八年级数学下册《3.3 分式的加减法(一)》教学设计 北师大版
- 格式:doc
- 大小:36.00 KB
- 文档页数:4
北师大版八年级下册《认识分式》教案1. 教材及教学目标1.1 教材本课程的教材为《北师大版八年级数学》第二册,第四章节——认识分式。
1.2 教学目标1.知道什么是分式,认识分式的定义、性质和简单的基本运算;2.能够将一个正整数表示为两个整数的商,熟练掌握分式的约分和通分方法;3.能够根据具体情况,选用合适的分数单位进行计算;4.能够应用分式在实际问题中解决问题。
2. 教学重点1.分式的定义和性质,基本运算方法;2.分式的约分和通分方法。
3. 教学难点将分式的运用发挥到解决实际问题的能力。
4. 教学内容及方法4.1 教学内容4.1.1 分式的定义和性质•分式的定义,分式的分子、分母、分式的值、分数的正、负、零等概念;•分式的基本性质:倒数的倒数、分式的分子或分母乘同一数、交换律、结合律;4.1.2 分式的基本运算方法•分式的加、减、乘、除法的基本运算法则;•分式的约分和通分方法;•分式的比较。
4.1.3 分式在实际问题中的应用•将生活实际问题用分式形式表示;•利用分式解决实际问题。
4.2 教学方法本课程采用以下教学方法:4.2.1 讲述法通过讲解教师能够将学生对该概念的认识提高至一个新的水平,教师应该关注学生的反应以及他们的反馈,以评估学生对该概念的理解程度。
4.2.2 例题导入法在教学过程中,选择一些典型的例子,逐步举例说明分式的定义、性质以及约分和通分方法等,使学生能够深入理解该概念,同时积极参与到教学中来。
4.2.3 练习法在教学的过程中,老师可以在讲解后提出一些练习题,供学生上课完成或者在下一节课前完成。
这样既能考查学生对该概念的理解程度,又能将教学内容与实际应用结合起来。
4.2.4 讨论法在教学的过程中,将学生分成小组,引导他们一起讨论课上学过的内容。
让学生自己思考和解决问题,加深学生对该概念的理解,同时也能让学生相互交流,增强学生的技能,并提高他们的动手能力。
5. 教学步骤5.1 教学准备•教师要先做好课前的准备,包括准备好教学用具、复习教材内容等;•学生应该带齐教材、笔和作业本等,准备好听课。
北师大版八年级下册3分式的加减法课程设计1.引言3分式是初中数学中一个较为重要的知识点,也是学生较难掌握的知识点之一。
通过本课程设计,旨在帮助学生加深对3分式的概念理解,进一步掌握3分式的加减法运算。
2.教学目标本课程设计的教学目标如下:1.理解3分式的概念和性质;2.掌握3分式的加减法运算方法;3.发展学生数学思维和创造力。
3.教学重难点3.1 教学重点1.3分式的定义和性质;2.3分式的加减法运算规律。
3.2 教学难点1.3分式的复杂计算;2.3分式的应用问题。
4.教学内容及教学方法4.1 教学内容1.3分式的定义和性质;2.3分式的加减法运算规律;3.3分式的应用问题。
4.2 教学方法1.组合讲授和个别辅导相结合;2.分组合作和小组分享;3.练习题演示和讲解。
5.教学步骤5.1 自主学习学生先自主预习3分式的概念和性质,通过教材和网络资源进行学习,构建自己的学习框架。
5.2 导入和概念讲解以教师讲授为主,教师对3分式的概念进行全面讲解,引出加减法运算的问题。
5.3 加减法运算规律通过教师讲解和学生合作探讨,把握3分式的加减法运算规律,并针对不同类型的3分式进行练习和演示。
5.4 应用问题教师提供一些3分式的应用问题,让学生运用所学知识进行解答和思考,思考3分式如何运用到实际问题中,从而培养学生的数学思维和创造力。
5.5 总结教师总结本次课程的重点内容和知识点,并提供相关作业练习。
6.教学评估首先,通过课堂演示和练习,教师可以实时评估学生的掌握程度和学习情况。
其次,老师可以通过一些学生小组的展示和分享,了解学生的理解和掌握情况,发现问题及时纠正。
最后,老师可以通过设计合理的作业练习,巩固学生的掌握程度。
7.教学资源北师大版八年级数学教材,相关数学练习册和教学课件。
8.教学反思本课程设计采用了多种教学方法,如个别辅导、分组合作、演示练习和小组分享等。
在教师讲授课程的过程中,学生积极参与,掌握了3分式的概念和加减法运算规律。
第四课时●课题§3.3.1 分式的加减法(一)●教学目标(一)教学知识点1.同分母的分式的加减法的运算法则及其应用.2.简单的异分母的分式相加减的运算.(二)能力训练要求1.经历用字母表示数量关系的过程,发展符号感.2.会进行同分母分式的加减运算和简单的异分母分式的加减运算,并能类比分数的加减运算,得出同分母分式的加减法的运算法则,发展有条理的思考及其语言表达能力.(三)情感与价值观要求1.从现实情境中提出问题,提高“用数学”的意识.2.结合已有的数学经验,解决新问题,获得成就感以及克服困难的方法和勇气.●教学重点1.同分母的分式加减法.2.简单的异分母的分式加减法.●教学难点当分式的分子是多项式时的分式的减法.●教学方法启发与探究相结合●教具准备投影片四张:第一张:提出问题,(记作§3.3.1 A);第二张:想一想,做一做,(记作§3.3.1 B);第三张:想一想,(记作§3.3.1 C);第四张:议一议,(记作§3.3.1 D);第五张:例1,记作(§3.3.1 E);第六张:补充练习,(记作§3.3.1 F).●教学过程Ⅰ.创设现实情境,提出问题[师]上一节我们学习了分式的乘除法运算法则,学会了分式乘除法的运算,这节课我们先来看下面的问题:(出示投影片§3.3.1 A)[生]问题一,根据题意可得下列线段图:(1)当走第二条路时,她从甲地到乙地需要的时间为(v 1+v 32)h . (2)走第一条路,小丽从甲地到乙地需要的时间为v 23h .但要求出小丽走哪条路花费的时间少.就需要比较(v 1+v 32)与v 23的大小,少用多少时间,就需要用它们中的较大者减去较小者,便可求出. [生]如果要比较(v 1+v 32)与v23的大小,就比较难了,因为它们的分母中都含有字母. [生]比较两个数的大小,我们可以用作差法.例如有两个数a ,b .如果a -b >0,则a >b ;如果a -b =0,则a =b ;如果a -b <0,则a <b . [师]这位同学想得方法很好,显然(v 1+v 32)和v23中含有字母,但它们也是用来表示数的,所以我认为可以用实数比较大小的方法来做. [生]如果用作差的方法,例如(v 1+v 32)-v 23,如何判断它大于零,等于零,小于零呢? [师]我们不妨观察(v 1+v 32)-v23中的每一项都是分式,这是什么样的运算呢? [生]分式的加减法.[师]很好!这正是我们这节课要学习的内容——分式的加减法(板书课题)我们再来看一下问题二.[生]问题二中这个人用电脑录入3000字的文稿需a 33000小时,利用分式的基本性质化简,即为a 1000小时;用手抄3000字文稿则需用a3000小时,因此这个人录入3000字的文稿比手抄少用(a 3000-a1000)小时. [生]a 3000, a 1000是分式,a 3000-a1000是分式的加减法. [师]但和问题一中加减法比较一下,你会发现什么?[生]问题一中的是异分母的分式相加减,而问题二是同分母的加减法.[师]很好!我们按研究问题的一般思路,从简单的学起即先学习同分母的加减法.Ⅱ.讲授新课1.同分母的加减法[生]同分母的分数的加减是分母不变,把分子相加减,例如13+13-1317=131734-+=-1310. 我认为分母相同的分式相加减与同分母的分数相加减一样,应该是分母不变,把分子相加减.[师]谁能试着到黑板上板演“做一做”中的三个小题.[生1]解:(1)a 1+a 2=a 21+=a3; [生2]解:(2)22-x x -24-x =242--x x ; [生3]解:12++x x -11+-x x +13+-x x =1312+-+--+x x x x =12+-x x . [师]我们一块来讲评一下上面三位同学的运算过程.[生]第(1)小题是正确的.第(2)小题没有把结果化简.应该为原式=242--x x =2)2)(2(--+x x x =x +2. [师]这位同学很仔细.我们学习分式乘除法时就强调运算结果必须是最简的,如果分子、分母中有公因式,一定要把它约去,使分式最简.[生]第(3)小题,我认为也有错误.同分母的分式相加减,分母不变,把分子相加减,我觉得(x +1)分母不变,做得对,但三个分式的分子x +2、x -1、x -3相加减应为(x +2)-(x -1)+(x -3).[师]的确如此,我们知道列代数式时,(x -1)÷(x +1)要写成分式的形式即11+-x x ,因此分数线既有除号的作用,还有括号的作用,即分子、分母应该是一个整体.[生]老师,是我做错了.第(3)题应为:(3)12++x x -11+-x x +13+-x x =1)3()1()2(+++--+x x x x =1312+-++-+x x x x =1+x x [师]发现问题,及时改正是一种很好的学习习惯,努力发扬,你一定会取得更大进步. 通过前面做一做,想一想,我们可以得出同分母的分式相加减的法则:同分母的分式相加减,分母不变,把分子相加减,用式子表示是:c a ±c b =cb a ±(其中a 、b 既可以是数,也可以是整式,c 是含有字母的非零的整式). 前面问题二现在可以完成了吧!大胆地试一试. [生]a 3000-a 1000=a 10003000-=a2000,所以这个人录入3000字文稿比手抄少用a2000个小时. 2.简单的异分母的分式相加减[生]问题一还没有解决呢?[师]是的,如果分式的分母不同,那么该如何加减呢?同学们不妨凭借自己的数学经验,合作交流,找到一个可行的方法.[生 ]异分母的分数加减时,可利用分数的基本性质通分,把异分母的分数加减法化成同分母的分数加减法[生 ]我认为分式有很多地方和分数相类似,异分母的分式加减是否也可以通过像分数那样通分,将异分母的分式加减法化成同分母的分式加减法.[师 ]同学们的想法很好!我这儿就有两位同学将异分母的分式加减化成同分母的分式加减.(出示投影片 §3.3.1 D )分式加减法.但我觉得小亮的方法更简单.就像分数运算:61+41.如果61+41=464⨯+646⨯=244+246=2410=125,这样计算就比较麻烦;如果找6和4的最小公倍数12,算起来就很方便,即61+41=262⨯+343⨯=122+123=125. [生 ]我认为也是这样,根据分式的基本性质,异分母的分式可以化为同分母的分式,这一过程称为分式的通分.但通分时为了简便,也应该像分数的通分一样,找各个分母的最小公倍数.[师]同学们分析得很有道理,为了计算简便,异分母分式通分时,通常取最简单的公分母(简称最简公分母)作为它们的公分母.例如a 3+a 41,a 和4a 的最简公分母是4a .下面我们再来看几个例子.[生]老师,我们组还是联系异分母的分数相加减的方法,利用分数的性质,先通分,转化成同分母的就可以完成.[生]我们组也是用了将异分母的分式相加减转化成同分母相加减的分式运算.[例1]中的第(1)题,一个分母是a ,另一个分母是5a ,利用分式的基本性质,只需将第一个分式a 3化成a 553⨯=a515即可. 解:(1)a 3+a a 515-=a 515+aa 515- =a a 5)15(15-+=a a 5=51; [生]我们组也已完成了第(2)题.两个分式相加,一个分式的分母是x -1,另一个分式的分母是1-x ,我们注意到了1-x =-(x -1),所以要把xx --11化成分母为x -1的分式,利用分式的基本性质,得x x --11=)1()1()1()1(-⨯--⨯-x x =11--x x .所以第(2)题的解法如下: (2)12-x +x x --11=12-x +11--x x =1)1(2--+x x =13--x x [师]同学们能凭借自己的数学经验,将新出现的数学难题处理的有条有理,很了不起. [生]问题一可以出来结果啦.(1)小丽当走第二条路时,她从甲地到乙地需要的时间为v 1+v 32=v 33+v 32=v 323+=v35h. (2)小丽走第一条路所用的时间为v 23h. 作差可知v 35-v 23=v 610-v 69=v 61>0.所以小丽走第一条路花费的时间少,少用v 61h. Ⅲ.应用、升华1.随堂练习第1题计算:(1)x b 3-xb ; (2)a 1+a21; (3)b a a --ab a - 解:(1)x b 3-x b =x b b -3=xb 2; (2)a 1+a 21=a 22+a 21=a 212+=a23; (3)b a a --a b a -=b a a --ba a -- =b a a a ---)(=b a a -2.Ⅵ.课时小结[师]这节课我们学习了分式的加减法,同学们课堂上思维非常活跃,想必收获一定很大. [生]我觉得我这节课最大的收获是:“做一做”中犯的错误,在今后做此类题的过程中,一定不会犯同样的错误.[生]我的收获是学会用转化的思想将异分母的分式的加减法转化成同分母分式的加减法.……Ⅴ.课后作业习题3.4第1、2、3题.Ⅵ.活动与探究已知x +y1=z +x 1=1,求y +z 1的值. [过程]已知条件实际上是一个方程组,我们可以取其中两个方程x +y 1=1,z +x 1=1,由这两个方程把y 、z 都用x 表示后,再求代数式的值.[结果]由x +y1=1,得y =x -11, 由z +x 1=1,得z =xx 1-. 所以y +z 1=x -11+1-x x =11--x +1-x x =11--x x =1.。
【推荐】猜灯谜作文(精选30篇)【推荐】猜灯谜作文(精选30篇)在平时的学习、工作或生活中,大家对作文都不陌生吧,借助作文可以宣泄心中的情感,调节自己的心情。
你知道作文怎样才能写的好吗?下面是小编整理的猜灯谜作文,仅供参考,欢迎大家阅读。
猜灯谜作文篇1一年一度的中秋节快到了,中秋节的时候的习俗有:博饼,放孔明灯,敬田头,听香……看着妈妈忙忙碌碌地准备着,陷入美好的记忆中。
去年的中秋节,妈妈决定吃完饭后上天台边赏月边猜谜语,我们乐得直拍手叫好。
“一起赏月,猜谜语啦!”妈妈大喊。
我和弟弟都还在做自己的事。
妈妈提高嗓音:“快来一起赏月,猜谜语啦!”我和弟弟迅速打开房门,以最快的速度赶到天台上。
爸爸妈妈已经坐在天台的椅子上等我们了,我和弟弟也跟着坐在了旁边的椅子上。
开始猜谜语了,妈妈先下手为强:“我先出,听好了。
充耳不闻无话讲,打一茶叶名。
”妈妈话音刚落,爸爸马上接:“是龙井。
”爸爸平日里可爱喝茶了,这种简单的问题怎能难倒他。
“不能常喝浓茶,会生病哦!”我一本正经地说道,“书上就是这样写的!”爸爸微笑着说:“女儿长大了,懂事了!好吧,听你的,我以后要少喝浓茶。
”我们一家人就在这月光下,开始品尝月饼。
我们大口大口地往嘴里塞。
妈妈嘱咐我们:“吃慢点,别噎着了。
”我对妈妈说:“一定不会的,如果噎着了,我就是个大傻子。
”爸爸妈妈放声大笑。
吃完月饼后,爸爸说:“该我出了。
七品小官不明断,打一食品。
”妈妈马上反应过来,说:“是芝麻糊。
”弟弟急了:“现在该我出了。
谜语是话到嘴边又咽下,打一食品。
”“我知道,谜底是云吞。
”我高兴地大喊。
妈妈对我说:“小声点,别吵到人家赏月。
”“好吧,不过该我出了。
三两木耳,打一地理名词。
”我严肃地说。
这可把全家给难住了,“哈哈,不懂了吧?我来告诉你们吧,是森林。
”我得意地说道,爸爸妈妈哈哈大笑。
全家人沉浸在浓浓的月光中。
又是中秋月圆时,月儿圆,人团圆。
仰望夜空,昨夜星辰早已坠落,今日明月正当空。
1陕西省榆林市定边县安边中学八年级数学下册 3.3分式的加减学案(一) 北师大版 集体备课 个人空间一、课题:分式的加减(一) 二、学习目标1.同分母的分式的加减法的运算法则及其应用.2.简单的异分母的分式相加减的运算.重点:同分母分式的加减难点:当分式的分子是多项式时的分式的加减三、教学过程〔温故知新〕1. 同分母的分数如何加减?你能举例说明吗?2. 你认为a a 21+应该等于什么?〔导学释疑〕2.同分母的分式应该如何加减?同分母分式加减法则:___________________________________________3.练一练(1)=---2422x x x(2)=+-++--++131112x x x x x x二.异分母分式加减1.异分母的分数如何加减?你能举例说明吗?2.你认为异分母的分式应该如何加减 比如a a 413+应如何计算.3.根据分式的基本性质,异分母的分式可以化成________的分式,这一过程称为分式的“通分”。
为了计算方便,异分母分式通分时,通常取最简单的公分母(简称最简公分母)作为它们的共同分母。
4.做一做计算(1)a a a 5153-+ (2)x x x --+-11122〔巩固提升〕1.先化解,再求值:2333632=+-+--a a a a a a a 其中 2.已知AB 两地相距S 千米,王刚从A 地往B 地需要m 小时,丽丽从B 地往A 地需要n 小时,他们同时出发相向而行,需要几小时相遇?〔检查反馈〕计算反思栏[。
2024北师大版数学八年级下册5.3.1《同分母分式的加减法》教案一. 教材分析《同分母分式的加减法》是北师大版数学八年级下册第五章第三节的一部分。
本节内容是在学生已经掌握了分式的基本概念、分式的乘除法运算的基础上进行的,是分式运算的一个重要组成部分。
通过本节的学习,使学生掌握同分母分式的加减法运算法则,进一步提高学生解决实际问题的能力。
二. 学情分析学生在学习本节内容前,已经掌握了分式的基本概念,分式的乘除法运算,因此对于同分母分式的加减法有一定的认知基础。
但学生在解决实际问题时,对于如何运用同分母分式的加减法法则还是会存在一定的困难。
因此,在教学过程中,要注重引导学生理解和掌握同分母分式的加减法法则,并能够运用到实际问题中。
三. 教学目标1.理解同分母分式的加减法法则,并能够熟练运用。
2.能够解决实际问题,提高解决实际问题的能力。
3.培养学生的逻辑思维能力和团队合作能力。
四. 教学重难点1.同分母分式的加减法法则的掌握和运用。
2.解决实际问题,将理论知识运用到实际中。
五. 教学方法采用问题驱动法、案例教学法、分组讨论法等,引导学生主动探究,合作学习,提高学生的动手操作能力和解决实际问题的能力。
六. 教学准备1.PPT课件2.教学案例3.分组讨论的准备七. 教学过程1.导入(5分钟)利用PPT课件,展示一些实际问题,引导学生思考如何解决这些问题。
例如,计算下列分式的和:(1)34+14;(2)25+35。
2.呈现(10分钟)通过PPT课件,展示同分母分式的加减法法则,引导学生理解并掌握。
同分母分式的加减法法则是:同分母分式相加减,分母不变,分子相加减。
3.操练(10分钟)让学生分组进行讨论,每组给出几个同分母分式的加减法问题,并求解。
例如,计算下列分式的和:(1)34+14;(2)25+35;(3)47+27;(4)5 9−19。
4.巩固(5分钟)让每个小组选出一个问题,向全班展示他们的解题过程和结果,教师进行点评,巩固学生对同分母分式的加减法法则的掌握。
初中数学《分式》优秀教案〔通用12篇〕篇1:初中数学分式教案初中分式教案初中数学分式教学反思经历了三周多的学习,学生已根本掌握了分式的有关知识(分式的概念、分式的根本性质、约分、通分、分式的运算、分式方程和能化为一元一次方程的分式方程的应用题等),并且获得了学习代数知识的常用方法,感受到代数学习的实际应用价值。
但是,“分式运算”教学中,学生在课堂上感觉不差,做作业或测试时却错处百出,尤其在分式的混合运算更是出错多、空白多、究其根,均属于运算才能问题,因此在教学中应特别关注这一深层根,并根据学生的实际情况寻找相应对策。
下面是我在教学中的几点体会:一、教学中的发现1、本章可以让学生通过观察、类比、猜测、尝试等活动学习分式的运算法那么,开展他们的合情推理才能,所以教学时重点应放在对法那么的探究过程上。
一定要让学生充分活动起来。
在观察、类比、猜测、尝试当一系列思想活动中发现法那么、理解法那么、应用法那么,同时还要关注学生对算理的理解,以培养学生的代数表达才能、运算才能和有理的考虑问题才能。
可是我在知识的传授上并没有注重探究、类比法那么,而重在对分式四那么运算法那么的运用和分式方程的运用上,没有抓住教学的关键环节恰当的选择教学方法。
今后要防止类似事情的发生。
2、问题(1) 分式的运算错的较多。
分式加减法主要是当分子是屡次式时,假如不把分子这个整体用括号括上,容易出现符号和结果的错误。
所以我们在教学分式加减法时,应教育学生分子部分不能省略括号。
其次,分式概念运算应按照先乘方、再乘除,最后进展加减运算的顺序进展计算,有括号先做括号里面的。
(2)分式方程也是错误重灾区。
一是增根定义模糊,对此,我对增根的概念进展深化浅出的阐述,⑴增根是分式方程的去分母后化成的整式方程的根,但不是原方程的根;⑵增根能使最简公分母等于0;二是解分式方程的步骤不标准,大多数同学缺少“检验”这一重要步骤,不能从解整式方程的形式中跳出来;(3)列分式方程错误百出。
北师大版八年级下册3分式的加减法教学设计一、设计背景本设计是为了帮助八年级学生掌握3分式的加减法计算方法,采用北师大版八年级下册教材中第二十三章节的教学内容为基础。
二、教学目标1.掌握3分式加减法的定义;2.了解3分式加减法的计算规则;3.能够灵活运用3分式加减法解决实际问题。
三、教学重难点1.教学重点:3分式加减法的计算方法;2.教学难点:3分式加减法在解决实际问题中的转化方法。
四、教学内容及组织方式1. 教学内容1.3分式的基本概念;2.3分式的加减法计算方法;3.3分式在解决实际问题中的应用。
2. 组织方式1.教师引导学生认真阅读教材中关于3分式的加减法的内容;2.教师讲解3分式加减法的计算方法,引导学生逐步理解和掌握;3.教师提供一些实际问题,引导学生尝试使用3分式加减法解决;4.学生在小组内合作讨论,解决教师提供的问题;5.学生通过上课讲解及课后练习,巩固3分式加减法的掌握。
五、教学方法1.讲解法:教师通过讲解、演示的方式传达知识点,提高学生对知识点的理解和掌握;2.合作学习法:学生通过小组内讨论、合作完成练习,增强合作意识和学生能力。
六、教学手段1.教材;2.录像、PPT等多媒体教学手段;3.小组活动;七、教学流程1.导入(5分钟):围绕“当我们需要计算三个分数的和或差时该怎么办?”展开导入活动;2.讲解3分式的基本概念和计算方法(10分钟):教师介绍3分式的定义,引导学生了解3分式的计算方法;3.案例讲解与小组活动(25分钟):教师提供一些实际问题,引导学生尝试使用3分式加减法解决,学生在小组内合作讨论,解决问题;4.练习与总结(10分钟):教师提供一些练习题,让学生巩固3分式加减法的掌握,并引导学生进行总结。
八、教学反思通过本次教学,学生对3分式的加减法有了更深入的认识,能够更加熟练地运用3分式解决数学问题。
同时,在小组活动中,学生自主学习、互动合作,增强了学生之间的交流和合作。
分式的加减(初中《数学》八年级下册第十六章)一、教学目标(一)知识与技能(1)通过实例和分数的加减法,了解分式的加减法法则。
(2)运用分式的加减法法则进行分式运算。
(二)数学思考(1)用分数的加减法法则得出分式的加减法法则。
(2)能正确的进行分式的加减运算。
(三)解决问题能运用分式的加减法法则解决实际问题。
(四)情感态度通过师生互动,学生自主探究,让学生充分参与到数学学习的过程中来。
二、教学的重难点及教学设计(一)教学重点理解分式的加减法法则(二)教学难点对异分母分式的加减运算。
(三)教学设计要点1、情境设计回顾上节所讲的分式的乘除运算知识,出示本节所要学的分式的加减运算题,由此将学生引入问题情境,引入新课。
2、教学内容的处理补充一些加深对分式的加减法法则理解的基本练习。
3、教学方法独立探究,合作交流与教师引导相结合三、教具准备小黑板、彩色粉笔等四、教学过程(一)创设问题情境引入新课(预计5分钟)1、铺垫在上一节课我们学习了分式的乘除运算,请问大家还能否会相继一份是的乘除法法则吗?(倾听同学们的回答)乘法法则:分式乘分式,用分子的积作为积的分子,分母的积作为积的分母;分式的除法:分式除以分式,把除式的分子、分母颠倒位置,与被除式相乘。
那请同学们看一看这两道题,他们又有什么新特点呢?(出示小黑板)2、问题情境学生根据已有的知识列出了这两道题的式子,并请两位同学到黑板上写出答案。
然后大家一起来讨论这两个式子的最后结果正确吗?3、从上面的问题可知,为讨论数量关系有需要进行分式的加减运算。
这就是今天我们要学习的新内容“分式的加减”(板书)。
(二)层层递进,探索新知(预计20分钟)1、分式的加减法法则2、请大家计算出这些分数的加减式子,并且同学之间相互讨论,是否分数的加减与分式的加减法类似呢?又能否由此推广出分式的加减法法则呢?出去同学回答,并师生共同总结出分式的加减法法则:(板书) 同分母分式相加减,分母不变,把分子相加减。
第03讲分式的加减法(10类热点题型讲练)1.熟练掌握同分母的分式加减运算;2.会找最简公分母,能进行分式通分,理解并掌握异分母分式的加减法则;3.能进行分式的混合运算及较复杂的分式化简求值.知识点01分式的通分分式的通分:利用分式的性质,将分式的分母变成最小公倍数,分子根据分母扩大的倍数相应扩大,不改变分式的值。
具体步骤:①通过短除法,求出分式分母的最小公倍数;②分母变为最小公倍数的值,确定原式分母扩大的倍数;③分子对应扩大相同倍数.知识点02最简公分母最简公分母:几个分式通分时,通常取各分母系数的最小公倍数与所有字母因式的最高次幂的积作为公分母,这样的分母叫做最简公分母.知识点03同分母分式的加减同分母的分式相加减法则:分母不变,分子相加减.用式子表示为:a c a cb b b±±=.知识点04异分母分式的加减异分母的分式相加减法则:先通分,变为同分母的分式,然后再加减.用式子表示为:a c ad bc ad bcb d bd bd bd±±=±=.注意:分式是分数的扩展,因此分式的运算法则与分数的运算法则类似.知识点01平面向量基本定理知识点02平面向量的坐标表示知识点03平面向量的坐标运算题型01同分母分式加减法题型02最简公分母题型03通分题型04异分母分式加减法题型05整式与分式相加减题型06已知分式恒等式,确定分子或分母【点睛】本题考查分式的加减,解题关键是掌握分式加法的运算法则.【变式训练】题型07分式加减混合运算题型08分式加减的实际应用【点睛】本题主要考查了分式加减的应用,解题的关键是根据题意列出分式,熟练掌握分式加减运算法则,准确计算.【变式训练】题型09分式加减乘除混合运算题型10分式化简求值一、单选题1.(23-24八年级上·天津红桥·期末)计算2111x x x x --++的结果是()A .1B .1x +C .11x +D .1x x +2.(22-23八年级上·贵州黔南·期末)分式22x x -,36x -的最简公分母是()A .2x -B .()2x x -C .()()323x x --D .()32x x -【答案】D【分析】本题考查了最简公分母,先因式分解取系数的最小公倍数,字母的最高次幂,1,3的最小公倍数为3,x 的最高次幂为1,2x -的最高次幂为1,则得出最简公分母.A .2222233y y x x ⎛⎫= ⎪⎝⎭B .110x y y x-=--C .3263x x y y ⎛⎫-=- ⎪⎝⎭D .()111333x y x y +=+将这些防护服尽快投入使用,增加了人手,最后平均每天比原计划多生产了60套,则工厂完成这个订单的时间比原计划提前()A .60x x y ⎛⎫- ⎪⎝⎭天B .60x x y y ⎛⎫- ⎪+⎝⎭天C .60x x y y ⎛⎫-⎪-⎝⎭天D .60x x y y ⎛⎫-⎪-⎝⎭天5.(23-24九年级下·湖北武汉·开学考试)已知2220x x --=,计算2121-⎛⎫-÷ ⎪+++⎝⎭x x x x x x 的值是()A .1B .1-C .0.5D .0.5-二、填空题6.(2023八年级下·江苏·专题练习)计算:221b a b a b+=-+.7.(23-24八年级上·山东东营·阶段练习)将分式29-a 和93a-进行通分时,最简公分母是【答案】()()333a a -+-【分析】本题考查了分式的通分;先对分式的分母进行因式分解,然后即可确定它们的最简公分母.【详解】解:∵()()2933a a a -=+-,()9333a a -=--,∴最简公分母是()()333a a -+-,故答案为:()()333a a -+-.8.(23-24八年级上·湖南长沙·阶段练习)若2574515x A Bx x x x -=+--+-,A ,B 为常数,则2A B -的值为.9.(2024八年级下·全国·专题练习)小刚在化简22a b M--时,整式M 看不清楚了,通过查看答案,发现得到的化简结果是1a b-,则整式M 是.和,多次重复进行这种运算的过程如下:则第2024次运算的结果2024y =.(用含字母x 的式子表示)三、解答题11.(22-23八年级上·山东济宁·阶段练习)通分:(1)235a b c 与2710c a b;(2)22x x +与21x x-.(1)2111x x x -++;(2)24411a a a a a a -+⎛⎫-÷⎪--⎝⎭.(1)2m n m n n m m n n m -++---(2)22211111 m m mmm m-+-⎛⎫÷--⎪-+⎝⎭14.(23-24八年级上·全国·课时练习)计算:(1)22211x x x -++;(2)3a b a b a b b a -+---;(3)2243164x x+--;(4)222a a a ---.(1)211y y y ---;(2)2221111x x x +--+-;(3)21613962x x x x------;(4)2()a b a b a b+--+.16.(2024九年级下·山东·专题练习)下面是某同学计算11a a ---的解题过程:解:211a a a ---()-=---22111aa a a ……………………①()2211a a a --=-………………………②2211a a a a -+-=-………………………③111a a -==-.……………………………④上述解题过程从第几步开始出现错误?请写出正确的解题过程.17.(23-24八年级上·江苏南通·阶段练习)先化简,再求值:111x x x x x -+⎛⎫÷-+ ⎪++⎝⎭,请从1-,0或2中选择你喜欢的一个数代入求值.18.(22-23八年级下·辽宁本溪·阶段练习)先化简,再求值:111x x x ++⎛⎫-+÷ ⎪++⎝⎭,其中()1013.142x π-⎛⎫=-+ ⎪⎝⎭形式,那么称这个分式为“美好分式”,如:112122111111x x x x x x x x +-+-==+=+-----,则11x x +-是“美好分式”.(1)下列分式中,属于“美好分式”的是______;(只填序号)①6325x x +;②232x x +;③33x x +;④24321x x +-.(2)将“美好分式”2221x x x -+-化成一个整式与一个分子为常数的分式的和的形式;(3)判断2251117x x x x x x x---÷+-的结果是否为“美好分式”,并说明理由.形式,那么称这个分式为“和谐分式”.如:514144111111x x x x x x x x ++++==+=++++++,则51x x ++是“和谐分式”.(1)下列分式中,属于“和谐分式”的是(填序号);①23x x+;②21x x +;③21x x +-.(2)将“和谐分式”2472y y y -+-化成一个整式与一个分子为常数的分式的和的形式;(3)应用:先化简22321112a a a a a a a-+--÷--,并回答:a 取什么整数时,该式的值为整数?3a ∴=,3a ∴=时,该式的值为整数.。
分式的加减法(一)
一、内容与分析
内容:同分母的分式的加减运算和简单的异分母加减运算
内容分析:
1、本节安排两课时。
第一节课阐述同分母的分式加减法的运算法则及其应用,简单的异分母的分式相加减的运算。
第二节课则阐述异分母的分式加减法的运算法则及分式的通分。
这样安排,给学生一个简单到复杂的推理过程,由于第一节的铺垫,使学生对分式的掌握并不觉得难,且本节对于第三章分式有着至关重要的作用,起到承上启下。
否则,会面临许多学生根据实际生活问题列出分式方程,却得不出正确答案的窘境,有着功亏一篑的遗憾。
2、学生在小学时已经学习过同分母分数的加减,异分母分数的加减运算法则,并且经历过用字母表示现实情境中数量关系的过程。
由此类比分式的加减,可以猜想分式的加减运算法则。
二、目标与分析
目标:1、掌握同分母的分式的加减法的运算法则及其应用;
2、学会简单的异分母的分式的加减法的运算;
目标分析:
1、分式是表示具体情境中数量的模型,为了体现这一点,教科书通过几个实际问题的提出,从而激发学生的兴趣,使学生产生解决这些问题的欲望。
教学中也由浅入深,先掌握好同分母的运算再学习异分母的加减,它也是为后面一节分式方程作好铺垫。
2、学生在小学是已经学过同分母,异分母分数的加减,(当然各地掌握地情况如何,教师一定要心中有数)然后在此基础上,如何设计相应的台阶,使学生转换到分式的问题上来。
重点把握好异分母分式的转换问题,为下节课作好铺垫。
三、问题诊断分析
学生容易在进行同分母运算后不将结果所得到的分式进行化简,过分强调有些学生又会对结果产生怀疑不知道对还是不对,甚至不能约分的也强制约分,所以教师要强调寻找分子分母中有没有公因式,并加强对因式分解知识的复习。
四、教学过程分析
第一环节提出问题
问题1:某人用电脑录入汉字文稿的效率相当于手抄的3倍,设他手抄的速度为a字/时,那
么他录入3000字文稿比手抄少用多少时间?
问题2:从甲地到乙地有两条路,每条路都是 3 km,其中第一条路是平路,第二条路有1km 的上坡路,2 km的下坡路。
小丽在上坡路的骑车速度为v km/h,在平路上的骑车速度为 2v km/h,在下坡路的骑车速度为3v km/h,那么
设计意图:问题一中是同分母的加减法,问题二中是异分母的分式相加减;通过行程问题引入分式的加减运算,既体现了加减运算的意义,又让学生经历了从实际问题建立分式模型的过程,发展学生有条理的思考及代数表达能力。
师生活动:教师让学生列出算式,然后通过学生的回答加以讲解。
问题一中有些同学得出,忘记了约分,借此可以巩固一下分式基本性质。
问题二中第二问有同学得到,可以通过列表法得到解决。
但是对于问题二中涉及分式大小问题,学生暂时解决不了可以给学生留下“悬案”,等到后面再彻底解决。
第二环节同分母加减
问题3:先回答
(1)同分母的分数如何加减?你能举例说明吗?
(2)猜一猜,同分母的分式应该如何加减?
做一做
(1)__________.
(2) ______________
(3) _________________.
同分母分式加减法则是:同分母的分式相加减。
分母不变,把分子相加减。
设计意图:引导学生通过与分数类比,大胆猜想分式的加减运算法则,并让学生说明其合理性。
师生活动:
通过问题的提出,而且是人人都可以入手的问题,学生回答气氛热烈,通过学生的回答,可以很快发现学生的优点和不足。
例如:有学生认为时,字母表示数,我们把字母取一个特殊的数(特值法),然后代入等式的两边,等式两边都成立吗?引导学生探究问题,得出同分母的加减法则。
第三环节异分母的分式相加减
活动内容:
(1)___________.
(2)猜想一下:如何计算。
(3)小明认为,只要把异分母的分式化成同分母的分式,异分母的分式的加减问题就变成了同分母的分式的加减问题。
小亮同意小明的这种看法,但他俩的具体做法不同:
小明:
小亮:
你对这两种做法有何评论?与同伴交流。
设计意图:让学生很自然转到异分母分式的加减问题。
关键在于化异分母分式为同分母分式。
当然,在化成同分母分式过程中,学生会出现一些麻烦,这要求老师根据学生出现的具体问题加以引导。
师生活动:这里的小明,小亮两人的做法很有代表性,都有相当人数的支持。
这就要求老师很自然提到通分的概念,引导学生确定最简公分母。
当然,从最后结果来说,都是对的。
正因为如此,这使得相当学生不以为然,所以在后面的课程中要多次强调,要打持久战。
第四环节练习与提高
1、计算
1、 2、
3、 4、
设计意图:这是一组异分母加减的简单题目。
只要分子,分母同乘以一个常数可化为同分母分式的加减运算。
这要求学生能够熟练掌握,并且能够广泛应用。
为下节课一般的异分母加减做好准备。
师生活动:教师让学生在规定时间完成,然后让几个板演,根据完成情况讲解,可能存在问题(1)式基本准确,(2)(3)有一些错误,(4)有很大的普遍性。
原因在于学生在这方面属于刚刚开始,还不太注意其特点。
经过老师,同学的提醒,马上自我纠正。
故此,我又出了两道题。
效果比第一次好了许多。
5、 6、
第五环节解决开始提出的问题
回到开始提出的两个问题。
(略)
问题一:
问题二:(=
师生活动:通过这节课的学习,能够很快的解决开始提出的,不能回答的问题。
体会“用数学”
的意识。
大多数同学能够独立解决这个新问题,从而获得成就感以及克服困难的方法和勇气。
为此,极大的增加了学生的积极性,能够迅速地体会到学以致用。
第六环节课时小结
师生互相交流总结分式加减的特点(1)同分母分式加减法则是:同分母的分式相加减。
分母不变,把分子相加减。
(2)学会用转化的思想将异分母的分式的加减转化成同分母分式的加减法。
(3)以后,你会选择像小明那样不找最简公分母的繁琐的方法吗?
第七环节布置作业
学案相关配餐练习。