2020中考数学 限时训练 二次函数的图象及性质 培优(含答案)
- 格式:docx
- 大小:124.89 KB
- 文档页数:6
2020中考数学二次函数的图像和性质专题练习(包含答案)2020中考数学二次函数的图像和性质专题练习(含答案)一、单选题(共有10道小题)1.抛物线2y ax bx c =++(a ,b ,c 是常数),a >0,顶点坐标为(,m ),给出下列结论:①若点(n ,y 1)与(﹣2n ,y 2)在该抛物线上,当n <时,则y 1<y 2;②关于x 的一元二次方程ax 2﹣bx +c ﹣m +1=0无实数解,那么() A .①正确,②正确 B .①正确,②错误 C .①错误,②正确D .①错误,②错误2.已知1a <-,点(1a -,1)y ,(a ,2)y ,(1a +,3)y 都在函数2y x =的图象上,则()A. 123y y y <<B. 132y y y <<C. 321y y y <<D. 213y y y <<3.如图,直角坐标系中,两条抛物线有相同的对称轴,下列关系不正确的是()A .h m =B .k n =C .k n >D .00h k >>,4.二次函数2y ax bx c =++的图象如图所示,则一次函数24y bx b ac =+-与反比例函数a b c y x++=在同一坐标系内的图象大致为()14(x-h )2+kABC5.函数ky x=与22(0)y kx k k =+≠在同一坐标系中图象大致是图中的()6.已知,如图所示为二次函数2y ax bx c =++的图象,则一次函数y ax bc =+的图象不经过()A.第一象限B.D.第四象限7.在同一直角坐标系中,函数y mx m =+和函数222y mx x =-++(m 是常数,且0m ≠)的图象可能..是()8.2y ax bx c =++的图象如图所示.并设|||||2||2| M abca b c a b a b =++--+++--,则()DB ADC DC B AA .0M >B .0M =C .0M <D .不能确定M 为正,为负或为09.已知二次函数2y ax bx c =++的图象如图所示,有以下结论:①0a b c ++<;②1a b c -+>;③0abc >;④420a b c -+<;⑤1c a -> 其中所有正确结论的序号是() A .①② B .①③④C .①②③⑤D .①②③④⑤10.如下右图所示,二次函数2(0)y ax bx c a =++≠的图象经过点()12-,,且与x 轴交点的横坐标分别为1x ,2x ,其中121x -<<-,201x <<,下列结论:①420a b c -+<;②20a b -<;③1b <-;④284b a ac +>.其中正确的有()A.1个B.2个C.3个D.4个二、多选题(共有1道小题)11.下列函数中,哪些是二次函数?并指出二次函数的二次项系数、一次项系数和常数项.⑴2y x = ⑵ 21y x =-⑶ 221y x x =-- ⑷(1)y x x =-⑸2(1)(1)(1)y x x x =--+-三、填空题(共有6道小题)12.将抛物线22y x =的图象,向左平移1个单位,再向下平移2个单位,所得图象的解析式为.13.若二次函数21my mx +=有最小值,则m =________.14.二次函数23(2)my m x -=-在其图象对称轴的左侧,y 随着x 的增大而减小,则m 的值为_____.15.已知点()15A x ,,()25B x,是函数223y x x =-+上两点,则当12x x x =+时,函数值y =___________.16.已知二次函数()()2223y m x mx m =-+--的图象的开口向上,顶点在第三象限,且交于y 轴的负半轴,则m 的取值范围是_________________.17.已知二次函数()2110y a x b =-++和()2250y b x a =--+分别有最大值、最小值,则这两个二次函数的图像有个交点.四、解答题(共有7道小题)18.若20x -≤≤,求221y x x =-+的最大值、最小值.19.已知函数2y ax bx c =++(0a ≠)的图象,如图所示.求证:22()a c b +<20.二次函数2y ax bx c =++的图象的一部分如图所示,求a 的取值范围21.设二次函数2(0)y ax bx c a =++≠的图象如图所示,若OA OB =,求abc 的取值范围.22.设直线y kx b =+与抛物线2y ax =的两个交点的横坐标分别是12,x x ,且直线与x轴的交点的横坐标为3x ,求证:123111x x x +=.23.分别求出在下列条件下,函数2231y x x =-++的最值:⑴x 取任意实数;⑵当20x -≤≤时;⑶当13x ≤≤时;⑷当12x -≤≤时.24.已知函数222y x x =-+在1t x t ≤≤+范围内的最小值为s ,写出函数s 关于t 的函数解析式,并求出s 的取值范围.讲评卷一、单选题(共有10道小题)1.抛物线2y ax bx c =++(a ,b ,c 是常数),a >0,顶点坐标为(,m ),给出下列结论:①若点(n ,y 1)与(﹣2n ,y 2)在该抛物线上,当n <时,则y 1<y 2;②关于x 的一元二次方程ax 2﹣bx +c ﹣m +1=0无实数解,那么() A .①正确,②正确 B .①正确,②错误 C .①错误,②正确D .①错误,②错误参考答案:A解:①∵顶点坐标为(,m ),n <,∴点(n ,y 1)关于抛物线的对称轴x =的对称点为(1﹣n ,y 1),∴点(1﹣n ,y 1)与(﹣2n ,y 2)在该抛物线上,∵(1﹣n )﹣(﹣2n )=n ﹣<0,∴1﹣n <﹣2n ,∵a >0,∴当x >时,y 随x 的增大而增大,∴y 1<y 2,故此小题结论正确;②把(,m )代入y =ax 2+bx +c 中,得m =a +b +c ,∴一元二次方程ax 2﹣bx +c ﹣m +1=0中,△=b 2﹣4ac +4am ﹣4a =b 2﹣4ac +4a (a +b +c )﹣4a =(a +b )2﹣4a <0,∴一元二次方程ax 2﹣bx +c ﹣m +1=0无实数解,故此小题正确2.已知1a <-,点(1a -,1)y ,(a ,2)y ,(1a +,3)y 都在函数2y x =的图象上,则()A. 123y y y <<B. 132y y y <<C. 321y y y <<D. 213y y y <<参考答案:C3.如图,直角坐标系中,两条抛物线有相同的对称轴,下列关系不正确的是()A .h m =B .k n =C .k n >D .00h k >>,参考答案:B4.二次函数2y ax bx c =++的图象如图所示,则一次函数24y bxb ac =+-与反比例函数a b c y x++=在同一坐标系内的图象大致为()参考答案:D5.函数ky x=与22(0)y kx k k =+≠在同一坐标系中图象大致是图中的()14(x-h )2+kABCD参考答案:A6.已知,如图所示为二次函数2y ax bx c =++的图象,则一次函数y ax bc =+的图象不经过()A.第一象限B.D.第四象限参考答案:B7.在同一直角坐标系中,函数y mx m =+和函数222y mx x =-++(m 是常数,且0m ≠)的图象可能..是()参考答案:D8.2y ax bx c =++的图象如图所示.并设|||||2||2|M a b c a b c a b a b =++--+++--,则()A .0M >B .0M =C .0M <D .不能确定M 为正,为负或为0B DC DC B A参考答案:C9.已知二次函数2y ax bx c =++的图象如图所示,有以下结论:①0a b c ++<;②1a b c -+>;③0abc >;④420a b c -+<;⑤1c a -> 其中所有正确结论的序号是() A .①② B .①③④C .①②③⑤D .①②③④⑤参考答案:C10.如下右图所示,二次函数2(0)y ax bx c a =++≠的图象经过点()12-,,且与x 轴交点的横坐标分别为1x ,2x ,其中121x -<<-,201x <<,下列结论:①420a b c -+<;②20a b -<;③1b <-;④284b a ac +>.其中正确的有()A.1个B.2个C.3个D.4个参考答案:D二、多选题(共有1道小题)11.下列函数中,哪些是二次函数?并指出二次函数的二次项系数、一次项系数和常数项.⑴2y x = ⑵ 21y x =-⑶ 221y x x =-- ⑷(1)y x x =-⑸2(1)(1)(1)y x x x =--+-参考答案:⑴二次项系数为1,一次项系数和常数项为0.⑵虽然次数为2,但x 位于分母位置,所以不是二次函数.⑶二次项系数为2,一次项系数为-1,常数项为-1.⑷2(1)y x x x x =-=-+,二次项系数为-1,一次项系数为1,常数项为0.⑸将括号展开,二次项消去,所以不是二次函数.三、填空题(共有6道小题)12.将抛物线22y x =的图象,向左平移1个单位,再向下平移2个单位,所得图象的解析式为.参考答案:y =2(x +1)2﹣2 13.若二次函数21m y mx +=有最小值,则m =________.参考答案:∵二次函数21my mx +=有最小值,∴0m >.又∵212m +=,∴1m =±.∴1m =.14.二次函数23(2)m y m x -=-在其图象对称轴的左侧,y 随着x 的增大而减小,则m 的值为_____.参考答案:根据题设条件,画图草图(如下图):由二次函数图象性质可知:20m ->,同时,232m -=,解方程,得:m =,因为20m ->,∴m =.15.已知点()15A x ,,()25B x ,是函数223y x x =-+上两点,则当12x x x =+时,函数值y =___________.参考答案:由题意可知:A ,B 关于抛物线的对称轴对称,故12222bx x x a-=+=?=,∴当2x =时,4433y =-+=16.已知二次函数()()2223y m x mx m =-+--的图象的开口向上,顶点在第三象限,且交于y 轴的负半轴,则m 的取值范围是_________________.参考答案:考察函数图像与系数之间的关系.因为函数图像开口向上,所以()20m ->,又因为顶点在第三象限,所以函数对称轴在y 轴左侧,所以20m >;因为函数图像又与y 轴的负半轴相交,所以()30m --<.综上所述可得()202200330m m m m m m ?->>>?><--<??∴23m <<17.已知二次函数()2110y a x b =-++和()2250y b x a =--+分别有最大值、最小值,则这两个二次函数的图像有个交点.参考答案:0四、解答题(共有7道小题)18.若20x -≤≤,求221y x x =-+的最大值、最小值.参考答案:由函数图像开口向上,且120<4x -≤≤,故当2x =-时,y 取最大值为7,当0x =时,y 取最小值为1.19.已知函数2y ax bx c =++(0a ≠)的图象,如图所示.求证:22()a c b +<参考答案:方法一:根据图象得: 0,0a c <<122bb a a-=?=-?224b a =① 又∵240b ac ->,∴2440a ac -> 即:4()0a a c -> ∴220204()a c a c a a a a c a a c -<?<++② 由①②式得:22()a c b +< 方法二:根据图象得,当1x =时0y >,即0a b c ++>,∴()b a c >-+由0a <,12ba-=得:0b > 当0x =时0y <得0c <∴22()0()b a c b a c >-+>?>+即:22()a c b +<.20.二次函数2y ax bx c =++的图象的一部分如图所示,求a 的取值范围参考答案:根据二次函数图象可知0a <,又此二次函数图象经过(10),,(01),则有0a b c ++=,1c =,得(1)b a =-+,于是22214(1)(1)1()24a a a y ax a x a x a a+--=-++=-+ 根据函数图象可知102a x a +=<,24(1)14a a a--> 于是有10a -<<.21.设二次函数2(0)y ax bx c a =++≠的图象如图所示,若OA OB =,求abc 的取值范围.参考答案:设点A 的坐标为(m ,0),0m <,则B 的坐标为(0,)m ,于是20am bm c ++=且c m =,即20am bm m ++=,∴1b am =--.∴22111()244ab ma a m a m m m=--=-++≥,由图知,0a >,对称轴在y 轴右侧,故02ba->,0b <,∴104ab m≤<,两边同时乘以负数c m =,即得104abc <≤.22.设直线y kx b =+与抛物线2y ax =的两个交点的横坐标分别是12,x x ,且直线与x轴的交点的横坐标为3x ,求证:123111x x x +=.参考答案:由题意有220y kx bax kx b y ax=+??--=?=?u两个交点的横坐标分别是12,x x ,故1212k b x x x x a a+==-,.∴12121211x x k x x x x b ++==-.直线y kx b =+与x 轴交点的横坐标为3bx k=-,故31k x b =-.故123111x x x +=. 23.分别求出在下列条件下,函数2231y x x =-++的最值:⑴x 取任意实数;⑵当20x -≤≤时;⑶当13x ≤≤时;⑷当12x -≤≤时.参考答案:⑴函数的最大值为178,无最小值;⑵当0x =时,函数取得最大值1;当2x =-时,函数取得最小值13-;⑶当1x =时,函数取得最大值2;当3x =时,函数取得最小值8-;⑷当34x =时,函数取得最大值178;当1x =-时,函数取得最小值4-.24.已知函数222y x x =-+在1t x t ≤≤+范围内的最小值为s ,写出函数s 关于t 的函数解析式,并求出s 的取值范围.参考答案:二次函数222y x x =-+的对称轴是1x =,①当1t >时,对称轴在x t =左边,∴222s t t =-+;②当11t t ≤≤+,即01t ≤≤时,最小值s 在顶点处取得,∴1s =;③当11t +<,即0t <时,对称轴在1x t =+右边,∴21s t =+.综上所述:221(0),1(01),22(1)t t s t t t t ?+<?=≤≤??-+>?∴s 的取值范围为1s ≥.。
2019-2020二次函数培优专题——图像与性质(真题含答案) 1.如图,函数y=ax2−2x+1和y=ax−a(a是常数,且a≠0)在同一平面直角坐标系的图象可能是()A.B.C.D.2.如图,二次函数y=ax2+bx的图象开口向下,且经过第三象限的点P.若点P的横坐标为−1,则一次函数y=(a−b)x+b的图象大致是()A.B.C.D.3.(已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论:①abc>0;②2a+b>0;③b2﹣4ac>0;④a﹣b+c>0,其中正确的个数是()A.1B.2C.3D.44.若二次函数y=ax2+bx+a2−2(a,b为常数)的图象如图,则a的值为( (A .1B .√2C .−√2D .-25.函数y=ax 2+2ax+m(a(0)的图象过点(2(0),则使函数值y(0成立的x 的取值范围是( ) A .x((4或x(2 B .(4(x(2 C .x(0或x(2 D .0(x(26.如图是二次函数y=ax 2+bx+c (a ,b ,c 是常数,a ≠0)图象的一部分,与x 轴的交点A 在点(2,0)和(3,0)之间,对称轴是x=1.对于下列说法:①ab <0;②2a+b=0;③3a+c >0;④a+b≥m (am+b )(m 为实数);⑤当﹣1<x <3时,y >0,其中正确的是( )A .①②④B .①②⑤C .②③④D .③④⑤ 7.如图,已知二次函数()2y ax bx c a 0=++≠的图象如图所示,有下列5个结论 abc 0>①(b ac ->②(4a 2b c 0++>③(3a c >-④(()a b m am b (m 1+>+≠⑤的实数).其中正确结论的有( )A.①②③B.②③⑤C.②③④D.③④⑤8.抛物线y=ax2+bx+c的对称轴为直线x=(1,部分图象如图所示,下列判断中:①abc(0(②b2(4ac(0(③9a(3b+c=0(④若点(﹣0.5(y1((((2(y2)均在抛物线上,则y1(y2(⑤5a(2b+c(0(其中正确的个数有()A.2B.3C.4D.59.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论:①2a+b<0;②abc>0;③4a−2b+c>0;④a+c>0,其中正确结论的个数为()A.1个B.2个C.3个D.4个10.如图是抛物线y=ax2+bx+c(a≠0)的部分图象,其顶点是(1(n),且与x的一个交点在点(3(0)和(4(0)之间,则下列结论:①a-b+c(0(②3a+b=0(③b2=4a(c-n((④一元二次方程ax2+bx+c=n-1有两个不等的实数根.其中正确结论的个数是()A.1 B.2 C.3 D.411.如图,抛物线y=ax2+bx+c交x轴于点((1(0(和(4(0(,那么下列说法正确的是((A.ac(0 B.b2(4ac(0C.对称轴是直线x=2.5 D.b(012.如图,二次函数y=ax2+bx+c的图象与x轴交于点A(﹣1,0),与y轴的交点B在(0,2)与(0,3)之间(不包括这两点),对称轴为直线x=2.下列结论:abc<0;②9a+3b+c>0;③若点M(12,y1),点N(52,y2)是函数图象上的两点,则y1<y2;④﹣35<a<﹣25.其中正确结论有()A.1个B.2个C.3个D.4个13.已知抛物线y =ax 2+bx +c (a ,b ,c 为常数,a ≠0)经过点(−1,0),(0,3),其对称轴在y 轴右侧,有下列结论:①抛物线经过点(1,0)(②方程ax 2+bx +c =2有两个不相等的实数根;③−3<a +b <3.其中,正确结论的个数为( (A .0B .1C .2D .314.如图,已知二次函数y=(x +1)2﹣4,当﹣2≤x≤2时,则函数y 的最小值和最大值()A .﹣3和5B .﹣4和5C .﹣4和﹣3D .﹣1和515.已知二次函数y =a (x +3)2+b 有最大值0,则a,b 的大小关系为( (A .a < bB .a =bC .a > bD .大小不能确定16.对于抛物线y (ax 2((2a (1)x (a (3,当x (1时,y (0,则这条抛物线的顶点一定在A .第一象限B .第二象限C .第三象限D .第四象限17.若二次函数y((a(1)x 2(3x(a 2(1的图象经过原点,则a 的值必为( (A .1或-1B .1C .(1D .018.二次函数2y ax bx c =++的图象如图所示,下列结论中正确的是( )①0abc <②240b ac -<③2a b >④22()a c b +<A .1个B .2个C .3个D .4个19.如图,边长为2的正(ABC 的边BC 在直线l 上,两条距离为l 的平行直线a 和b 垂直于直线l(a 和b 同时向右移动(a 的起始位置在B 点),速度均为每秒1个单位,运动时间为t (秒),直到b 到达C 点停止,在a 和b 向右移动的过程中,记(ABC 夹在a 和b 之间的部分的面积为s ,则s 关于t 的函数图象大致为( )A .B .C .D .20.如图是在同一平面直角坐标系内,二次函数y=ax 2+(a+c )x+c 与一次函数y=ax+c 的大致图象,正确的是 ( )A .B .C .D . 21.已知一次函数y=b ax+c 的图象如图,则二次函数y=ax 2+bx+c 在平面直角坐标系中的图象可能是( )A .B .C .D .22.已知,a b 是非零实数,a b >,在同一平面直角坐标系中,二次函数21y ax bx =+与一次函数2y ax b =+的大致图象不可能是( )A .B .C .D .23.如图,已知抛物线y1=(x2+4x和直线y2=2x.我们规定:当x取任意一个值时,x对应的函数值分别为y1和y2,若y1≠y2,取y1和y2中较小值为M;若y1=y2,记M=y1=y2(①当x(2时,M=y2(②当x(0时,M随x的增大而增大;③使得M大于4的x的值不存在;④若M=2,则x=1.上述结论正确的是_____(填写所有正确结论的序号).24.抛物线y=﹣x2+bx+c与x轴交于A(﹣3,0),B(1,0)两点,与y轴交于点C.(1)求该抛物线的解析式;(2)在抛物线上求一点P,使S△PAB=S△ABC,写出P点的坐标;(3)在抛物线的对称轴上是否存在点Q,使得△QBC的周长最小?若存在,求出点Q的坐标,若不存在,请说明理由.25.如图,在平面直角坐标系中,抛物线y=ax2+2x+c与x轴交于A((1(0(B(3(0)两点,与y 轴交于点C,点D是该抛物线的顶点.(1)求抛物线的解析式和直线AC的解析式;(2)请在y轴上找一点M,使△BDM的周长最小,求出点M的坐标;(3)试探究:在拋物线上是否存在点P,使以点A(P(C为顶点,AC为直角边的三角形是直角三角形?若存在,请求出符合条件的点P的坐标;若不存在,请说明理由.26.已知二次函数y=2(x−1)(x−m−3)(m为常数).(1)求证:不论m为何值,该函数的图像与x轴总有公共点;(2)当m取什么值时,该函数的图像与y轴的交点在x轴的上方?27.如图,关于x的二次函数y=x2+bx+c的图象与x轴交于点A(1(0)和点B与y轴交于点C(0(3),抛物线的对称轴与x轴交于点D((1)求二次函数的表达式;(2)在y轴上是否存在一点P,使△PBC为等腰三角形?若存在.请求出点P的坐标;(3)有一个点M从点A出发,以每秒1个单位的速度在AB上向点B运动,另一个点N从点D与点M同时出发,以每秒2个单位的速度在抛物线的对称轴上运动,当点M到达点B时,点M(N同时停止运动,问点M(N运动到何处时,△MNB面积最大,试求出最大面积.28.如图,抛物线y=﹣1x2+bx+2与x轴交于A,B两点,与y轴交于C点,且点A的坐标为(1,0).2(1)求抛物线的解析式及顶点D的坐标;(2)判断△ABC的形状,并证明你的结论;(3)点M是抛物线对称轴上的一个动点,当△ACM的周长最小时,求点M的坐标.29.如图(抛物线y=x2 +bx+c与x轴交于A((1(0((B(3(0(两点((1(求该抛物线的解析式((2(求该抛物线的对称轴以及顶点坐标((3(设(1(中的抛物线上有一个动点P(当点P在该抛物线上滑动到什么位置时(满足S△P AB=8(并求出此时P点的坐标(30.如图,已知二次函数y=ax2+bx+3 的图象与x轴分别交于A(1,0),B(3,0)两点,与y轴交于点C(1)求此二次函数解析式;(2)点D为抛物线的顶点,试判断△BCD的形状,并说明理由;(3)将直线BC向上平移t(t>0)个单位,平移后的直线与抛物线交于M,N两点(点M在y轴的右侧),当△AMN为直角三角形时,求t的值.参考答案1.B【解析】分析:可先根据一次函数的图象判断a的符号,再判断二次函数图象与实际是否相符,判断正误即可.详解(A(由一次函数y=ax﹣a的图象可得:a<0,此时二次函数y=ax2﹣2x+1的图象应该开口向下.故选项错误;B(由一次函数y=ax﹣a的图象可得:a>0,此时二次函数y=ax2﹣2x+1的图象应该开口向上,对称轴x=﹣−2>0.故选项正确;2aC(由一次函数y=ax﹣a的图象可得:a>0,此时二次函数y=ax2﹣2x+1的图象应该开口>0,和x轴的正半轴相交.故选项错误;向上,对称轴x=﹣−22aD(由一次函数y=ax﹣a的图象可得:a>0,此时二次函数y=ax2﹣2x+1的图象应该开口向上.故选项错误.故选B.点睛:本题考查了二次函数以及一次函数的图象,解题的关键是熟记一次函数y=ax﹣a在不同情况下所在的象限,以及熟练掌握二次函数的有关性质:开口方向、对称轴、顶点坐标等.2.D【解析】【分析】根据二次函数的图象可以判断a(b(a−b的正负情况,从而可以得到一次函数经过哪几个象限,观察各选项即可得答案.【详解】由二次函数的图象可知,a<0(b<0(当x=−1时,y=a−b<0(∴y=(a−b)x+b的图象经过二、三、四象限,观察可得D选项的图象符合,故选D(【点睛】本题考查二次函数的图象与性质、一次函数的图象与性质,认真识图,会用函数的思想、数形结合思想解答问题是关键.3.D【解析】【分析】由抛物线的对称轴的位置判断ab的符号,由抛物线与y轴的交点判断c的符号,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.【详解】①∵抛物线对称轴是y轴的右侧,∴ab<0,∵与y轴交于负半轴,∴c<0,∴abc>0,故①正确;②∵a>0,x=﹣b<1,2a∴﹣b<2a,∴2a+b>0,故②正确;③∵抛物线与x轴有两个交点,∴b2﹣4ac>0,故③正确;④当x=﹣1时,y>0,∴a﹣b+c>0,故④正确.故选:D.【点睛】本题主要考查了图象与二次函数系数之间的关系,二次函数y=ax2+bx+c系数符号由抛物线开口方向、对称轴和抛物线与y轴的交点、抛物线与x轴交点的个数确定.4.C【解析】【分析】根据图象开口向下可知a(0,又二次函数图象经过坐标原点,把原点坐标代入函数解析式解关于a 的一元二次方程即可.【详解】由图可知,函数图象开口向下,∴a(0(又∵函数图象经过坐标原点(0(0((∴a2-2=0(解得a1=√2(舍去),a2=-√2(故选C(【点睛】本题考查了二次函数图象上点的坐标特征,观察图象判断出a是负数且经过坐标原点是解题的关键.5.A【解析】【分析】先求出抛物线的对称轴方程,再利用抛物线的对称性得到抛物线与x轴的另一个交点坐标为(-4,0),然后利用函数图象写出抛物线在x轴下方所对应的自变量的范围即可.【详解】抛物线y=ax2+2ax+m的对称轴为直线x=-2a2a=-1,而抛物线与x轴的一个交点坐标为(2,0),∴抛物线与x轴的另一个交点坐标为(-4,0),∵a<0,∴抛物线开口向下,∴当x<-4或x>2时,y<0.故选A.【点睛】本题考查了抛物线与x轴的交点:把求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x轴的交点坐标问题转化为解关于x的一元二次方程.也考查了二次函数的性质.6.A【解析】【分析】由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴判定b与0的关系以及2a+b=0;当x=(1时,y=a(b+c;然后由图象确定当x取何值时,y(0(【详解】①∵对称轴在y轴右侧,∴a(b异号,∴ab(0,故正确;=1,②∵对称轴x=−b2a∴2a+b=0;故正确;③∵2a+b=0(∴b=(2a(∵当x=(1时,y=a(b+c(0(∴a(((2a(+c=3a+c(0,故错误;④根据图示知,当m=1时,有最大值;当m≠1时,有am2+bm+c≤a+b+c(所以a+b≥m(am+b((m为实数).故正确.⑤如图,当﹣1(x(3时,y不只是大于0(故错误.故选:A(【点睛】本题主要考查了二次函数图象与系数的关系,关键是熟练掌握①二次项系数a决定抛物线的开口方向,当a(0时,抛物线向上开口;当a(0时,抛物线向下开口;②一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时(即ab(0),对称轴在y轴左;当a与b异号时(即ab(0),对称轴在y轴右.(简称:左同右异)③常数项c决定抛物线与y轴交点,抛物线与y轴交于(0(c((7.B【解析】【分析】由抛物线对称轴的位置判断ab的符号,由抛物线与y轴的交点判断c的符号,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所给结论进行判断即可.【详解】①对称轴在y轴的右侧,Q∴<(ab0>(由图象可知:c0∴<,故①不正确;abc0=-+<(②当x1=-时,y a b c0∴->,故②正确;b a c③由对称知,当x 2=时,函数值大于0,即y 4a 2b c 0=++>,故③正确;b x 12a=-=Q ④( b 2a ∴=-(a b c 0-+<Q (a 2a c 0∴++<(3a c <-,故④不正确;⑤当x 1=时,y 的值最大·此时,y a b c =++(而当x m =时,2y am bm c =++(所以()2a b c am bm c m 1++>++≠( 故2a b am bm +>+,即()a b m am b +>+,故⑤正确,故②③⑤正确,故选B(【点睛】本题考查了图象与二次函数系数之间的关系,二次函数2y ax bx c =++系数符号由抛物线开口方向、对称轴和抛物线与y 轴的交点、抛物线与x 轴交点的个数确定,熟练掌握二次函数的性质是关键. 8.B【解析】【分析】分析:根据二次函数的性质一一判断即可.【详解】详解:∵抛物线对称轴x=-1,经过(1(0((∴-2b a=-1(a+b+c=0( ∴b=2a(c=-3a(∵a(0(∴b(0(c(0(∴abc(0,故①错误,∵抛物线对称轴x=-1,经过(1(0((可知抛物线与x 轴还有另外一个交点(-3(0(∴抛物线与x 轴有两个交点,∴b 2-4ac(0,故②正确,∵抛物线与x 轴交于(-3(0((∴9a -3b+c=0,故③正确,∵点(-0.5(y 1(((-2(y 2)均在抛物线上,(-0.5(y 1(关于对称轴的对称点为(-1.5(y 1((-1.5(y 1(((-2(y 2)均在抛物线上,且在对称轴左侧,-1.5(-2(则y 1(y 2;故④错误,∵5a -2b+c=5a -4a -3a=-2a(0,故⑤正确,故选:B(【点睛】本题考查二次函数与系数的关系,二次函数图象上上的点的特征,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.9.B【解析】【分析】根据抛物线的开口方向和对称轴判断①;根据抛物线与y轴的交点和对称轴判断②;根据x=-2时,y<0判断③;根据x=±1时,y>0判断④.【详解】①∵抛物线开口向下,∴a<0,<1,∵−b2a∴2a+b<0,①正确;②抛物线与y轴交于正半轴,∴c>0,>0,a<0,∵−b2a∴b>0,∴abc<0,②错误;③当x=−2时,y<0,∴4a−2b+c<0,③错误;x=±1时,y>0,∴a−b+c>0,a+b+c>0,∴a+c>0,④正确,故选:B【点睛】本题考核知识点:二次函数图象与系数的关系.解题关键点:理解二次函数图象与系数的关系. 10.C【解析】试题解析:∵抛物线与x轴的一个交点在点(3,0)和(4,0)之间,而抛物线的对称轴为直线x=1,∴抛物线与x轴的另一个交点在点(-2,0)和(-1,0)之间.∴当x=-1时,y>0,即a-b+c>0,所以①正确;∵抛物线的对称轴为直线x=-b2a=1,即b=-2a,∴3a+b=3a-2a=a,所以②错误;∵抛物线的顶点坐标为(1,n),∴4ac−b 24a=n,∴b2=4ac-4an=4a(c-n),所以③正确;∵抛物线与直线y=n有一个公共点,∴抛物线与直线y=n-1有2个公共点,∴一元二次方程ax2+bx+c=n-1有两个不相等的实数根,所以④正确.故选B.11.D【解析】分析:直接利用二次函数图象与系数的关系进而分析得出答案.详解:A(∵抛物线开口向下,∴a(0(∵抛物线与y轴交在正半轴上,∴c(0(∴ac(0,故此选项错误;B(∵抛物线与x轴有2个交点,∴b2-4ac(0,故此选项错误;C(∵抛物线y=ax2+bx+c交x轴于点(-1(0)和(4(0((∴对称轴是直线x=1.5,故此选项错误;D(∵a(0,抛物线对称轴在y轴右侧,∴a(b异号,∴b(0,故此选项正确.故选:D(点睛:此题主要考查了二次函数图象与系数的关系,正确掌握各项符号判断方法是解题关键.12.D【分析】根据二次函数的图象与系数的关系即可求出答案. 【详解】①由开口可知:a <0, ∴对称轴x=−2ba>0, ∴b >0,由抛物线与y 轴的交点可知:c >0, ∴abc <0,故①正确;②∵抛物线与x 轴交于点A (-1,0), 对称轴为x=2,∴抛物线与x 轴的另外一个交点为(5,0), ∴x=3时,y >0,∴9a+3b+c >0,故②正确;③由于12<2<52, 且(52,y 2)关于直线x=2的对称点的坐标为(32,y 2),∵12<32, ∴y 1<y 2,故③正确, ④∵−2ba=2,∵x=-1,y=0,∴a-b+c=0,∴c=-5a,∵2<c<3,∴2<-5a<3,∴-35<a<-25,故④正确故选:D.【点睛】本题考查二次函数的图象与性质,解题的关键是熟练运用图象与系数的关系,本题属于中等题型.13.C【解析】分析:根据抛物线的对称性可以判断①错误,根据条件得抛物线开口向下,可判断②正确;根据抛物线与x轴的交点及对称轴的位置,可判断③正确,故可得解.详解:抛物线y=ax2+bx+c(a,b,c为常数,a≠0)经过点(−1,0),其对称轴在y轴右侧,故抛物线不能经过点(1,0),因此①错误;抛物线y=ax2+bx+c(a,b,c为常数,a≠0)经过点(−1,0),(0,3),其对称轴在y轴右侧,可知抛物线开口向下,与直线y=2有两个交点,因此方程ax2+bx+c=2有两个不相等的实数根,故②正确;∵对称轴在y轴右侧,∴−b2a>0∵a<0∴b>0∵y=ax2+bx+c经过点(−1,0),∴a-b+c=0∵y=ax2+bx+c经过点(0,3),∴c=3∴a-b=-3∴b=a+3,a=b-3∴-3<a<0,0<b<3∴-3<a+b<3.故③正确.故选C.点睛:本题考查了二次函数图象上点的坐标特征,二次函数图象与系数的关系,二次函数与一元二次方程的关系,不等式的性质等知识,难度适中.14.B【解析】【分析】先求出二次函数的对称轴为直线x=-1,然后根据二次函数开口向上确定其增减性,并结合图象解答即可.【详解】∵二次函数y=(x+1(2-4(对称轴是:x=-1∵a=-1(0(∴x(-1时,y随x的增大而增大,x(-1时,y随x的增大而减小,由图象可知:在-2≤x≤2内,x=2时,y有最大值,y=(2+1(2-4=5(x=-1时y有最小值,是-4(故选B(【点睛】本题考查了二次函数的最值问题,二次函数的增减性,结合图象可得函数的最值是解题的关键.15.A【解析】【分析】根据二次函数有最大值可判断a(0,再根据最大值为0可判断b=0,据此即可进行比较a(b的大小.【详解】∵二次函数y=a(x+1(2-b(a≠0)有最大值,∴抛物线开口方向向下,即a<0(又最大值为0(∴b=0(∴a<b(故选A(【点睛】本题考查了二次函数的顶点式以及二次函数的性质,熟练掌握二次函数的性质是解题的关键.16.C【解析】【分析】先由题意得到关于a的不等式,解不等式求出a的取值范围,然后再确定抛物线的顶点坐标的取值范围,据此即可得出答案.【详解】由题意得:a+(2a-1)+a-3>0,解得:a>1(∴2a-1>0(∴−2a−12a<0(4a(a−3)−(2a−1)24a=−8a+14a<0(∴抛物线的顶点在第三象限, 故选C.【点睛】本题考查了抛物线的顶点坐标公式,熟知抛物线的顶点坐标公式是解题的关键. 17.C 【解析】 【分析】将(0,0)代入求出a 的值,因为二次函数二次项系数不能为0,排除一个a 的值即可. 【详解】将(0,0)代入y((a(1)x 2(3x(a 2(1,得a=±1(∵a≠1(∴a=-1. 【点睛】本题考查二次函数求常数项,解题的关键是将已知二次函数过的点代入,注意二次函数二次项系数不能为0. 18.A 【解析】 【分析】由函数图象可知a <0,对称轴-1<x <0,20b a ->;0b <,图象与y 轴的交点c >0,函数与x 轴有两个不同的交点;△=b 2-4ac >0;再由图象可知当x=1时,y <0,即a+b+c <0;当x=-1时,y >0,即a -b+c >0;即可求解. 【详解】解:由函数图象可知0a <,对称轴10x -<<,图象与y 轴的交点0c >,函数与x 轴有两个不同的交点,∴2b a >,0b <;③错误240b ac ∆=->;②错0abc >;①错误当1x =时,0y <,即0a b c ++<;当1x =-时,0y >,即0a b c -+>;∴()()0a b c a b c ++-+<,即22()a c b +<; ∴只有④是正确的; 故选:A . 【点睛】本题考查二次函数的图象及性质;熟练掌握函数的图象及性质,能够通过图象获取信息,推导出a ,b ,c ,△,对称轴的关系是解题的关键. 19.B 【解析】 【分析】依据a 和b 同时向右移动,分三种情况讨论,求得函数解析式,进而得到当0≤t <1时,函数图象为开口向上的抛物线的一部分,当1≤t <2时,函数图象为开口向下的抛物线的一部分,当2≤t≤3时,函数图象为开口向上的抛物线的一部分. 【详解】如图①,当0≤t <1时,BE=t ,DE=√3t ,∴s=S △BDE =12×t×√3t=√32t 2;如图②,当1≤t <2时,CE=2-t ,BG=t-1,∴DE=√3(2-t ),FG=√3(t-1),∴s=S五边形AFGED=S △ABC -S △BGF -S △CDE =12×2×√3-12×(t-1)×√3(t-1)-12×(2-t )×√3(2-t )=-√3t 2+3√3t-32√3;如图③,当2≤t≤3时,CG=3-t ,GF=√3(3-t ),∴s=S △CFG =12×(3-t )×√3(3-t )=√32t 2-3√3t+9√32,综上所述,当0≤t <1时,函数图象为开口向上的抛物线的一部分;当1≤t <2时,函数图象为开口向下的抛物线的一部分;当2≤t≤3时,函数图象为开口向上的抛物线的一部分,故选B.【点睛】本题主要考查了动点问题的函数图象,函数图象是典型的数形结合,通过看图获取信息,不仅可以解决生活中的实际问题,还可以提高分析问题、解决问题的能力.20.C【解析】【分析】本题可先由一次函数y=ax+c图象得到字母系数的正负,再与二次函数y=ax2+(a+c(x+c的图象相比较看是否一致,用排除法即可解答.【详解】一次函数图像过二、四象限,则a<0(二次函数开口向上,a>0,故A选项错误;∵y=ax2+(a+c)x+c=(ax+c)(x+1)∴图像与x轴的交点为(-ca(0(((-1(0((∵y=0时,一次函数ax+c=0(∴x=-ca ,即图像与x轴的交点为(-ca(0((∴二次函数与一次函数在x轴上有交点(-ca(0((故B选项错误;根据A(B选项的判断,C选项正确,一次函数图像过一、三象限,则a>0,二次函数开口向下,a<0,故D选项错误,【点睛】本题考查二次函数与一次函数的图象性质,熟练掌握相关知识是解题关键. 21.A 【解析】 【分析】由一次函数的图象判断出ba<0, c>0,再判断二次函数的图象特征,进而求解. 【详解】由一次函数的图象可得:b a <0, c>0,所以二次函数y=ax 2+bx+c 图象的对称轴=2b a->0,与y 轴的交点在正半轴,符合题意的只有A.故选A. 【点睛】本题考查了二次函数图象与一次函数的图象,解题的关键是根据一次函数的图象判断出ba<0, c>0. 22.D 【解析】 【分析】采用赋值法,选取符合图形条件的未知数的值,再采用排除法即可确定答案. 【详解】解答本题可采用赋值法. 取2,1a b ==,可知A 选项是可能的;取2,1a b ==-,可知B 选项是可能的;取2,1a b =-=-,可知C 选项是可能的,那么根据排除法,可知D 选项是不可能的. 故选:D.本题考查二次函数的图象、一次函数的图象,解题的关键是明确二次函数与一次函数图象的特点.23.②③【解析】分析:①观察函数图象,可知:当x>2时,抛物线y1=-x2+4x在直线y2=2x的下方,进而可得出当x>2时,M=y1,结论①错误;②观察函数图象,可知:当x<0时,抛物线y1=-x2+4x在直线y2=2x的下方,进而可得出当x <0时,M=y1,再利用二次函数的性质可得出M随x的增大而增大,结论②正确;③利用配方法可找出抛物线y1=-x2+4x的最大值,由此可得出:使得M大于4的x的值不存在,结论③正确;④利用一次函数图象上点的坐标特征及二次函数图象上点的坐标特征求出当M=2时的x值,由此可得出:若M=2,则x=1或2+√2,结论④错误.此题得解.详解:①当x>2时,抛物线y1=-x2+4x在直线y2=2x的下方,∴当x>2时,M=y1,结论①错误;②当x<0时,抛物线y1=-x2+4x在直线y2=2x的下方,∴当x<0时,M=y1,∴M随x的增大而增大,结论②正确;③∵y1=-x2+4x=-(x-2)2+4,∴M的最大值为4,∴使得M大于4的x的值不存在,结论③正确;④当M=y1=2时,有-x2+4x=2,解得:x1=2-√2(舍去),x2=2+√2;当M=y2=2时,有2x=2,解得:x=1.∴若M=2,则x=1或2+√2,结论④错误.综上所述:正确的结论有②③.故答案为:②③.点睛:本题考查了一次函数的性质、二次函数的性质、一次函数图象上点的坐标特征以及二次函数图象上点的坐标特征,逐一分析四条结论的正误是解题的关键.24.(1)y=﹣x2﹣2x+3;(2)所求P点的坐标为(﹣2,3)或(﹣1+√7,﹣3)或(﹣1﹣√7,﹣3);(3)点Q的坐标是(﹣1,2).【解析】【分析】(1)将A(-3(0((B(1(0)两点代入y=-x2+bx+c,利用待定系数法求解即可求得答案;(2)首先求得点C的坐标为(0(3),然后根据同底等高的两个三角形面积相等,可得P点的纵坐标为±3,将y=±3分别代入抛物线的解析式,求出x的值,即可求得P点的坐标;(3)根据两点之间线段最短可得Q点是AC与对称轴的交点.利用待定系数法求出直线AC的解析式,将抛物线的对称轴方程x=-1代入求出y的值,即可得到点Q的坐标.【详解】(1(∵抛物线y=(x2+bx+c与x轴交于A((3(0((B(1(0)两点,∴{−9+3b +c =0−1+b +c =0 ,解得{b =−2c =3 (∴抛物线的解析式为:y=(x 2(2x+3( (2(∵y=(x 2(2x+3( ∴x=0时,y=3(∴点C 的坐标为(0(3((设在抛物线上存在一点P(x(y ),使S △PAB =S △ABC ( 则|y|=3,即y=±3(如果y=3,那么﹣x 2(2x+3=3,解得x=0或﹣2( x=0时与C 点重合,舍去,所以点P((2(3(( 如果y=(3,那么﹣x 2(2x+3=(3,解得x=(1±√7( 所以点P((1±√7((3((综上所述,所求P 点的坐标为(﹣2(3)或(﹣1+√7((3)或(﹣1(√7((3(( (3)连结AC 与抛物线的对称轴交于点Q ,此时△QBC 的周长最小. 设直线AC 的解析式为:y=mx+n( ∵A((3(0((C(0(3((∴{−3m +n =0n =3 ,解得:{m =1n =3 (∴直线AC 的解析式为:y=x+3( ∵y=(x 2(2x+3的对称轴是直线x=(1( ∴当x=(1时,y=(1+3=2( ∴点Q 的坐标是(﹣1(2((【点睛】此题考查了抛物线与x 轴的交点,待定系数法求函数的解析式,二次函数的性质,三角形的面积以及轴对称-最短路线问题.正确求出函数的解析式是解此题的关键.25.(1)抛物线解析式为y=(x 2+2x+3;直线AC 的解析式为y=3x+3((2)点M 的坐标为(0(3(( (3)符合条件的点P 的坐标为(73(209)或(103((139((【解析】分析:(1)设交点式y=a(x+1((x -3),展开得到-2a=2,然后求出a 即可得到抛物线解析式;再确定C(0(3),然后利用待定系数法求直线AC 的解析式;(2)利用二次函数的性质确定D 的坐标为(1(4),作B 点关于y 轴的对称点B′,连接DB′交y 轴于M ,如图1,则B′(-3(0),利用两点之间线段最短可判断此时MB+MD 的值最小,则此时△BDM 的周长最小,然后求出直线DB′的解析式即可得到点M 的坐标;(3)过点C 作AC 的垂线交抛物线于另一点P ,如图2,利用两直线垂直一次项系数互为负倒数设直线PC 的解析式为y=-13x+b ,把C 点坐标代入求出b 得到直线PC 的解析式为y=-13x+3,再解方程组{y =−x 2+2x +3y =−13x +3得此时P 点坐标;当过点A 作AC 的垂线交抛物线于另一点P 时,利用同样的方法可求出此时P 点坐标.详解:(1)设抛物线解析式为y=a(x+1((x(3(( 即y=ax 2(2ax(3a( ∴(2a=2,解得a=(1(∴抛物线解析式为y=(x 2+2x+3(当x=0时,y=(x 2+2x+3=3,则C(0(3(( 设直线AC 的解析式为y=px+q(把A((1(0((C(0(3)代入得{−p +q =0q =3 ,解得{p =3q =3 (∴直线AC 的解析式为y=3x+3((2(∵y=(x2+2x+3=((x(1(2+4(∴顶点D的坐标为(1(4((作B点关于y轴的对称点B′,连接DB′交y轴于M,如图1,则B′((3(0((∵MB=MB′(∴MB+MD=MB′+MD=DB′,此时MB+MD的值最小,而BD的值不变,∴此时△BDM的周长最小,易得直线DB′的解析式为y=x+3(当x=0时,y=x+3=3(∴点M的坐标为(0(3(((3)存在.过点C作AC的垂线交抛物线于另一点P,如图2(∵直线AC 的解析式为y=3x+3( ∴直线PC 的解析式可设为y=(13x+b(把C(0(3)代入得b=3( ∴直线PC 的解析式为y=(13x+3(解方程组{y =−x 2+2x +3y =−13x +3,解得{x =0y =3 或{x =73y =209,则此时P 点坐标为(73(209((过点A 作AC 的垂线交抛物线于另一点P ,直线PC 的解析式可设为y=(x+b(把A((1(0)代入得13+b=0,解得b=(13( ∴直线PC 的解析式为y=(13x(13(解方程组{y =−x 2+2x +3y =−13x −13 ,解得{x =−1y =0 或{x =103y =−139 ,则此时P 点坐标为(103((139(. 综上所述,符合条件的点P 的坐标为(73(209(或(103((139(.点睛:本题考查了二次函数的综合题:熟练掌握二次函数图象上点的坐标特征和二次函数的性质;会利用待定系数法求函数解析式,理解两直线垂直时一次项系数的关系,通过解方程组求把两函数的交点坐标;理解坐标与图形性质,会运用两点之间线段最短解决最短路径问题;会运用分类讨论的思想解决数学问题.26.(1)证明见解析;(2)m >−3时,该函数的图像与y 轴的交点在x 轴的上方. 【解析】分析:(1)首先求出与x 轴交点的横坐标x 1=1,x 2=m +3,即可得出答案; (2)求出二次函数与y 轴的交点纵坐标.根据交点纵坐标大于0即可求出. 详解:(1)证明:当y =0时,2(x −1)(x −m −3)=0.解得x1=1,x2=m+3.当m+3=1,即m=−2时,方程有两个相等的实数根;当m+3≠1,即m≠−2时,方程有两个不相等的实数根.所以,不论m为何值,该函数的图像与x轴总有公共点.(2)解:当x=0时,y=2m+6,即该函数的图像与y轴交点的纵坐标是2m+6.当2m+6>0,即m>−3时,该函数的图像与y轴的交点在x轴的上方.点睛:本题考查了抛物线与x轴的交点坐标,熟练掌握抛物线与x轴的交点的证明方法,求出抛物线与y轴交点的纵坐标是解决问题(2)的关键.27.(1)二次函数的表达式为:y=x2(4x+3((2(点P的坐标为:()或()或(0(-3)或(0(0(((3)当点M出发1秒到达D点时,△MNB面积最大,最大面积是1.此时点N在对称轴上x轴上方2个单位处或点N在对称轴上x轴下方2个单位处.【解析】【分析】(1)把A(1,0)和C(0,3)代入y=x2+bx+c得方程组,解方程组即可得二次函数的表达式;(2)先求出点B的坐标,再根据勾股定理求得BC的长,当△PBC为等腰三角形时分三种情况进行讨论:①CP=CB;②BP=BC;③PB=PC;分别根据这三种情况求出点P的坐标;(3)设AM=t则DN=2t,由AB=2,得BM=2﹣t,S△MNB=12×(2﹣t)×2t=﹣t2+2t,把解析式化为顶点式,根据二次函数的性质即可得△MNB最大面积;此时点M在D点,点N在对称轴上x轴上方2个单位处或点N在对称轴上x轴下方2个单位处.【详解】解:(1)把A(1,0)和C(0,3)代入y=x2+bx+c,。
2020-2021中考数学培优(含解析)之二次函数附详细答案一、二次函数1.如图,抛物线y=ax2+bx+3(a≠0)的对称轴为直线x=﹣1,抛物线交x轴于A、C两点,与直线y=x﹣1交于A、B两点,直线AB与抛物线的对称轴交于点E.(1)求抛物线的解析式.(2)点P在直线AB上方的抛物线上运动,若△ABP的面积最大,求此时点P的坐标.(3)在平面直角坐标系中,以点B、E、C、D为顶点的四边形是平行四边形,请直接写出符合条件点D的坐标.【答案】(1)y=﹣x2﹣2x+3;(2)点P(32-,154);(3)符合条件的点D的坐标为D1(0,3),D2(﹣6,﹣3),D3(﹣2,﹣7).【解析】【分析】(1)令y=0,求出点A的坐标,根据抛物线的对称轴是x=﹣1,求出点C的坐标,再根据待定系数法求出抛物线的解析式即可;(2)设点P(m,﹣m2﹣2m+3),利用抛物线与直线相交,求出点B的坐标,过点P作PF∥y 轴交直线AB于点F,利用S△ABP=S△PBF+S△PFA,用含m的式子表示出△ABP的面积,利用二次函数的最大值,即可求得点P的坐标;(3)求出点E的坐标,然后求出直线BC、直线BE、直线CE的解析式,再根据以点B、E、C、D为顶点的四边形是平行四边形,得到直线D1D2、直线D1D3、直线D2D3的解析式,即可求出交点坐标.【详解】解:(1)令y=0,可得:x﹣1=0,解得:x=1,∴点A(1,0),∵抛物线y=ax2+bx+3(a≠0)的对称轴为直线x=﹣1,∴﹣1×2﹣1=﹣3,即点C(﹣3,0),∴309330a ba b++⎧⎨-+⎩==,解得:12ab-⎧⎨-⎩=,=∴抛物线的解析式为:y=﹣x2﹣2x+3;(2)∵点P在直线AB上方的抛物线上运动,∴设点P(m,﹣m2﹣2m+3),∵抛物线与直线y=x﹣1交于A、B两点,∴2231y x xy x⎧--+⎨-⎩==,解得:1145xy-⎧⎨-⎩==,221xy=,=⎧⎨⎩∴点B(﹣4,﹣5),如图,过点P作PF∥y轴交直线AB于点F,则点F(m,m﹣1),∴PF=﹣m2﹣2m+3﹣m+1=﹣m2﹣3m+4,∴S△ABP=S△PBF+S△PFA=12(﹣m2﹣3m+4)(m+4)+12(﹣m2﹣3m+4)(1﹣m)=-52(m+32)2+1258,∴当m=32-时,P最大,∴点P(32-,154).(3)当x=﹣1时,y=﹣1﹣1=﹣2,∴点E(﹣1,﹣2),如图,直线BC的解析式为y=5x+15,直线BE的解析式为y=x﹣1,直线CE的解析式为y =﹣x﹣3,∵以点B、C、E、D为顶点的四边形是平行四边形,∴直线D1D3的解析式为y=5x+3,直线D1D2的解析式为y=x+3,直线D2D3的解析式为y=﹣x﹣9,联立533y xy x+⎧⎨+⎩==得D1(0,3),同理可得D2(﹣6,﹣3),D3(﹣2,﹣7),综上所述,符合条件的点D的坐标为D1(0,3),D2(﹣6,﹣3),D3(﹣2,﹣7).【点睛】本题考查二次函数的综合应用,解决第(2)小题中三角形面积的问题时,找到一条平行或垂直于坐标轴的边是关键;对于第(3)小题,要注意分类讨论、数形结合的运用,不要漏解.2.如图,直线AB 和抛物线的交点是A (0,﹣3),B (5,9),已知抛物线的顶点D 的横坐标是2.(1)求抛物线的解析式及顶点坐标;(2)在x 轴上是否存在一点C ,与A ,B 组成等腰三角形?若存在,求出点C 的坐标,若不在,请说明理由;(3)在直线AB 的下方抛物线上找一点P ,连接PA ,PB 使得△PAB 的面积最大,并求出这个最大值.【答案】(1)21248355y x x =--,顶点D (2,635-);(2)C (10±0)或(5222±0)或(9710,0);(3)752 【解析】【分析】(1)抛物线的顶点D 的横坐标是2,则x 2b a=-=2,抛物线过A (0,﹣3),则:函数的表达式为:y =ax 2+bx ﹣3,把B 点坐标代入函数表达式,即可求解;(2)分AB =AC 、AB =BC 、AC =BC ,三种情况求解即可;(3)由S △PAB 12=•PH •x B ,即可求解. 【详解】(1)抛物线的顶点D 的横坐标是2,则x 2b a=-=2①,抛物线过A (0,﹣3),则:函数的表达式为:y =ax 2+bx ﹣3,把B 点坐标代入上式得:9=25a +5b ﹣3②,联立①、②解得:a 125=,b 485=-,c =﹣3,∴抛物线的解析式为:y 125=x 2485-x ﹣3. 当x =2时,y 635=-,即顶点D 的坐标为(2,635-); (2)A (0,﹣3),B (5,9),则AB =13,设点C 坐标(m ,0),分三种情况讨论:①当AB =AC 时,则:(m )2+(﹣3)2=132,解得:m ,即点C 坐标为:(,0)或(﹣,0);②当AB =BC 时,则:(5﹣m )2+92=132,解得:m =5±,即:点C 坐标为(5+,0)或(5﹣0);③当AC =BC 时,则:5﹣m )2+92=(m )2+(﹣3)2,解得:m =9710,则点C 坐标为(9710,0).综上所述:存在,点C 的坐标为:(,0)或(5±0)或(9710,0); (3)过点P 作y 轴的平行线交AB 于点H .设直线AB 的表达式为y =kx ﹣3,把点B 坐标代入上式,9=5k ﹣3,则k 125=,故函数的表达式为:y 125=x ﹣3,设点P 坐标为(m ,125m 2485-m ﹣3),则点H 坐标为(m ,125m ﹣3),S △PAB 12=•PH •x B 52=(125-m 2+12m )=-6m 2+30m =25756()22m --+,当m =52时,S △PAB 取得最大值为:752. 答:△PAB 的面积最大值为752.【点睛】本题是二次函数综合题.主要考查了二次函数的解析式的求法和与几何图形结合的综合能力的培养.要会利用数形结合的思想把代数和几何图形结合起来,利用点的坐标的意义表示线段的长度,从而求出线段之间的关系.3.某市实施产业精准扶贫,帮助贫困户承包荒山种植某品种蜜柚.已知该蜜柚的成本价为6元/千克,到了收获季节投入市场销售时,调查市场行情后,发现该蜜柚不会亏本,且每天的销售量y(千克)与销售单价x(元)之间的函数关系如图所示.(1)求y与x的函数关系式,并写出x的取值范围;(2)当该品种蜜柚定价为多少时,每天销售获得的利润最大?最大利润是多少?(3)某村农户今年共采摘蜜柚12000千克,若该品种蜜柚的保质期为50天,按照(2)的销售方式,能否在保质期内全部销售完这批蜜柚?若能,请说明理由;若不能,应定销售价为多少元时,既能销售完又能获得最大利润?【答案】(1)y=﹣20x+500,(x≥6);(2)当x=15.5时,w的最大值为1805元;(3)当x=13时,w=1680,此时,既能销售完又能获得最大利润.【解析】【分析】(1)将点(15,200)、(10,300)代入一次函数表达式:y=kx+b即可求解;(2)由题意得:w=y(x﹣6)=﹣20(x﹣25)(x﹣6),∵﹣20<0,故w有最大值,即可求解;(3)当x=15.5时,y=190,50×190<12000,故:按照(2)的销售方式,不能在保质期内全部销售完;由50(500﹣20x)≥12000,解得:x≤13,当x=13时,既能销售完又能获得最大利润.【详解】解:(1)将点(15,200)、(10,300)代入一次函数表达式:y =kx +b 得:2001530010k b k b=+⎧⎨=+⎩, 解得:20500k b =-⎧⎨=⎩, 即:函数的表达式为:y =﹣20x +500,(x ≥6);(2)设:该品种蜜柚定价为x 元时,每天销售获得的利润w 最大,则:w =y (x ﹣6)=﹣20(x ﹣25)(x ﹣6),∵﹣20<0,故w 有最大值,当x =﹣2b a =312=15.5时,w 的最大值为1805元; (3)当x =15.5时,y =190,50×190<12000,故:按照(2)的销售方式,不能在保质期内全部销售完;设:应定销售价为x 元时,既能销售完又能获得最大利润w ,由题意得:50(500﹣20x )≥12000,解得:x ≤13,w =﹣20(x ﹣25)(x ﹣6),当x =13时,w =1680,此时,既能销售完又能获得最大利润.【点睛】本题考查了二次函数的性质在实际生活中的应用.最大销售利润的问题常利函数的增减性来解答,我们首先要吃透题意,确定变量,建立函数模型,然后结合实际选择最优方案.其中要注意应该在自变量的取值范围内求最大值(或最小值).4.抛物线y =ax 2+bx ﹣3(a≠0)与直线y =kx+c (k≠0)相交于A (﹣1,0)、B (2,﹣3)两点,且抛物线与y 轴交于点C .(1)求抛物线的解析式;(2)求出C 、D 两点的坐标(3)在第四象限抛物线上有一点P ,若△PCD 是以CD 为底边的等腰三角形,求出点P 的坐标.【答案】(1)y =x 2﹣2x ﹣3;(2)C (0,﹣3),D (0,﹣1);(3)P (2,﹣2).【解析】【分析】(1)把A (﹣1,0)、B (2,﹣3)两点坐标代入y =ax 2+bx ﹣3可得抛物线解析式.(2)当x =0时可求C 点坐标,求出直线AB 解析式,当x =0可求D 点坐标. (3)由题意可知P 点纵坐标为﹣2,代入抛物线解析式可求P 点横坐标.【详解】解:(1)把A (﹣1,0)、B (2,﹣3)两点坐标代入y =ax 2+bx ﹣3可得 304233a b a b --=⎧⎨+-=-⎩解得12a b =⎧⎨=-⎩ ∴y =x 2﹣2x ﹣3(2)把x =0代入y =x 2﹣2x ﹣3中可得y =﹣3∴C (0,﹣3)设y =kx+b ,把A (﹣1,0)、B (2,﹣3)两点坐标代入023k b k b -+=⎧⎨+=-⎩解得11k b =-⎧⎨=-⎩ ∴y =﹣x ﹣1∴D (0,﹣1)(3)由C (0,﹣3),D (0,﹣1)可知CD 的垂直平分线经过(0,﹣2)∴P 点纵坐标为﹣2,∴x 2﹣2x ﹣3=﹣2解得:x =∵x >0∴x =.∴P (,﹣2)【点睛】本题是二次函数综合题,用待定系数法求二次函数的解析式,把x =0代入二次函数解析式和一次函数解析式可求图象与y 轴交点坐标,知道点P 纵坐标带入抛物线解析式可求点P 的横坐标.5.已知抛物线26y x x c =-++.(1)若该抛物线与x 轴有公共点,求c 的取值范围;(Ⅱ)设该抛物线与直线21y x =+交于M ,N 两点,若MN =C 的值;(Ⅲ)点P ,点Q 是抛物线上位于第一象限的不同两点,,PA QB 都垂直于x 轴,垂足分别为A ,B ,若OPA OQB ∆≅∆,求c 的取值范围.【答案】(I )9c -…;(Ⅱ)2c =-;(Ⅲ)c 的取值范围是2174c -<< 【解析】【分析】(1) 抛物线与x 轴有公共点,则判别式为非负数,列不等式求解即可;(2)求出二次函数与直线的交点,并根据勾股定理求出MN 的长度,列方程即可求解;(3)由OPA OQB ∆≅∆可知,P ,Q 两点的坐标特点,设坐标得到设点P 的坐标为(, )m n ,则点Q 的坐标为(,)n m ,代入二次函数,得到n,m 的关系,则只需保证该方程有正根即可求解.【详解】解:(I )∵抛物线26y x x c =-++与x 轴有交点,∴一元二次方程260x x c -++=有实根。
2020年中考数学一轮复习培优训练:《二次函数》1.如图,直线l:y=﹣3x+3与x轴、y轴分别相交于A、B两点,抛物线y=ax2﹣2ax+a+4(a<0)经过点B.(1)求该抛物线的函数表达式;(2)已知点M是抛物线上的一个动点,并且点M在第一象限内,连接AM、BM,设点M的横坐标为m,△ABM的面积为S,求S与m的函数表达式,并求出S的最大值;(3)在(2)的条件下,当S取得最大值时,动点M相应的位置记为点M′.写出点M′的坐标.2.如图,抛物线y=ax2﹣2ax+c的图象经过点C(0,﹣2),顶点D的坐标为(1,﹣),与x轴交于A、B两点.(1)求抛物线的解析式.(2)连接AC,E为直线AC上一点,当△AOC∽△AEB时,求点E的坐标和的值.(3)点F(0,y)是y轴上一动点,当y为何值时,FC+BF的值最小.并求出这个最小值.(4)点C关于x轴的对称点为H,当FC+BF取最小值时,在抛物线的对称轴上是否存在点Q,使△QHF是直角三角形?若存在,请求出点Q的坐标;若不存在,请说明理由.B(3,0)两点,与y轴交于点C.(1)求该抛物线的解析式;(2)如图①,若点D是抛物线上一个动点,设点D的横坐标为m(0<m<3),连接CD、BD、BC、AC,当△BCD的面积等于△AOC面积的2倍时,求m的值;(3)若点N为抛物线对称轴上一点,请在图②中探究抛物线上是否存在点M,使得以B,C,M,N为顶点的四边形是平行四边形?若存在,请直接写出所有满足条件的点M的坐标;若不存在,请说明理由.0),与y轴交于点C,顶点是D,对称轴交x轴于点E.(1)求抛物线的解析式;(2)点P是抛物线在第四象限内的一点,过点P作PQ∥y轴,交直线AC于点Q,设点P的横坐标是m.①求线段PQ的长度n关于m的函数关系式;②连接AP,CP,求当△ACP面积为时点P的坐标;(3)若点N是抛物线对称轴上一点,则抛物线上是否存在点M,使得以点B,C,M,N为顶点的四边形是平行四边形?若存在,请直接写出线段BN的长度;若不存在,请说明理由.5.如图(1)已知矩形AOCD在平面直角坐标系xOy中,∠CAO=60°,OA=2,B点的坐标为(2,0),动点M以每秒2个单位长度的速度沿A→C→B运动(M点不与点A、点B重合),设运动时间为t秒.(1)求经过B、C、D三点的抛物线解析式;(2)点P在(1)中的抛物线上,当M为AC中点时,若△P AM≌△PDM,求点P的坐标;(3)当点M在CB上运动时,如图(2)过点M作ME⊥AD,MF⊥x轴,垂足分别为E、F,设矩形AEMF与△ABC重叠部分面积为S,求S与t的函数关系式,并求出S的最大值;(4)如图(3)点P在(1)中的抛物线上,Q是CA延长线上的一点,且P、Q两点均在第三象限内,Q、A是位于直线BP同侧的不同两点,若点P到x轴的距离为d,△QPB 的面积为2d,求点P的坐标.6.如图所示,抛物线y=x2+bx+c经过点A(2,﹣3)与C(0,﹣3),与x轴负半轴的交点为B.(1)求抛物线的解析式与点B坐标;(2)若点D在x轴上,使△ABD是等腰三角形,求所有满足条件的点D的坐标;(3)点M在抛物线上,点N在抛物线的对称轴上,若以A、B、M、N为顶点的四边形是平行四边形,其中AB∥MN,请直接写出所有满足条件的点M的坐标.7.如图,抛物线y=ax2+2x+c(a<0)与x轴交于点A和点B(点A在原点的左侧,点B 在原点的右侧),与y轴交于点C,OB=OC=3.(1)求该抛物线的函数解析式;(2)如图1,连接BC,点D是直线BC上方抛物线上的点,连接OD,CD,OD交BC于点F,当S△COF :S△CDF=3:2时,求点D的坐标.(3)如图2,点E的坐标为(0,),在抛物线上是否存在点P,使∠OBP=2∠OBE?若存在,请直接写出符合条件的点P的坐标;若不存在,请说明理由.8.如图,已知抛物线y=﹣x2+bx+c经过点A(3,0),点B(0,3).点M(m,0)在线段OA上(与点A,O不重合),过点M作x轴的垂线与线段AB交于点P,与抛物线交于点Q,联结BQ.(1)求抛物线表达式;(2)联结OP,当∠BOP=∠PBQ时,求PQ的长度;(3)当△PBQ为等腰三角形时,求m的值.9.如图,抛物线y=ax2+bx+c经过点A(﹣2,5),与x轴相交于B(﹣1,0),C(3,0)两点.(1)求抛物线的函数表达式;(2)点D在抛物线的对称轴上,且位于x轴的上方,将△BCD沿直线BD翻折得到△BC'D,若点C'恰好落在抛物线的对称轴上,求点C'和点D的坐标;(3)设P是抛物线上位于对称轴右侧的一点,点Q在抛物线的对称轴上,当△CPQ为等边三角形时,求直线BP的函数表达式.10.如图,已知抛物线y=ax2+bx+3(a≠0)经过点A(1,0)和点B(3,0),与y轴交于点C.(1)求此抛物线的解析式;(2)若点P是直线BC下方的抛物线上一动点(不点B,C重合),过点P作y轴的平行线交直线BC于点D,设点P的横坐标为m.①用含m的代数式表示线段PD的长.②连接PB,PC,求△PBC的面积最大时点P的坐标.(3)设抛物线的对称轴与BC交于点E,点M是抛物线的对称轴上一点,N为y轴上一点,是否存在这样的点M和点N,使得以点C、E、M、N为顶点的四边形是菱形?如果存在,请直接写出点M的坐标;如果不存在,请说明理由.11.如图,在平面直角坐标系中,抛物线y=﹣x2+x+3与x轴交于A,B两点(点A在点B左侧),与y轴交于点C:连接BC,点P为线段BC上方抛物线上的一动点,连接OP交BC于点Q.(1)如图1,当值最大时,点E为线段AB上一点,在线段BC上有两动点M,N(M 在N上方),且MN=1,求PM+MN+NE﹣BE的最小值;(2)如图2,连接AC,将△AOC沿射线CB方向平移,点A,C,O平移后的对应点分别记作A1,C1,O1,当C1B=O1B时,连接A1B、O1B,将△A1O1B绕点O1沿顺时针方向旋转90°后得△A2O1B1在直线x=上是否存在点K,使得△A2B1K为等腰三角形?若存在,直接写出点K的坐标;不存在,请说明理由.12.综合与探究:如图1,Rt△AOB的直角顶点O在坐标原点,点A在y轴正半轴上,点B在x轴正半轴上,OA=4,OB=2.将线段AB绕点B顺时针旋转90°得到线段BC,过点C作CD⊥x 轴于点D,抛物线y=ax2+3x+c经过点C,与y轴交于点E(0,2),直线AC与x轴交于点H.(1)求点C的坐标及抛物线的表达式;(2)如图2,已知点G是线段AH上的一个动点,过点G作AH的垂线交抛物线于点F (点F在第一象限).设点G的横坐标为m.①点G的纵坐标用含m的代数式表示为;②如图3,当直线FG经过点B时,求点F的坐标,判断四边形ABCF的形状并证明结论;③在②的前提下,连接FH,点N是坐标平面内的点,若以F,H,N为顶点的三角形与△FHC全等,请直接写出点N的坐标.13.如图,已知直线y=kx﹣6与抛物线y=ax2+bx+c相交于A,B两点,且点A(1,﹣4)为抛物线的顶点,点B在x轴上.(1)求抛物线的解析式;(2)在(1)中抛物线的第二象限图象上是否存在一点P,使△POB与△POC全等?若存在,求出点P的坐标;若不存在,请说明理由;(3)若点Q是y轴上一点,且△ABQ为直角三角形,求点Q的坐标.14.如图1,在平面直角坐标系中,直线y=x+4与抛物线y=﹣x2+bx+c(b,c是常数)交于A、B两点,点A在x轴上,点B在y轴上.设抛物线与x轴的另一个交点为点C.(1)求该抛物线的解析式;(2)P是抛物线上一动点(不与点A、B重合),①如图2,若点P在直线AB上方,连接OP交AB于点D,求的最大值;②如图3,若点P在x轴的上方,连接PC,以PC为边作正方形CPEF,随着点P的运动,正方形的大小、位置也随之改变.当顶点E或F恰好落在y轴上,直接写出对应的点P的坐标.15.如图,抛物线y=ax2﹣3ax﹣10a交x轴于A、B两点(A左B右),交y轴正半轴于C 点,连AC,tan∠CAB=,(1)求抛物线解析式;(2)点P是第三象限内抛物线上一点,过C作x轴平行线交抛物线于D,连DP、BP,分别交y轴于E、F,设P点横坐标为p,线段EF长为m,求出m与自变量p之间的函数关系式;(3)在(2)条件下,当tan∠DPB=时,求P点坐标.参考答案1.解:(1)直线l :y =﹣3x +3与x 轴、y 轴分别相交于A 、B 两点,则点A 、B 的坐标分别为:(1,0)、(0,3),抛物线y =ax 2﹣2ax +a +4(a <0)经过点B (0,3),则a +4=3,解得:a =﹣1, 故抛物线的表达式为:y =﹣x 2+2x +3; (2)过点M 作MH ⊥x 轴于点H ,设点M (m ,﹣m 2+2m +3),则S =S 梯形BOHM ﹣S △OAB ﹣S △AMH =(﹣m 2+2m +3+3)×m ﹣ [3×1+(m ﹣1)(﹣m 2+2m +3)]=﹣m 2+m , ∵0,故S 有最大值,当m =时,S 的最大值为:;(3)当S 取得最大值时,此时,m =, 则y =﹣m 2+2m +3=, 故点M ′的坐标为:(,).2.解:(1)由题可列方程组:,解得:∴抛物线解析式为:y =x 2﹣x ﹣2;(2)由题,∠AOC =90°,AC =,AB =4,设直线AC 的解析式为:y =kx +b ,则,解得:,∴直线AC 的解析式为:y =﹣2x ﹣2; 当△AOC ∽△AEB 时=()2=()2=,∵S △AOC =1,∴S △AEB =,∴AB ×|y E |=,AB =4,则y E =﹣,则点E (﹣,﹣); 由△AOC ∽△AEB 得:∴;(3)如图2,连接BF ,过点F 作FG ⊥AC 于G ,则FG=CF sin∠FCG=CF,∴CF+BF=GF+BF≥BE,当折线段BFG与BE重合时,取得最小值,由(2)可知∠ABE=∠ACO∴BE=AB cos∠ABE=AB cos∠ACO=4×=,|y|=OB tan∠ABE=OB tan∠ACO=3×=,∴当y=﹣时,即点F(0,﹣),CF+BF有最小值为;(4)①当点Q为直角顶点时(如图3):由(3)易得F(0,﹣),∵C(0,﹣2)∴H(0,2)设Q(1,m),过点Q作QM⊥y轴于点M.则Rt△QHM∽Rt△FQM∴QM2=HM•FM,∴12=(2﹣m)(m+),解得:m=,则点Q(1,)或(1,)当点H为直角顶点时:点H(0,2),则点Q(1,2);当点F为直角顶点时:同理可得:点Q(1,﹣);综上,点Q的坐标为:(1,)或(1,)或Q(1,2)或Q(1,﹣).3.解:(1)把A(﹣1,0),B(3,0)代入y=ax2+bx+2中,得:,解得:,∴抛物线解析式为;(2)过点D作y轴平行线交BC于点E,把x=0代入中,得:y=2,∴C点坐标是(0,2),又B(3,0)∴直线BC的解析式为,∵∴∴=,由S △BCD =2S △AOC 得:∴,整理得:m 2﹣3m +2=0 解得:m 1=1,m 2=2 ∵0<m <3 ∴m 的值为1或2;(3)存在,理由:设:点M 的坐标为:(m ,n ),n =﹣x 2+x +2,点N (1,s ),点B (3,0)、C (0,2), ①当BC 是平行四边形的边时,当点C 向右平移3个单位,向下平移2个单位得到B , 同样点M (N )向右平移3个单位,向下平移2个单位N (M ), 故:m +3=1,n ﹣2=s 或m ﹣3=1,n +2=s , 解得:m =﹣2或4, 故点M 坐标为:(﹣2,﹣)或(4,﹣);②当BC 为对角线时,由中点公式得:m +1=3,n +3=2, 解得:m =2,故点M (2,2); 综上,M 的坐标为:(2,2)或(﹣2,)或(4,).4.解:(1)抛物线的表达式为:y =a (x +1)(x ﹣3)=a (x 2﹣2x ﹣3), 故﹣3a =﹣3,解得:a =1,故抛物线的表达式为:y =x 2﹣2x ﹣3;(2)设点P (m ,m 2﹣2m ﹣3),①将点A 、C 的坐标代入一次函数表达式并解得:直线AC 的表达式为:y =﹣3x ﹣3,则点Q (m ,﹣3m ﹣3), n =PQ =m 2﹣2m ﹣3+3m +3=m 2+m ;②连接AP交y轴于点H,同理可得:直线AP的表达式为:y=(m﹣3)x+m﹣3,则OH=3﹣m,则CH=m,△ACP面积=×CH×(xP﹣xA)=m(m+1)=,解得:m=(不合题意的值已舍去),故点P(,﹣);(3)点C(0,﹣3),点B(3,0),设点M(m,n),n=m2﹣2m﹣3,点N(1,s),①当BC是边时,点C向右平移3个单位向上平移3个单位得到B,同样点M(N)向右平移3个单位向上平移3个单位得到N(M),即m±3=1,n±3=s,解得:m=﹣2或4,s=8或2,故点N(1,2)或(1,8),则BN=2或2;②当BC是对角线时,由中点公式得:3=m+1,﹣3=s+n,解得:s=0,故点N(1,0),则BN=2,综上,BN=2或2或2.5.解:(1)∵四边形ABCD是矩形,∴CD=AO=2,∠AOC=90°,且∠CAO=60°,OA=2,∴OC=2,∴点C(0,2),点D(﹣2,2),设抛物线解析式为y=a(x+1)2+c,代B(2,0),C(0,2)∴解得:∴抛物线解析式为y=﹣(x+1)2+=,(2)∵M为AC中点,∴MA=MD,∵△P AM≌△PDM,∴P A=PD,∴点P在AD的垂直平分线上∴点P纵坐标为,∴∴x1=﹣1+,x2=﹣1﹣∴点P(﹣1+,)或(﹣1﹣,)(3)如图2,∵AO=BO=2,CO⊥AB,∴AC=BC=4,∠CAO=60°,∴△ACB是等边三角形,由题意可得:CM=2t﹣4,BF=(8﹣2t)=4﹣t,MF=4﹣t,AF=t.∵四边形AEMF是矩形,∴AE=MF,EM=AF,EM∥AB,∴∠CMH=∠CBA=60°,∠CHM=∠CAO=60°,∴△CMH是等边三角形,∴CM=MH=2t﹣4,∵S=(2t﹣4+t)(4﹣t)=﹣(t﹣)2+当t=时,S最大=,(4)∵S△ABP=4×d=2d,又S△BPQ=2d∴S△ABP =S△BPQ,∴AQ∥BP设直线AC解析式为y=kx+b,把A(﹣2,0),C(0,2)代入其中,得∴∴直线AC解析式为:y=x+2,设直线BP的解析式为y=x+n,把B(2,0)代入其中,得0=2+n,∴b=﹣2∴直线BP解析式为:y=x﹣2,∴=x﹣2,∴x1=2(舍去),x2=﹣8,∴P(﹣8,).6.解:(1)∵抛物线y=x2+bx+c经过点A(2,﹣3)与C(0,﹣3)∴,解得,∴抛物线解析式为:y=x2﹣2x﹣3,当y=0时,解得x1=3,x2=﹣1∵点B在x轴负方向,∴点B坐标为(﹣1,0);(2)作AM⊥x轴于M,∴点M(2,0),AM=3,∴AM=BM=3,∴∠ABM=45°∴AB=当BA=BD时,若点D在B点左侧,此时点D,若点D在B点右侧,此时点D,当AD=BD时,显然点D即为点M,坐标(2,0),当AB=AD时,DM=BM=3,此时点D(5,0),综上所述:点D坐标为,,(2,0),(5,0);(3)抛物线解析式为:y=x2﹣2x﹣3,∴对称轴为x=1,即点N横坐标为1,∵以A、B、M、N为顶点的四边形是平行四边形,其中AB∥MN,∴x B﹣x M=x A﹣x N或x B﹣x N=x A﹣x M,∴﹣1﹣x M=2﹣1或﹣1﹣1=2﹣x M,∴x M=﹣2或4,∴M(4,5)或(﹣2,5).7.解:(1)c=3,点B(3,0),将点B的坐标代入抛物线表达式:y=ax2+2x+3并解得:a=﹣1,故抛物线的表达式为:y=﹣x2+2x+3…①;(2)如图1,过点D作DH⊥x轴于点H,交AB于点M,S△COF :S△CDF=3:2,则OF:FD=3:2,∵DH∥CO,故CO:DM=3:2,则DM=CO=2,由B、C的坐标得:直线BC的表达式为:y=﹣x+3,设点D(x,﹣x2+2x+3),则点M(x,﹣x+3),DM=﹣x2+2x+3﹣(﹣x+3)=2,解得:x=1或2,故点D(1,4)或(2,3);(3)①当点P在x轴上方时,取OG=OE,连接BG,过点B作直线PB交抛物线于点P,交y轴于点M,使∠GBM=∠GBO,则∠OBP=2∠OBE,过点G作GH⊥BM,设MH=x,则MG=,则△OBM中,OB2+OM2=MB2,即(+)2+9=(x+3)2,解得:x=2,故MG==,则点M(0,4),将点B、M的坐标代入一次函数表达式并解得:直线BM的表达式为:y=﹣x+4…②,联立①②并解得:x=3(舍去)或,故点P(,);②当点P在x轴下方时,同理可得:点P(﹣,﹣);综上,点P的坐标(,)或(﹣,﹣).8.解:(1)将A(3,0),B(0,3)分别代入抛物线解析式,得.解得.故该抛物线解析式是:y=﹣x2+2x+3;(2)设直线AB的解析式是:y=kx+t(k≠0),把A(3,0),B(0,3)分别代入,得.解得k=﹣1,t=3.则该直线方程为:y=﹣x+3.故设P(m,﹣m+3),Q(m,﹣m2+2m+3).则BP=m,PQ=﹣m2+3m.∵OB=OA=3,∴∠BAO=45°.∵QM⊥OA,∴∠PMA=90°.∴∠AMP=45°.∴∠BPQ=∠AMP=∠BAO=45°.又∵∠BOP=∠QBP,∴△POB∽△QBP.于是=,即=.解得m1=,m2=0(舍去).∴PQ=﹣m2+3m=;(3)由两点间的距离公式知,BP2=2m2,PQ2=(﹣m2+3m)2,BQ2=m2+(﹣m2+2m)2.①若BP=BQ,2m2=m2+(﹣m2+2m)2,解得m1=1,m2=3(舍去).即m=1符合题意.②若BP=PQ,2m2=(﹣m2+3m)2,解得m1=3﹣,m2=3+(舍去).即m=3﹣符合题意.③若PQ=BQ,(﹣m2+3m)2=m2+(﹣m2+2m)2,解得m=2.综上所述,m的值为1或3﹣或2.9.解:(1)由题意得:解得,∴抛物线的函数表达式为y=x2﹣2x﹣3.(2)∵抛物线与x轴交于B(﹣1,0),C(3,0),∴BC=4,抛物线的对称轴为直线x=1,如图,设抛物线的对称轴与x轴交于点H,则H点的坐标为(1,0),BH=2,由翻折得C′B=CB=4,在Rt△BHC′中,由勾股定理,得C′H===2,∴点C′的坐标为(1,2),tan,∴∠C′BH=60°,由翻折得∠DBH=∠C′BH=30°,在Rt△BHD中,DH=BH•tan∠DBH=2•tan30°=,∴点D的坐标为(1,).(3)解:取(2)中的点C′,D,连接CC′,∵BC′=BC,∠C′BC=60°,∴△C′CB为等边三角形.分类讨论如下:①当点P在x轴的上方时,点Q在x轴上方,连接BQ,C′P.∵△PCQ,△C′CB为等边三角形,∴CQ=CP,BC=C′C,∠PCQ=∠C′CB=60°,∴∠BCQ=∠C′CP,∴△BCQ≌△C′CP(SAS),∴BQ=C′P.∵点Q在抛物线的对称轴上,∴BQ=CQ,∴C′P=CQ=CP,又∵BC′=BC,∴BP垂直平分CC′,由翻折可知BD垂直平分CC′,∴点D在直线BP上,设直线BP的函数表达式为y=kx+b,则,解得,∴直线BP的函数表达式为y=.②当点P在x轴的下方时,点Q在x轴下方.∵△PCQ,△C′CB为等边三角形,∴CP=CQ,BC=CC′,∠CC′B=∠QCP=∠C′CB=60°.∴∠BCP=∠C′CQ,∴△BCP≌△C′CQ(SAS),∴∠CBP=∠CC′Q,∵BC′=CC′,C′H⊥BC,∴.∴∠CBP=30°,设BP与y轴相交于点E,在Rt△BOE中,OE=OB•tan∠CBP=OB•tan30°=1×,∴点E的坐标为(0,﹣).设直线BP的函数表达式为y=mx+n,则,解得,∴直线BP的函数表达式为y=﹣.综上所述,直线BP的函数表达式为或.10.解:(1)∵抛物线y=ax2+bx+3(a≠0)经过点A(1,0)和点B(3,0),与y轴交于点C,∴,解得,∴抛物线解析式为y=x2﹣4x+3;(2)如图:①设P(m,m2﹣4m+3),将点B(3,0)、C(0,3)代入得直线BC解析式为y BC=﹣x+3.∵过点P作y轴的平行线交直线BC于点D,∴D(m,﹣m+3),∴PD=(﹣m+3)﹣(m2﹣4m+3)=﹣m2+3m.答:用含m的代数式表示线段PD的长为﹣m2+3m.②S△PBC =S△CPD+S△BPD=OB•PD=﹣m2+m=﹣(m﹣)2+.∴当m=时,S有最大值.当m=时,m2﹣4m+3=﹣.∴P(,﹣).答:△PBC的面积最大时点P的坐标为(,﹣).(3)存在这样的点M和点N,使得以点C、E、M、N为顶点的四边形是菱形.根据题意,点E(2,1),∴EF=CF=2,∴EC=2,根据菱形的四条边相等,∴ME=EC=2,∴M(2,1﹣2)或(2,1+2)当EM=EF=2时,M(2,3)答:点M的坐标为M1(2,3),M2(2,1﹣2),M3(2,1+2).11.解:(1)在抛物线y=﹣x2+x+3中,令x=0,得y=3,∴C(0,3);令y=0,得﹣x2+x+3=0,解得:x1=﹣1,x2=4,∴B(4,0)设直线BC解析式为y=kx+b,将B(4,0),C(0,3);代入并解得:k=,b=3 ∴直线BC解析式为y=x+3;过P作PT∥y轴交BC于T,设P(t,++3),则T(t,+3)∴PT=(++3)﹣(+3)=+3t,OC=3;∵PT∥y轴∴△PTQ∽△ACQ∴==+t=∴当t=2时,值最大;此时,P(2,),PT=3;在Rt△BOC中,BC==5,∴当NE⊥BC时,NE=BE,此时,NE﹣BE=0最小,∵MN=1,∴PM+MN的最小值即PM最小值∴PM⊥BC时,PM最小过P作PM⊥BC于M,∴∠PMT=∠BOC=90°∵∠PTM=∠BCO∴=∴PM=PT=,故PM+MN+NE﹣BE的最小值=;(2)存在.在△AOC中,∠AOC=90°,OA=1,OC=3,∴AC=如图2,由平移得:C1O1=OC=3,A1O1=OA=1,A1C1=AC=,∵C1B=O1B,C1O1⊥OB∴C1G=C1O1=∴BG=2,OG=2∴C1(2,),O1(2,),A1(1,);∴C1B=O1B=,A1B==;∵△A1O1B绕点O1沿顺时针方向旋转90°后得△A2O1B1,∴A2O1=1,O1B1=,A2B1=;∴A2(2,),B1(,)∵△A2B1K为等腰三角形,∴A2K=B1K或A2B1=B1K或A2K=A2B1,设K(,m)①当A2K=B1K时,则:+=+,解得:m=﹣,∴K1(,),②当A2B1=B1K时,则:+=,解得:m1=﹣2,m2=﹣5,∴K2(,﹣2),K3(,﹣5),③当A2K=A2B1时,则:+=,解得:m1=(舍),m2=,∴K4(,);综上所述,点K的坐标为:K1(,),K2(,﹣2),K3(,﹣5),K4(,).12.解:(1)∵OA=4,OB=2∴A(0,4),B(2,0)∵线段AB绕点B顺时针旋转90°得到线段BC∴AB=BC,∠ABC=90°∴∠ABO+∠DBC=∠ABO+∠OAB=90°∴∠DBC=∠OAB∵CD⊥x轴于点D∴∠BDC=∠AOB=90°在△BDC与△AOB中∴△BDC≌△AOB(AAS)∴BD=OA=4,CD=OB=2∴OD=OB+BD=6∴C(6,2)∵抛物线y=ax2+3x+c经过点C、点E(0,2)∴解得:∴抛物线解析式为y=﹣x2+3x+2(2)①∵A(0,4)∴设直线AC解析式为y=kx+4把点C代入得:6k+4=2,解得:k=﹣∴直线AC:y=﹣x+4∵点G在直线AC上,横坐标为m∴y G=﹣m+4故答案为:﹣m+4.②∵AB=BC,BG⊥AC∴AG=CG,即G为AC中点∴G(3,3)设直线BG解析式为y=gx+b∴解得:∴直线BG:y=3x﹣6∵直线BG与抛物线交点为F,且点F在第一象限∴解得:(舍去)∴F(4,6)判断四边形ABCF是正方形,理由如下:如图1,过点F作FP⊥y轴于点P,PF延长线与DC延长线交于点Q∴PF=4,OP=DQ=6,PQ=OD=6∴AP=OP﹣OA=6﹣4=2,FQ=PQ﹣PF=6﹣4=2,CQ=DQ﹣CD=6﹣2=4 ∴AF=,FC=∵BC=AB=∴AB=BC=CF=AF∴四边形ABCF是菱形∵∠ABC=90°∴菱形ABCF是正方形③∵直线AC:y=﹣x+4与x轴交于点H∴﹣x+4=0,解得:x=12∴H(12,0)∴FC2=(6﹣4)2+(2﹣6)2=20,CH2=(12﹣6)2+(0﹣2)2=40设点N坐标为(s,t)∴FN2=(s﹣4)2+(t﹣6)2,NH2=(s﹣12)2+(t﹣0)2i)如图2,若△FHC≌△FHN,则FN=FC,NH=CH∴解得:(即点C)∴N(,)ii)如图3,4,若△FHC≌△HFN,则FN=CH,NH=FC∴解得:∴N(,)或(10,4)综上所述,以F,H,N为顶点的三角形与△FHC全等时,点N坐标为(,)或(,)或(10,4).13.解:(1)把A(1,﹣4)代入y=kx﹣6,得k=2,∴y=2x﹣6,令y=0,解得:x=3,∴B的坐标是(3,0).∵A为顶点,∴设抛物线的解析为y=a(x﹣1)2﹣4,把B(3,0)代入得:4a﹣4=0,解得a=1,∴y=(x﹣1)2﹣4=x2﹣2x﹣3.(2)存在.∵OB=OC=3,OP=OP,∴当∠POB=∠POC时,△POB≌△POC,此时PO平分第二象限,即PO的解析式为y=﹣x.设P(m,﹣m),则﹣m=m2﹣2m﹣3,解得m=(m=>0,舍),∴P(,).(3)①如图,当∠Q1AB=90°时,△DAQ1∽△DOB,∴=,即=,∴DQ1=,∴OQ1=,即Q1(0,);②如图,当∠Q2BA=90°时,△BOQ2∽△DOB,∴=,即=,∴OQ2=,即Q2(0,);③如图,当∠AQ3B=90°时,作AE⊥y轴于E,则△BOQ3∽△Q3EA,∴=,即=,∴OQ32﹣4OQ3+3=0,∴OQ3=1或3,即Q3(0,﹣1),Q4(0,﹣3).综上,Q点坐标为(0,)或(0,)或(0,﹣1)或(0,﹣3).14.解:(1)直线y=x+4与坐标轴交于A、B两点,当x=0时,y=4,x=﹣4时,y=0,∴A(﹣4,0),B(0,4),把A,B两点的坐标代入解析式得,,解得,,∴抛物线的解析式为;(2)如图1,作PF∥BO交AB于点F,∴△PFD∽△OBD,∴,∵OB为定值,∴当PF取最大值时,有最大值,设P(x,),其中﹣4<x<0,则F(x,x+4),∴PF==,∵且对称轴是直线x=﹣2,∴当x=﹣2时,PF有最大值,此时PF=2,;(3)∵点C(2,0),∴CO=2,(i)如图2,点F在y轴上时,过点P作PH⊥x轴于H,在正方形CPEF中,CP=CF,∠PCF=90°,∵∠PCH+∠OCF=90°,∠PCH+∠HPC=90°,∴∠HPC=∠OCF,在△CPH和△FCO中,,∴△CPH≌△FCO(AAS),∴PH=CO=2,∴点P的纵坐标为2,∴,解得,,∴,,(ii)如图3,点E在y轴上时,过点PK⊥x轴于K,作PS⊥y轴于S,同理可证得△EPS≌△CPK,∴PS=PK,∴P点的横纵坐标互为相反数,∴,解得x=2(舍去),x=﹣2,∴,如图4,点E在y轴上时,过点PM⊥x轴于M,作PN⊥y轴于N,同理可证得△PEN≌△PCM,∴PN=PM,∴P点的横纵坐标相等,∴,解得,(舍去),∴,综合以上可得P点坐标为,,.15.解:(1)∵y=ax2﹣3ax﹣10a=a(x﹣5)(x+2),令y=0,即a(x﹣5)(x+2)=0,解得x=﹣2,x=5,∴A(﹣2,0),B(5,0),∴OA=2,OB=5,令x=0,则y=﹣10a,∴C(0,﹣10a),∵tan∠CAB==,∴OC=2×tan∠CAB=5,∴﹣10a=5,∴a=﹣,∴抛物线解析式为:y=﹣x2+x+5;(2)∵点P是第三象限内抛物线上一点,P点横坐标为p,∴P(p,﹣p2+p+5),∵CD∥x轴,∴D(3,5),如图3,过P作PK⊥y轴于K,过D作DL⊥PK交PK的延长线于L,过B作BH⊥PK 交PK的延长线于H,∴tan∠DPL===﹣p,tan∠BPH===﹣p﹣1,∴EK=PK•tan∠DPL=﹣p•(﹣p)=p2,FK=PK•tan∠BPH=(﹣p﹣1)(﹣p)=p+p2,∴EF=EK﹣FK=p2﹣p2﹣p=﹣p,∴m与自变量p之间的函数关系式为:m=﹣p;(3)∵P(p,﹣p2+p+5),如图3,过F作PD的垂线,垂足为N,交PK于T,则∠PEK=∠FTK,∴tan∠PEK=tan∠FTK,∴,∴TK===﹣(p+p2),∴PT=﹣p+[﹣(p+p2)]=﹣p(1+p+p2),∵sin∠PEK=sin∠NTP,∴,∴,∵tan∠DPB==,∴=,即=,解得:p=﹣3,p=1(舍去),∴P(﹣3,﹣4).。
2020中考数学函数复习:二次函数及其图像(含答案)一、选择题1.抛物线(是常数)的顶点坐标是()A.B.C.D.2.根据下表中的二次函数的自变量x与函数y的对应值,可判断二次函数的图像与x轴()x …-1 0 1 2 …y …-1 -2 …A.只有一个交点B.有两个交点,且它们分别在y轴两侧C.有两个交点,且它们均在y轴同侧D.无交点3.函数y=ax+1与y=ax2+bx+1(a≠0)的图象可能是()4.二次函数的图象如图2所示,若点A(1,y1)、B(2,y2)是它图象上的两点,则y1与y2的大小关系是()A.B.C.D.不能确定22()y x m n=++m n,()m n,()m n-,()m n-,()m n--,cbxaxy++=247-47-cbxaxy++=221yy<21yy=21yy>B.C.D.1111xoyyo xyo xxoy5.将函数的图象向右平移a 个单位,得到函数的图象,则a 的值为 A .1 B .2C .3D .46.在平面直角坐标系中,先将抛物线关于轴作轴对称变换,再将所得的抛物线关于轴作轴对称变换,那么经两次变换后所得的新抛物线的解析式为( ) A . B .C. D .7.把二次函数用配方法化成的形式A. B. C. D. 8.某车的刹车距离y (m )与开始刹车时的速度x (m/s )之间满足二次函数(x >0),若该车某次的刹车距离为5 m ,则开始刹车时的速度为( ) A .40 m/s B .20 m/s C .10 m/sD .5 m/s二、填空题1.若把代数式化为的形式,其中为常数,则=.2.已知二次函数的图象经过原点及点(,),且图象与x 轴的另一交点到原点的距离为1,则该二次函数的解析式为 3.抛物线的顶点坐标为__________.4.已知二次函数的图象与轴交于点、,且,与轴的正半轴的交点在的下方.下列结论:①;②;③;④.其中正确结论的个数是 个.5.抛物线的图象如图所示, 则此抛物线的解析式为 .2y x x =+(0)a >232y x x =-+22y x x =+-x y 22y x x =--+22y x x =-+-22y x x =-++22y x x =++3412+--=x x y ()k h x a y +-=2()22412+--=x y ()42412+-=x y ()42412++-=x y 321212+⎪⎭⎫ ⎝⎛-=x y 2120y x =223x x --()2x m k -+,m k m k +12-14-23(1)5y x =--+2y ax bx c =++x (20)-,1(0)x ,112x <<y (02),420a b c -+=0a b <<20a c +>210a b -+>2y x bx c =-++yx =16.函数取得最大值时,______. 三、解答题1.已知二次函数的图象过坐标原点,它的顶点坐标是(1,-2),求这个二次函数的关系式.2.已知为直角三角形,,,点、在轴上,点坐标为(,)(),线段与轴相交于点,以(1,0)为顶点的抛物线过点、.(1)求点的坐标(用表示); (2)求抛物线的解析式;(3)设点为抛物线上点至点之间的一动点,连结并延长交于点,连结并延长交于点,试证明:为定值.3.已知二次函数过点A (0,),B (,0),C ().(1)求此二次函数的解析式; (2)判断点M (1,)是否在直线AC 上? (3)过点M (1,)作一条直线与二次函数的图象交于E 、F 两点(不同于A ,B ,C 三点),请自已给出E 点的坐标,并证明△BEF 是直角三角形.4.如图,在平面直角坐标系中,OB ⊥OA ,且OB =2OA ,点A 的坐标是(2)(3)y x x =--x =ABC ∆90ACB ∠=︒AC BC =A C x B 3m 0m >AB y D P B D A m Q P B PQ BC E BQ AC F ()FC AC EC +2-1-5948,1212l yxQPFE DC BA O(-1,2).(1)求点B的坐标;(2)求过点A、O、B的抛物线的表达式;(3)连接AB,在(2)中的抛物线上求出点P,使得S△ABP=S△ABO.5.新星电子科技公司积极应对世界金融危机,及时调整投资方向,瞄准光伏产业,建成了太阳能光伏电池生产线.由于新产品开发初期成本高,且市场占有率不高等因素的影响,产品投产上市一年来,公司经历了由初期的亏损到后来逐步盈利的过程(公司对经营的盈亏情况每月最后一天结算1次).公司累积获得的利润y(万元)与销售时间第x(月)之间的函数关系式(即前x个月的利润总和y与x之间的关系)对应的点都在如图所示的图象上.该图象从左至右,依次是线段OA、曲线AB和曲线BC,其中曲线AB为抛物线的一部分,点A为该抛物线的顶点,曲线BC为另一抛物线的一部分,且点A,B,C的横坐标分别为4,10,12(1)求该公司累积获得的利润y(万元)与时间第x(月)之间的函数关系式;(2)直接写出第x个月所获得S(万元)与时间x(月)之间的函数关系式(不需要写出计算过程);(3)前12个月中,第几个月该公司所获得的利润最多?最多利润是多少万元?6.某商场试销一种成本为每件60元的服装,规定试销期间销售单价不低于成本单价,且获利不得高于45%,经试销发现,销售量(件)与销售单价(元)符合一次函数,且时,;时,.(1)求一次函数的表达式;(2)若该商场获得利润为元,试写出利润与销售单价之间的关系式;销售单价定为多少元时,商场可获得最大利润,最大利润是多少元?(3)若该商场获得利润不低于500元,试确定销售单价的范围.7.如图1,已知:抛物线与轴交于两点,与轴交于点C,经过B、C两点的直线是,连结.(1)B、C两点坐标分别为B(_____,_____)、C(_____,_____),抛物线的函数关系式为______________;(2)判断的形状,并说明理由;(3)若内部能否截出面积最大的矩形(顶点在各边上)?若能,求出在边上的矩形顶点的坐标;若不能,请说明理由.[抛物线的顶点坐标是]【参考答案】 选择题 1. B 2. B 3. C 4. C 5. B 6. C 7. D 8. C 填空题 1. -32. ,3. (1,5)4. 45. 6. 解答题1. 解:设这个二次函数的关系式为得:解得:∴这个二次函数的关系式是,即2. (1)由可知,,又△ABC 为等腰直角三角形,∴,,所以点A 的坐标是(). (2)∵ ∴,则点的坐标是(). 又抛物线顶点为,且过点、,所以可设抛物线的解析式为:,得:解得 ∴抛物线的解析式为 2y x x =+21133y x =-+223y x x =-++52(3,)B m 3OC =BC m =AC BC m ==3OA m =-3,0m -45ODA OAD ∠=∠=︒3OD OA m ==-D 0,3m -(1,0)P B D 2(1)y a x =-22(31)(01)3a m a m ⎧-=⎪⎨-=-⎪⎩14a m =⎧⎨=⎩221y x x =-+(3)过点作于点,过点作于点,设点的坐标是,则,.∵ ∴∽ ∴ 即,得 ∵ ∴∽ ∴ 即,得 又∵ ∴ 即为定值8.3. (1)设二次函数的解析式为(), 把A (0,),B (,0),C ()代入得解得 a =2 , b =0 , c =-2, ∴(2)设直线AC 的解析式为 ,把A (0,-2),C ()代入得, 解得 ,∴ 当x =1时, ∴M (1,)在直线AC 上(3)设E 点坐标为(),则直线EM 的解析式为 由 化简得,即,∴F 点的坐标为().Q QM AC ⊥M Q QN BC ⊥N Q 2(,21)x x x -+2(1)QM CN x ==-3MC QN x ==-//QM CE PQM ∆PEC ∆QM PM EC PC =2(1)12x x EC --=2(1)EC x =-//QN FC BQN ∆BFC ∆QN BN FC BC =234(1)4x x FC ---=41FC x =+4AC =444()[42(1)](22)2(1)8111FC AC EC x x x x x x +=+-=+=⋅+=+++()FC AC EC +c bx ax y ++=20a ≠2-1-5948,2092558164c a b c a b c⎧⎪=-⎪=-+⎨⎪⎪=++⎩222y x =-(0)y kx b k =+≠5948,29584b k b =-⎧⎪⎨=+⎪⎩522k b ==-,522y x =-511222y =⨯-=121322--,4536y x =-2453622y x y x ⎧=-⎪⎨⎪=-⎩2472036x x --=17()(2)023x x +-=713618,第3题过E 点作EH ⊥x 轴于H ,则H 的坐标为(). ∴ ∴,类似地可得 , , ∴,∴△BEF 是直角三角形.4. 解:(1)过点A 作AF ⊥x 轴,垂足为点F ,过点B 作BE ⊥x 轴,垂足为点E , 则AF =2,OF =1.∵OA ⊥OB ,∴∠AOF+∠BOE =90°. 又 ∵∠BOE+∠OBE =90°, ∴∠AOF =∠OBE . ∴Rt △AFO ∽Rt △OEB . ∴. ∴BE =2,OE =4. ∴B(4,2).(2)设过点A(-1,2),B(4,2),O(0,0)的抛物线为y=ax 2+bx+c . ∴解之,得∴所求抛物线的表达式为. (3)由题意,知AB ∥x 轴.设抛物线上符合条件的点P 到AB 的距离为d ,102-,3122EH BH ==,2223110()()224BE =+=22213131690845()()186324162BF =+==222401025001250()()186324162EF =+==2221084512504162162BE BF EF +=+==2===OAOBAF OE OF BE ⎪⎩⎪⎨⎧==++=+-.0,2416,2c c b a c b a ⎪⎪⎪⎩⎪⎪⎪⎨⎧=-==.0,23,21c b a x x y 23212-=则S △ABP =. ∴d =2.∴点P 的纵坐标只能是0或4. 令y =0,得,解之,得x =0,或x =3. ∴符合条件的点P 1(0,0),P 2(3,0). 令y =4,得,解之,得. ∴符合条件的点P 3(,4),P 4(,4). ∴综上,符合题意的点有四个: P 1(0,0),P 2(3,0),P 3(,4),P 4(,4). (评卷时,无P 1(0,0)不扣分) 5.解:(1)当时,线段O A 的函数关系式为;当时,由于曲线AB 所在抛物线的顶点为A (4,-40),设其解析式为在中,令x=10,得;∴B (10,320)∵B (10,320)在该抛物线上 ∴解得∴当时,=综上可知,(2) 当时, 当时,当时,AF AB d AB ⋅=⋅2121023212=-x x 423212=-x x 2413±=x 2413-2413+2413-2413+(3) 10月份该公司所获得的利润最多,最多利润是110万元.6. 解:(1)根据题意得解得.所求一次函数的表达式为.(2),抛物线的开口向下,当时,随的增大而增大,而,当时,.当销售单价定为87元时,商场可获得最大利润,最大利润是891元.(3)由,得,整理得,,解得,.由图象可知,要使该商场获得利润不低于500元,销售单价应在70元到110元之间,而,所以,销售单价的范围是.7. (1)(4,0),..(2)是直角三角形.证明:令,则...解法一:..是直角三角形.解法二:,..,.即.是直角三角形.(3)能.当矩形两个顶点在上时,如图1,交于.,..解法一:设,则,,.=.当时,最大..,.,.解法二:设,则..当时,最大..,.,.当矩形一个顶点在上时,与重合,如图2,,..解法一:设,,.=.当时,最大.,.解法二:设,,,,..=∴当时,最大,..∴综上所述:当矩形两个顶点在上时,坐标分别为,(2,0);当矩形一个顶点在上时,坐标为。
2020-2021中考数学培优(含解析)之二次函数及详细答案一、二次函数1.如图1,对称轴为直线x=1的抛物线y=1 2 x2+bx+c,与x轴交于A、B两点(点A在点B的左侧),且点A坐标为(-1,0).又P是抛物线上位于第一象限的点,直线AP与y轴交于点D,与抛物线对称轴交于点E,点C与坐标原点O关于该对称轴成轴对称.(1)求点B 的坐标和抛物线的表达式;(2)当AE:EP=1:4 时,求点E 的坐标;(3)如图 2,在(2)的条件下,将线段 OC 绕点 O 逆时针旋转得到OC ′,旋转角为α(0°<α<90°),连接C ′D、C′B,求C ′B+23C′D 的最小值.【答案】(1)B(3,0);抛物线的表达式为:y=12x2-x-32;(2)E(1,6);(3)C′B+23C′D4103【解析】试题分析:(1)由抛物线的对称轴和过点A,即可得到抛物线的解析式,令y=0,解方程可得B的坐标;(2)过点P作PF⊥x轴,垂足为F.由平行线分线段弄成比例定理可得AEAP=AGAF=EGPF=15,从而求出E的坐标;(3)由E(1,6)、A(-1,0)可得AP的函数表达式为y=3x+3,得到D(0,3).如图,取点M(0,43),连接MC′、BM.则可求出OM,BM的长,得到△MOC′∽△C′OD.进而得到MC′=23C′D,由C′B+23C′D=C′B+MC′≥BF可得到结论.试题解析:解:(1)∵抛物线y=12x2+bx+c的对称轴为直线x=1,∴-122b=1,∴b=-1.∵抛物线过点A(-1,0),∴12-b+c=0,解得:c=-32,即:抛物线的表达式为:y =12x 2-x -32. 令y =0,则12x 2-x -32=0,解得:x 1=-1,x 2=3,即B (3,0); (2)过点P 作PF ⊥x 轴,垂足为F .∵EG ∥PF ,AE :EP =1:4,∴AE AP =AG AF =EG PF =15. 又∵AG =2,∴AF =10,∴F (9,0).当x =9时,y =30,即P (9,30),PF =30,∴EG =6,∴E (1,6).(3)由E (1,6)、A (-1,0)可得AP 的函数表达式为y =3x +3,则D (0,3). ∵原点O 与点C 关于该对称轴成轴对称,∴EG =6,∴C (2,0),∴OC ′=OC =2. 如图,取点M (0,43),连接MC ′、BM .则OM =43,BM =2243()3+=97. ∵423'23OM OC ==,'23OC OD =,且∠DOC ′=∠C ′OD ,∴△MOC ′∽△C ′OD .∴'2'3MC C D =,∴MC ′=23C ′D ,∴C ′B +23C ′D =C ′B +MC ′≥BM =4103,∴C ′B +23C ′D 的最小值为4103.点睛:本题是二次函数的综合题,解答本题主要应用了待定系数法求二次函数的解析式,相似三角形的性质和判定,求得AF 的长是解答问题(2)的关键;和差倍分的转化是解答问题(3)的关键.2.如图,已知抛物线2y ax bx c =++经过A (-3,0),B (1,0),C (0,3)三点,其顶点为D ,对称轴是直线l ,l 与x 轴交于点H .(1)求该抛物线的解析式;(2)若点P 是该抛物线对称轴l 上的一个动点,求△PBC 周长的最小值;(3)如图(2),若E 是线段AD 上的一个动点( E 与A 、D 不重合),过E 点作平行于y 轴的直线交抛物线于点F ,交x 轴于点G ,设点E 的横坐标为m ,△ADF 的面积为S . ①求S 与m 的函数关系式;②S 是否存在最大值?若存在,求出最大值及此时点E 的坐标; 若不存在,请说明理由.【答案】(1)2y x 2x 3=--+.(2)3210.(3)①2S m 4m 3=---.②当m=﹣2时,S 最大,最大值为1,此时点E 的坐标为(﹣2,2).【解析】【分析】(1)根据函数图象经过的三点,用待定系数法确定二次函数的解析式即可.(2)根据BC 是定值,得到当PB+PC 最小时,△PBC 的周长最小,根据点的坐标求得相应线段的长即可.(3)设点E 的横坐标为m ,表示出E (m ,2m+6),F (m ,2m 2m 3--+),最后表示出EF 的长,从而表示出S 于m 的函数关系,然后求二次函数的最值即可.【详解】解:(1)∵抛物线2y ax bx c =++经过A (-3,0),B (1,0),∴可设抛物线交点式为()()y a x 3x 1=+-.又∵抛物线2y ax bx c =++经过C (0,3),∴a 1=-.∴抛物线的解析式为:()()y x 3x 1=-+-,即2y x 2x 3=--+.(2)∵△PBC 的周长为:PB+PC+BC ,且BC 是定值.∴当PB+PC 最小时,△PBC 的周长最小.∵点A 、点B 关于对称轴I 对称,∴连接AC 交l 于点P ,即点P 为所求的点.∵AP=BP ,∴△PBC 的周长最小是:PB+PC+BC=AC+BC.∵A (-3,0),B (1,0),C (0,3),∴2,10.∴△PBC 的周长最小是:3210.(3)①∵抛物线2y x 2x 3=--+顶点D 的坐标为(﹣1,4),A (﹣3,0),∴直线AD 的解析式为y=2x+6∵点E 的横坐标为m ,∴E (m ,2m+6),F (m ,2m 2m 3--+)∴()22EF m 2m 32m 6m 4m 3=--+-+=---. ∴()22DEF AEF 1111S S S EF GH EF AG EF AH m 4m 32m 4m 32222∆∆=+=⋅⋅+⋅⋅=⋅⋅=⋅---⋅=---.∴S 与m 的函数关系式为2S m 4m 3=---.②()22S m 4m 3m 21=---=-++,∴当m=﹣2时,S 最大,最大值为1,此时点E 的坐标为(﹣2,2).3.如图,在平面直角坐标系中,点O 为坐标原点,直线y=﹣x+n 与x 轴、y 轴分别交于B 、C 两点,抛物线y=ax 2+bx+3(a ≠0)过C 、B 两点,交x 轴于另一点A ,连接AC ,且tan ∠CAO=3.(1)求抛物线的解析式;(2)若点P 是射线CB 上一点,过点P 作x 轴的垂线,垂足为H ,交抛物线于Q ,设P 点横坐标为t ,线段PQ 的长为d ,求出d 与t 之间的函数关系式,并写出相应的自变量t 的取值范围;(3)在(2)的条件下,当点P 在线段BC 上时,设PH=e ,已知d ,e 是以y 为未知数的一元二次方程:y 2-(m+3)y+14(5m 2-2m+13)="0" (m 为常数)的两个实数根,点M 在抛物线上,连接MQ 、MH 、PM ,且.MP 平分∠QMH ,求出t 值及点M 的坐标.【答案】(1) y=-x 2+2x+3;(2)223(03){3(3)d t t t d t t t =-+<<=->;(3)t=1,2,2)和(12,2).【解析】【分析】(1)当x=0时代入抛物线y=ax 2+bx+3(a≠0)就可以求出y=3而得出C 的坐标,就可以得出直线的解析式,就可以求出B 的坐标,在直角三角形AOC 中,由三角形函数值就可以求出OA 的值,得出A 的坐标,再由待定系数法建立二元一次方程组求出其解就可以得出结论;(2)分两种情况讨论,当点P 在线段CB 上时,和如图3点P 在射线BN 上时,就有P 点的坐标为(t ,-t+3),Q 点的坐标为(t ,-t 2+2t+3),就可以得出d 与t 之间的函数关系式而得出结论;(3)根据根的判别式就可以求出m 的值,就可以求出方程的解而求得PQ 和PH 的值,延长MP 至L ,使LP=MP ,连接LQ 、LH ,如图2,延长MP 至L ,使LP=MP ,连接LQ 、LH ,就可以得出四边形LQMH 是平行四边形,进而得出四边形LQMH 是菱形,由菱形的性质就可以求出结论.【详解】(1)当x=0,则y=-x+n=0+n=n ,y=ax 2+bx+3=3,∴OC=3=n .当y=0,∴-x+3=0,x=3=OB ,∴B (3,0).在△AOC 中,∠AOC =90°,tan ∠CAO=33OC OA OA==, ∴OA=1,∴A (-1,0).将A (-1,0),B (3,0)代入y=ax2+bx+3,得 9330{30a b a b ++=-+=,解得:1 {2 ab=-=∴抛物线的解析式:y=-x2+2x+3;(2) 如图1,∵P点的横坐标为t 且PQ垂直于x轴∴P点的坐标为(t,-t+3),Q点的坐标为(t,-t2+2t+3).∴PQ=|(-t+3)-(-t2+2t+3)|="|" t2-3t |∴223(03) {3(3)d t t td t t t=-+<<=->;∵d,e是y2-(m+3)y+14(5m2-2m+13)=0(m为常数)的两个实数根,∴△≥0,即△=(m+3)2-4×14(5m2-2m+13)≥0整理得:△= -4(m-1)2≥0,∵-4(m-1)2≤0,∴△=0,m=1,∴ PQ与PH是y2-4y+4=0的两个实数根,解得y1=y2=2∴ PQ=PH=2,∴-t+3=2,∴t="1,"∴此时Q是抛物线的顶点,延长MP至L,使LP=MP,连接LQ、LH,如图2,∵LP=MP,PQ=PH,∴四边形LQMH是平行四边形,∴LH∥QM,∴∠1=∠3,∵∠1=∠2,∴∠2=∠3,∴LH=MH,∴平行四边形LQMH是菱形,∴PM⊥QH,∴点M的纵坐标与P点纵坐标相同,都是2,∴在y=-x 2+2x+3令y=2,得x 2-2x -1=0,∴x 1=1+2,x2=1-2综上:t 值为1,M 点坐标为(1+2,2)和(1-2,2).4.如图,已知A (﹣2,0),B (4,0),抛物线y=ax 2+bx ﹣1过A 、B 两点,并与过A 点的直线y=﹣12x ﹣1交于点C . (1)求抛物线解析式及对称轴;(2)在抛物线的对称轴上是否存在一点P ,使四边形ACPO 的周长最小?若存在,求出点P 的坐标,若不存在,请说明理由;(3)点M 为y 轴右侧抛物线上一点,过点M 作直线AC 的垂线,垂足为N .问:是否存在这样的点N ,使以点M 、N 、C 为顶点的三角形与△AOC 相似,若存在,求出点N 的坐标,若不存在,请说明理由.【答案】(1)抛物线解析式为:y=211184x x --,抛物线对称轴为直线x=1;(2)存在P 点坐标为(1,﹣12);(3)N 点坐标为(4,﹣3)或(2,﹣1) 【解析】 分析:(1)由待定系数法求解即可;(2)将四边形周长最小转化为PC+PO 最小即可;(3)利用相似三角形对应点进行分类讨论,构造图形.设出点N 坐标,表示点M 坐标代入抛物线解析式即可.详解:(1)把A (-2,0),B (4,0)代入抛物线y=ax 2+bx-1,得042101641a b a b --⎧⎨+-⎩== 解得1814a b ⎧⎪⎪⎨⎪-⎪⎩== ∴抛物线解析式为:y=18x 2−14x−1∴抛物线对称轴为直线x=-141 228ba-=-⨯=1(2)存在使四边形ACPO的周长最小,只需PC+PO最小∴取点C(0,-1)关于直线x=1的对称点C′(2,-1),连C′O与直线x=1的交点即为P 点.设过点C′、O直线解析式为:y=kx∴k=-12∴y=-12x则P点坐标为(1,-12)(3)当△AOC∽△MNC时,如图,延长MN交y轴于点D,过点N作NE⊥y轴于点E∵∠ACO=∠NCD,∠AOC=∠CND=90°∴∠CDN=∠CAO由相似,∠CAO=∠CMN∴∠CDN=∠CMN∵MN⊥AC∴M、D关于AN对称,则N为DM中点设点N坐标为(a,-12a-1)由△EDN∽△OAC∴ED=2a∴点D坐标为(0,-52a−1)∵N为DM中点∴点M坐标为(2a,32a−1)把M代入y=18x2−14x−1,解得a=4则N点坐标为(4,-3)当△AOC∽△CNM时,∠CAO=∠NCM∴CM∥AB则点C关于直线x=1的对称点C′即为点N由(2)N(2,-1)∴N点坐标为(4,-3)或(2,-1)点睛:本题为代数几何综合题,考查了待定系数、两点之间线段最短的数学模型构造、三角形相似.解答时,应用了数形结合和分类讨论的数学思想.5.已知,抛物线y=x2+2mx(m为常数且m≠0).(1)判断该抛物线与x轴的交点个数,并说明理由.(2)若点A(-n+5,0),B(n-1,0)在该抛物线上,点M为抛物线的顶点,求△ABM的面积.(3)若点(2,p),(3,g),(4,r)均在该抛物线上,且p<g<r,求m的取值范围.【答案】(1)抛物线与x轴有2个交点,理由见解析;(2)△ABM的面积为8;(3)m 的取值范围m>-2.5【解析】【分析】(1)首先算出根的判别式b2-4ac的值,根据偶数次幂的非负性,判断该值一定大于0,从而根据抛物线与x轴交点个数与根的判别式的关系即可得出结论;(2)根据抛物线的对称性及A,B两点的坐标特点求出抛物线的对称轴直线为x=2.从而再根据抛物线对称轴直线公式建立方程,求解算出m的值,进而求出抛物线的解析式,得出A,B,M三点的坐标,根据三角形的面积计算方法,即可算出答案;(3)方法一(图象法):根据抛物线的对称轴直线及开口方向判断出当对称轴在直线x=3的右边时,显然不符合题目条件;当对称轴在直线x=2的左边时,显然符合题目条件(如图2),从而列出不等式得出m的取值范围;当对称轴在直线x=2和x=3之间时,满足3-(-m)>-m-2即可(如图3),再列出不等式得出m的取值范围,综上所述,求出m的取值范围;方法二(代数法):将三点的横坐标分贝代入抛物线的解析式,用含m的式子表示出p,g,r,再代入 p<g<r 即可列出关于m的不等式组,求解即可。
2020-2021中考数学培优(含解析)之二次函数及答案解析一、二次函数1.已知如图,抛物线y=x2+bx+c过点A(3,0),B(1,0),交y轴于点C,点P是该抛物线上一动点,点P从C点沿抛物线向A点运动(点P不与点A重合),过点P作PD∥y 轴交直线AC于点D.(1)求抛物线的解析式;(2)求点P在运动的过程中线段PD长度的最大值;(3)△APD能否构成直角三角形?若能请直接写出点P坐标,若不能请说明理由;(4)在抛物线对称轴上是否存在点M使|MA﹣MC|最大?若存在请求出点M的坐标,若不存在请说明理由.【答案】(1)y=x2﹣4x+3;(2)94;(3)点P(1,0)或(2,﹣1);(4)M(2,﹣3).【解析】试题分析:(1)把点A、B的坐标代入抛物线解析式,解方程组得到b、c的值,即可得解;(2)求出点C的坐标,再利用待定系数法求出直线AC的解析式,再根据抛物线解析式设出点P的坐标,然后表示出PD的长度,再根据二次函数的最值问题解答;(3)①∠APD是直角时,点P与点B重合,②求出抛物线顶点坐标,然后判断出点P为在抛物线顶点时,∠PAD是直角,分别写出点P的坐标即可;(4)根据抛物线的对称性可知MA=MB,再根据三角形的任意两边之差小于第三边可知点M为直线CB与对称轴交点时,|MA﹣MC|最大,然后利用待定系数法求出直线BC的解析式,再求解即可.试题解析:解:(1)∵抛物线y=x2+bx+c过点A(3,0),B(1,0),∴93010b cb c++=⎧⎨++=⎩,解得43bc=-⎧⎨=⎩,∴抛物线解析式为y=x2﹣4x+3;(2)令x=0,则y=3,∴点C(0,3),则直线AC的解析式为y=﹣x+3,设点P(x,x2﹣4x+3).∵PD∥y轴,∴点D(x,﹣x+3),∴PD=(﹣x+3)﹣(x2﹣4x+3)=﹣x2+3x=﹣(x﹣32)2+94.∵a=﹣1<0,∴当x=32时,线段PD的长度有最大值94;(3)①∠APD 是直角时,点P 与点B 重合,此时,点P (1,0),②∵y =x 2﹣4x +3=(x ﹣2)2﹣1,∴抛物线的顶点坐标为(2,﹣1).∵A (3,0),∴点P 为在抛物线顶点时,∠PAD =45°+45°=90°,此时,点P (2,﹣1).综上所述:点P (1,0)或(2,﹣1)时,△APD 能构成直角三角形;(4)由抛物线的对称性,对称轴垂直平分AB ,∴MA =MB ,由三角形的三边关系,|MA ﹣MC |<BC ,∴当M 、B 、C 三点共线时,|MA ﹣MC |最大,为BC 的长度,设直线BC 的解析式为y =kx +b (k ≠0),则03k b b +=⎧⎨=⎩,解得:33k b =-⎧⎨=⎩,∴直线BC 的解析式为y =﹣3x +3.∵抛物线y =x 2﹣4x +3的对称轴为直线x =2,∴当x =2时,y =﹣3×2+3=﹣3,∴点M (2,﹣3),即,抛物线对称轴上存在点M (2,﹣3),使|MA ﹣MC |最大.点睛:本题是二次函数综合题,主要利用了待定系数法求二次函数解析式,二次函数的最值问题,二次函数的对称性以及顶点坐标的求解,(2)整理出PD 的表达式是解题的关键,(3)关键在于利用点的坐标特征作出判断,(4)根据抛物线的对称性和三角形的三边关系判断出点M 的位置是解题的关键.2.抛物线2y x bx c =-++(b ,c 为常数)与x 轴交于点()1,0x 和()2,0x ,与y 轴交于点A ,点E 为抛物线顶点。
中考数学 二次函数 培优练习(含答案)含答案解析一、二次函数1.如图,在平面直角坐标系中有一直角三角形AOB ,O 为坐标原点,OA =1,tan ∠BAO =3,将此三角形绕原点O 逆时针旋转90°,得到△DOC ,抛物线y =ax 2+bx +c 经过点A 、B 、C .(1)求抛物线的解析式;(2)若点P 是第二象限内抛物线上的动点,其横坐标为t ,设抛物线对称轴l 与x 轴交于一点E ,连接PE ,交CD 于F ,求以C 、E 、F 为顶点三角形与△COD 相似时点P 的坐标. 【答案】(1)抛物线的解析式为y=﹣x 2﹣2x+3;(2)当△CEF 与△COD 相似时,P 点的坐标为(﹣1,4)或(﹣2,3). 【解析】 【分析】(1)根据正切函数,可得OB ,根据旋转的性质,可得△DOC ≌△AOB ,根据待定系数法,可得函数解析式;(2)分两种情况讨论:①当∠CEF =90°时,△CEF ∽△COD ,此时点P 在对称轴上,即点P 为抛物线的顶点;②当∠CFE =90°时,△CFE ∽△COD ,过点P 作PM ⊥x 轴于M 点,得到△EFC ∽△EMP ,根据相似三角形的性质,可得PM 与ME 的关系,解方程,可得t 的值,根据自变量与函数值的对应关系,可得答案. 【详解】(1)在Rt △AOB 中,OA =1,tan ∠BAO OBOA==3,∴OB =3OA =3. ∵△DOC 是由△AOB 绕点O 逆时针旋转90°而得到的,∴△DOC ≌△AOB ,∴OC =OB =3,OD =OA =1,∴A ,B ,C 的坐标分别为(1,0),(0,3),(﹣3,0),代入解析式为09303a b c a b c c ++=⎧⎪-+=⎨⎪=⎩,解得:123a b c =-⎧⎪=-⎨⎪=⎩,抛物线的解析式为y =﹣x 2﹣2x +3; (2)∵抛物线的解析式为y =﹣x 2﹣2x +3,∴对称轴为l 2ba=-=-1,∴E 点坐标为(﹣1,0),如图,分两种情况讨论:①当∠CEF =90°时,△CEF ∽△COD ,此时点P 在对称轴上,即点P 为抛物线的顶点,P(﹣1,4);②当∠CFE =90°时,△CFE ∽△COD ,过点P 作PM ⊥x 轴于M 点,∵∠CFE=∠PME=90°,∠CEF=∠PEM ,∴△EFC ∽△EMP ,∴13EM EF OD MP CF CO ===,∴MP =3ME . ∵点P 的横坐标为t ,∴P (t ,﹣t 2﹣2t +3).∵P 在第二象限,∴PM =﹣t 2﹣2t +3,ME =﹣1﹣t ,t <0,∴﹣t 2﹣2t +3=3(﹣1﹣t ),解得:t 1=﹣2,t 2=3(与t <0矛盾,舍去).当t =﹣2时,y =﹣(﹣2)2﹣2×(﹣2)+3=3,∴P (﹣2,3).综上所述:当△CEF 与△COD 相似时,P 点的坐标为(﹣1,4)或(﹣2,3). 【点睛】本题是二次函数综合题.解(1)的关键是利用旋转的性质得出OC ,OD 的长,又利用了待定系数法;解(2)的关键是利用相似三角形的性质得出MP =3ME .2.如图,抛物线y=ax 2+bx 过点B (1,﹣3),对称轴是直线x=2,且抛物线与x 轴的正半轴交于点A .(1)求抛物线的解析式,并根据图象直接写出当y≤0时,自变量x 的取值范围; (2)在第二象限内的抛物线上有一点P ,当PA ⊥BA 时,求△PAB 的面积.【答案】(1)抛物线的解析式为y=x 2﹣4x ,自变量x 的取值范图是0≤x≤4;(2)△PAB 的面积=15. 【解析】 【分析】(1)将函数图象经过的点B 坐标代入的函数的解析式中,再和对称轴方程联立求出待定系数a 和b ;(2)如图,过点B 作BE ⊥x 轴,垂足为点E ,过点P 作PE ⊥x 轴,垂足为F ,设P (x ,x 2-4x),证明△PFA∽△AEB,求出点P的坐标,将△PAB的面积构造成长方形去掉三个三角形的面积.【详解】(1)由题意得,32 2a bba+-⎧⎪⎨-⎪⎩==,解得14ab-⎧⎨⎩==,∴抛物线的解析式为y=x2-4x,令y=0,得x2-2x=0,解得x=0或4,结合图象知,A的坐标为(4,0),根据图象开口向上,则y≤0时,自变量x的取值范围是0≤x≤4;(2)如图,过点B作BE⊥x轴,垂足为点E,过点P作PE⊥x轴,垂足为F,设P(x,x2-4x),∵PA⊥BA∴∠PAF+∠BAE=90°,∵∠PAF+∠FPA=90°,∴∠FPA=∠BAE又∠PFA=∠AEB=90°∴△PFA∽△AEB,∴PF AFAE BE=,即244213x x x--=-,解得,x= −1,x=4(舍去)∴x2-4x=-5∴点P的坐标为(-1,-5),又∵B点坐标为(1,-3),易得到BP直线为y=-4x+1所以BP与x轴交点为(14,0)∴S△PAB=115531524⨯⨯+=【点睛】本题是二次函数综合题,求出函数解析式是解题的关键,特别是利用待定系数法将两条直线表达式解出,利用点的坐标求三角形的面积是关键.3.如图1,抛物线C1:y=ax2﹣2ax+c(a<0)与x轴交于A、B两点,与y轴交于点C.已知点A的坐标为(﹣1,0),点O为坐标原点,OC=3OA,抛物线C1的顶点为G.(1)求出抛物线C1的解析式,并写出点G的坐标;(2)如图2,将抛物线C1向下平移k(k>0)个单位,得到抛物线C2,设C2与x轴的交点为A′、B′,顶点为G′,当△A′B′G′是等边三角形时,求k的值:(3)在(2)的条件下,如图3,设点M为x轴正半轴上一动点,过点M作x轴的垂线分别交抛物线C1、C2于P、Q两点,试探究在直线y=﹣1上是否存在点N,使得以P、Q、N 为顶点的三角形与△AOQ全等,若存在,直接写出点M,N的坐标:若不存在,请说明理由.【答案】(1)抛物线C1的解析式为y=﹣x2+2x+3,点G的坐标为(1,4);(2)k=1;(3)M1(1132+,0)、N1131);M2(1132+,0)、N2(1,﹣1);M3(4,0)、N3(10,﹣1);M4(4,0)、N4(﹣2,﹣1).【解析】【分析】(1)由点A的坐标及OC=3OA得点C坐标,将A、C坐标代入解析式求解可得;(2)设抛物线C2的解析式为y=﹣x2+2x+3﹣k,即y=﹣(x﹣1)2+4﹣k,′作G′D⊥x轴于点D,设BD′=m,由等边三角形性质知点B′的坐标为(m+1,0),点G′的坐标为(1,3m),代入所设解析式求解可得;(3)设M(x,0),则P(x,﹣x2+2x+3)、Q(x,﹣x2+2x+2),根据PQ=OA=1且∠AOQ、∠PQN均为钝角知△AOQ≌△PQN,延长PQ交直线y=﹣1于点H,证△OQM≌△QNH,根据对应边相等建立关于x的方程,解之求得x的值从而进一步求解即可.【详解】(1)∵点A的坐标为(﹣1,0),∴OA=1,∴OC=3OA,∴点C的坐标为(0,3),将A、C坐标代入y=ax2﹣2ax+c,得:203a a cc++=⎧⎨=⎩,解得:13ac=-⎧⎨=⎩,∴抛物线C 1的解析式为y=﹣x 2+2x+3=﹣(x ﹣1)2+4, 所以点G 的坐标为(1,4);(2)设抛物线C 2的解析式为y=﹣x 2+2x+3﹣k ,即y=﹣(x ﹣1)2+4﹣k , 过点G′作G′D ⊥x 轴于点D ,设BD′=m ,∵△A′B′G′为等边三角形, ∴G′D=3B′D=3m ,则点B′的坐标为(m+1,0),点G′的坐标为(1,3m ), 将点B′、G′的坐标代入y=﹣(x ﹣1)2+4﹣k ,得:24043m k k m⎧-+-=⎪⎨-=⎪⎩, 解得:1104m k =⎧⎨=⎩(舍),2231m k ⎧=⎪⎨=⎪⎩,∴k=1;(3)设M (x ,0),则P (x ,﹣x 2+2x+3)、Q (x ,﹣x 2+2x+2), ∴PQ=OA=1,∵∠AOQ 、∠PQN 均为钝角, ∴△AOQ ≌△PQN ,如图2,延长PQ 交直线y=﹣1于点H ,则∠QHN=∠OMQ=90°, 又∵△AOQ ≌△PQN , ∴OQ=QN ,∠AOQ=∠PQN , ∴∠MOQ=∠HQN , ∴△OQM ≌△QNH (AAS ), ∴OM=QH ,即x=﹣x 2+2x+2+1,解得:x=1132±(负值舍去), 当x=1132+时,HN=QM=﹣x 2+2x+2=1312-,点M (1132+,0), ∴点N 坐标为(113++131-,﹣1),即(13,﹣1); 或(113+﹣131-,﹣1),即(1,﹣1); 如图3,同理可得△OQM ≌△PNH ,∴OM=PH ,即x=﹣(﹣x 2+2x+2)﹣1, 解得:x=﹣1(舍)或x=4,当x=4时,点M 的坐标为(4,0),HN=QM=﹣(﹣x 2+2x+2)=6,∴点N 的坐标为(4+6,﹣1)即(10,﹣1),或(4﹣6,﹣1)即(﹣2,﹣1); 综上点M 1113+0)、N 1131);M 2113+0)、N 2(1,﹣1);M 3(4,0)、N 3(10,﹣1);M 4(4,0)、N 4(﹣2,﹣1).【点睛】本题考查的是二次函数的综合题,涉及到的知识有待定系数法、等边三角形的性质、全等三角形的判定与性质等,熟练掌握待定系数法求函数解析式、等边三角形的性质、全等三角形的判定与性质、运用分类讨论思想是解题的关键.4.如图,抛物线y =ax 2+bx (a ≠0)过A (4,0),B (1,3)两点,点C 、B 关于抛物线的对称轴对称,过点B 作直线BH ⊥x 轴,交x 轴于点H . (1)求抛物线的表达式;(2)直接写出点C 的坐标,并求出△ABC 的面积;(3)点P 是抛物线上一动点,且位于第四象限,是否存在这样的点P ,使得△ABP 的面积为△ABC 面积的2倍?若存在,求出点P 的坐标,若不存在,请说明理由;(4)若点M 在直线BH 上运动,点N 在x 轴正半轴上运动,当以点C ,M ,N 为顶点的三角形为等腰直角三角形时,请直接写出此时△CMN的面积.【答案】(1)y=-x2+4x;(2)C(3,3),面积为3;(3)P的坐标为(5,-5);(4)52或5.【解析】试题分析:(1)利用待定系数法进行求解即可;(2)先求出抛物线的对称轴,利用对称性即可写出点C的坐标,利用三角形面积公式即可求面积;(3)利用三角形的面积以及点P所处象限的特点即可求;(4)分情况进行讨论,确定点M、N,然后三角形的面积公式即可求.试题解析:(1)将A(4,0),B(1,3)代入到y=ax2+bx中,得16403a ba b+=⎧⎨+=⎩,解得14ab=-⎧⎨=⎩,∴抛物线的表达式为y=-x2+4x.(2)∵抛物线的表达式为y=-x2+4x,∴抛物线的对称轴为直线x=2.又C,B关于对称轴对称,∴C(3,3).∴BC=2,∴S△ABC=12×2×3=3.(3)存在点P.作PQ⊥BH于点Q,设P(m,-m2+4m).∵S△ABP=2S△ABC,S△ABC=3,∴S△ABP=6.∵S△ABP+S△BPQ=S△ABH+S梯形AHQP∴6+12×(m-1)×(3+m2-4m)=12×3×3+12×(3+m-1)(m2-4m)整理得m2-5m=0,解得m1=0(舍),m2=5,∴点P的坐标为(5,-5).(4)52或5.提示:①当以M为直角顶点,则S△CMN=52;②当以N为直角顶点,S△CMN=5;③当以C 为直角顶点时,此种情况不存在.【点睛】本题是二次函数的综合题,主要考查待定系数法求解析式,三角形面积、直角三角形的判定等,能正确地根据题意确定图形,分情况进行讨论是解题的关键.5.在平面直角坐标系中,有两点(),A a b 、(),B c d ,若满足:当a b ≥时,c a =,2d b =-;当a b <时,c a <-,d b <,则称点为点的“友好点”.(1)点()4,1的“友好点”的坐标是_______.(2)点(),A a b 是直线2y x =-上的一点,点B 是点A 的“友好点”. ①当B 点与A 点重合时,求点A 的坐标.②当A 点与A 点不重合时,求线段AB 的长度随着a 的增大而减小时,a 的取值范围. 【答案】(1)()41-,;(2)①点A 的坐标是()2,0或()1,1-;②当1a <或322a ≤<时,AB 的长度随着a 的增大而减小; 【解析】 【分析】(1)直接利用“友好点”定义进行解题即可;(2)先利用 “友好点”定义求出B 点坐标,A 点又在直线2y x =-上,得到2b a =-;①当点A 和点B 重合,得2b b =-.解出即可,②当点A 和点B 不重合, 1a ≠且2a ≠.所以对a 分情况讨论,1°、当1a <或2a >时,()222313224AB b b a a a ⎛⎫=--=-+=-- ⎪⎝⎭,所以当a ≤32时,AB 的长度随着a 的增大而减小,即取1a <.2°当12a <<时,()22231+3224AB b b a a a ⎛⎫=--=--=--+ ⎪⎝⎭,当32a ≥时,AB 的长度随着a 的增大而减小,即取322a ≤<. 综上,当1a <或322a ≤<时,AB 的长度随着a 的增大而减小. 【详解】(1)点()4,1,4>1,根据“友好点”定义,得到点()4,1的“友好点”的坐标是()41-,(2)Q 点(),A a b 是直线2y x =-上的一点,∴2b a =-.Q 2a a >-,根据友好点的定义,点B 的坐标为()2,B a b -,①当点A 和点B 重合,∴2b b =-. 解得0b =或1b =-. 当0b =时,2a =;当1b =-时,1a =,∴点A 的坐标是()2,0或()1,1-.②当点A 和点B 不重合,1a ≠且2a ≠.当1a <或2a >时,()222313224AB b b a a a ⎛⎫=--=-+=-- ⎪⎝⎭. ∴当a ≤32时,AB 的长度随着a 的增大而减小, ∴取1a <.当12a <<时, ()22231+3224AB b b a a a ⎛⎫=--=--=--+ ⎪⎝⎭ .∴当32a ≥时,AB 的长度随着a 的增大而减小, ∴取322a ≤<. 综上,当1a <或322a ≤<时,AB 的长度随着a 的增大而减小. 【点睛】本题属于阅读理解题型,结合二次函数的基本性质进行解题,第二问的第二小问的关键是求出AB 的长用a 进行表示,然后利用二次函数基本性质进行分类讨论6.如图,抛物线y =x 2+bx +c 与x 轴交于A 、B 两点,B 点坐标为(3,0),与y 轴交于点C (0,3).(1)求抛物线y =x 2+bx +c 的表达式;(2)点D 为抛物线对称轴上一点,当△BCD 是以BC 为直角边的直角三角形时,求点D 的坐标;(3)点P 在x 轴下方的抛物线上,过点P 的直线y =x +m 与直线BC 交于点E ,与y 轴交于点F ,求PE +EF 的最大值.【答案】(1)y=x2﹣4x+3;(2)(2,﹣1);(3)42【解析】试题分析:(1)利用待定系数法求抛物线解析式;(2)如图1,设D(2,y),利用两点间的距离公式得到BC2=32+32=18,DC2=4+(y﹣3)2,BD2=(3﹣2)2+y2=1+y2,然后讨论:当BD为斜边时得到18+4+(y﹣3)2=1+y2;当CD 为斜边时得到4+(y﹣3)2=1+y2+18,再分别解方程即可得到对应D的坐标;(3)先证明∠CEF=90°得到△ECF为等腰直角三角形,作PH⊥y轴于H,PG∥y轴交BC于G,如图2,△EPG、△PHF都为等腰直角三角形,则PE 2,PF2,设P(t,t2﹣4t+3)(1<t<3),则G(t,﹣t+3),接着利用t表示PF、PE,这样PE+EF=2PE+PF=﹣2t22,然后利用二次函数的性质解决问题.试题解析:解:(1)把B(3,0),C(0,3)代入y=x2+bx+c得:9303b cc++=⎧⎨=⎩,解得:43bc=-⎧⎨=⎩,∴抛物线y=x2+bx+c的表达式为y=x2﹣4x+3;(2)如图1,抛物线的对称轴为直线x=﹣42-=2,设D(2,y),B(3,0),C(0,3),∴BC2=32+32=18,DC2=4+(y﹣3)2,BD2=(3﹣2)2+y2=1+y2,当△BCD是以BC为直角边,BD为斜边的直角三角形时,BC2+DC2=BD2,即18+4+(y﹣3)2=1+y2,解得:y=5,此时D点坐标为(2,5);当△BCD是以BC为直角边,CD为斜边的直角三角形时,BC2+DB2=DC2,即4+(y﹣3)2=1+y2+18,解得:y=﹣1,此时D点坐标为(2,﹣1);(3)易得BC的解析式为y=﹣x+3.∵直线y=x+m与直线y=x平行,∴直线y=﹣x+3与直线y=x+m垂直,∴∠CEF=90°,∴△ECF为等腰直角三角形,作PH⊥y轴于H,PG∥y轴交BC于G,如图2,△EPG、△PHF都为等腰直角三角形,PE=22PG,PF2PH,设P(t,t2﹣4t+3)(1<t<3),则G(t,﹣t+3),∴PF22t,PG=﹣t+3﹣(t2﹣4t+3)=﹣t2+3t,∴PE=22PG=﹣22t2+322t,∴PE+EF=PE+PE+PF=2PE+PF=﹣2t222=222t=2(t﹣2)22,当t=2时,PE+EF的最大值为2.点睛:本题考查了二次函数的综合题.熟练掌握等腰直角三角形的性质、二次函数图象上点的坐标特征和二次函数的性质;会利用待定系数法求二次函数解析式;理解坐标与图形性质,记住两点间的距离公式.7.如图甲,直线y=﹣x+3与x轴、y轴分别交于点B、点C,经过B、C两点的抛物线y=x2+bx+c与x轴的另一个交点为A,顶点为P.(1)求该抛物线的解析式;(2)在该抛物线的对称轴上是否存在点M,使以C,P,M为顶点的三角形为等腰三角形?若存在,请直接写出所符合条件的点M的坐标;若不存在,请说明理由;(3)当0<x<3时,在抛物线上求一点E,使△CBE的面积有最大值(图乙、丙供画图探究).【答案】(1)y=x2﹣4x+3;(2)(2,)或(2,7)或(2,﹣1+2)或(2,﹣1﹣2);(3)E点坐标为(,)时,△CBE的面积最大.【解析】试题分析:(1)由直线解析式可求得B、C坐标,利用待定系数法可求得抛物线解析式;(2)由抛物线解析式可求得P点坐标及对称轴,可设出M点坐标,表示出MC、MP和PC 的长,分MC=MP、MC=PC和MP=PC三种情况,可分别得到关于M点坐标的方程,可求得M点的坐标;(3)过E作EF⊥x轴,交直线BC于点F,交x轴于点D,可设出E点坐标,表示出F点的坐标,表示出EF的长,进一步可表示出△CBE的面积,利用二次函数的性质可求得其取得最大值时E点的坐标.试题解析:(1)∵直线y=﹣x+3与x轴、y轴分别交于点B、点C,∴B(3,0),C(0,3),把B、C坐标代入抛物线解析式可得,解得,∴抛物线解析式为y=x2﹣4x+3;(2)∵y=x2﹣4x+3=(x﹣2)2﹣1,∴抛物线对称轴为x=2,P(2,﹣1),设M(2,t),且C(0,3),∴MC=,MP=|t+1|,PC=,∵△CPM为等腰三角形,∴有MC=MP、MC=PC和MP=PC三种情况,①当MC=MP时,则有=|t+1|,解得t=,此时M(2,);②当MC=PC时,则有=2,解得t=﹣1(与P点重合,舍去)或t=7,此时M(2,7);③当MP=PC时,则有|t+1|=2,解得t=﹣1+2或t=﹣1﹣2,此时M(2,﹣1+2)或(2,﹣1﹣2);综上可知存在满足条件的点M,其坐标为(2,)或(2,7)或(2,﹣1+2)或(2,﹣1﹣2);(3)如图,过E作EF⊥x轴,交BC于点F,交x轴于点D,设E(x,x2﹣4x+3),则F(x,﹣x+3),∵0<x<3,∴EF=﹣x+3﹣(x2﹣4x+3)=﹣x2+3x,∴S△CBE=S△EFC+S△EFB=EF•OD+EF•BD=EF•OB=×3(﹣x2+3x)=﹣(x﹣)2+,∴当x=时,△CBE的面积最大,此时E点坐标为(,),即当E点坐标为(,)时,△CBE的面积最大.考点:二次函数综合题.8.如图,已知顶点为(0,3)C -的抛物线2(0)y ax b a =+≠与x 轴交于A ,B 两点,直线y x m =+过顶点C 和点B . (1)求m 的值;(2)求函数2(0)y ax b a =+≠的解析式;(3)抛物线上是否存在点M ,使得15MCB ∠=︒?若存在,求出点M 的坐标;若不存在,请说明理由.【答案】(1)﹣3;(2)y 13=x 2﹣3;(3)M 的坐标为(3632). 【解析】 【分析】(1)把C (0,﹣3)代入直线y =x +m 中解答即可;(2)把y =0代入直线解析式得出点B 的坐标,再利用待定系数法确定函数关系式即可; (3)分M 在BC 上方和下方两种情况进行解答即可. 【详解】(1)将C (0,﹣3)代入y =x +m ,可得: m =﹣3;(2)将y =0代入y =x ﹣3得: x =3,所以点B 的坐标为(3,0),将(0,﹣3)、(3,0)代入y =ax 2+b 中,可得:390b a b =-⎧⎨+=⎩, 解得:133a b ⎧=⎪⎨⎪=-⎩,所以二次函数的解析式为:y 13=x 2﹣3; (3)存在,分以下两种情况:①若M 在B 上方,设MC 交x 轴于点D , 则∠ODC =45°+15°=60°, ∴OD =OC •tan30°3=设DC 为y =kx ﹣33,0),可得:k 3=联立两个方程可得:233133y x y x ⎧=-⎪⎨=-⎪⎩, 解得:121203336x x y y ⎧=⎧=⎪⎨⎨=-=⎪⎩⎩, 所以M 1(36);②若M 在B 下方,设MC 交x 轴于点E , 则∠OEC =45°-15°=30°, ∴OE =OC •tan60°=3设EC 为y =kx ﹣3,代入(30)可得:k 3=联立两个方程可得:2333133y x y x ⎧=-⎪⎪⎨⎪=-⎪⎩, 解得:12120332x x y y ⎧=⎧=⎪⎨⎨=-=-⎪⎩⎩, 所以M 23,﹣2).综上所述M 的坐标为(3,63,﹣2). 【点睛】此题是一道二次函数综合题,熟练掌握待定系数法求函数解析式等知识是解题关键.9.如图1,在平面直角坐标系中,直线1y x =-与抛物线2y x bx c =-++交于A B 、两点,其中(),0A m ,()4,B n .该抛物线与y 轴交于点C ,与x 轴交于另一点D .(1)求mn 、的值及该抛物线的解析式; (2)如图2.若点P 为线段AD 上的一动点(不与A D 、重合).分别以AP 、DP 为斜边,在直线AD 的同侧作等腰直角△APM 和等腰直角△DPN ,连接MN ,试确定△MPN 面积最大时P 点的坐标.(3)如图3.连接BD 、CD ,在线段CD 上是否存在点Q ,使得以A D Q 、、为顶点的三角形与△ABD 相似,若存在,请直接写出点Q 的坐标;若不存在,请说明理由.【答案】(1)265y x x =-+-;(2)当2m =,即2AP =时,MPN S ∆最大,此时3OP =,所以()3,0P ;(3)存在点Q 坐标为2-3(,)或78-33⎛⎫ ⎪⎝⎭,. 【解析】分析:(1)把A 与B 坐标代入一次函数解析式求出m 与n 的值,确定出A 与B 坐标,代入二次函数解析式求出b 与c 的值即可;(2)由等腰直角△APM 和等腰直角△DPN ,得到∠MPN 为直角,由两直角边乘积的一半表示出三角形MPN 面积,利用二次函数性质确定出三角形面积最大时P 的坐标即可; (3)存在,分两种情况,根据相似得比例,求出AQ 的长,利用两点间的距离公式求出Q 坐标即可.详解:(1)把A (m ,0),B (4,n )代入y =x ﹣1得:m =1,n =3,∴A (1,0),B (4,3).∵y =﹣x 2+bx +c 经过点A 与点B ,∴101643b c b c -++=⎧⎨-++=⎩,解得:65b c =⎧⎨=-⎩,则二次函数解析式为y =﹣x 2+6x ﹣5;(2)如图2,△APM 与△DPN 都为等腰直角三角形,∴∠APM =∠DPN =45°,∴∠MPN =90°,∴△MPN 为直角三角形,令﹣x 2+6x ﹣5=0,得到x =1或x =5,∴D (5,0),即DP =5﹣1=4,设AP =m ,则有DP =4﹣m ,∴PM =22m ,PN =22(4﹣m ),∴S △MPN =12PM •PN =122m 2(4﹣m )=﹣14m 2﹣m =﹣14(m ﹣2)2+1,∴当m =2,即AP =2时,S △MPN 最大,此时OP =3,即P (3,0);(3)存在,易得直线CD 解析式为y =x ﹣5,设Q (x ,x ﹣5),由题意得:∠BAD =∠ADC =45°,分两种情况讨论:①当△ABD ∽△DAQ 时,AB DA =BD AQ ,即324=4AQ ,解得:AQ =823,由两点间的距离公式得:(x ﹣1)2+(x ﹣5)2=1283,解得:x =73,此时Q (73,﹣83); ②当△ABD ∽△DQA 时,BDAQ=1,即AQ =10,∴(x ﹣1)2+(x ﹣5)2=10,解得:x =2,此时Q (2,﹣3).综上,点Q 的坐标为(2,﹣3)或(73,﹣83). 点睛:本题属于二次函数综合题,涉及的知识有:待定系数法求函数解析式,二次函数的图象与性质,相似三角形的判定与性质,两点间的距离公式,熟练掌握各自的性质是解答本题的关键.10.在平面直角坐标系xOy 中,顶点为A 的抛物线与x 轴交于B 、C 两点,与y 轴交于点D ,已知A(1,4),B(3,0). (1)求抛物线对应的二次函数表达式;(2)探究:如图1,连接OA ,作DE ∥OA 交BA 的延长线于点E ,连接OE 交AD 于点F ,M 是BE 的中点,则OM 是否将四边形OBAD 分成面积相等的两部分?请说明理由; (3)应用:如图2,P(m ,n)是抛物线在第四象限的图象上的点,且m+n =﹣1,连接PA 、PC ,在线段PC 上确定一点M ,使AN 平分四边形ADCP 的面积,求点N 的坐标.提示:若点A 、B 的坐标分别为(x 1,y 1)、(x 2,y 2),则线段AB 的中点坐标为(122x x +,122y y +).【答案】(1)y =﹣x 2+2x ﹣3;(2)OM 将四边形OBAD 分成面积相等的两部分,理由见解析;(3)点N(43,﹣73). 【解析】 【分析】(1)函数表达式为:y =a(x ﹣1)2+4,将点B 坐标的坐标代入上式,即可求解; (2)利用同底等高的两个三角形的面积相等,即可求解;(3)由(2)知:点N是PQ的中点,根据C,P点的坐标求出直线PC的解析式,同理求出AC,DQ 的解析式,并联立方程求出Q点的坐标,从而即可求N点的坐标.【详解】(1)函数表达式为:y=a(x﹣1)2+4,将点B坐标的坐标代入上式得:0=a(3﹣1)2+4,解得:a=﹣1,故抛物线的表达式为:y=﹣x2+2x﹣3;(2)OM将四边形OBAD分成面积相等的两部分,理由:如图1,∵DE∥AO,S△ODA=S△OEA,S△ODA+S△AOM=S△OEA+S△AOM,即:S四边形OMAD=S△OBM,∴S△OME=S△OBM,∴S四边形OMAD=S△OBM;(3)设点P(m,n),n=﹣m2+2m+3,而m+n=﹣1,解得:m=﹣1或4,故点P(4,﹣5);如图2,故点D作QD∥AC交PC的延长线于点Q,由(2)知:点N是PQ的中点,设直线PC的解析式为y=kx+b,将点C(﹣1,0)、P(4,﹣5)的坐标代入得:45k bk b-+=⎧⎨+=-⎩,解得:11 kb=-⎧⎨=-⎩,所以直线PC的表达式为:y=﹣x﹣1…①,同理可得直线AC的表达式为:y=2x+2,直线DQ∥CA,且直线DQ经过点D(0,3),同理可得直线DQ的表达式为:y=2x+3…②,联立①②并解得:x=﹣43,即点Q(﹣43,13),∵点N是PQ的中点,由中点公式得:点N(4 3,﹣73).【点睛】本题考查的是二次函数综合运用,涉及到一次函数、图形面积的计算等,其中(3)直接利用(2)的结论,即点N是PQ的中点,是本题解题的突破点.11.在平面直角坐标系中,二次函数y=ax2+53x+c的图象经过点C(0,2)和点D(4,﹣2).点E是直线y=﹣13x+2与二次函数图象在第一象限内的交点.(1)求二次函数的解析式及点E的坐标.(2)如图①,若点M是二次函数图象上的点,且在直线CE的上方,连接MC,OE,ME.求四边形COEM面积的最大值及此时点M的坐标.(3)如图②,经过A、B、C三点的圆交y轴于点F,求点F的坐标.【答案】(1)E(3,1);(2)S最大=214,M坐标为(32,3);(3)F坐标为(0,﹣32).【解析】【分析】1)把C与D坐标代入二次函数解析式求出a与c的值,确定出二次函数解析式,与一次函数解析式联立求出E坐标即可;(2)过M作MH垂直于x轴,与直线CE交于点H,四边形COEM面积最大即为三角形CME面积最大,构造出二次函数求出最大值,并求出此时M坐标即可;(3)令y=0,求出x的值,得出A与B坐标,由圆周角定理及相似的性质得到三角形AOC 与三角形BOF相似,由相似得比例求出OF的长,即可确定出F坐标.【详解】(1)把C(0,2),D(4,﹣2)代入二次函数解析式得:2016232a cc⎧++=-⎪⎨⎪=⎩,解得:2a32c⎧=-⎪⎨⎪=⎩,即二次函数解析式为y=﹣23x2+53x+2,联立一次函数解析式得:2225233y x y x x ﹣﹣=+⎧⎪⎨=++⎪⎩, 消去y 得:﹣13x+2=﹣23x 2+53x+2, 解得:x=0或x=3, 则E (3,1);(2)如图①,过M 作MH ∥y 轴,交CE 于点H ,设M (m ,﹣23m 2+53m+2),则H (m ,﹣13m+2), ∴MH=(﹣23m 2+53m+2)﹣(﹣13m+2)=﹣23m 2+2m , S 四边形COEM =S △OCE +S △CME =12×2×3+12MH•3=﹣m 2+3m+3, 当m=﹣a b =32时,S 最大=214,此时M 坐标为(32,3); (3)连接BF ,如图②所示,当﹣23x 2+53x+20=0时,x 15+73,x 2=5-734, ∴OA=73-54,OB=734, ∵∠ACO=∠ABF ,∠AOC=∠FOB , ∴△AOC ∽△FOB ,∴OA OC OF OB = ,即73-545+73OF = ,解得:OF=32,则F坐标为(0,﹣32).【点睛】此题属于二次函数综合题,涉及的知识有:待定系数法求二次函数解析式,相似三角形的判定与性质,三角形的面积,二次函数图象与性质,以及图形与坐标性质,熟练掌握各自的性质是解本题的关键.12.如图,已知抛物线y=ax2+bx﹣2(a≠0)与x轴交于A、B两点,与y轴交于C点,直线BD交抛物线于点D,并且D(2,3),tan∠DBA=12.(1)求抛物线的解析式;(2)已知点M为抛物线上一动点,且在第三象限,顺次连接点B、M、C、A,求四边形BMCA面积的最大值;(3)在(2)中四边形BMCA面积最大的条件下,过点M作直线平行于y轴,在这条直线上是否存在一个以Q点为圆心,OQ为半径且与直线AC相切的圆?若存在,求出圆心Q 的坐标;若不存在,请说明理由.【答案】(1)y=12x2+32x﹣2;(2)9;(3)点Q的坐标为(﹣2,4)或(﹣2,﹣1).【解析】(1)如答图1所示,利用已知条件求出点B的坐标,然后用待定系数法求出抛物线的解析式.(2)如答图1所示,首先求出四边形BMCA面积的表达式,然后利用二次函数的性质求出其最大值.(3)如答图2所示,首先求出直线AC与直线x=2的交点F的坐标,从而确定了Rt△AGF 的各个边长;然后证明Rt△AGF∽Rt△QEF,利用相似线段比例关系列出方程,求出点Q的坐标.考点:二次函数综合题,曲线上点的坐标与方程的关系,锐角三角函数定义,由实际问题列函数关系式,二次函数最值,勾股定理,相似三角形的判定和性质,圆的切线性质.13.空地上有一段长为a 米的旧墙MN ,某人利用旧墙和木栏围成一个矩形菜园ABCD ,已知木栏总长为100米.(1)已知a=20,矩形菜园的一边靠墙,另三边一共用了100米木栏,且围成的矩形菜园面积为450平方米.如图1,求所利用旧墙AD 的长;(2)已知0<α<50,且空地足够大,如图2.请你合理利用旧墙及所给木栏设计一个方案,使得所围成的矩形菜园ABCD 的面积最大,并求面积的最大值.【答案】(1)利用旧墙AD 的长为10米.(2)见解析.【解析】【分析】(1)按题意设出AD ,表示AB 构成方程;(2)根据旧墙长度a 和AD 长度表示矩形菜园长和宽,注意分类讨论s 与菜园边长之间的数量关系.【详解】(1)设AD=x 米,则AB=1002x -米 依题意得,(100)2x x -=450 解得x 1=10,x 2=90∵a=20,且x≤a∴x=90舍去∴利用旧墙AD 的长为10米.(2)设AD=x 米,矩形ABCD 的面积为S 平方米①如果按图一方案围成矩形菜园,依题意得: S=2(100)1(50)125022x x x ---+=,0<x <a ∵0<a <50∴x <a <50时,S 随x 的增大而增大 当x=a 时,S 最大=50a-12a 2②如按图2方案围成矩形菜园,依题意得 S=22(1002)[(25)](25)244x a x a a x =+---+++,a≤x <50+2a 当a <25+4a <50时,即0<a <1003时, 则x=25+4a 时,S 最大=(25+4a )2=21000020016a a ++, 当25+4a ≤a ,即1003≤a <50时,S 随x 的增大而减小 ∴x=a 时,S 最大=(1002)2a a a +-=21502a a -, 综合①②,当0<a <1003时,21000020016a a ++-(21502a a -)=2(3100)16a ->0 21000020016a a ++>21502a a -,此时,按图2方案围成矩形菜园面积最大,最大面积为21000020016a a ++平方米 当1003≤a <50时,两种方案围成的矩形菜园面积最大值相等. ∴当0<a <1003时,围成长和宽均为(25+4a )米的矩形菜园面积最大,最大面积为21000020016a a ++平方米; 当1003≤a <50时,围成长为a 米,宽为(50-2a )米的矩形菜园面积最大,最大面积为(21502a a -)平方米. 【点睛】 本题以实际应用为背景,考查了一元二次方程与二次函数最值的讨论,解得时注意分类讨论变量大小关系.14.如图,已知抛物线2y ax bx c =++(a≠0)经过A (﹣1,0)、B (3,0)、C (0,﹣3)三点,直线l 是抛物线的对称轴.(1)求抛物线的函数关系式;(2)设点P 是直线l 上的一个动点,当点P 到点A 、点B 的距离之和最短时,求点P 的坐标;(3)点M 也是直线l 上的动点,且△MAC 为等腰三角形,请直接写出所有符合条件的点M 的坐标.【答案】(1)223y x x =--;(2)P (1,0);(3).【解析】试题分析:(1)直接将A 、B 、C 三点坐标代入抛物线的解析式中求出待定系数即可; (2)由图知:A .B 点关于抛物线的对称轴对称,那么根据抛物线的对称性以及两点之间线段最短可知,直线l 与x 轴的交点,即为符合条件的P 点;(3)由于△MAC 的腰和底没有明确,因此要分三种情况来讨论:①MA=AC 、②MA=MC 、③AC=MC ;可先设出M 点的坐标,然后用M 点纵坐标表示△MAC 的三边长,再按上面的三种情况列式求解.试题解析:(1)将A (﹣1,0)、B (3,0)、C (0,﹣3)代入抛物线2y ax bx c=++中,得:0{9303a b c a b c c -+=++==-,解得:1{23a b c ==-=-,故抛物线的解析式:223y x x =--.(2)当P 点在x 轴上,P ,A ,B 三点在一条直线上时,点P 到点A 、点B 的距离之和最短,此时x=2b a-=1,故P (1,0); (3)如图所示:抛物线的对称轴为:x=2b a -=1,设M (1,m ),已知A (﹣1,0)、C (0,﹣3),则:2MA =24m +,2MC =2(3)1m ++=2610m m ++,2AC =10;①若MA=MC ,则22MA MC =,得:24m +=2610m m ++,解得:m=﹣1; ②若MA=AC ,则22MA AC =,得:24m +=10,得:m=6;③若MC=AC ,则22MC AC =,得:2610m m ++=10,得:10m =,26m =-; 当m=﹣6时,M 、A 、C 三点共线,构不成三角形,不合题意,故舍去;综上可知,符合条件的M 点,且坐标为 M (16)(1,6-)(1,﹣1)(1,0).考点:二次函数综合题;分类讨论;综合题;动点型.15.如图,抛物线y=ax2+c(a≠0)经过C(2,0),D(0,﹣1)两点,并与直线y=kx交于A、B两点,直线l过点E(0,﹣2)且平行于x轴,过A、B两点分别作直线l的垂线,垂足分别为点M、N.(1)求此抛物线的解析式;(2)求证:AO=AM;(3)探究:①当k=0时,直线y=kx与x轴重合,求出此时的值;②试说明无论k取何值,的值都等于同一个常数.【答案】解:(1)y=x2﹣1(2)详见解析(3)详见解析【解析】【分析】(1)把点C、D的坐标代入抛物线解析式求出a、c,即可得解。
2020-2021中考数学培优专题复习二次函数练习题附详细答案一、二次函数1.如图①,已知抛物线y=ax2+bx+c的图像经过点A(0,3)、B(1,0),其对称轴为直线l:x=2,过点A作AC∥x轴交抛物线于点C,∠AOB的平分线交线段AC于点E,点P是抛物线上的一个动点,设其横坐标为m.(1)求抛物线的解析式;(2)若动点P在直线OE下方的抛物线上,连结PE、PO,当m为何值时,四边形AOPE 面积最大,并求出其最大值;(3)如图②,F是抛物线的对称轴l上的一点,在抛物线上是否存在点P使△POF成为以点P为直角顶点的等腰直角三角形?若存在,直接写出所有符合条件的点P的坐标;若不存在,请说明理由.【答案】(1)y=x2-4x+3.(2)当m=52时,四边形AOPE面积最大,最大值为758.(3)P点的坐标为:P13+515-),P2(35-1+52),P35+5,1+52),P4(552-,152).【解析】分析:(1)利用对称性可得点D的坐标,利用交点式可得抛物线的解析式;(2)设P(m,m2-4m+3),根据OE的解析式表示点G的坐标,表示PG的长,根据面积和可得四边形AOPE的面积,利用配方法可得其最大值;(3)存在四种情况:如图3,作辅助线,构建全等三角形,证明△OMP≌△PNF,根据OM=PN列方程可得点P 的坐标;同理可得其他图形中点P的坐标.详解:(1)如图1,设抛物线与x轴的另一个交点为D,由对称性得:D(3,0),设抛物线的解析式为:y=a(x-1)(x-3),把A(0,3)代入得:3=3a,a=1,∴抛物线的解析式;y=x2-4x+3;(2)如图2,设P(m,m2-4m+3),∵OE平分∠AOB,∠AOB=90°,∴∠AOE=45°,∴△AOE是等腰直角三角形,∴AE=OA=3,∴E(3,3),易得OE的解析式为:y=x,过P作PG∥y轴,交OE于点G,∴G(m,m),∴PG=m-(m2-4m+3)=-m2+5m-3,∴S四边形AOPE=S△AOE+S△POE,=12×3×3+12PG•AE,=92+12×3×(-m2+5m-3),=-32m2+152m,=32(m-52)2+758, ∵-32<0, ∴当m=52时,S 有最大值是758; (3)如图3,过P 作MN ⊥y 轴,交y 轴于M ,交l 于N ,∵△OPF 是等腰直角三角形,且OP=PF ,易得△OMP ≌△PNF ,∴OM=PN ,∵P (m ,m 2-4m+3),则-m 2+4m-3=2-m ,解得:m=5+5或55-, ∴P 的坐标为(5+5,1+5)或(55-,15-); 如图4,过P 作MN ⊥x 轴于N ,过F 作FM ⊥MN 于M ,同理得△ONP ≌△PMF ,∴PN=FM ,则-m 2+4m-3=m-2,解得:x=3+5或35-; P 的坐标为(3+5,15-)或(35-,1+52); 综上所述,点P 的坐标是:(5+52,1+52)或(552-,152-)或(3+5,15-)或(35-,1+5). 点睛:本题属于二次函数综合题,主要考查了二次函数的综合应用,相似三角形的判定与性质以及解一元二次方程的方法,解第(2)问时需要运用配方法,解第(3)问时需要运用分类讨论思想和方程的思想解决问题.2.如图,已知直线y kx 6=-与抛物线2y ax bx c =++相交于A ,B 两点,且点A (1,-4)为抛物线的顶点,点B 在x 轴上。
2020-2021中考数学培优易错试卷(含解析)之二次函数及详细答案一、二次函数1.如图,抛物线y=x2﹣mx﹣(m+1)与x轴负半轴交于点A(x1,0),与x轴正半轴交于点B(x2,0)(OA<OB),与y轴交于点C,且满足x12+x22﹣x1x2=13.(1)求抛物线的解析式;(2)以点B为直角顶点,BC为直角边作Rt△BCD,CD交抛物线于第四象限的点E,若EC =ED,求点E的坐标;(3)在抛物线上是否存在点Q,使得S△ACQ=2S△AOC?若存在,求出点Q的坐标;若不存在,说明理由.【答案】(1)y=x2﹣2x﹣3;(2)E点坐标为(1132+,﹣1132);(3)点Q的坐标为(﹣3,12)或(2,﹣3).理由见解析.【解析】【分析】(1)由根与系数的关系可得x1+x2=m,x1•x2=﹣(m+1),代入x12+x22﹣x1x2=13,求出m1=2,m2=﹣5.根据OA<OB,得出抛物线的对称轴在y轴右侧,那么m=2,即可确定抛物线的解析式;(2)连接BE、OE.根据直角三角形斜边上的中线等于斜边的一半得出BE=12CD=CE.利用SSS证明△OBE≌△OCE,得出∠BOE=∠COE,即点E在第四象限的角平分线上,设E点坐标为(m,﹣m),代入y=x2﹣2x﹣3,求出m的值,即可得到E点坐标;(3)过点Q作AC的平行线交x轴于点F,连接CF,根据三角形的面积公式可得S△ACQ=S△ACF.由S△ACQ=2S△AOC,得出S△ACF=2S△AOC,那么AF=2OA=2,F(1,0).利用待定系数法求出直线AC的解析式为y=﹣3x﹣3.根据AC∥FQ,可设直线FQ的解析式为y=﹣3x+b,将F(1,0)代入,利用待定系数法求出直线FQ的解析式为y=﹣3x+3,把它与抛物线的解析式联立,得出方程组22333y x xy x⎧=--⎨=-+⎩,求解即可得出点Q的坐标.【详解】(1)∵抛物线y=x2﹣mx﹣(m+1)与x轴负半轴交于点A(x1,0),与x轴正半轴交于点B(x2,0),∴x1+x2=m,x1•x2=﹣(m+1),∵x 12+x 22﹣x 1x 2=13, ∴(x 1+x 2)2﹣3x 1x 2=13, ∴m 2+3(m +1)=13, 即m 2+3m ﹣10=0, 解得m 1=2,m 2=﹣5. ∵OA <OB ,∴抛物线的对称轴在y 轴右侧, ∴m =2,∴抛物线的解析式为y =x 2﹣2x ﹣3; (2)连接BE 、OE .∵在Rt △BCD 中,∠CBD =90°,EC =ED , ∴BE =12CD =CE . 令y =x 2﹣2x ﹣3=0,解得x 1=﹣1,x 2=3, ∴A (﹣1,0),B (3,0), ∵C (0,﹣3), ∴OB =OC ,又∵BE =CE ,OE =OE , ∴△OBE ≌△OCE (SSS ), ∴∠BOE =∠COE ,∴点E 在第四象限的角平分线上,设E 点坐标为(m ,﹣m ),将E (m ,﹣m )代入y =x 2﹣2x ﹣3, 得m =m 2﹣2m ﹣3,解得m =1132±, ∵点E 在第四象限, ∴E 113+113+); (3)过点Q 作AC 的平行线交x 轴于点F ,连接CF ,则S △ACQ =S △ACF .∵S△ACQ=2S△AOC,∴S△ACF=2S△AOC,∴AF=2OA=2,∴F(1,0).∵A(﹣1,0),C(0,﹣3),∴直线AC的解析式为y=﹣3x﹣3.∵AC∥FQ,∴设直线FQ的解析式为y=﹣3x+b,将F(1,0)代入,得0=﹣3+b,解得b=3,∴直线FQ的解析式为y=﹣3x+3.联立22333y x xy x⎧=--⎨=-+⎩,解得113 12x y =-⎧⎨=⎩,2223xy=⎧⎨=-⎩,∴点Q的坐标为(﹣3,12)或(2,﹣3).【点睛】本题是二次函数综合题,其中涉及到一元二次方程根与系数的关系,求二次函数的解析式,直角三角形的性质,全等三角形的判定与性质,二次函数图象上点的坐标特征,三角形的面积,一次函数图象与几何变换,待定系数法求直线的解析式,抛物线与直线交点坐标的求法,综合性较强,难度适中.利用数形结合与方程思想是解题的关键.2.新春佳节,电子鞭炮因其安全、无污染开始走俏.某商店经销一种电子鞭炮,已知这种电子鞭炮的成本价为每盒80元,市场调查发现,该种电子鞭炮每天的销售量y(盒)与销售单价x(元)有如下关系:y=﹣2x+320(80≤x≤160).设这种电子鞭炮每天的销售利润为w元.(1)求w与x之间的函数关系式;(2)该种电子鞭炮销售单价定为多少元时,每天的销售利润最大?最大利润是多少元?(3)该商店销售这种电子鞭炮要想每天获得2400元的销售利润,又想卖得快.那么销售单价应定为多少元?【答案】(1)w=﹣2x2+480x﹣25600;(2)销售单价定为120元时,每天销售利润最大,最大销售利润3200元(3)销售单价应定为100元【解析】 【分析】 (1)用每件的利润()80x -乘以销售量即可得到每天的销售利润,即()()()80802320w x y x x =-=--+, 然后化为一般式即可;(2)把(1)中的解析式进行配方得到顶点式()221203200w x =--+,然后根据二次函数的最值问题求解;(3)求2400w =所对应的自变量的值,即解方程()2212032002400x --+=.然后检验即可. 【详解】(1)()()()80802320w x y x x =-=--+, 2248025600x x =-+-,w 与x 的函数关系式为:2248025600w x x =-+-; (2)()2224802560021203200w x x x =-+-=--+, 2080160x -<≤≤Q ,,∴当120x =时,w 有最大值.w 最大值为3200.答:销售单价定为120元时,每天销售利润最大,最大销售利润3200元. (3)当2400w =时,()2212032002400x --+=. 解得:12100140x x ,.== ∵想卖得快,2140x ∴=不符合题意,应舍去.答:销售单价应定为100元.3.已知如图,抛物线y =x 2+bx +c 过点A (3,0),B (1,0),交y 轴于点C ,点P 是该抛物线上一动点,点P 从C 点沿抛物线向A 点运动(点P 不与点A 重合),过点P 作PD ∥y 轴交直线AC 于点D . (1)求抛物线的解析式;(2)求点P 在运动的过程中线段PD 长度的最大值;(3)△APD 能否构成直角三角形?若能请直接写出点P 坐标,若不能请说明理由; (4)在抛物线对称轴上是否存在点M 使|MA ﹣MC |最大?若存在请求出点M 的坐标,若不存在请说明理由.【答案】(1)y=x2﹣4x+3;(2)94;(3)点P(1,0)或(2,﹣1);(4)M(2,﹣3).【解析】试题分析:(1)把点A、B的坐标代入抛物线解析式,解方程组得到b、c的值,即可得解;(2)求出点C的坐标,再利用待定系数法求出直线AC的解析式,再根据抛物线解析式设出点P的坐标,然后表示出PD的长度,再根据二次函数的最值问题解答;(3)①∠APD是直角时,点P与点B重合,②求出抛物线顶点坐标,然后判断出点P为在抛物线顶点时,∠PAD是直角,分别写出点P的坐标即可;(4)根据抛物线的对称性可知MA=MB,再根据三角形的任意两边之差小于第三边可知点M为直线CB与对称轴交点时,|MA﹣MC|最大,然后利用待定系数法求出直线BC的解析式,再求解即可.试题解析:解:(1)∵抛物线y=x2+bx+c过点A(3,0),B(1,0),∴93010b cb c++=⎧⎨++=⎩,解得43bc=-⎧⎨=⎩,∴抛物线解析式为y=x2﹣4x+3;(2)令x=0,则y=3,∴点C(0,3),则直线AC的解析式为y=﹣x+3,设点P(x,x2﹣4x+3).∵PD∥y轴,∴点D(x,﹣x+3),∴PD=(﹣x+3)﹣(x2﹣4x+3)=﹣x2+3x=﹣(x﹣32)2+94.∵a=﹣1<0,∴当x=32时,线段PD的长度有最大值94;(3)①∠APD是直角时,点P与点B重合,此时,点P(1,0),②∵y=x2﹣4x+3=(x ﹣2)2﹣1,∴抛物线的顶点坐标为(2,﹣1).∵A(3,0),∴点P为在抛物线顶点时,∠PAD=45°+45°=90°,此时,点P(2,﹣1).综上所述:点P(1,0)或(2,﹣1)时,△APD能构成直角三角形;(4)由抛物线的对称性,对称轴垂直平分AB,∴MA=MB,由三角形的三边关系,|MA﹣MC|<BC,∴当M、B、C三点共线时,|MA﹣MC|最大,为BC的长度,设直线BC的解析式为y=kx+b(k≠0),则3k bb+=⎧⎨=⎩,解得:33kb=-⎧⎨=⎩,∴直线BC的解析式为y=﹣3x+3.∵抛物线y=x2﹣4x+3的对称轴为直线x=2,∴当x=2时,y=﹣3×2+3=﹣3,∴点M (2,﹣3),即,抛物线对称轴上存在点M(2,﹣3),使|MA﹣MC|最大.点睛:本题是二次函数综合题,主要利用了待定系数法求二次函数解析式,二次函数的最值问题,二次函数的对称性以及顶点坐标的求解,(2)整理出PD的表达式是解题的关键,(3)关键在于利用点的坐标特征作出判断,(4)根据抛物线的对称性和三角形的三边关系判断出点M的位置是解题的关键.4.如图,已知抛物线y=﹣x2+bx+c与一直线相交于A(1,0)、C(﹣2,3)两点,与y 轴交于点N,其顶点为D.(1)求抛物线及直线AC的函数关系式;(2)若P是抛物线上位于直线AC上方的一个动点,求△APC的面积的最大值及此时点P 的坐标;(3)在对称轴上是否存在一点M,使△ANM的周长最小.若存在,请求出M点的坐标和△ANM周长的最小值;若不存在,请说明理由.【答案】(1)y=﹣x2﹣2x+3;y=﹣x+1;(2)当x=﹣12时,△APC的面积取最大值,最大值为278,此时点P的坐标为(﹣12,154);(3)在对称轴上存在一点M(﹣1,2),使△ANM的周长最小,△ANM周长的最小值为102【解析】【分析】(1)根据点A,C的坐标,利用待定系数法即可求出抛物线及直线AC的函数关系式;(2)过点P作PE∥y轴交x轴于点E,交直线AC于点F,过点C作CQ∥y轴交x轴于点Q,设点P的坐标为(x,﹣x2﹣2x+3)(﹣2<x<1),则点E的坐标为(x,0),点F的坐标为(x ,﹣x +1),进而可得出PF 的值,由点C 的坐标可得出点Q 的坐标,进而可得出AQ 的值,利用三角形的面积公式可得出S △APC =﹣32x 2﹣32x +3,再利用二次函数的性质,即可解决最值问题;(3)利用二次函数图象上点的坐标特征可得出点N 的坐标,利用配方法可找出抛物线的对称轴,由点C ,N 的坐标可得出点C ,N 关于抛物线的对称轴对称,令直线AC 与抛物线的对称轴的交点为点M ,则此时△ANM 周长取最小值,再利用一次函数图象上点的坐标特征求出点M 的坐标,以及利用两点间的距离公式结合三角形的周长公式求出△ANM 周长的最小值即可得出结论. 【详解】(1)将A (1,0),C (﹣2,3)代入y =﹣x 2+bx +c ,得:10423b c b c -++=⎧⎨--+=⎩,解得:23b c =-⎧⎨=⎩, ∴抛物线的函数关系式为y =﹣x 2﹣2x +3; 设直线AC 的函数关系式为y =mx +n (m ≠0), 将A (1,0),C (﹣2,3)代入y =mx +n ,得:023m n m n +=⎧⎨-+=⎩,解得:11m n =-⎧⎨=⎩, ∴直线AC 的函数关系式为y =﹣x +1.(2)过点P 作PE ∥y 轴交x 轴于点E ,交直线AC 于点F ,过点C 作CQ ∥y 轴交x 轴于点Q ,如图1所示.设点P 的坐标为(x ,﹣x 2﹣2x +3)(﹣2<x <1),则点E 的坐标为(x ,0),点F 的坐标为(x ,﹣x +1),∴PE =﹣x 2﹣2x +3,EF =﹣x +1,EF =PE ﹣EF =﹣x 2﹣2x +3﹣(﹣x +1)=﹣x 2﹣x +2. ∵点C 的坐标为(﹣2,3), ∴点Q 的坐标为(﹣2,0), ∴AQ =1﹣(﹣2)=3, ∴S △APC =12AQ •PF =﹣32x 2﹣32x +3=﹣32(x +12)2+278. ∵﹣32<0, ∴当x =﹣12时,△APC 的面积取最大值,最大值为278,此时点P 的坐标为(﹣12,154). (3)当x =0时,y =﹣x 2﹣2x +3=3, ∴点N 的坐标为(0,3). ∵y =﹣x 2﹣2x +3=﹣(x +1)2+4, ∴抛物线的对称轴为直线x =﹣1. ∵点C 的坐标为(﹣2,3),∴点C,N关于抛物线的对称轴对称.令直线AC与抛物线的对称轴的交点为点M,如图2所示.∵点C,N关于抛物线的对称轴对称,∴MN=CM,∴AM+MN=AM+MC=AC,∴此时△ANM周长取最小值.当x=﹣1时,y=﹣x+1=2,∴此时点M的坐标为(﹣1,2).∵点A的坐标为(1,0),点C的坐标为(﹣2,3),点N的坐标为(0,3),∴AC=2233+=32,AN=2231+=10,∴C△ANM=AM+MN+AN=AC+AN=32+10.∴在对称轴上存在一点M(﹣1,2),使△ANM的周长最小,△ANM周长的最小值为32+10.【点睛】本题考查待定系数法求一次函数解析式、待定系数法求二次函数解析式、二次函数图象上点的坐标特征、一次函数图象上点的坐标特征、二次函数的性质、三角形的面积以及周长,解题的关键是:(1)根据点的坐标,利用待定系数法求出抛物线及直线AC的函数关系式;(2)利用三角形的面积公式找出S△APC=﹣32x2﹣32x+3的最值;(3)利用二次函数图象的对称性结合两点之间线段最短找出点M的位置.5.如图,直线l:y=﹣3x+3与x轴、y轴分别相交于A、B两点,抛物线y=ax2﹣2ax+a+4(a<0)经过点B,交x轴正半轴于点C.(1)求该抛物线的函数表达式;(2)已知点M是抛物线上的一个动点,并且点M在第一象限内,连接AM、BM,设点M 的横坐标为m,△ABM的面积为S,求S与m的函数表达式,并求出S的最大值及此时动点M的坐标;(3)将点A绕原点旋转得点A′,连接CA′、BA′,在旋转过程中,一动点M从点B出发,沿线段BA′以每秒3个单位的速度运动到A′,再沿线段A′C以每秒1个单位长度的速度运动到C后停止,求点M在整个运动过程中用时最少是多少?【答案】(1)y=﹣x2+2x+3;(2)S与m的函数表达式是S=252m m--,S的最大值是25 8,此时动点M的坐标是(52,74);(3)点M82秒.【解析】【分析】(1)首先求出B点的坐标,根据B点的坐标即可计算出二次函数的a值,进而即可计算出二次函数的解析式;(2)计算出C点的坐标,设出M点的坐标,再根据△ABM的面积为S=S四边形OAMB﹣S△AOB =S△BOM+S△OAM﹣S△AOB,化简成二次函数,再根据二次函数求解最大值即可.(3)首先证明△OHA′∽△OA′B,再结合A′H+A′C≥HC即可计算出t的最小值.【详解】(1)将x=0代入y=﹣3x+3,得y=3,∴点B的坐标为(0,3),∵抛物线y=ax2﹣2ax+a+4(a<0)经过点B,∴3=a+4,得a=﹣1,∴抛物线的解析式为:y=﹣x2+2x+3;(2)将y=0代入y=﹣x2+2x+3,得x1=﹣1,x2=3,∴点C的坐标为(3,0),∵点M是抛物线上的一个动点,并且点M在第一象限内,点M的横坐标为m,∴0<m<3,点M的坐标为(m,﹣m2+2m+3),将y=0代入y=﹣3x+3,得x=1,∴点A 的坐标(1,0), ∵△ABM 的面积为S ,∴S =S 四边形OAMB ﹣S △AOB =S △BOM +S △OAM ﹣S △AOB =()2123313222m m m ⨯-++⨯⨯+-, 化简,得S =252m m --=21525228m ⎛⎫--+ ⎪⎝⎭,∴当m =52时,S 取得最大值,此时S =258,此时点M 的坐标为(52,74), 即S 与m 的函数表达式是S =252m m--,S 的最大值是258,此时动点M 的坐标是(52,74); (3)如右图所示,取点H 的坐标为(0,13),连接HA ′、OA ′, ∵∠HOA ′=∠A ′OB ,13OH OA '=,13OA OB '=, ∴△OHA ′∽△OA ′B ,∴3BA A H''=, 即3BA A H ''=,∵A ′H +A ′C ≥HC =2218233⎛⎫+= ⎪⎝⎭, ∴t ≥823, 即点M 在整个运动过程中用时最少是82秒.【点睛】本题主要考查抛物线的性质,关键在于设元,还有就是(3)中利用代替法计算t 的取值范围,难度系数较大,是中考的压轴题.6.已知抛物线2y ax bx c =++上有两点M (m +1,a )、N (m ,b ). (1)当a =-1,m =1时,求抛物线2y ax bx c =++的解析式; (2)用含a 、m 的代数式表示b 和c ;(3)当a <0时,抛物线2y ax bx c =++满足24b ac a -=,2b c a +≥,34m ≤-, 求a 的取值范围.【答案】(1)11b c =⎧⎨=⎩;(2)b=-am ,c=-am ;(3)161393a -≤≤- 【解析】 【分析】(1)根据题意得到M (2,-1)、N (1,b ),代入抛物线解析式即可求出b 、c ;(2)将点M (m +1,a )、N (m ,b )代入抛物线2y ax bx c =++,可得22(1)(1)a m b m c a am bm c b⎧++++=⎨++=⎩,化简即可得出;(3)把b am =-,c am =-代入24b ac a -=可得214a m m=+,把b am =-,c am =-代入2b c a +≥可得1m ≥-,然后根据m 的取值范围可得a 的取值范围.【详解】解:(1)∵a =-1,m =1,∴M (2,-1)、N (1,b ) 由题意,得4211b c b c b -++=-⎧⎨-++=⎩,解,得11b c =⎧⎨=⎩ (2) ∵点M (m +1,a )、N (m ,b )在抛物线2y ax bx c =++上22(1)(1)a m b m c a am bm c b ⎧++++=⎨++=⎩①②①-②得,2am b b +=-,∴b am =-把b am =-代入②,得c am =-(3)把b am =-,c am =-代入24b ac a -=得2224a m a m a +=0a <Q ,22141,4am am a m m∴+=∴=+把b am =-,c am =-代入2b c a +≥得22am a -≥,1m ∴≥-34m Q ≤-,314m ∴-≤≤-224(2)4m m m +=+-Q ,当2m >-时,24m m +随m 的增大而增大2393416m m ∴-≤+≤-216113943m m ∴-≤≤-+ 即161393a -≤≤- 【点睛】本题考查待定系数法求函数解析式以及二次函数的图像和性质,由函数图像上点的坐标特征求出b am =-,c am =-是解题关键.7.如图:在平面直角坐标系中,直线l :y=13x ﹣43与x 轴交于点A ,经过点A 的抛物线y=ax 2﹣3x+c 的对称轴是x=32. (1)求抛物线的解析式;(2)平移直线l 经过原点O ,得到直线m ,点P 是直线m 上任意一点,PB ⊥x 轴于点B ,PC ⊥y 轴于点C ,若点E 在线段OB 上,点F 在线段OC 的延长线上,连接PE ,PF ,且PE=3PF .求证:PE ⊥PF ;(3)若(2)中的点P 坐标为(6,2),点E 是x 轴上的点,点F 是y 轴上的点,当PE ⊥PF 时,抛物线上是否存在点Q ,使四边形PEQF 是矩形?如果存在,请求出点Q 的坐标,如果不存在,请说明理由.【答案】(1)抛物线的解析式为y=x 2﹣3x ﹣4;(2)证明见解析;(3)点Q 的坐标为(﹣2,6)或(2,﹣6). 【解析】 【分析】(1)先求得点A 的坐标,然后依据抛物线过点A ,对称轴是x=32列出关于a 、c 的方程组求解即可;(2)设P (3a ,a ),则PC=3a ,PB=a ,然后再证明∠FPC=∠EPB ,最后通过等量代换进行证明即可;(3)设E (a ,0),然后用含a 的式子表示BE 的长,从而可得到CF 的长,于是可得到点F 的坐标,然后依据中点坐标公式可得到22x x x x Q P F E ++=,22y y y yQ P F E ++=,从而可求得点Q 的坐标(用含a 的式子表示),最后,将点Q 的坐标代入抛物线的解析式求得a 的值即可. 【详解】 (1)当y=0时,14033x -=,解得x=4,即A (4,0),抛物线过点A ,对称轴是x=32,得161203322a c a -+=⎧⎪-⎨-=⎪⎩,解得14a c =⎧⎨=-⎩,抛物线的解析式为y=x 2﹣3x ﹣4;(2)∵平移直线l 经过原点O ,得到直线m ,∴直线m 的解析式为y=13x . ∵点P 是直线1上任意一点,∴设P (3a ,a ),则PC=3a ,PB=a . 又∵PE=3PF , ∴PC PBPF PE=. ∴∠FPC=∠EPB . ∵∠CPE+∠EPB=90°, ∴∠FPC+∠CPE=90°, ∴FP ⊥PE .(3)如图所示,点E 在点B 的左侧时,设E (a ,0),则BE=6﹣a .∵CF=3BE=18﹣3a , ∴OF=20﹣3a . ∴F (0,20﹣3a ). ∵PEQF 为矩形,∴22x x x x Q P F E ++=,22y y y yQ P F E ++=, ∴Q x +6=0+a ,Q y +2=20﹣3a+0, ∴Q x =a ﹣6,Q y =18﹣3a .将点Q 的坐标代入抛物线的解析式得:18﹣3a=(a ﹣6)2﹣3(a ﹣6)﹣4,解得:a=4或a=8(舍去). ∴Q (﹣2,6).如下图所示:当点E 在点B 的右侧时,设E (a ,0),则BE=a ﹣6.∵CF=3BE=3a ﹣18, ∴OF=3a ﹣20. ∴F (0,20﹣3a ). ∵PEQF 为矩形,∴22x x x x Q P F E ++=,22y y y yQ P F E ++=, ∴Q x +6=0+a ,Q y +2=20﹣3a+0, ∴Q x =a ﹣6,Q y =18﹣3a .将点Q 的坐标代入抛物线的解析式得:18﹣3a=(a ﹣6)2﹣3(a ﹣6)﹣4,解得:a=8或a=4(舍去). ∴Q (2,﹣6).综上所述,点Q 的坐标为(﹣2,6)或(2,﹣6). 【点睛】本题主要考查的是二次函数的综合应用,解答本题主要应用了矩形的性质、待定系数法求二次函数的解析式、中点坐标公式,用含a 的式子表示点Q 的坐标是解题的关键.8.如图1,在平面直角坐标系中,直线1y x =-与抛物线2y x bx c =-++交于A B 、两点,其中(),0A m ,()4,B n .该抛物线与y 轴交于点C ,与x 轴交于另一点D .(1)求mn 、的值及该抛物线的解析式; (2)如图2.若点P 为线段AD 上的一动点(不与A D 、重合).分别以AP 、DP 为斜边,在直线AD 的同侧作等腰直角△APM 和等腰直角△DPN ,连接MN ,试确定△MPN 面积最大时P 点的坐标.(3)如图3.连接BD 、CD ,在线段CD 上是否存在点Q ,使得以A D Q 、、为顶点的三角形与△ABD 相似,若存在,请直接写出点Q 的坐标;若不存在,请说明理由.【答案】(1)265y x x =-+-;(2)当2m =,即2AP =时,MPN S ∆最大,此时3OP =,所以()3,0P ;(3)存在点Q 坐标为2-3(,)或78-33⎛⎫ ⎪⎝⎭,. 【解析】分析:(1)把A 与B 坐标代入一次函数解析式求出m 与n 的值,确定出A 与B 坐标,代入二次函数解析式求出b 与c 的值即可;(2)由等腰直角△APM 和等腰直角△DPN ,得到∠MPN 为直角,由两直角边乘积的一半表示出三角形MPN 面积,利用二次函数性质确定出三角形面积最大时P 的坐标即可; (3)存在,分两种情况,根据相似得比例,求出AQ 的长,利用两点间的距离公式求出Q 坐标即可.详解:(1)把A (m ,0),B (4,n )代入y =x ﹣1得:m =1,n =3,∴A (1,0),B (4,3).∵y =﹣x 2+bx +c 经过点A 与点B ,∴101643b c b c -++=⎧⎨-++=⎩,解得:65b c =⎧⎨=-⎩,则二次函数解析式为y =﹣x 2+6x ﹣5;(2)如图2,△APM 与△DPN 都为等腰直角三角形,∴∠APM =∠DPN =45°,∴∠MPN =90°,∴△MPN 为直角三角形,令﹣x 2+6x ﹣5=0,得到x =1或x =5,∴D (5,0),即DP =5﹣1=4,设AP =m ,则有DP =4﹣m ,∴PM =22m ,PN =22(4﹣m ),∴S △MPN =12PM •PN =122m 2(4﹣m )=﹣14m 2﹣m =﹣14(m ﹣2)2+1,∴当m =2,即AP =2时,S △MPN 最大,此时OP =3,即P (3,0);(3)存在,易得直线CD 解析式为y =x ﹣5,设Q (x ,x ﹣5),由题意得:∠BAD =∠ADC =45°,分两种情况讨论:①当△ABD∽△DAQ时,ABDA=BDAQ,即324=4AQ,解得:AQ=823,由两点间的距离公式得:(x﹣1)2+(x﹣5)2=1283,解得:x=73,此时Q(73,﹣83);②当△ABD∽△DQA时,BDAQ=1,即AQ=10,∴(x﹣1)2+(x﹣5)2=10,解得:x=2,此时Q(2,﹣3).综上,点Q的坐标为(2,﹣3)或(73,﹣83).点睛:本题属于二次函数综合题,涉及的知识有:待定系数法求函数解析式,二次函数的图象与性质,相似三角形的判定与性质,两点间的距离公式,熟练掌握各自的性质是解答本题的关键.9.如图1,抛物线C1:y=ax2﹣2ax+c(a<0)与x轴交于A、B两点,与y轴交于点C.已知点A的坐标为(﹣1,0),点O为坐标原点,OC=3OA,抛物线C1的顶点为G.(1)求出抛物线C1的解析式,并写出点G的坐标;(2)如图2,将抛物线C1向下平移k(k>0)个单位,得到抛物线C2,设C2与x轴的交点为A′、B′,顶点为G′,当△A′B′G′是等边三角形时,求k的值:(3)在(2)的条件下,如图3,设点M为x轴正半轴上一动点,过点M作x轴的垂线分别交抛物线C1、C2于P、Q两点,试探究在直线y=﹣1上是否存在点N,使得以P、Q、N 为顶点的三角形与△AOQ全等,若存在,直接写出点M,N的坐标:若不存在,请说明理由.【答案】(1)抛物线C1的解析式为y=﹣x2+2x+3,点G的坐标为(1,4);(2)k=1;(3)M1(1132+,0)、N1131);M2(1132+,0)、N2(1,﹣1);M3(4,0)、N3(10,﹣1);M4(4,0)、N4(﹣2,﹣1).【解析】【分析】(1)由点A的坐标及OC=3OA得点C坐标,将A、C坐标代入解析式求解可得;(2)设抛物线C2的解析式为y=﹣x2+2x+3﹣k,即y=﹣(x﹣1)2+4﹣k,′作G′D⊥x轴于点D,设BD′=m,由等边三角形性质知点B′的坐标为(m+1,0),点G′的坐标为(1,3m),代入所设解析式求解可得;(3)设M(x,0),则P(x,﹣x2+2x+3)、Q(x,﹣x2+2x+2),根据PQ=OA=1且∠AOQ 、∠PQN 均为钝角知△AOQ ≌△PQN ,延长PQ 交直线y=﹣1于点H ,证△OQM ≌△QNH ,根据对应边相等建立关于x 的方程,解之求得x 的值从而进一步求解即可.【详解】(1)∵点A 的坐标为(﹣1,0), ∴OA=1, ∴OC=3OA ,∴点C 的坐标为(0,3),将A 、C 坐标代入y=ax 2﹣2ax+c ,得:203a a c c ++=⎧⎨=⎩,解得:13a c =-⎧⎨=⎩, ∴抛物线C 1的解析式为y=﹣x 2+2x+3=﹣(x ﹣1)2+4, 所以点G 的坐标为(1,4);(2)设抛物线C 2的解析式为y=﹣x 2+2x+3﹣k ,即y=﹣(x ﹣1)2+4﹣k , 过点G′作G′D ⊥x 轴于点D ,设BD′=m ,∵△A′B′G′为等边三角形, ∴33,则点B′的坐标为(m+1,0),点G′的坐标为(13), 将点B′、G′的坐标代入y=﹣(x ﹣1)2+4﹣k ,得:24043m k k m⎧-+-=⎪⎨-=⎪⎩, 解得:1104m k =⎧⎨=⎩(舍),2231m k ⎧=⎪⎨=⎪⎩,∴k=1;(3)设M (x ,0),则P (x ,﹣x 2+2x+3)、Q (x ,﹣x 2+2x+2), ∴PQ=OA=1,∵∠AOQ 、∠PQN 均为钝角, ∴△AOQ ≌△PQN ,如图2,延长PQ 交直线y=﹣1于点H ,则∠QHN=∠OMQ=90°, 又∵△AOQ ≌△PQN , ∴OQ=QN ,∠AOQ=∠PQN , ∴∠MOQ=∠HQN , ∴△OQM ≌△QNH (AAS ), ∴OM=QH ,即x=﹣x 2+2x+2+1, 解得:x=113±(负值舍去), 当x=1132+时,HN=QM=﹣x 2+2x+2=1312-,点M (1132+,0), ∴点N 坐标为(113++131-,﹣1),即(13,﹣1); 或(113+﹣131-,﹣1),即(1,﹣1); 如图3,同理可得△OQM ≌△PNH ,∴OM=PH ,即x=﹣(﹣x 2+2x+2)﹣1, 解得:x=﹣1(舍)或x=4,当x=4时,点M 的坐标为(4,0),HN=QM=﹣(﹣x 2+2x+2)=6,∴点N 的坐标为(4+6,﹣1)即(10,﹣1),或(4﹣6,﹣1)即(﹣2,﹣1);综上点M1(1132 +,0)、N1(13,﹣1);M2(1132+,0)、N2(1,﹣1);M3(4,0)、N3(10,﹣1);M4(4,0)、N4(﹣2,﹣1).【点睛】本题考查的是二次函数的综合题,涉及到的知识有待定系数法、等边三角形的性质、全等三角形的判定与性质等,熟练掌握待定系数法求函数解析式、等边三角形的性质、全等三角形的判定与性质、运用分类讨论思想是解题的关键.10.在平面直角坐标系中,抛物线2y ax bx c=++过点(1,0)A-,(3,0)B,与y轴交于点C,连接AC,BC,将OBCV沿BC所在的直线翻折,得到DBC△,连接OD.(1)用含a的代数式表示点C的坐标.(2)如图1,若点D落在抛物线的对称轴上,且在x轴上方,求抛物线的解析式.(3)设OBDV的面积为S1,OACV的面积为S2,若1223SS=,求a的值.【答案】(1)(0,3)C a-;(2) 抛物线的表达式为:252535555y x x=-++;(3) 22a=-22a=【解析】【分析】(1)根据待定系数法,得到抛物线的表达式为:()2(1)(3)23y a x x a x x=+-=--,即可求解;(2)根据相似三角形的判定证明CPD DQBV V∽,再根据相似三角形的性质得到CP PD CDDQ BQ BD==,即可求解;(3)连接OD交BC于点H,过点H、D分别作x轴的垂线交于点N、M,由三角形的面积公式得到1223SS=,29mDM=,11299mHN DM OC===,而22899mHN ON BN⎛⎫=⨯== ⎪⎝⎭,即可求解.【详解】(1)抛物线的表达式为:()2(1)(3)23y a x x a x x =+-=--,即3c a =-,则点(0,3)C a -;(2)过点B 作y 轴的平行线BQ ,过点D 作x 轴的平行线交y 轴于点P 、交BQ 于点Q , ∵90CDP PDC ︒∠+∠=,90PDC QDB ︒∠+∠=, ∴QDB DCP ∠=∠,设:(1,)D n ,点(0,3)C a -,90CPD BQD ︒∠=∠=,∴CPD DQB V V ∽, ∴CP PD CDDQ BQ BD==, 其中:3CP n a =+,312DQ =-=,1PD =,BQ n =,3CD a =-,3BD =, 将以上数值代入比例式并解得:5a =±, ∵0a <,故55a =-, 故抛物线的表达式为:252535555y x x =-++; (3)如图2,当点C 在x 轴上方时,连接OD 交BC 于点H ,则DO BC ⊥, 过点H 、D 分别作x 轴的垂线交于点N 、M ,设:3OC m a ==-,11322OBD S S OB DM DM ∆==⨯⨯=,2112OAC S S m ∆==⨯⨯,而1223S S =, 则29m DM =,11299m HN DM OC ===, ∴1193BN BO ==,则18333ON =-=, 则DO BC ⊥,HN OB ⊥,则BHN HON ∠=∠,则tan tan BHN HON ∠=∠,则22899m HN ON BN ⎛⎫=⨯== ⎪⎝⎭, 解得:62m =±(舍去负值),|3|62CO a =-=,解得:22a =-(不合题意值已舍去),故:22a =-.当点C 在x 轴下方时,同理可得:22a =;故:22a =-或22a =【点睛】本题考查的是二次函数综合运用、一次函数、三角形相似、图形的面积计算,其中(3)用几何方法得出:22899m HN ON BN ⎛⎫=⨯== ⎪⎝⎭,是本题解题的关键.11.如图,直线y =﹣x +4与x 轴交于点B ,与y 轴交于点C ,抛物线y =﹣x 2+bx +c 经过B ,C 两点,与x 轴另一交点为A .点P 以每秒2个单位长度的速度在线段BC 上由点B 向点C 运动(点P 不与点B 和点C 重合),设运动时间为t 秒,过点P 作x 轴垂线交x 轴于点E ,交抛物线于点M .(1)求抛物线的解析式;(2)如图①,过点P 作y 轴垂线交y 轴于点N ,连接MN 交BC 于点Q ,当12MQ NQ =时,求t 的值;(3)如图②,连接AM 交BC 于点D ,当△PDM 是等腰三角形时,直接写出t 的值.【答案】(1)y =﹣x 2+3x +4;(2)t 的值为12;(3)当△PDM 是等腰三角形时,t =1或t ﹣1.【解析】【分析】(1)求直线y=-x+4与x 轴交点B ,与y 轴交点C ,用待定系数法即求得抛物线解析式. (2)根据点B 、C 坐标求得∠OBC=45°,又PE ⊥x 轴于点E ,得到△PEB 是等腰直角三角形,由PB =求得BE=PE=t ,即可用t 表示各线段,得到点M 的横坐标,进而用m 表示点M 纵坐标,求得MP 的长.根据MP ∥CN 可证MPQ NCQ V V ∽,故有12MP MQ NC NQ ==,把用t 表示的MP 、NC 代入即得到关于t 的方程,求解即得到t 的值. (3)因为不确定等腰△PDM 的底和腰,故需分3种情况讨论:①若MD=MP ,则∠MDP=∠MPD=45°,故有∠DMP=90°,不合题意;②若DM=DP ,则∠DMP=∠MPD=45°,进而得AE=ME ,把含t 的式子代入并解方程即可;③若MP=DP ,则∠PMD=∠PDM ,由对顶角相等和两直线平行内错角相等可得∠CFD=∠PMD=∠PDM=∠CDF 进而得CF=CD .用t 表示M 的坐标,求直线AM 解析式,求得AM 与y 轴交点F 的坐标,即能用t 表示CF 的长.把直线AM 与直线BC 解析式联立方程组,解得x 的值即为点D 横坐标.过D 作y 轴垂线段DG ,得等腰直角△CDG ,用DG 即点D 横坐标,进而可用t 表示CD 的长.把含t 的式子代入CF=CD ,解方程即得到t 的值.【详解】(1)直线y =﹣x +4中,当x =0时,y =4∴C (0,4)当y =﹣x +4=0时,解得:x =4∴B (4,0)∵抛物线y =﹣x 2+bx +c 经过B ,C 两点∴1640004b c c -++=⎧⎨++=⎩ 解得:34b c =⎧⎨=⎩ ∴抛物线解析式为y =﹣x 2+3x +4(2)∵B (4,0),C (0,4),∠BOC =90°∴OB =OC∴∠OBC =∠OCB =45°∵ME ⊥x 轴于点E ,PBt∴∠BEP =90°∴Rt △BEP 中,2PE sin PBE PB ∠==∴BE PE t ==, ∴4M P P x x OE OBBE t y PE t ===﹣=﹣,== ∵点M 在抛物线上∴2243445M y t t t t +++=﹣(﹣)(﹣)=﹣, ∴24MP MP y y t t +=﹣=﹣ , ∵PN ⊥y 轴于点N∴∠PNO =∠NOE =∠PEO =90°∴四边形ONPE 是矩形∴ON =PE =t∴NC =OC ﹣ON =4﹣t∵MP ∥CN∴△MPQ ∽△NCQ ∴12MP MQ NC NQ == ∴24142t t t -+=- 解得:12142t t =,=(点P 不与点C 重合,故舍去)∴t 的值为12(3)∵∠PEB =90°,BE =PE∴∠BPE =∠PBE =45°∴∠MPD =∠BPE =45°①若MD =MP ,则∠MDP =∠MPD =45°∴∠DMP =90°,即DM ∥x 轴,与题意矛盾②若DM =DP ,则∠DMP =∠MPD =45°∵∠AEM =90°∴AE =ME∵y =﹣x 2+3x +4=0时,解得:x 1=﹣1,x 2=4∴A (﹣1,0)∵由(2)得,x M =4﹣t ,ME =y M =﹣t 2+5t∴AE =4﹣t ﹣(﹣1)=5﹣t∴5﹣t =﹣t 2+5t解得:t 1=1,t 2=5(0<t <4,舍去)③若MP =DP ,则∠PMD =∠PDM如图,记AM 与y 轴交点为F ,过点D 作DG ⊥y 轴于点G∴∠CFD =∠PMD =∠PDM =∠CDF∴CF =CD∵A (﹣1,0),M (4﹣t ,﹣t 2+5t ),设直线AM 解析式为y =ax +m∴()2045a m a t m t t -+=⎧⎨-+=-+⎩解得:a t m t =⎧⎨=⎩ , ∴直线AM :y tx t +=∴F (0,t )∴CF =OC ﹣OF =4﹣t∵tx +t =﹣x +4,解得:41t x t -=+, ∴41D x t t DG -=+==, ∵∠CGD =90°,∠DCG =45°∴)41t CD t -+=,∴)441t t t -+﹣解得:1t综上所述,当△PDM 是等腰三角形时,t =1或1t .【点睛】本题考查了二次函数的图象与性质,解二元一次方程组和一元二次方程,等腰直角三角形的性质,相似三角形的判定和性质,涉及等腰三角形的分类讨论,要充分利用等腰的性质作为列方程的依据.12.(12分)如图所示是隧道的截面由抛物线和长方形构成,长方形的长是12 m ,宽是4 m .按照图中所示的直角坐标系,抛物线可以用y=16-x 2+bx+c 表示,且抛物线上的点C 到OB 的水平距离为3 m ,到地面OA 的距离为172m. (1)求抛物线的函数关系式,并计算出拱顶D 到地面OA 的距离;(2)一辆货运汽车载一长方体集装箱后高为6m ,宽为4m ,如果隧道内设双向车道,那么这辆货车能否安全通过?(3)在抛物线型拱壁上需要安装两排灯,使它们离地面的高度相等,如果灯离地面的高度不超过8m ,那么两排灯的水平距离最小是多少米?【答案】(1)抛物线的函数关系式为y=16-x 2+2x+4,拱顶D 到地面OA 的距离为10 m ;(2)两排灯的水平距离最小是3.【解析】【详解】 试题分析:根据点B 和点C 在函数图象上,利用待定系数法求出b 和c 的值,从而得出函数解析式,根据解析式求出顶点坐标,得出最大值;根据题意得出车最外侧与地面OA 的交点为(2,0)(或(10,0)),然后求出当x=2或x=10时y 的值,与6进行比较大小,比6大就可以通过,比6小就不能通过;将y=8代入函数,得出x 的值,然后进行做差得出最小值.试题解析:(1)由题知点17(0,4),3,2B C ⎛⎫ ⎪⎝⎭在抛物线上 所以41719326c b c =⎧⎪⎨=-⨯++⎪⎩,解得24b c =⎧⎨=⎩,所以21246y x x =-++ 所以,当62b x a =-=时,10t y =≦ 答:21246y x x =-++,拱顶D 到地面OA 的距离为10米 (2)由题知车最外侧与地面OA 的交点为(2,0)(或(10,0)) 当x=2或x=10时,2263y =>,所以可以通过 (3)令8y =,即212486x x -++=,可得212240x x -+=,解得12623,623x x =+=-1243x x -=答:两排灯的水平距离最小是3考点:二次函数的实际应用.13.如图①,抛物线2(1)y x a x a =-++-与x 轴交于A 、B 两点(点A 位于点B 的左侧),与y 轴交于点C ,已知ABC ∆的面积为6.(1)求a 的值;(2)求ABC ∆外接圆圆心的坐标;(3)如图②,P 是抛物线上一点,点Q 为射线CA 上一点,且P 、Q 两点均在第三象限内,Q 、A 是位于直线BP 同侧的不同两点,若点P 到x 轴的距离为d ,QPB ∆的面积为2d ,且PAQ AQB ∠=∠,求点Q 的坐标.【答案】(1)-3;(2)坐标(-1,1);(3)Q ()4,1-.【解析】【分析】(1)利用抛物线解析式得到A 、B 、C 三点坐标,然后利用三角形面积公式列出方程解出a ;(2)利用第一问得到A 、B 、C 三点坐标,求出AC 解析式,找到AC 垂直平分线的解析式,与AB 垂直平分线解析式联立,解出x 、y 即为圆心坐标;(3)过点P 做PD ⊥x 轴,PD =d ,发现△ABP 与△QBP 的面积相等,得到A 、D 两点到PB 得距离相等,可得AQ PB ∥,求出PB 解析式,与二次函数解析式联立得到P 点坐标,又易证ABQ QPA ∆∆≌,得到BQ =AP 26Q 点坐标,点与点的距离列出方程,解出Q 点坐标即可【详解】(1)解:由题意得()()1y x x a =---由图知:0a <所以A (,0a ),()10B ,,()0,C a - ()()112ABC S a a ∆=-⋅-=6 34()a a =-=或舍∴3a =-(2)由(1)得A (-3,0),()10B ,,()0,3C ∴直线AC 得解析式为:3y x =+AC 中点坐标为33,22⎛⎫-⎪⎝⎭∴AC 的垂直平分线为:y x =-又∵AB 的垂直平分线为:1x =-∴1y x x =-⎧⎨=-⎩ 得11x y =-⎧⎨=⎩ ABC ∆外接圆圆心的坐标(-1,1).(3)解:过点P 做PD ⊥x 轴由题意得:PD =d ,∴12ABP S PD AB ∆=⋅ =2d∵QPB ∆的面积为2d∴ABP BPQ S S ∆∆=,即A 、D 两点到PB 得距离相等∴AQ PB ∥设PB 直线解析式为;y x b =+过点(1,0)B∴1y x =-∴2123y x y x x =-⎧⎨=--+⎩易得45x y =-⎧⎨=⎩ 1()0x y =⎧⎨=⎩舍 所以P (-4,-5),由题意及PAQ AQB ∠=∠易得:ABQ QPA ∆∆≌∴BQ =AP 26设Q (m ,-1)(0m <)∴()221126m -+= 4m =-∴Q ()4,1-.【点睛】本题考查二次函数综合性问题,涉及到一次函数、三角形外接圆圆心、全等三角形等知识点,第一问关键在于用a 表示出A 、B 、C 三点坐标;第二问关键在于找到AC 垂直平分线的解析式,与AB 垂直平分线解析式;第三问关键在于能够求出PB 的解析式14.如图,已知二次函数y=ax 2+bx+3的图象交x 轴于点A (1,0),B (3,0),交y 轴于点C .(1)求这个二次函数的表达式;(2)点P 是直线BC 下方抛物线上的一动点,求△BCP 面积的最大值;(3)直线x=m 分别交直线BC 和抛物线于点M ,N ,当△BMN 是等腰三角形时,直接写出m 的值.【答案】(1)这个二次函数的表达式是y=x 2﹣4x+3;(2)S △BCP 最大=278;(3)当△BMN 是等腰三角形时,m 22,1,2.【解析】分析:(1)根据待定系数法,可得函数解析式; (2)根据平行于y 轴直线上两点间的距离是较大的纵坐标减较小的纵坐标,可得PE 的长,根据面积的和差,可得二次函数,根据二次函数的性质,可得答案;(3)根据等腰三角形的定义,可得关于m 的方程,根据解方程,可得答案.详解:(1)将A (1,0),B (3,0)代入函数解析式,得309330a b a b ++⎧⎨++⎩==, 解得14a b ⎧⎨-⎩==, 这个二次函数的表达式是y=x 2-4x+3;(2)当x=0时,y=3,即点C (0,3),设BC 的表达式为y=kx+b ,将点B (3,0)点C (0,3)代入函数解析式,得300k b b +⎧⎨⎩==, 解这个方程组,得13k b -⎧⎨⎩== 直线BC 的解析是为y=-x+3,。
2020中考数学限时训练二次函数的图象及其性质培优(含答案)
m-1的图象与x轴有交点,则m的取值范围是()
1.已知二次函数y=x2-x+1
4
A.m≤5
B.m≥2
C.m<5
D.m>2
2.已知抛物线c:y=x2+2x-3,将抛物线c平移得到抛物线c',如果两条抛物线关于直线x=1对称,那么下列说法正确的是()
A.将抛物线c沿x轴向右平移5
个单位得到抛物线c'
2
B.将抛物线c沿x轴向右平移4个单位得到抛物线c'
C.将抛物线c沿x轴向右平移7
个单位得到抛物线c'
2
D.将抛物线c沿x轴向右平移6个单位得到抛物线c'
3.抛物线y=-x2+4x-4与坐标轴的交点个数为()
A.0B.1C.2D.3
4.若二次函数y=ax2+bx+c(a<0)的图象经过点(2,0),且其对称轴为直线x=-1,则使函数值y>0成立的x的取值范围是()
A.x<-4或x>2
B.-4≤x≤2
C.x≤-4或x≥2
D.-4<x<2
1.二次函数y=(x-1)2+3的图象的顶点坐标是()
A.(1,3)
B.(1,-3)
C.(-1,3)
D.(-1,-3)
2.抛物线y=-3x2+6x+2的对称轴是()
A.直线x=2
B.直线x=-2
C.直线x=1
D.直线x=-1
3.已知抛物线y=-x2+bx+4经过(-2,n)和(4,n)两点,则n的值为()
A.-2
B.-4
C.2
D.4
4.已知二次函数y=ax2+bx+c的y与x的部分对应值如下表:
x-10234
y50-4-30
下列结论:①抛物线的开口向上;②抛物线的对称轴为直线x=2;③当0<x<4时,y>0;④抛物线与x 轴的两个交点间的距离是4;⑤若A (x 1,2),B (x 2,3)是抛物线上两点,则x 1<x 2. 其中正确的个数是 ( ) A .2
B .3
C .4
D .5
9.将抛物线y=3(x+1)2-2向上平移1个单位,再向左平移1个单位得到的抛物线的解析式是 . 10. 如图1,抛物线y=ax 2与直线y=bx+c 的两个交点坐标分别为A (-2,4),B (1,1),则方程ax 2=bx+c 的解是 .
图1
11. 已知二次函数y=x 2-4x+k 的图象的顶点在x 轴下方,则实数k 的取值范围是 .
12.已知函数y={-x 2+2x (x >0),
-x (x ≤0)的图象如图2所示,若直线y=x+m 与该图象恰有三个不同的交点,则m 的取值
范围为 .
图2
13. 在画二次函数y=ax 2+bx+c (a ≠0)的图象时,甲写错了一次项的系数,列表如下: x
…
-1 0 1 2 3 … y 甲 …
6
3
2
3
6
…
乙写错了常数项,列表如下: x
…
-1 0 1 2 3 … y 乙 …
-2
-1
2
7
14
…
通过上述信息,解决以下问题:
(1)求原二次函数y=ax 2+bx+c (a ≠0)的表达式;
(2)对于二次函数y=ax 2+bx+c (a ≠0),当x 时,y 的值随x 的值增大而增大; (3)若关于x 的方程ax 2+bx+c=k (a ≠0)有两个不相等的实数根,求k 的取值范围.
14.如图3,二次函数y=-x2+bx+3的图象与x轴交于点A,B,与y轴交于点C,点A的坐标为(-1,0),点D为OC的中点,点P在抛物线上.
(1)b=.
(2)若点P在第一象限,过点P作PH⊥x轴,垂足为H,PH与BC,BD分别交于点M,N.是否存在这样的点P,使得PM=MN=NH,若存在,求出点P的坐标;若不存在,请说明理由.
图3
15.如图4,抛物线与x轴交于A,B两点,与y轴交于点C(0,-2),点A的坐标是(2,0),P为抛物线上的一个动点,过点P作PD⊥x轴于点D,交直线BC于点E,抛物线的对称轴是直线x=-1.
(1)求抛物线的函数表达式.
OD,求△PBE的面积.
(2)若点P在第二象限内,且PE=1
4
(3)在(2)的条件下,若M为直线BC上一点,在x轴的上方,是否存在点M,使△BDM是以BD为腰的等腰三角形?若存在,求出点M的坐标;若不存在,请说明理由.
图4
【参考答案】
1.A
2.B
3.C
4.D
5.D
6.D
7.A
8.C 9. 10. 11.k<4 12.0<m<1
4
13.解:(1)根据甲同学的错误可知x=0时,y=c=3是正确的,
由甲同学提供的数据,选择x=-1,y=6;x=1,y=2代入y=ax 2+bx +3,得{a -b +3=6,
a +
b +3=2,解得a=1是正确的.
根据乙同学提供的数据,选择x=-1,y=-2;x=1,y=2代入y=x 2+bx +c , 得{1-b +c =-2,1+b +c =2,解得b=2是正确的, ∴y=x 2+2x +3.
(2)≥-1 抛物线y=x 2+2x +3的对称轴为直线x=-1, ∵二次项系数为1,故抛物线开口向上, ∴当x ≥-1时,y 的值随x 值的增大而增大. 故答案为≥-1.
(3)∵方程ax 2+bx +c=k (a ≠0)有两个不相等的实数根, 即x 2+2x +3-k=0有两个不相等的实数根, ∴Δ=4-4(3-k )>0, 解得k>2.
14.解:(1)2 ∵二次函数y=-x 2+bx +3的图象过点A (-1,0),
∴0=-(-1)2-b +3. ∴b=2. 故填2.
(2)如图①,连接BD ,BC ,过点P 作PH ⊥x 轴于点H ,分别交BC ,BD 于点M ,N.
由题意知,抛物线y=-x 2+2x +3交x 轴于点A (-1,0),B (3,0),交y 轴于点C (0,3),且点D 为OC 的中点, ∴D 0,
32
.
易求直线BC 的解析式为y=-x +3, 直线BD 的解析式为y=-1
2
x +3
2.
假设存在符合条件的点P (m ,-m 2+2m +3), 则M (m ,-m +3),N m ,-1
2m +3
2. ∵PM=MN=NH ,
∴-1
2m +3
2=(-m 2+2m +3)-(-m +3). 整理,得2m 2-7m +3=0,
解得m 1=1
2,m 2=3(不合题意,舍去). ∴P
12,154
使得PM=MN=NH.
15. (1)根据点A (2,0)、抛物线对称轴,可得点B (-4,0),则可设函数表达式为:y=a (x -2)(x +4),根据点C (0,-2),即可求解; (2)设出点D 坐标,表示出PE 的长,根据PE=1
4
OD ,求得:点D (-5,0),利用S △PBE =1
2
PE ×BD 即可求解;
(3)△BDM 是以BD 为腰的等腰三角形,则分BD=BM 和BD=DM 两种情况求解. 解:(1)由题意得点A 的坐标是(2,0),抛物线的对称轴是直线x=-1,则点B (-4,0), 设函数表达式为:y=a (x -2)(x +4)=a (x 2+2x -8), 将C (0,-2)的坐标代入,得-8a=-2, 解得:a=1
4,
故抛物线的表达式为:y=1
4x 2+1
2x -2.
(2)易得直线BC 的表达式为:y=-1
2
x -2.
设点D (x ,0),
则点P x ,1
4x 2+1
2x -2,点E x ,-1
2x -2, ∵PE=1
4OD ,点P 在直线BC 上方, ∴PE=
14x 2+12x -2+12x +2=1
4(-x ),
解得:x=0或-5(舍去x=0),则点D (-5,0). 故S △PBE =1
2
×PE ×BD=1
2
×1
4
OD ×BD=1
2
×5
4
×1=5
8
.
(3)由题意得△BDM 是以BD 为腰的等腰三角形,存在:BD=BM 和BD=DM 两种情况,
易得BD=1.
①当BD=BM ,M 点在线段CB 的延长线上时,过点M 作MH ⊥x 轴于点H , 易得△MHB ∽△COB ,则MH MB =CO
BC , 即
MH 1
=2√5,解得MH=√5
5.
令y=-1
2x -2=√5
5,解得x=-20+2√5
5
, 故点M (-20+2√55,√5
5
). ②当BD=DM'时,
设点M'(x ,-1
2x -2),其中x<-4.则M'D 2=2+
(-1
2x -2-0)2
=1.
整理得x 2+48
5x +
1125=0.
解得x 1=-4(舍去),x 2=-285
. 当x=-28
5时,-1
2x -2=4
5.故点M'(-285
,45).
综上所述,点M 坐标为(-20+2√55,√55)或(-285,4
5
).。