人教版七年级数学(下)第五章全章教案【教案】
- 格式:doc
- 大小:1.43 MB
- 文档页数:14
新人教版七年级数学下册第五章教案新人教版七年级数学下册第五章教案1[教学目标]1.理解平行线的意义,了解同一平面内两条直线的位置关系;2.理解并掌握平行公理及其推论的内容;3.会根据几何语句画图,会用直尺和三角板画平行线;4.了解“三线八角”并能在具体图形中找出同位角、内错角与同旁内角;4.了解平行线在实际生活中的应用,能举例加以说明.[教学重点与难点]1.教学重点:平行线的概念与平行公理;2.教学难点:对平行公理的理解.[教学过程]一、复习提问相交线是如何定义的?二、新课引入平面内两条直线的位置关系除平行外,还有哪些呢?制作教具,通过演示,得出平面内两条直线的位置关系及平行线的概念.三、同一平面内两条直线的位置关系1.平行线概念:在同一平面内,不相交的两条直线叫做平行线.直线a与b平行,记作a∥b.(画出图形)2.同一平面内两条直线的位置关系有两种:(1)相交;(2)平行.3.对平行线概念的理解:两个关键:一是“在同一个平面内”(举例说明);二是“不相交”.一个前提:对两条直线而言.4.平行线的画法平行线的画法是几何画图的基本技能之一,在以后的学习中,会经常遇到画平行线的问题.方法为:一“落”(三角板的一边落在已知直线上),二“靠”(用直尺紧靠三角板的另一边),三“移”(沿直尺移动三角板,直至落在已知直线上的三角板的一边经过已知点),四“画”(沿三角板过已知点的边画直线).四、平行公理1.利用前面的教具,说明“过直线外一点有且只有一条直线与已知直线平行”.2.平行公理:经过直线外一点,有且只有一条直线与这条直线平行.提问垂线的性质,并进行比较.3.平行公理推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行.即:如果b∥a,c∥a,那么b∥c.五、三线八角由前面的教具演示引出.如图,直线a,b被直线c所截,形成的8个角中,其中同位角有4对,内错角有2对,同旁内角有2对.六、课堂练习1.在同一平面内,两条直线可能的位置关系是 .2.在同一平面内,三条直线的交点个数可能是 .3.下列说法正确的是( )A.经过一点有且只有一条直线与已知直线平行B.经过一点有无数条直线与已知直线平行C.经过一点有一条直线与已知直线平行D.经过直线外一点有且只有一条直线与已知直线平行4.若∠与∠是同旁内角,且∠ =50°,则∠的度数是( )A.50°B.130°C.50°或130°D.不能确定5.下列命题:(1)长方形的对边所在的直线平行;(2)经过一点可作一条直线与已知直线平行;(3)在同一平面内,如果两条直线不平行,那么这两条直线相交;(4)经过一点可作一条直线与已知直线垂直.其中正确的个数是( )A.1B.2C.3D.46.如图,直线AB,CD被DE所截,则∠1和是同位角,∠1和是内错角,∠1和是同旁内角.如果∠5=∠1,那么∠1 ∠3.七、小结让学生独立总结本节内容,叙述本节的概念和结论.八、课后作业1.教材P19第7题;2.画图说明在同一平面内三条直线的位置关系及交点情况.[补充内容]1.试说明,如果两条直线都和第三条直线平行,那么这两条直线也互相平行.2.在同一平面内,两条直线的位置关系仅有两种:相交或平行.但现实空间是立体的,试想一想在空间中,两条直线会有哪些位置关系呢?(用长方体来说明)新人教版七年级数学下册第五章教案2[教学目标]1. 理解垂线、垂线段的概念,会用三角尺或量角器过一点画已知直线的垂线。
【对话设计】〖探究1〗两条直线相交所得的角(1)如图,直线AB 、CD 相交于O,若∠1=140o,您能求出其它3个角的度数不?(2)两条直线相交所得的四个角之间,有怎样的关系(指位置及大小)?(3)〖结论〗在(1)图中,∠1与∠2就是______角,∠1与∠3就是____角,∠2的对顶角就是______,邻补角就是_______________、〖了解邻补角及对顶角的特征〗〖探究2〗如果两个角的顶点重合,这两个角就是对顶角、"这句话对不?画图说明、教学过程一、认识邻补角与对顶角,探索对顶角性质1、邻补角、对顶角概念、有一条公共边,而且另一边互为反向延长线的两个角叫做邻补角、一个角的两边分别就是另一角两边的反向延长线,那么这两个角叫对顶角、2、对顶角性质: 对顶角相等、二、巩固运用(一)、判断题:(1)、如果两个角有公共顶点与一条公共边,而且这两角互为补角, 那么它们互为邻补角、( )(2)、两条直线相交,如果它们所成的邻补角相等,那么一对对顶角就互补、()(二)、填空题:(1)、如图1,直线AB 、CD 、EF 相交于点O,∠BOE 的对顶角就是_____,∠COF 的邻补角就是若∠AOC:∠AOE=2:3,∠EOD=130°,则∠BOC=______(1) (2)(2)、如图2,直线AB 、CD 相交于点O,∠COE=90°,∠AOC=30°,∠FOB=90°, 则∠EOF=________、(三)、解答题: 1、如图,直线a,b相交,∠1=40°,求∠2,∠3,∠4的度数、5、1、1 相交线教学目标1、了解两条直线相交形成四个角;2、理解对顶角、邻补角的概念;3、掌握对顶角的性质及它的推导过程;4、能运用对顶角的性质解决一些问题、5、培养识图能力、教学重、难点1、对顶角、邻补角的概念;2、对顶角的性质及应用、2、如图,直线AB 、CD 相交于点O 、(1)若∠AOC+∠BOD=100°,求各角的度数、(2)若∠BOC 比∠AOC 的2倍多33°,求各角的度数、3、两条直线相交,如果它们所成的一对对顶角互补, 那么它的所成的各角的度数就是多少?〖探究3〗如图,C 就是直线AB 上一点,CD 就是射线,图中有几个角?哪两个角互为邻补角? 有两个角互为对顶角不?〖结论〗在很多图形中,邻补角还可以瞧成就是一条直线与端点在这条直线上的一条射线组成的两个角、〖探究4〗判断下列语句就是否正确:(1)互补的两个角一定就是邻补角、(2)一个角的邻补角一定与它互补、(3)邻补角就是有特殊位置关系的两个互补的角、教学时,教师先让学生辨让未知角与已知角的关系,用指出通过什么途径去求这些未知角的度数的(一)演示:1.出示相交线的模型,学生观察思考:固定木条a,转动木条, 当b 的位置变化时,a 、b 所成的角a 就是如何变化的?其中会有特殊情况出现不?当这种情况出现时,a 、b 所成的四个角有什么特殊关系?得出结论:当b 的位置变化时,角a 从锐角变为钝角,其中∠a 就是_____角就是特殊情况、其特殊之处还在于:当∠a 就是_____角时,它的邻补角,对顶角都就是_____角,即a 、b 所成的四个角都就是_____角,都_____、5、1、2 垂线教学目标:了解垂直概念,能说出垂线的性质“经过一点,能画出已知直线的一条垂线, 并且只能画出一条垂线”,会用三角尺或量角器过一点画一条直线的垂线、教学重、难点:两条直线互相垂直的概念、性质与画法、2、师生共同给出垂直定义、两条直线相交,所成四个角中有一个角就是_____角时,我们称这两条直线__________其中一条直线就是另一条的_____,她们的交点叫做_____。
2024年新人教版七年级数学下册全册教案可打印一、教学内容1. 第五章:相交线与平行线5.1 两条直线的位置关系5.2 平行线的判定与性质5.3 生活中的平行线2. 第六章:数据的收集与整理6.1 数据的收集6.2 数据的整理与表示6.3 概率初步二、教学目标1. 理解并掌握相交线与平行线的性质及其在实际中的应用。
2. 学会进行数据的收集、整理和表示,并能够运用概率知识解决实际问题。
3. 培养学生的逻辑思维能力和解决实际问题的能力。
三、教学难点与重点1. 教学难点:平行线的判定与性质的理解数据的整理与概率的计算2. 教学重点:两条直线的位置关系及平行线的应用数据的收集、整理和表示方法四、教具与学具准备1. 教具:直尺、量角器、三角板数据收集表格、统计图表2. 学具:练习题、草稿纸数据收集与整理工具(如计算器、调查问卷等)五、教学过程1. 实践情景引入:通过展示实际生活中的相交线和平行线现象,激发学生对本章学习的兴趣。
2. 例题讲解:讲解相交线与平行线的判定方法和性质,配合实际例题进行分析。
3. 随堂练习:分组讨论并解决实际问题,巩固所学知识。
4. 数据的收集与整理:引导学生进行数据收集、整理和表示的实践操作,解释概率初步概念。
六、板书设计1. 相交线与平行线的判定与性质2. 数据的收集、整理与表示方法3. 概率初步概念及计算七、作业设计1. 作业题目:练习题5.1、5.2、6.1、6.2各2题。
附加题:设计一份调查问卷,收集数据并整理成统计图表。
2. 答案:练习题答案将在课后统一发放。
八、课后反思及拓展延伸1. 反思:2. 拓展延伸:鼓励学生探索生活中的相交线和平行线现象,以及数据的收集与整理的实际应用。
推荐相关阅读材料,加深学生对概率概念的理解。
重点和难点解析1. 教学内容的选择与安排2. 教学目标的设定3. 教学难点与重点的确定4. 教学过程中的实践情景引入和例题讲解5. 板书设计6. 作业设计及答案解析7. 课后反思与拓展延伸一、教学内容的选择与安排在教学内容的选择上,应确保章节的连贯性和逻辑性,将抽象的数学概念与生活实际相结合。
AB CD 1 234 O【对话设计】〖探究1〗 两条直线相交所得的角(1)如图,直线AB 、CD 相交于O,若∠1=140º,你能求出其它3个角的度数吗?(2)两条直线相交所得的四个角之间,有怎样的关系(指位置及大小)? (3)〖结论〗在(1)图中,∠1与∠2是______角,∠1与∠3是____角,∠2的对顶角是______,邻补角是_______________.〖了解邻补角及对顶角的特征〗〖探究2〗如果两个角的顶点重合,这两个角是对顶角."这句话对吗?画图说明.教学过程一、认识邻补角和对顶角,探索对顶角性质 1.邻补角、对顶角概念.有一条公共边,而且另一边互为反向延长线的两个角叫做邻补角.一个角的两边分别是另一角两边的反向延长线,那么这两个角叫对顶角. 2.对顶角性质: 对顶角相等. 二、巩固运用 (一)、判断题:(1).如果两个角有公共顶点和一条公共边,而且这两角互为补角, 那么它们互为邻补角. ( )(2).两条直线相交,如果它们所成的邻补角相等,那么一对对顶角就互补. ( )(二)、填空题:(1).如图1,直线AB 、CD 、EF 相交于点O,∠BOE 的对顶角是_____,∠COF 的邻补角是 若∠AOC:∠AOE=2:3,∠EOD=130°,则∠BOC=______FE OD CB A FEODC B A(1) (2) (2).如图2,直线AB 、CD 相交于点O,∠COE=90°,∠AOC=30°,∠FOB=90°, 则∠EOF=________. (三)、解答题:1、如图,直线a,b 相交,∠1=40°,求∠2,∠3,∠4的度数.ba43212、如图,直线AB 、CD 相交于点O.(1)若∠AOC+∠BOD=100°,求各角的度数.(2)若∠BOC 比∠AOC 的2倍多33°,求各角的度数.O D CBA3、两条直线相交,如果它们所成的一对对顶角互补, 那么它的所成的各角的度数是多少?〖探究3〗如图,C 是直线AB 上一点,CD 是射线,图中有几个角?哪两个角互为邻补角? 有两个角互为对顶角吗?A〖结论〗在很多图形中,邻补角还可以看成是一条直线与端点在这条直线上的一 条射线组成的两个角.〖探究4〗判断下列语句是否正确: (1)互补的两个角一定是邻补角. (2)一个角的邻补角一定和它互补.(3)邻补角是有特殊位置关系的两个互补的角.教学时,教师先让学生辨让未知角与已知角的关系,用指出通过什么途径去求这些未知角的度数的(一)演示:1.出示相交线的模型,学生观察思考:固定木条a,转动木条, 当b 的位置变化时,a 、b 所成的角a 是如何变化的?其中会有特殊情况出现吗?当这种情况出现时,a 、b 所成的四个角有什么特殊关系?得出结论:当b 的位置变化时,角a 从锐角变为钝角,其中∠a 是_____角是特殊情况.其特殊之处还在于:当∠a 是_____角时,它的邻补角,对顶角都是_____角,即a 、b 所成的四个角都是_____角,都_____.bb aODC B A2.师生共同给出垂直定义.两条直线相交,所成四个角中有一个角是_____角时,我们称这两条直线__________其中一条直线是另一条的_____,他们的交点叫做_____。
2024年新课标人教版七年级下全册数学教案一、教学内容本节课选自2024年新课标人教版七年级下册数学教材第五章《三角形的初步认识》,具体内容包括:5.1三角形的定义及性质,5.2三角形的分类,5.3三角形的周长和面积。
二、教学目标1. 知识目标:使学生掌握三角形的定义,理解三角形的性质,掌握三角形的分类,掌握三角形周长和面积的计算方法。
2. 能力目标:培养学生运用三角形知识解决实际问题的能力,提高学生的空间想象力和逻辑思维能力。
3. 情感目标:激发学生对数学学习的兴趣,培养学生的合作意识和探究精神。
三、教学难点与重点重点:三角形的定义及性质,三角形的分类,三角形周长和面积的计算方法。
难点:三角形性质的理解,三角形面积公式的推导。
四、教具与学具准备教具:三角板、直尺、圆规、多媒体设备。
学具:三角板、直尺、圆规、练习本。
五、教学过程1. 导入:通过展示生活中的三角形实物,引导学生发现三角形的特征,从而引出本节课的主题。
2. 新课导入:(2)三角形的性质:引导学生通过画图、观察、思考,发现三角形的性质,如内角和等于180°等。
(3)三角形的分类:根据三角形的边长和角度,将三角形分为不等边三角形、等腰三角形、等边三角形、直角三角形等。
(4)三角形周长和面积的计算:通过实例讲解,引导学生掌握三角形周长和面积的计算方法。
3. 例题讲解:讲解典型例题,巩固所学知识,引导学生运用所学知识解决实际问题。
4. 随堂练习:设计有针对性的练习题,让学生当堂巩固所学知识。
六、板书设计1. 三角形的定义:由三条线段首尾顺次连接所围成的图形。
2. 三角形的性质:内角和等于180°,两边之和大于第三边等。
3. 三角形的分类:不等边三角形、等腰三角形、等边三角形、直角三角形等。
4. 三角形周长和面积的计算方法。
七、作业设计1. 作业题目:(3)应用题:运用三角形的周长和面积知识,解决实际问题。
2. 答案:见附页。
2024年最全面新人教版七年级数学下册教案全册精华版一、教学内容1. 第五章:相交线与平行线5.1:相交线5.2:平行线的判定5.3:平行线的性质2. 第六章:平面几何初步6.1:三角形的内角和6.2:三角形的性质6.3:全等三角形6.4:等腰三角形6.5:平行四边形二、教学目标1. 理解并掌握相交线和平行线的性质及判定方法。
2. 掌握三角形内角和定理及三角形的性质,学会运用全等三角形的判定。
3. 培养学生的空间想象能力和逻辑思维能力。
三、教学难点与重点1. 教学难点:相交线与平行线的判定和应用全等三角形的判定方法等腰三角形的性质和应用2. 教学重点:掌握三角形内角和定理理解并运用全等三角形的判定四、教具与学具准备1. 教具:三角板、直尺、圆规、量角器2. 学具:练习本、铅笔、三角板、直尺五、教学过程1. 实践情景引入:引导学生观察教室内的平行线和相交线,激发兴趣提问学生:在生活中,你们还见过哪些平行线和相交线?2. 例题讲解:讲解相交线和平行线的判定方法通过例题,展示三角形内角和定理的应用讲解全等三角形的判定方法及等腰三角形的性质3. 随堂练习:让学生独立完成练习题,巩固所学知识引导学生互相讨论,解决问题4. 知识拓展:介绍平面几何的发展历程拓展平行线和相交线在实际生活中的应用六、板书设计1. 相交线与平行线的判定方法2. 三角形内角和定理3. 全等三角形的判定方法4. 等腰三角形的性质七、作业设计1. 作业题目:练习相交线和平行线的判定计算三角形的内角和判断全等三角形运用等腰三角形的性质解决问题2. 答案:八、课后反思及拓展延伸1. 教学反思:分析学生的学习情况,调整教学方法2. 拓展延伸:鼓励学生课后观察生活中的几何图形,发现数学之美推荐相关书籍和资料,激发学生的学习兴趣组织实践活动,提高学生的实际操作能力重点和难点解析1. 教学难点与重点的确定2. 实践情景引入的设计3. 例题讲解的深度和广度4. 随堂练习的针对性和有效性5. 知识拓展的适时性和适度性6. 作业设计的系统性和层次性7. 课后反思及拓展延伸的实践性一、教学难点与重点的确定(1)难点解析:相交线与平行线的判定和应用是学生容易混淆的部分,需通过直观的教具演示和实际例题讲解,帮助学生建立清晰的概念。
2024年人教版初中数学七年级下册教案全册一、教学内容1. 第五章:相交线与平行线1.1 探索直线交点1.2 平行线的判定与性质1.3 平行线的应用2. 第六章:平面几何初步2.1 角的概念与性质2.2 三角形的分类与性质2.3 四边形的性质与判定3. 第七章:一元一次不等式与不等式组3.1 不等式的概念与性质3.2 一元一次不等式的解法3.3 不等式组的解法与应用4. 第八章:实数4.1 实数的概念与分类4.2 实数的运算4.3 实数与数轴二、教学目标1. 理解并掌握相交线、平行线的性质与判定方法,能够解决实际问题。
2. 掌握平面几何图形(角、三角形、四边形)的性质、分类与判定,培养空间想象能力。
3. 学会一元一次不等式与不等式组的解法,能够解决实际问题,提高逻辑思维能力。
4. 理解实数的概念,掌握实数的运算方法,培养运算能力。
三、教学难点与重点1. 教学难点:平行线的判定与性质、三角形与四边形的性质与判定、一元一次不等式与不等式组的解法、实数的概念与运算。
2. 教学重点:相交线与平行线的性质、平面几何图形的性质与判定、不等式的解法、实数的运算。
四、教具与学具准备1. 教具:多媒体教学设备、黑板、粉笔、几何模型。
2. 学具:直尺、圆规、量角器、练习本、笔。
五、教学过程1. 导入:通过实践情景引入,激发学生学习兴趣。
1.1 以生活中的实例(如斑马线、操场跑道等)引入相交线与平行线的概念。
1.2 通过观察几何模型,引导学生发现三角形、四边形的性质。
1.3 以实际问题的形式,让学生感受不等式与实数的应用。
2. 新课导入:讲解新课内容,阐述重点与难点。
2.1 利用多媒体教学设备,展示相交线、平行线的性质与判定方法。
2.2 通过例题讲解,让学生掌握平面几何图形的性质与判定。
2.3 结合实际例题,引导学生学会一元一次不等式与不等式组的解法。
2.4 通过实数的运算练习,让学生掌握实数的概念与运算方法。
3. 随堂练习:巩固所学知识,检验学习效果。
2024年新课标人教版七年级下全册数学教案【教学目标】1.让学生掌握本册教材的重点知识和技能。
2.培养学生的数学思维能力,提高解决问题的能力。
3.增强学生对数学的兴趣,激发学生的自主学习意识。
【教学内容】第一章:相交线与平行线第二章:平面图形的性质与证明第三章:数据的收集、整理与分析第四章:不等式与不等式组第五章:概率初步【教学重点与难点】一、相交线与平行线重点:相交线的性质,平行线的判定与性质。
难点:平行线性质的证明。
二、平面图形的性质与证明重点:三角形、四边形、圆的性质与证明。
难点:几何图形性质的证明。
三、数据的收集、整理与分析重点:数据的收集、整理与分析方法。
难点:数据分析的实际应用。
四、不等式与不等式组重点:不等式的解法,不等式组的解法。
难点:不等式组的解法及应用。
五、概率初步重点:概率的定义,概率的计算。
难点:概率的实际应用。
【教学步骤】一、相交线与平行线1.引入:通过生活中的实例,让学生感受相交线与平行线在实际中的应用。
2.讲解:讲解相交线与平行线的性质,以及判定方法。
3.练习:让学生在练习本上完成相关练习题,巩固知识。
二、平面图形的性质与证明1.引入:通过生活中的实例,让学生感受几何图形在实际中的应用。
2.讲解:讲解三角形、四边形、圆的性质与证明方法。
3.练习:让学生在练习本上完成相关练习题,巩固知识。
三、数据的收集、整理与分析1.引入:通过生活中的实例,让学生感受数据分析在实际中的应用。
2.讲解:讲解数据的收集、整理与分析方法。
3.练习:让学生在练习本上完成相关练习题,巩固知识。
四、不等式与不等式组1.引入:通过生活中的实例,让学生感受不等式与不等式组在实际中的应用。
2.讲解:讲解不等式的解法,不等式组的解法。
3.练习:让学生在练习本上完成相关练习题,巩固知识。
五、概率初步1.引入:通过生活中的实例,让学生感受概率在实际中的应用。
2.讲解:讲解概率的定义,概率的计算。
3.练习:让学生在练习本上完成相关练习题,巩固知识。
新人教版七年级数学下册第五章教案2021模板教学设计是教师在日常教学过程中用于组织教学活动的重要蓝本。
一份优秀的教学设计可以为教师有效地开展教学活动提供重要的指导。
今天在这里整理了一些新人教版七年级数学下册第五章教案2021模板,我们一起来看看吧!新人教版七年级数学下册第五章教案2021模板1教学目标 1,整理前两个学段学过的整数、分数(包括小数)的知识,掌握正数和负数的概念;2,能区分两种不同意义的量,会用符号表示正数和负数;3,体验数学发展的一个重要原因是生活实际的需要,激发学生学习数学的兴趣。
教学难点正确区分两种不同意义的量。
知识重点两种相反意义的量教学过程(师生活动) 设计理念设置情境引入课题上课开始时,教师应通过具体的例子,简要说明在前两个学段我们已经学过的数,并由此请学生思考:生活中仅有这些“以前学过的数”够用了吗?下面的例子仅供参考.师:今天我们已经是七年级的学生了,我是你们的数学老师.下面我先向你们做一下自我介绍,我的名字是--,身高1.73米,体重58.5千克,今年40岁.我们的班级是七(13)班,有60个同学,其中男同学有22个,占全班总人数的37%…问题1:老师刚才的介绍中出现了几个数?分别是什么?你能将这些数按以前学过的数的分类方法进行分类吗?学生活动:思考,交流师:以前学过的数,实际上主要有两大类,分别是整数和分数(包括小数).问题2:在生活中,仅有整数和分数够用了吗?请同学们看书(观察本节前面的几幅图中用到了什么数,让学生感受引入负数的必要性)并思考讨论,然后进行交流。
(也可以出示气象预报中的气温图,地图中表示地形高低地形图,工资卡中存取钱的记录页面等)学生交流后,教师归纳:以前学过的数已经不够用了,有时候需要一种前面带有“-”的新数。
先回顾小学里学过的数的类型,归纳出我们已经学了整数和分数,然后,举一些实际生活中共有相反意义的量,说明为了表示相反意义的量,我们需要引入负数,这样做强调了数学的严密性,但对于学生来说,更多地感到了数学的枯燥乏味为了既复习小学里学过的数,又能激发学生的学习兴趣,所以创设如下的问题情境,以尽量贴近学生的实际.这个问题能激发学生探究的欲望,学生自己看书学习是培养学生自主学习的重要途径,都应予以重视。
AB C D 1 234 O 5.1相交线5.1.1 相交线【教学目标】1.了解两条直线相交形成四个角;2.理解对顶角、邻补角的概念;3.掌握对顶角的性质及它的推导过程;4.能运用对顶角的性质解决一些问题.5.培养识图能力. 【教学重点】1.对顶角、邻补角的概念;2.对顶角的性质及应用.【对话设计】〖探究1〗 两条直线相交所得的角(1)如图,直线AB 、CD 相交于O,若∠1=140º,你能求出其它3个角的度数吗?(2)两条直线相交所得的四个角之间,有怎样的关系(指位置及大小)?(3)〖结论〗在(1)图中,∠1与∠2是______角,∠1与∠3是____角,∠2的对顶角是______,邻补角是_______________. 〖了解邻补角及对顶角的特征〗(见P5)〖探究2〗"顾名思义,如果两个角的顶点重合,这两个角是对顶角."这句话对吗?画图说明.〖探究3〗如图,C 是直线AB 上一点,CD 是射线,图中有几个角?哪两个角互为邻补角? 有两个角互为对顶角吗? 上的一条射〖结论〗在很多图形中,邻补角还可以看成是一条直线与端点在这条直线线组成的两个角.〖探究4〗判断下列语句是否正确: (1)互补的两个角一定是邻补角. (2)一个角的邻补角一定和它互补. (3)邻补角是有特殊位置关系的两个互补的角.〖补充练习〗 1.如图,D 、E 分别是AB 、AC 上的一点,BE 与CD 交于点G,若∠B=∠C,猜测图中哪些角是相等的. 2.如图,E 是AD 上一点,图中有互补的角吗?有相等的角吗?为什么? (注意:什么叫对顶角?)3.说明下列语句为什么是错误的: (1)一个锐角和一个钝角一定互补;(2)若两个角互补,则这两个角一定是一个锐角,一个钝角. 〖作业〗 P9.1,2,7,8.5.1.2 垂线(第一课时)【教学目标】1.理解垂线、垂线段的意义;2.会用三角尺或量角器过一点画已知直线的垂线;3.掌握垂线的性质1. 【教学重点】AB CD EGA B C DEA BC D1.区分垂线和垂线段;2.用三角尺或量角器过一点画已知直线的垂线;3.垂线的性质1.【教学难点】 怎样画一条线段或射线的垂线. 【对话设计】〖探究1〗 两条直线相交的特殊情况如图, 直线AB 、CD 相交于O,若∠1=90º,求其它3个角. 〖阅读〗了解垂直、垂线和垂足(见P6).〖理解〗日常生活中, 两条直线互相垂直的情形很常见(见P6图5.1-6).你能再举出其它例子吗? 〖探究2〗 过一点画直线的垂线(1)用三角尺画已知直线的垂线,这样的垂线能画出几条?(2)如图,过直线AB 上的已知点P,用三角尺画AB 的垂线;过直线上一点,可以画几条直线与这条直线垂直? (3)如图,过直线AB 外的已知点P,用三角尺画AB 的垂线,并注明垂足. 过直线外一点,可以画几条直线与这条直线垂直? (4)从直线AB 外的已知点P,到直线AB 画垂线段,与(3)比较,注意区分垂线和垂线段.〖阅读归纳〗你知道垂线的第一条性质吗(见P7)?请注意理解"有"与"有且只有"的区别.〖探究3〗 怎样画一条线段或射线的垂线规定:画一条线段或射线的垂线,就是画线段或射线所在直线的垂线.(1)过线段AB 外的已知点P,画线段AB 的垂线;(2)过射线AB 外的已知点P,画射线AB 的垂线.〖探究4〗点到直线的距离 这是一幅比例尺为1:500 000的地图,你能分别求出李庄A 到火车站B 和吴镇D的距离吗?你认为铁路上是否存在到李庄距离最近的点?〖作业〗 P9.4,5,6.5.1.2 垂线(第二课时)【教学目标】1.理解点到直线的距离的意义,并会度量点到直线的距离;2.掌握垂线的性质2;3.感受简单推理. 【教学重点】1.点到直线的距离;2.度量点到直线的距离;3.垂线的性质2. 【教学难点】区分垂线段与点到直线的距离.A B P A BP·A B P ·AB·A B C D1 23 4 OA BP ·【对话设计】〖探究1〗怎样测量跳远的成绩如图,这是你们班的运动员小欣在校运会上跳远后留下的脚印,裁判员怎样测量跳远的成绩?画出皮尺的位置.〖归纳〗你能说出垂线的第二条性质吗? 什么叫做点到直线的距离(见P8)?〖探究2〗如图,要从A 处到河边B 挖一道水渠AB 引水,B 点一般应选在哪一处?为什么?如果比例尺是1:100 000,水渠大约要挖多长?〖课堂练习〗1.从三角形的一个顶点向它的对边画垂线,顶点和垂足间的线段(垂线段) 叫做三角形的高.请用三角板分别画出下面三角形的三条高(各用三种颜色).2.如图,已知 △ABC, 用度量方法求 △ABC 面积的近似值.5.1.2 垂线(第三课时、练习课)【教学目标】复习巩固本节所学知识 【练习】1.如图,AD 是ΔABC 的高,如果∠B=∠C,那么,∠1一定等于∠2吗?为什么?2.如图,已知:AD 是ΔABC 的高,E 是AD 上一点,∠AEB=∠AEC,找出图中相等的角.3.如图,四边形ABCD 中,若∠DAB=∠BCD,∠DAC=∠BCA,找出其它相等的角,并说明理由.AB C DEA BCD1 2A·起 跑 线B CAB CBB C4.如图,若∠DAB=∠EAC,∠D=∠B,问ΔAED 与ΔACB 之间还有哪些相等的角?5.如图,若BD ⊥AC 于D,CE ⊥AB 于E,CE 、BD 相交于点O. (1)ΔAEC 与ΔADB 之间有哪些角是相等的? (1) ΔOCD 与ΔOBE 之间有哪些角是相等的?6.如图,已知:AD 、BC 相交于点E,如果∠A=∠D,图中还有相等的角吗?7.如图,这是比例尺为1∶300 000的地图,用度量法求学校A 到河流m 的实际距离.8.如图,找出等腰△ABC 底边的中点D, 再用度量法求点D 到两腰的距离(可用三角尺).9.用度量法分别求等腰 △ABC 底边的两个端点B 、C 到两腰AC 、AB 的距离. (提示:要先画出垂线段.) 10.如图,用量角器画∠BOC 的平分线OP,再在OP 上任取一点Q,从Q 到OB 、OC 分别画垂线段QM 、QN(M 、N 为垂足).ABCDAB CD EABC DEOAB C DEOBCA ·mB C A B C5.2 平行线5.2.1 平行线(第一课时)【教学目标】 1.知道三线八角;2.知道同位角、内错角和同旁内角. 【对话设计】 〖复习〗两条直线相交所成的角共有四个,这四个角之间有哪几种关系? 〖有关三线八角的介绍〗一条直线分别同两条直线相交(或者说两条直线被第三条直线所截) , 构成8个角,这些角中,没有公共顶点的两个角之间有以下三种位置关系:同位角、内错角和同旁内角.如图,直线AB 、CD 与直线EF 相交,∠1和∠5,∠2和∠6,∠3和∠7,∠4和∠8都是同位角,共有4对;∠5和∠3,∠6和∠4都是内错角,共有2对;∠3和∠6,∠4和∠5都是同旁内角,共2对. 〖探索1〗 如图,直线AB 、CD 与直线EF 相交,图中哪几对角是同位角?哪几对角是内错角?哪几对角是同旁内角?〖探索2〗如图,直线AB 、CD 与直线EF 相交,∠5和_____是同位角,和____是内错角,与______是同旁内角.〖探索3〗如图,直线AB 、CD 与直线EF 相交,图中哪几对角是同位角?哪几对角是内错角?哪几对角是同旁内角?〖探索4〗如图,找出∠1的内错角,用红笔一笔画出它们,先观察这两个角是否像英文字母"N", 再指出它们是哪两条直线被哪一条直线所截而成.〖探索5〗如图,已知四边形ABCD 是梯形,你能用红笔一笔画出图中任意一对同旁内角吗?图中一有几对同旁内角?〖探索6〗如图,直线EF 、CD 与直线AB 相交,ABC D1 2 3 4 5EFABCD 1 23 4 5F E6 7 8ABE D1 2 345 FC 6 7 8A B CD 1 23 45 FE 67 8CAB1DCBFDC任意找出一对同位角,分别记为∠1和∠2,你能用红笔一笔画出这两个角吗?5.2.1 平行线(第二课时 练习课)【教学目标】巩固对同位角、内错角和同旁内角的感性认识.【练习】1.如图,BE 是AB 的延长线,指出下面的两个角是哪两条直线被哪一条直线所截而成?它们是什么角? (1)∠A 和∠D; (2)∠A 和∠CBA; (3)∠C 和∠CBE.2.如图,∠1与∠2是哪两条直线被哪一条直线所截而成?它们是什么角? ∠1与∠3是哪两条直线被哪一条直线所截而成?它们是什么角?3.如图,∠A 与哪个角是内错角?它们是由哪两条直线被哪一条直线所截而成的?试用彩色笔画出这两个角.4.如图,∠A 与哪个角是同旁内角?它们是由哪两条直线被哪一条截而成的?试用彩色笔验证答案.5.找出图中∠DEC 的同位角,内错角和同旁内角.6.找出图中∠ADE 的同位角,内错角和同旁内角.5.2.1 平行线(第三课时)ABE F 123D CABABDCEABDCE ABA BDCE【教学目标】1.了解空间两条直线的位置关系;2.了解平行线的概念,理解同一平面内两条直线的位置关系;3.认识平行线的性质1、2.【对话设计】 〖复习 交流〗如图,已知直线AB 和直线外一点P,你能过点P 画一条直线与AB 平行吗?把你的画法与同伴交流,看谁的方法好. 〖介绍空间两条直线的位置关系〗如图,与长方体的棱AB 平行的棱有__________________等____条,它们都和AB 在同一平面内;与AB 相交的棱有______________等____条, 它们也和AB 在同一平面内;棱AB 与棱B'C'不相交也不平行,像这样的两条直线叫做异面直线,与AB 异面的直线还有______________等____条.〖归纳〗在同一平面内,两条直线的位置关系只有_____、_______两种.〖探索1〗在一张半透明的纸上任意画一条直线AB,在直线外任取一点P,你能折出过点P 的平行线吗?试一试,并把你的折法与同伴交流. 〖探索2〗经过直线外一点,可以画两条直线和这条直线平行吗? 〖平行公理1介绍〗 经过直线外一点,有且只有一条直线与这条直线平行. 〖释义〗本书中所说的基本事实是人们在长期实践中总结出来的结论, 基本事实也称为公理. 〖想一想〗如图,P 是直线AB 外一点,CD 与EF 相交于P.若CD 与AB 平行,则EF 与AB 平行吗?为什么?〖探索3〗如图,若CD ∥AB,且 EF ∥AB,则CD 与EF 能不平行吗?为什么?〖平行公理2介绍〗如果两条直线都和第三条直线平行,那么这两条直线也互相平行. 〖友情提示〗若a=b=c(字母表示数),那么,a=c ,根据的是等式的性质.若a ∥b,b ∥∥c(字母表示直线),那么a ∥b.根据的是平行公理2.5.2.2直线平行的条件(第一课时)【教学目标】1.掌握平行线的判定方法;2.了解从平行的判定公理得出其它两种判定方法的过程;3.感受逻辑推理;4.感受把未知化为已知的思想. 【教学重点与难点】探索并掌握平行线的判定方法. 【对话设计】 〖探索1〗我们以前学过用直尺和三角尺画平行线.如果只用一把三角尺可以吗?如果可以,请用这种方法过点P 画一条直线与AB 平行.你能够说明你所画的直线一定与AB 平行吗?ACA B · P A B · PCD EFA BC D E FAB·P〖介绍平行线的判定方法1〗两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行. 〖说明〗方法1也是基本事实(公理). 〖探索2〗木工经常用角尺画平行线,你能说出其中的道理吗(见P15)?如果只要求画平行线,不用角尺(例如只用三角尺中的一个锐角)行吗? 〖探索3〗如图,如果∠1=∠2,由平行线的判定方法1,能得出a ∥b 吗? 〖结论〗由平行线的判定方法1,可以得出平行线的判定方法2: 两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行. 〖归纳〗遇到一个新问题时,常常把它转化为已知的(或已经解决的)问题来解决.这一节中,我们利用"同位角相等,两直线平行"得到"内错角相等,两直线平行". 〖探索4〗如图,现在我们一起来探究: 两条直线(a 、b)被第三条直线(c)所截,如果同旁内角互补(∠1+∠2=180º),那么这两条直线(a 、b)平行吗?〖结论〗由平行线的判定方法1(或2),可以得出平行线的判定方法3: 两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行.〖练习〗1.如图,分别指出下面各推理的根据: (1)∠2=∠5⇒a ∥b;(2)∠4=∠5⇒a ∥b;(3)∠3+∠5=180º⇒a ∥b.2.如图,(在同一平面内)若两条直线a 、b 都和直线c 垂直,那么这两条直线一定平行,这是为什么? 〖作业〗 P18.1、2、3.5.2.2直线平行的条件(第二课时)【教学目标】会应用平行线的判定方法. 【对话设计】〖复习思考〗(见P18) 〖探索1〗如图,下面的两个角分别是哪两条直线被哪一条直线所截而成?它们是什么角?(1)∠BAC 与∠DCA; (2)∠DAC 与∠BCA.〖探索2〗如图,a 、b 、c 、d 是直线,E 、F 、G 、H 是交点,c a 12 bca12bba 1 23 4 5cABDCbca(1)若∠1=∠2,可以证明a ∥b,而不能证明c ∥d.这是因为∠1和∠2是直线_______和_____被直线____所截而成,它们与直线____无关.(2)同样的道理,若已知∠1 = ∠3,可以证明______∥______,这是因为它们是直线____和______被直线______所截而成.〖探索3〗如图,BE 是AB 的延长线,从∠CBE=∠A 可以判定_____∥______,这是因为相等的两角是直线____和____被直线____所截而成(与直线_____无关),判定平行的根据是_____________________________________.〖提示〗用彩色笔在图中画出相等的两个角(∠CBE 和∠A),理解为什么不能由此推出AB ∥CD. 〖说明〗学习和运用判定方法1的难点是:(1)判定两个角是不是同位角;(2)确定这两个同位角是哪两条直线被那一条直线所截而成;(3)进而判定可以证明哪两条直线平行.〖探索4〗如图,D 是AB 上一点,E 是AC 上一点, ,根据判定方法1,如果知道哪两个角相等,就可以证明DE ∥BC?〖探索5〗如图,AE 与CD 相交于O,若∠A=110º,∠1=70º,就可以证明AB ∥CD,这是为什么?〖作业〗 P18.4、5、6.5.3 平行线的性质(第一课时)【教学目标】1.经历从性质公理推出性质2的过程;掌握平行线的性质,并能用它们作简单的逻辑推理;2.感受原命题与逆命题,从而了解平行线的性质公理与判定公理的区别,能在推理过程正确使用. 【教学重点】平行线的性质以及应用. 【教学难点】平行线的性质公理与判定公理的区别. 【对话设计】〖探索1〗 反过来也成立吗过去我们学过: 如果两个数的和为0,这两个数互为相反数.反过来,如果两个数互为相反数,那么这两个数的和为0.这两个句子都是正确的.现在换一个例子:如果两个角是对顶角,那么这两个角相等.它是对的.反过来,如果两个角相等,这两个角是对顶角.对吗?再看下面的例子:如果一个整数个位上的数字是5,那么它一定能够被5整除.对吗?这句话反过来怎么说?对不对?〖结论〗如果一个句子是正确的,反过来说(因果对调),就未必正确. 〖探索2〗上一节课,我们学过:同位角相等,两直线平行.反过来怎么说?它还是对的吗?完成P21的探究,写出你的猜想.b H a G1 23 c dFEAB DCE ABD CEAB1DCE O〖推理举例〗如果把平行线性质1---"两直线平行,同位角相等"看作是基本事实(公理),我们可以利用这个公理证明平行线性质2:"两直线平行,内错角相等". 如图,已知:直线a 、b 被直线c 所截,且a ∥b, 求证:∠1=∠2. 证明:∵a ∥b,∴∠1=∠3(__________________). ∵∠3=∠2(对顶角相等),∴∠1=∠2(等量代换). 〖探索3〗下面我们来证明平行线的性质3:两直线平行,同旁内角互补.请模仿范例写出证明. 如图,已知: 直线a 、b 被直线c 所截,且a ∥b,求证:∠1+∠2=180º. 证明:〖探索4 〗如图: 直线a 、b 被直线c 所截, (1)若a ∥b,可以得到∠1=∠2.根据什么?(2)若∠1=∠2,可以得到a ∥b.根据什么?根据和(1)一样吗?〖练习1〗如图,已知直线a 、b 被直线c 所截,在括号内为下面各小题的推理填上适当的根据: (1)∵a ∥b,∴∠1=∠3(___________________); (2)∵∠1=∠3,∴a ∥b(_________________).(3)∵a ∥b,∴∠1=∠2(__________________); (4)∴a ∥b,∴∠1+∠4=180º(_____________________________________) (5)∵∠1=∠2,∴a ∥b(___________________); (6)∵∠1+∠4=180º,∴a ∥b(_______________). 〖练习2〗画两条平行线,说出你画图的根据;再任意画一条直线和这两条平行线都相交,写出所生成的角当中的一对内错角,并说明这一对角一定相等的理由. 〖作业〗P25.1、2、3、4.5.3 平行线的性质(第二课时)【教学目标】掌握两条平行线的距离的概念,并能灵活运用. 【对话设计】 〖探索1〗一块梯形铁片的残余部分如图,量得∠A=75º,∠B=72º,梯形的另外两个角分别是多少度?ab1 23c ab12 3 c a b12 3 c 4 a b 12c〖阅读模仿〗请模仿P23例作答.〖探索2〗如图,AB ∥CD,(1)在AB 上任取一点E,向CD 画垂线段EF;(2)EF 是否也垂直于AB 呢? (3)在AB 上另取一点G,向CD 画垂线段GH;(4)在CD 上,点F 、H 外,任取一点I,向AB 画垂线段IJ; (5)量出EF 、GH 、IJ 的长,说说你的发现.〖探索3〗同时垂直于两条平行线,并且夹在这两条平行间的线段之间....有什么性质?你能举出实际的例子吗? 〖概念学习〗同时垂直于两条平行线,并且夹在这两条平行线间的线段的长度,叫做这两条平行线间的距离.〖概念应用〗 (1)探索2的图中,两条平行线的距离是多少?(2)如图,若AB ∥CD,求AB 、CD 的距离. 〖作业〗 P25.5、6、7.5.3 平行线的性质(第三课时)【教学目标】掌握命题的概念,并能分清命题的组成部分.【对话设计】〖概念理解1〗前面,我们学过一些对某一件事情作出判断的句子,例如:(1)如果两条直线都与第三条直线平行,那么,这两条直线也互相平行;(2)等式两边加同一个数,结果仍是等式;(3)对顶角相等.像这样判断一件事情的语句,叫做命题.〖探索1〗下列语句,哪些是命题?哪些不是?(1)过直线AB 外一点P,作AB 的平行线.(2)过直线AB 外一点P,可以作一条直线与AB 平行吗?(3)经过直线AB 外一点P, 有且只有一条直线与这条直线平行.(4)若|a|=-a,则a ≤0.〖概念理解2〗许多命题都由题设和结论两部分组成.题设是已知事项,结论是由已知事项推出的事项.命题常写成"如果……那么……"的形式,这时,"如果"后接的部分是题设,"那么"后接的的部分是结论. 〖探索2〗命题"两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行"中,题设是什么? 〖探索3〗把下列命题改写成"如果……那么……"的形式:(1)互补的两个角不可能都是锐角;(2)垂直于同一条直线的两条直线平行.〖探索4〗指出下列命题的题设和结论:A BDCBD(1)如果两个数互为相反数,这两个数的商为-1.(2)两直线平行,同旁内角互补.(3)同旁内角互补,两直线平行.(4)同角的余角相等.(5)绝对值相等的两个数相等.〖探索5〗判断下列命题是否正确:(1)如果两个数的和为0,这两个数互为相反数;(2)如果两个数互为相反数,这两个数的和为0;(3)如果两个数互为相反数,这两个数的商为-1;(4)如果两个数的商为-1,这两个数互为相反数.(5)如果两个角是邻补角,这两个角互补;(6)如果两个角互补,这两个角是邻补角.〖作业〗P25.8.〖补充练习〗1.下列句子是命题吗?若是,把它改写成"如果……那么……"的形式,并判断是否正确:(1)一个角的补角比这个角的余角大多少度?(2)垂线段最短,对吗?(3)等角的补角相等.(4)如果两条直线相交,那么它们只有一个交点.(5)同旁内角互补.(6)邻补角的平分线互相垂直.(7)两个负数,绝对值大的反而小.(8)绝对值大的数反而小.(9)若a>b,则b a>1.(10)两数和为正数,则这两数中至少有一个是正数.(11)0 除以任何一个数都得 0 .(12)若a<0,b>0,且|a|>|b|,则a+b=|b|-|a|.2.平行四边形的对角相等,为什么?3.一个角的两边与另一个角的两边分别平行,这两个角一定相等.为什么不对?5.4平移(第一课时)【教学目标】1.理解什么叫平移;2.经历观察、分析、操作、欣赏及抽象、概括的过程;3.进一步发展空间观念,增强审美意识.【教学重难点】平移的概念与性质.【对话设计】〖阅读〗P30-31.〖理解平移〗如图,已知线段AB,平移AB,使点A 移动到点'A ,你能画出平移后的线段'A 'B 吗(只要画示意图)?如果是使点A 移动到点"A 呢?与同学交流答案.你能从中体会平移吗? 'A 'B 'C . 〖练习〗如图,平移ΔABC,使点A 移动到点'A ,画出平移后的三角形〖方格与平移〗如图,平移ΔABC,使点A 移动到点'A ,画出平移后的三角形'A 'B 'C .(请注意方格的作用.)〖练习〗如图,平移ΔABC,使点A 移动到点'A ,画出平移后的三角形'A 'B 'C .(请注意方格的作用.)〖平移与旋转〗如图,使ΔABC 绕点A 旋转90º,画出旋转后的三角形'A 'B 'C .(这时方格还有用吗?)〖平移的过程与结果〗下列变换属于平移吗?〖生活中的平移〗下列情况哪些属于(空间图形)平移:打开玻璃窗,铝合金窗户的移动,电梯上货物的升降?A B 'A · · "AAB C'A ·〖练习〗(1)将右图中的小船向左平移4格再向上平移1格;(2)如果平移后小船的顶部A点移到B点,画出小船.〖作业〗P33.2,3.。