理数x ,y 满足()01212=+-+-y x x ,则=+22y x ______ 4.化简:(1)3223+=-x x ; (2)31--x5.已知 x= -2是方程612-=--m x 的解,求m 的值。
6.已知a ,b ,c 均为整数,且 1=-+-a c b a ,求: c b b a a c -+-+-的值方法指导学习本节知识,要充分领会绝对值的代数意义,从数和形两方面去研究,体会分类讨论与数形结合的两种数学思想方法。
初高中数学衔接知识点专题(一)★ 专题一 数与式的运算【要点回顾】 1.绝对值[1]绝对值的代数意义: .即||a = . [2]绝对值的几何意义: 的距离. [3]两个数的差的绝对值的几何意义:a b -表示 的距离. [4]两个绝对值不等式:||(0)x a a <>⇔;||(0)x a a >>⇔.2.乘法公式我们在初中已经学习过了下列一些乘法公式:[1]平方差公式: ; [2]完全平方和公式: ; [3]完全平方差公式: . 我们还可以通过证明得到下列一些乘法公式: [公式1]2()a b c ++=[公式2]33a b =+(立方和公式) [公式3]33a b =- (立方差公式)说明:上述公式均称为“乘法公式”. 3.根式[1]0)a ≥叫做二次根式,其性质如下:(1) 2= ;= ;= ;= . [2]平方根与算术平方根的概念: 叫做a的平方根,记作0)x a =≥,其(0)a ≥叫做a 的算术平方根.[3]立方根的概念: 叫做a的立方根,记为x =4.分式[1]分式的意义 形如A B 的式子,若B 中含有字母,且0B ≠,则称A B 为分式.当M ≠0时,分式AB具有下列性质: (1) ; (2) . [2]繁分式 当分式A B 的分子、分母中至少有一个是分式时,AB就叫做繁分式,如2m n p m n p+++,说明:繁分式的化简常用以下两种方法:(1) 利用除法法则;(2) 利用分式的基本性质. [3]分母(子)有理化把分母(子)中的根号化去,叫做分母(子)有理化.分母有理化的方法是分母和分子都乘以分母的有理化因式,化去分母中的根号的过程;而分子有理化则是分母和分子都乘以分母的有理化因式,化去分子中的根号的过程【例题选讲】例1 解下列不等式:(1)21x -< (2)13x x -+->4.例2 计算:(1)221()3x + (2)2211111()()5225104m n m mn n -++(3)42(2)(2)(416)a a a a +-++ (4)22222(2)()x xy y x xy y ++-+例3 已知2310x x -==,求331x x +的值.例4 已知0a b c ++=,求111111()()()a b c b c c a a b+++++的值.例5 计算(没有特殊说明,本节中出现的字母均为正数):(1)(2)1)x ≥(3) (4)例6设x y ==,求33x y +的值.例7 化简:(1)11xx x x x -+- (2)222396127962x x x x x x x x ++-+---+ (1)解法一:原式=222(1)11(1)1(1)(1)11x x x x x x x x x x x x x x x x x x x x x x x x x ++=====--⋅+-++--+-++ 解法二:原式=22(1)1(1)(1)111()x x x x x x x x x x x x x x x x x x x x x x x++====-⋅-+-++--+-⋅ (2)解:原式=2223961161(3)(39)(9)2(3)3(3)(3)2(3)x x x x x x x x x x x x x x x ++--+-=---++-+-+--22(3)12(1)(3)(3)32(3)(3)2(3)(3)2(3)x x x x x x x x x x +-------===+-+-+说明:(1) 分式的乘除运算一般化为乘法进行,当分子、分母为多项式时,应先因式分解再进行约分化简;(2) 分式的计算结果应是最简分式或整式 .【巩固练习】1. 解不等式 327x x ++-<2.设x y ==,求代数式22x xy y x y +++的值.3. 当22320(0,0)a ab b a b +-=≠≠,求22a b a b b a ab+--的值.4. 设x=,求4221x x x ++-的值.5. 计算()()()()x y z x y z x y z x y z ++-++-++-6.化简或计算:(1)3÷ (2)(4) ÷+1AC |x -1||x -3|● 各专题参考答案 ●专题一数与式的运算参考答案例1 (1)解法1:由20x -=,得2x =;①若2x >,不等式可变为21x -<,即3x <; ②若2x <,不等式可变为(2)1x --<,即21x -+<,解得:1x >.综上所述,原不等式的解为13x <<.解法2: 2x -表示x 轴上坐标为x 的点到坐标为2的点之间的距离,所以不等式21x -<的几何意义即为x 轴上坐标为x 的点到坐标为2的点之间的距离小于1,观察数轴可知坐标为x 的点在坐标为3的点的左侧,在坐标为1的点的右侧.所以原不等式的解为13x <<.解法3:2112113x x x -<⇔-<-<⇔<<,所以原不等式的解为13x <<.(2)解法一:由10x -=,得1x =;由30x -=,得3x =; ①若1x <,不等式可变为(1)(3)4x x ---->,即24x -+>4,解得x <0,又x <1,∴x <0;②若12x ≤<,不等式可变为(1)(3)4x x --->,即1>4,∴不存在满足条件的x ;③若3x ≥,不等式可变为(1)(3)4x x -+->,即24x ->4, 解得x >4.又x ≥3,∴x >4. 综上所述,原不等式的解为x <0,或x >4.解法二:如图,1x -表示x 轴上坐标为x 的点P 到坐标为1的点A 之间的距离|PA |,即|PA |=|x -1|;|x -3|表示x 轴上点P 到坐标为2的点B 之间的距离|PB |,即|PB |=|x -3|. 所以,不等式13x x -+->4的几何意义即为|PA |+|PB |>4.由|AB |可知点P 在点C (坐标为0)的左侧、或点P 在点D (坐标为4)的右侧. 所以原不等式的解为x <0,或x >4.例2(1)解:原式=221[()]3x ++222222111()()()2(22()333x x x x =++++⨯+⨯⨯43281339x x x =-+-+ 说明:多项式乘法的结果一般是按某个字母的降幂或升幂排列. (2)原式=33331111()()521258m n m n -=-(3)原式=24222336(4)(44)()464a a a a a -++=-=-(4)原式=2222222()()[()()]x y x xy y x y x xy y +-+=+-+3326336()2x y x x y y =+=++ 例3解:2310x x -== 0x ∴≠ 13x x∴+= 原式=22221111()(1)()[()3]3(33)18x x x x x x x x+-+=++-=-= 例4解:0,,,a b c a b c b c a c a b ++=∴+=-+=-+=-∴原式=b c a c a b a b c bc ac ab+++⋅+⋅+⋅222()()()a ab bc c a b c bc ac ab abc ---++=++=- ① 33223()[()3](3)3a b a b a b ab c c ab c abc +=++-=--=-+3333a b c abc ∴++= ②,把②代入①得原式=33abcabc-=-例5解:(1)原式6==- (2)原式=(1)(2)2 3 (2)|1||2|(1)(2) 1 (1x 2) x x x x x x x x -+-=->⎧-+-=⎨---=≤≤⎩说明||a =的使用:当化去绝对值符号但字母的范围未知时,要对字母的取值分类讨论.(3)原式ab =(4) 原式===例6解:22(277 14,123x y x y xy ===+=-⇒+==- 原式=2222()()()[()3]14(143)2702x y x xy y x y x y xy +-+=++-=-=说明:有关代数式的求值问题:(1)先化简后求值;(2)当直接代入运算较复杂时,可根据结论的结构特点,倒推几步,再代入条件,有时整体代入可简化计算量. 【巩固练习】1.43x -<< 2. 3.3-或2 4.3-5.444222222222x y z x y x z y z ---+++ 6.()(((13,23,4-。
初高中数学衔接第1课数与式的运算 1----7cd2d8d8-7158-11ec-a923-7cb59b590d7d初高中数学衔接第1课数与式的运算1初中与高中数学衔接第1课数与公式的运算&LPAR;1&rpar;第1课数与式的运算(1)绝对值的代数意义:正数的绝对值是它本身,负数的绝对值是它的对数值,零的绝对值仍然是零⎨0,a=0,⎨绝对值的几何意义:数字的绝对值是从其点到数字轴原点的距离。
两个数字之差绝对值的几何意义:| A-B |表示数字轴上数字A和数字B之间的距离。
[示例1]表示| x+1 |和| x-1的几何意义|【例2】化简:(1)|3x-2|;(2)|x+1|+|x-3|;x-4x+4;[示例3]求解以下方程:(1)| x-1 |=1;(2) | x2-1 |=1。
【例4】解下列不等式.(1)|2x+3|≤2;(2)|x-1|+|x-3|>4.(4) t+4t+4。
【例5】画出下列函数的图象.(1)y=|x|;(2)y=|x-2|+|x+2|.1.平方差公式:(a+b)(a-b)=A2-B2。
完全平方公式:(a±b)2=A2±2Ab+b23。
三次和公式:(a+b)(a2ab+B2)=A3+B3 4。
立方差分公式:(a-b)(A2+AB+B2)=a3-b35.三数和平方公式:(a+b+c)2=a2+b2+c2+2(ab+bc+ac).6.两数和立方公式:(a+b)3=a3+3a2b+3ab2+b3.7.两数差立方公式:(a-b)3=a3-3a2b+3ab2-b3.【例6】因式分解.(1)x3-1;(2)x3+1.[示例7]计算:(x+1)(x-1)(x2-x+1)(x2+x+1)【例8】已知:x+y=1,求x3+y3+3xy的值.[示例9]已知x2-3x+1=0,找到X3+1【例10】设x=2323,y2-3X3+Y3的值1.下列叙述正确的是()a、如果a=B,那么a=BB。
初高中数学衔接知识点专题(一)
★ 专题一 数与式的运算
【要点回顾】 1.绝对值
[1]绝对值的代数意义: .即||a = . [2]绝对值的几何意义: 的距离. [3]两个数的差的绝对值的几何意义:a b -表示 的距离. [4]两个绝对值不等式:||(0)x a a <>⇔;||(0)x a a >>⇔
.
2.乘法公式
我们在初中已经学习过了下列一些乘法公式:
[1]平方差公式: ; [2]完全平方和公式: ; [3]完全平方差公式: . 我们还可以通过证明得到下列一些乘法公式: [公式1]2()a b c ++=
[公式2]33a b =+(立方和公式) [公式3]
33a b =- (立方差公式)
说明:上述公式均称为“乘法公式”. 3.根式
[1]
式子0)a ≥叫做二次根式,其性质如下:
(1) 2
= ;
(2)
= ;
(3) = ;
(4)
= . [2]平方根与算术平方根的概念: 叫做a
的平方根,记作0)x a =≥,
(0)a ≥叫做a 的算术平方根.
[3]立方根的概念: 叫做a
的立方根,记为x =4.分式
[1]分式的意义 形如
A B 的式子,若B 中含有字母,且0B ≠,则称A B 为分式.当M ≠0时,分式A B
具有下列性质: (1) ; (2) . [2]繁分式 当分式
A B 的分子、分母中至少有一个是分式时,A
B
就叫做繁分式,如2m n p m n p
+++,
说明:繁分式的化简常用以下两种方法:(1) 利用除法法则;(2) 利用分式的基本性质. [3]分母(子)有理化
把分母(子)中的根号化去,叫做分母(子)有理化.分母有理化的方法是分母和分子都乘以分母的有理化因式,化去分母中的根号的过程;而分子有理化则是分母和分子都乘以分母的有理化因式,化去分子中的根号的过程
【例题选讲】
例1 解下列不等式:(1)21x -< (2)13x x -+->4.
例2 计算:
(1)2
2
1()3
x +
(2)2211111()()5225104
m n m mn n -
++
(3)42(2)(2)(416)a a a a +-++ (4)22222
(2)()x xy y x xy y ++-+
例3 已知2
310x x -==,求3
31
x x
+的值.
例4 已知0a b c ++=,求
111111
()()()a b c b c c a a b
+++++的值.
例5 计算(没有特殊说明,本节中出现的字母均为正数):
(1)
(2)
1)x ≥
(3) (4)
例6 设x y ==
,求33
x y +的值.
例7 化简:(1)11x
x x x x -+
- (2)222
396127962x x x x x x x x ++-+---+ (1)解法一:原式=22
2(1)1
1(1)1(1)(1)11x x x x x x x x x x x x x x x x x x x x x x x x x ++=====--⋅+-++--+-++ 解法二:原式=22(1)1
(1)(1)111()x x x x x x x x x x x x x x x x x x x x x x x
++====
-⋅-+-++-
-+-⋅ (2)解:原式=2223961161
(3)(39)(9)2(3)3(3)(3)2(3)
x x x x x x x x x x x x x x x ++--+-=---++-+-+--
22(3)12(1)(3)(3)32(3)(3)2(3)(3)2(3)
x x x x x x x x x x +-------===+-+-+
说明:(1) 分式的乘除运算一般化为乘法进行,当分子、分母为多项式时,应先因式分解再进行约分化
简;(2) 分式的计算结果应是最简分式或整式 .
【巩固练习】
1. 解不等式 327x x ++-<
2.
设x y ==,求代数式22x xy y x y +++的值.
3. 当2
2
320(0,0)a ab b a b +-=≠≠,求22
a b a b b a ab
+--的值.
4.
设12
x
=
,求42
21x x x ++-的值.
5. 计算()()()()x y z x y z x y z x y z ++-++-++-
6.化简或计算:
(1)
(2)
(3)
(4)
÷+
1
A 0 C P
|x -1|
|x -3|
● 各专题参考答案 ●
专题一数与式的运算参考答案
例1 (1)解法1:由20x -=,得2x =;
①若2x >,不等式可变为21x -<,即3x <; ②若2x <,不等式可变为(2)1x --<,即21x -+<,解得:1x >.综上所述,原不等式的解为13x <<.
解法2: 2x -表示x 轴上坐标为x 的点到坐标为2的点之间的距离,所以不等式21x -<的几何意义即为x 轴上坐标为x 的点到坐标为2的点之间的距离小于1,观察数轴可知坐标为x 的点在坐标为3的点的左侧,在坐标为1的点的右侧.所以原不等式的解为13x <<.
解法3:2112113x x x -<⇔-<-<⇔<<,所以原不等式的解为13x <<.
(2)解法一:由10x -=,得1x =;由30x -=,得3x =;
①若1x <,不等式可变为(1)(3)4x x ---->,即24x -+>4,解得x <0,又x <1,∴x <0;②若
12x ≤<,不等式可变为(1)(3)4x x --->,即1>4,∴不存在满足条件的x ;
③若3x ≥,不等式可变为(1)(3)4x x -+->,即24x ->4, 解得x >4.又x ≥3,∴x >4.
综上所述,原不等式的解为x <0,或x >4.
解法二:如图,1x -表示x 轴上坐标为x 的点P 到坐标为1的点A 之间的距离|P A |,即|P A |=|x -1|;|x -3|表示x 轴上点P 到坐标为2的点B 之间的距离|PB |,即|PB |=|x -3|. 所以,不等式13x x -+->4的几何意义即为|P A |+|PB |>4.由|AB |=2可知点P 在点C (坐标为0)的左侧、或点P 在点D (坐标为4)的右侧. 所以原不等式的解为x <0,或x
>4.
例2(1)解:原式=2
21
[()
]3
x +
+222
22
2
111()()()2(22()3
33
x x x x =
++++⨯
+⨯⨯ 4
3
28139
x x x =-+
-+ 说明:多项式乘法的结果一般是按某个字母的降幂或升幂排列.
(2)原式=3333
1111()()521258m n m n -=
-
(3)原式=24222336
(4)(44)()464a a a a a -++=-=-
(4)原式=2
2
22
2
2
2
()()[()()]x y x xy y x y x xy y +-+=+-+3
32
6
3
3
6
()2x y x x y y =+=++ 例3解:
2310x x -== 0x ∴≠ 13x x
∴+
= 原式=22
22
1111()(1)()[()3]3(33)18x x x x x x x x
+-+
=++-=-= 例4解:0,,,a b c a b c b c a c a b ++=∴+=-+=-+=-
∴原式=b c a c a b a b c bc ac ab
+++⋅+⋅+⋅222()()()
a a
b b
c c a b c bc ac ab abc ---++=++=- ①
33223
()[()3](3)3a b a b a b ab c c ab c abc +=++-=--=-+
3333a b c abc ∴++= ②,把②代入①得原式=33abc
abc
-=-
例5解:(1
)原式
6==- (2)原式=(1)(2)2 3 (2)
|1||2|(1)(2) 1 (1x 2) x x x x x x x x -+-=->⎧-+-=⎨---=≤≤⎩
说明:||a =的使用:当化去绝对值符号但字母的范围未知时,要对字母的取值分类讨论.
(3)原式ab =
(4) 原式===
例6解:77 14,1x y x y xy ===+=-⇒+== 原式=2222
()()()[()3]14(143)2702x y x xy y x y x y xy +-+=++-=-=
说明:有关代数式的求值问题:(1)先化简后求值;(2)当直接代入运算较复杂时,可根据结论的结构特点,倒推几步,再代入条件,有时整体代入可简化计算量. 【巩固练习】
1.43x -<< 2. 3.3-或2 4.3
5.4
4
4
2
2
22
22
222x y z x y x z y z ---+++ 6.()()((13,2,3,43-。