西南交大数值分析题库积分微分方程试题库
- 格式:pdf
- 大小:533.96 KB
- 文档页数:7
一、单项选择题(每小题3分,共15分) 1、用Simpson 公式求积分1401x dx +⎰的近似值为 ( ).A.2924 B.2429C.65D. 562、已知(1)0.401f =,且用梯形公式计算积分2()f x dx ⎰的近似值10.864T =,若将区间[0,2]二等分,则用递推公式计算近似值2T 等于( ). A.0.824 B.0.401 C.0.864 D. 0.8333、设3()32=+f x x ,则差商0123[,,,]f x x x x 等于( ).A.0B.9C.3D. 64的近似值的绝对误差小于0.01%,要取多少位有效数字( ). A.3 B.4 C.5 D. 25、用二分法求方程()0=f x 在区间[1,2]上的一个实根,若要求准确到小数 点后第四位,则至少二分区间多少次( ).A.12B.13C.14D. 15二、填空题(每小题4分,共40分)1、对于迭代函数2()=(3)ϕ+-x x a x ,要使迭代公式1=()ϕ+k k x x则a 的取值范围为 .2、假设按四舍五入的近似值为2.312,则该近似值的绝对误差限为 .3、迭代公式212(3)=,03++>+k k k k x x a x a x a收敛于α= (0)α>. 4、解方程4()530f x x x =+-=的牛顿迭代公式为 . 5、设()f x 在[1,1]-上具有2阶连续导数,[1,1]x ∀∈-,有1()2f x ''≤,则()f x 在[1,1]-上的线性插值函数1()L x 在点0处的误差限1(0)R ≤______.6、求解微分方程初值问题2(0)1'=-⎧⎨=⎩y xy yy ,0x 1≤≤的向前Euler 格式为 .7、设310131013A -⎛⎫⎪=-- ⎪ ⎪-⎝⎭,则A ∞= .8、用梯形公式计算积分112-⎰dx x 的近似值为 . 9、设12A 21+⎡⎤=⎢⎥⎣⎦a 可作Cholesky 分解,则a 的取值范围为 . 10、设(0)1,(0.5) 1.5,(1)2,(1.5) 2.5,(2) 3.4f f f f f =====,若1=h ,则用三点公式计算(1)'≈f .三、解答题(共45分) 1、给定数据用复化Simpson 公式计算1.381.30()f x dx ⎰的近似值,并估计误差,小数点后保留3位. (8分)2、用直接三角分解法求线性代数方程组⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡432631531321321x x x 的解. (8分) 3、求()λx ,使得迭代公式1()()λ+=+k k k k f x x x x 求方程2()31=+-f x x x 的根的相应迭代序列{}k x 具有平方收敛. (5分)4、已知数据试对数据用最小二乘法求出形如=+y x b的拟合曲线. (8分) 5、已知(2)8f -=,(0)4f =,(2)8=f ,试求二次拉格朗日插值多项式. (8分) 6、设矩阵A 如下,根据谱半径判断用Jacobi 迭代法求解方程组Ax b =的敛散性.(8分)1102111221012A ⎡⎤-⎢⎥⎢⎥⎢⎥=--⎢⎥⎢⎥⎢⎥-⎢⎥⎣⎦一、单项选择题(每小题3分,合计15分) 1、A 2、D 3、C 4、C 5、D 二、填空题(每小题3分,合计30分) 1、0<<a ; 2、31102-⨯; 3;4、4135345++-=-+k k k k k x x x x x ; 5、14; 6、1(2)+=+-n n n n n y y h x y y ; 7、5;8、34-; 9、3>a ;10、1.2;三、计算题(合计55分) 1、给定数据用复化Simpson 公式计算 1.381.30()f x dx ⎰的近似值,并估计误差,小数点后保留3位. (8分)解: 401024S [()4()()]6-=++x x f x f x f x ………… 1分 1.38 1.30(3.624 4.20 5.19)6-=+⨯+ 0.341= ………… 2分20422012234S [()4()()][()4()()]66--=+++++x x x xf x f x f x f x f x f x =0.342 ………… 6分2211[]15-≈-I S S S =-⨯40.6710 ………… 8分 2、用直接三角分解法求线性代数方程组⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡432631531321321x x x 的解. (8分) 解:设111213212223313233u u u 123100135l 100u u 136l l 100u ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥=*⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦………… 1分 111=u ,212=u ,313=u ,121=l ,131=l 122=u ,223=u ,132=l133=u ,133=l …………6分所以⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=111011001L ,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=100210321U …………7分 由b Ly =得Ty )1,1,2(=;由y Ux =得Tx )1,1,1(-=. ………… 8分3、求()λx ,使得迭代公式1()()λ+=+k k k k f x x x x 求方程2()31=+-f x x x 的根的相应迭代序列{}k x 具有平方收敛.(6分)解:要使迭代序列具有平方收敛,则()0ϕ'*=x ………… 2分 而()()()ϕλ=+f x x x x ,即 ………… 3分 2()()()()10()λλλ''**-**+=*f x x x f x x …………4分 而()0*=f x 则有()1()λ'*=-*f x x ………… 5分所以()()23λ'=-=--x f x x ………… 6分4、已知数据试对数据用最小二乘法求出形如=+ay x b的拟合曲线. (8分) 解:因为11=+b x y a a ,令0111,,,====b a a y x x a a y……2分 则有法方程01461061410⎛⎫⎛⎫⎛⎫= ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭a a ……5分解出014,1==-a a ,则1,4=-=-a b ……7分 所以1=4-y x……8分5、已知(2)8f -=,(0)4f =,(2)8=f ,试求二次拉格朗日插值多项式. (7分)解:01()(2)8l x x x =- …………2分 211()(4)4l x x =-- …………4分21()(2)8l x x x =+ …………6分 2012()()(2)()(0)()(2)L x l x f l x f l x f =-++24=+x …………7分6、设矩阵A 如下,根据谱半径判断用Jacobi 迭代法求解方程组Ax b =的敛散性.(8分)1102111221012A ⎡⎤-⎢⎥⎢⎥⎢⎥=--⎢⎥⎢⎥⎢⎥-⎢⎥⎣⎦解:100010001D ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,00010021002L ⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦,10021002000U ⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦…………3分1100211()0221002J B D L U -⎡⎤⎢⎥⎢⎥⎢⎥=+=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦…………5分 2102111()0222102J E B λλλλλλ⎡⎤-⎢⎥⎢⎥⎢⎥-=--=-=⎢⎥⎢⎥⎢⎥-⎢⎥⎣⎦…………6分()2J B ρ=…………7分 所以用Jacobi 迭代法求解方程组Ax b =收敛 …………8分。
用复化梯形公式计算积分1()f x dx ⎰,要把区间[0,1]一般要等分 41 份才能保证满足误差小于0.00005的要求(这里(2)()1f x ∞≤);如果知道(2)()0f x >,则 用复化梯形公式计算积分1()f x dx ⎰此实际值 大 (大,小)。
在以10((),())()(),(),()[0,1]g x f x xf x g x dx f x g x C =∈⎰为内积的空间C[0,1]中,与非零常数正交的最高项系数为1的一次多项式是 23x -3. (15分)导出用Euler 法求解 (0)1y yy λ'=⎧⎨=⎩的公式, 并证明它收敛于初值问题的精确解解 Euler 公式 11,1,,,k k k xy y h y k n h nλ--=+==L -----------(5分) ()()1011kk k y h y h y λλ-=+==+L ------------------- (10分)若用复化梯形求积公式计算积分1x I e dx =⎰区间[0,1]应分 2129 等分,即要计算个 2130 点的函数值才能使截断误差不超过71102-⨯;若改用复化Simpson 公式,要达到同样精度区间[0,1]应分12 等分,即要计算个 25 点的函数值1.用Romberg 法计算积分 232x e dx -⎰解 []02()()2b aT f a f b -=+= 9.6410430E-003 10221()222b a a bT T f -+=+= 5.1319070E-00310022243T T S -== 4.6288616E-00322T = 4.4998E-003 21122243T T S -== 4.E-0031002221615S S C -== 4.6588636E-00332T = 4.7817699E-00332222243T T S -== 4.1067038E-0032112221615S S C -== 4.5783515E-0031002226463C C R -== 4.7358037E-0032.用复合Simpson 公式计算积分232x e dx -⎰(n=5)解 44501()4()2()(),625k k h h b aS f a f a kh f a kh f b h ==⎡⎤-=++++++=⎢⎥⎣⎦∑∑5S =4.3630653 E-0033、 对于n+1个节点的插值求积公式()()bnk k k af x dx A f x =≈∑⎰ 至少具有 n 次代数精度. 4、 插值型求积公式()()bnk k k af x dx A f x =≈∑⎰的求积系数之和0nk k A =∑=b-a 5、 证明定积分近似计算的抛物线公式()()4()()22bab a a b f x dx f a f f b -+⎡⎤≈++⎢⎥⎣⎦⎰具有三次代数精度 证明 如果具有4阶导数,则()()4()()22bab a a b f x dx f a f f b -+⎡⎤-++⎢⎥⎣⎦⎰=)(f 2880)a b ()4(5η--(η∈[a,b])因此对不超过3次的多项式f(x)有()()4()()022bab a a b f x dx f a f f b -+⎡⎤-++=⎢⎥⎣⎦⎰即()()4()()22bab a a b f x dx f a f f b -+⎡⎤=++⎢⎥⎣⎦⎰精确成立,对任一4次的多项式f(x)有 因此定积分近似计算的抛物线公式具有三次代数精度 或直接用定义证.6、 试确定常数A ,B ,C 和a ,使得数值积分公式有尽可能高的代数精度。
模 拟 试 卷(一)一、填空题(每小题3分,共30分)1.有3个不同节点的高斯求积公式的代数精度是 次的.2.设,,则=.,= ______.152210142-⎡⎤⎢⎥=-⎢⎥⎢⎥-⎣⎦A 342⎛⎫⎪=- ⎪ ⎪⎝⎭x ∞A1x3.已知y =f (x )的均差(差商),,,01214[,,]3f x x x =12315[,,] 3f x x x =23491[,,]15f x x x =, 那么均差=.0238[,,] 3f x x x =423[,,]f x x x 4.已知n =4时Newton -Cotes 求积公式的系数分别是:则,152,4516,907)4(2)4(1)4(0===C C C = .)4(3C 5.解初始值问题的改进的Euler 方法是阶方法;0(,)()y f x y y x y '=⎧⎨=⎩6.求解线性代数方程组的高斯—塞德尔迭代公式为,123123123530.13260.722 3.51x x x x x x x x x --=⎧⎪-++=⎨⎪++=⎩若取, 则.(0)(1,1,1)=- x(1)=x 7.求方程根的牛顿迭代格式是 .()x f x =8.是以整数点为节点的Lagrange 插值基函数,则01(), (),, ()n x x x 01, ,, ,n x x x =.()nk jk k x x =∑9.解方程组的简单迭代格式收敛的充要条件是.=Ax b (1)()k k +=+x Bx g 10.设,则的三次牛顿插值多项式为(-1)1,(0)0,(1)1,(2)5f f f f ====()f x ,其误差估计式为 .二、综合题(每题10分,共60分)1.求一次数不超过4次的多项式满足:,,()p x (1)15p =(1)20p '=(1)30p ''=,.(2)57p =(2)72p '=2.构造代数精度最高的形式为的求积公式,并求出10101()()(1)2xf x dx A f A f ≈+⎰其代数精度.3.用Newton 法求方程在区间内的根, 要求.2ln =-x x ) ,2(∞8110--<-kk k x x x 4.用最小二乘法求形如的经验公式拟合以下数据:2y a bx=+i x 19253038iy 19.032.349.073.35.用矩阵的直接三角分解法解方程组.⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡71735 30103421101002014321x x x x 6 试用数值积分法建立求解初值问题的如下数值求解公式0(,)(0)y f x y y y '=⎧⎨=⎩,1111(4)3n n n n n hy y f f f +-+-=+++其中.(,),1,,1i i i f f x y i n n n ==-+三、证明题(10分)设对任意的,函数的导数都存在且,对于满足x ()f x ()f x '0()m f x M '<≤≤的任意,迭代格式均收敛于的根.20Mλ<<λ1()k k k x x f x λ+=-()0f x =*x 参考答案一、填空题1.5; 2. 8, 9 ; 3.; 4. ; 5. 二; 911516456. , (0.02,0.22,0.1543)(1)()()123(1)(1)()213(1)(1)(1)312(330.1)/5(220.7)/6(12)*2/7k k k k k k k k k x x x x x x x x x ++++++⎧=++⎪=+-⎨⎪=--⎩7. ; 8. ; 9. ;1()1()k k k k k x f x x x f x +-=-'-j x ()1B ρ<10.32(4)11,()(1)(1)(2)/24(1,2)66x x x f x x x x ξξ+-+--∈-二、综合题1.差商表:11122151515575720204272152230781233234()1520(1)15(1)7(1)(1)(2)5432p x x x x x x x x x x =+-+-+-+--=++++其他方法:设233()1520(1)15(1)7(1)(1)()p x x x x x ax b =+-+-+-+-+令,,求出a 和b.(2)57p =(2)72p '=2.取,令公式准确成立,得:()1,f x x =,, , .0112A A +=011123A A +=013A =116A =时,公式左右;时,公式左, 公式右2()f x x =14=3()f x x =15=524=∴ 公式的代数精度.2=3.此方程在区间内只有一个根,而且在区间(2,4)内。
数值分析大作业1、证明:1-x-sinx=0在[0,1]内有一个根,使用二分法求误差不大于0.5*10^-4的根要迭代多少次,并输出每一步的迭代解和迭代误差证明:令f(x)= 1-x-sinx;f(0)=1,f(1)=-sin1f(0)*f(1)<0f’(x)=1-cosx<0在[0,1]内恒成立所以1-x-sinx=0在[0,1]内恒有一个根程序:function chap2bisecta = 0;b = 1;fprintf('n || a || b || c || r \n')for k=1:15c = (a+b)/2;r=(b-a)/2;fa =1-a-sin(a);fb =1-b-sin(b);fc =1-c-sin(c);fprintf('%d || %f || %f || %f \n',k,a,b,c,r);if abs(fc)<0.5*10^(-4) r=c; sprintf('the root is: %d' , r);elseif fa*fc<0 b=c;elseif fb*fc<0 a=c;endendroot = (a+b)/2结果:n || a || b || c || r1 || 0.000000 || 1.000000 || 0.500000 ||5.000000e-001 ||2 || 0.500000 || 1.000000 || 0.750000 ||2.500000e-001 ||3 || 0.500000 || 0.750000 || 0.625000 ||1.250000e-001 ||4 || 0.500000 || 0.625000 || 0.562500 ||6.250000e-002 ||125 || 0.500000 || 0.562500 || 0.531250 ||3.125000e-002 ||6 || 0.500000 || 0.531250 || 0.515625 ||1.562500e-002 ||7 || 0.500000 || 0.515625 || 0.507813 ||7.812500e-003 ||8 || 0.507813 || 0.515625 || 0.511719 ||3.906250e-003 || 9 || 0.507813 || 0.511719 || 0.509766 ||1.953125e-003 || 10 || 0.509766 || 0.511719 || 0.510742 ||9.765625e-004 || 11 || 0.510742 || 0.511719 || 0.511230 ||4.882813e-004 || 12 || 0.510742 || 0.511230 || 0.510986 ||2.441406e-004 || 13 || 0.510742 || 0.511230 || 0.510986 ||2.441406e-004 || 14 || 0.510742 || 0.511230 || 0.510986 ||2.441406e-004 || 15 || 0.510742 || 0.511230 || 0.510986 ||2.441406e-004 || root =0.510986328125000。
数值分析考试题(总3页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--数值分析考试题1一、 填空题(每空2分,共30分)1. 近似数230.2=*x 关于真值229.2=x 有____________位有效数字;2. 为了减少运算次数,应将表达式181611314181716242345-++---++x x x x x x x x 改写为_________________________________________________________;为了减少舍入误差的影响,应将表达式19992001-改写为__________________________;3. 设)(x f 可微,求方程)(x f x =根的牛顿迭代格式是_______________________________________________;4. 对126)(3++=x x x f ,差商=]3,2,1,0[f _________________;5. 已知⎪⎪⎭⎫ ⎝⎛-=-=1223,)3,2(A X T ,则=∞||||AX ________________,=)(1A Cond ______________________ ;6. 用二分法求方程01)(3=-+=x x x f 在区间[0,1]内的根,进行一步后根所在区间为_________,进行二步后根所在区间为_________________;7. 求解线性方程组⎪⎩⎪⎨⎧=+=+04511532121x x x x 的高斯—赛德尔迭代格式为_______________________________________;该迭代格式迭代矩阵的谱半径=)(G ρ_______________;8. 为使两点数值求积公式:⎰-+≈221100)()()(x f x f dx x f ωω具有最高的代数精确度,其求积节点应为______________________________________________ ;9. 记.,,1,0,,n i ih a x na b h i =+=-=计算⎰b a dx x f )(的复化梯形公式为________________________________________________;10.求积公式)]2()1([23)(30f f dx x f +≈⎰是否是插值型的__________,其代数精度为___________。
模拟试题一一、填空(每小题3分,共30分)1. 设2.40315x *=是真值 2.40194x =的近似值,则x *有 位有效数字。
2. 牛顿—柯特斯求积公式的系数和()0nn k k c =∑ 。
3 已知 12,()_________01A A ∞⎛⎫== ⎪⎝⎭则条件数cond 。
4 若332x -1x 1S(x)=1(x -1)+a(x -1)+b(x -1)+c 1x 220⎧≤≤⎪⎨≤≤⎪⎩是三次样条函数,则a =_______, b =______, c =______.5 以n + 1个 整 数 点k ( k =0,1,2,…,n ) 为 节 点 的 Lagrange 插 值 基函 数 为()k l x ( k =0,1,2,…,n ),则 nk k=0kl (x)=_____.∑6 序列{}n n=0y ∞满足递推关系:n n-1y =10y -1,(n =1,2,...),若0y 有误差, 这个计算过程____________稳定.7 若42f(x)=2x +x -3, 则f[1,2,3,4,5,6]=_____. 8 数值求积公式10311f(x)dx f()+f(1)434=⎰的代数精度是____________. 9.当x很大时,为防止损失有效数字,应该使= .10.已知A =⎢⎢⎢⎣⎡761 852 ⎥⎥⎥⎦⎤943,x =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡111,则=1Ax . 二、(10分) 用最小二乘法确定一条经过原点的二次曲线,使之拟合下列数据x 0 1.0 2.0 3.0 y 0.2 0.5 1.0 1.2三、(10分)2011A =050,b =3,203-1⎛⎫⎛⎫ ⎪ ⎪⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭用迭代公式(1)()()()(0,1,2,)k k k x x Ax b k α+=+-=求解,Ax b =问取什么实数α可使迭代收敛,什么α可使迭代收敛最快。
四、(10)设()f x 四阶连续可导,0,0,1,2,,i x x ih i =+=试建立如下数值微分公式''01212()2()()()f x f x f x f x h -+≈并推导该公式的截断误差。
目录一、绪论------------------------------------------------------------------------------------- 2-2二、线性方程组直接解法列主元高斯LU LDL T GG T-------------------- 3-6二、线性方程组迭代法----------------------------------------------------------------- 7-10 三、四、非线性方程组数值解法二分法不动点迭代---------------------- 11-13五、非线性方程组数值解法牛顿迭代下山弦截法----------------- 14-15六、插值线性插值抛物线插值------------------------------------------------ 16-18七、插值Hermite插值分段线性插值-----------------------------------------19-22八、拟合------------------------------------------------------------------------------------ 23-24九、数值积分----------------------------------------------------------------------------- 25-29十、常微分方程数值解法梯形欧拉改进----------------------------------- 30-32 十一、常微分方程数值解法龙格库塔------------------------------------------ 33-35绪论1-1 下列各数都是经过四舍五入得到的近似值 ,试分别指出它们的绝对误差限,相对误差限和有效数字的位数.X 1 =5.420, X 2 =0.5420, X 3 =0.00542, X 4 =6000, X 5 =0.6×105注:将近似值改写为标准形式X 1 =(5*10-1+4*10-2+2*10-3+0*10-4)*101 即n=4,m=1 绝对误差限|△X 1|=|X *1-X 1|≤ 12×10m-n =12×10-3 相对误差限|△r X 1|= |X∗1−X1||X∗1|≤|X∗1−X1||X1|= 12×10-3/5.4201-2 为了使101/2 的相对误差小于0.01%, 试问应取几位有效数字?1-3 求方程x 2 -56x+1=0的两个根, 使它们至少具有4位有效数字( √783≈27.982)注:原方程可改写为(x-28)2=783线性方程组解法(直接法)2-1用列主元Gauss消元法解方程组解:回代得解:X1=0 X2=-1 X3=12-2对矩阵A进行LU分解,并求解方程组Ax=b,其中解:(注:详细分解请看课本P25)A=(211132122)→(211(1/2)5/23/2(1/2)3/23/2)→(2111/25/23/21/2(3/5)3/5)即A=L×U=(11/211/23/51)×(2115/23/23/5)先用前代法解L y=P b 其中P为单位阵(原因是A矩阵未进行行变换)即L y=P b 等价为(11/211/23/51)(y1y2y3)=(111)(465)解得 y 1=4 y 2=4 y 3=35再用回代解Ux =y ,得到结果x即Ux =y 等价为(2115/23/23/5)(x 1x 2x 3)=(y 1y 2y 3)=(443/5) 解得 x 1=1 x 2=1 x 3=1即方程组Ax=b 的解为x =(111)2-3 对矩阵A 进行LDL T 分解和GG T 分解,求解方程组Ax=b,其中A=(164845−48−422) , b =(123)解:(注:课本 P 26 P 27 根平方法)设L=(l i j ),D=diag(d i ),对k=1,2,…,n,其中d k =a kk -∑l kj 2k−1j=1d jl ik =(a ik −∑l ij l kj k−1j=1d j )/ d k 即d 1=a 11-∑l 1j 20j=1d j =16-0=16因为 l 21=(a 21−∑l 2j l 1j 0j=1d j )/ d 1=a 21/ d 1=416=14 所以d 2=a 22-∑l 2j 21j=1d j =5-(14)2d 1=4同理可得d 3=9 即得 D=(1649)同理l 11=(a 11−∑l ij l 1j 0j=1d j )/ d 1=1616=1=l 22=l 33 l 21=(a 21−∑l 2j l 1j 0j=1d j )/ d 1=416=14 l 31=(a 31−∑l 3j l 1j 0j=1d j )/ d 1=816=12 l 32=(a 32−∑l 3j l 2j 1j=1d j )/ d 2=−4−12×14×164=−64=-32即L=(114112−321) L T=(114121−321) 即LDL T分解为A=(114112−321)(1649)(114121−321)解解:A=(164845−48−422)→(41212−32−33)故得GG T分解:A=(4122−33)(4122−33) LDL T分解为A=(114112−321)(1649)(114121−321) 由(114112−321)(y 1y 2y 3)=(123) ,得(y 1y 2y 3)=(0.250.8751.7083)再由(4122−33)(x 1x 2x 3)=(0.250.8751.7083) ,得(x 1x 2x 3)=(−0.54511.29160.5694)2-4 用追赶法求解方程组:解:(4−1−14−1−14−1−14−1−14)→(4−14−1154−415−15615−1556−120956−56209−1780209)由(4−1154−15615−120956−1780209)(y1y2y3y4y5)=(100200),得(y1y2y3y4y5)=(256.66671.785700.4784753.718)再由(1−141−4151−15561−562091)(x1x2x3x4x5)=(256.66671.785700.4784753.718),得(x1x2x3x4x5)=(27.0518.20525.769314.87253.718)线性方程组解法(迭代法)2-1 设线性方程组{4x 1−x 2+2x 3=1−x 1−5x 2+x 3=22x 1+x 2+6x 3=3(1) 写出Jacobi 法和SOR 法的迭代格式(分量形式) (2) 讨论这两种迭代法的收敛性(3) 取初值x (0)=(0,0,0)T ,若用Jacobi 迭代法计算时,预估误差 ||x*-x (10)||∞ (取三位有效数字)解:(1)Jacobi 法和SOR 法的迭代格式分别为Jacobi 法迭代格式SOR(2)因为A 是严格对角占优矩阵,但不是正定矩阵,故Jacobi 法收敛,SOR 法当0<ω≤1时收敛.⎪⎪⎪⎩⎪⎪⎪⎨⎧+--=-+-=+-=+++216131525151412141)(2)(1)1(3)(3)(1)1(2)(3)(2)1(1k k k k k k k k k x x x x x x xx x ⎪⎪⎪⎩⎪⎪⎪⎨⎧-++-=+-+-=+-+-+=++++++)216131()525151()412141()(3)1(2)1(1)(3)1(3)(3)(2)1(1)(2)1(2)(3)(2)(1)(1)1(1k k k k k k k k k k k k k k k x x x x x x x x x x x x x x x ωωω(3)由(1)可见||B ||∞=3/4,且取x (0)=(0,0,0)T ,经计算可得x (1)=(1/4,-2/5,1/2)T ,于是||x (1)-x (0)||∞=1/2,所以有2-2 设方程组为{5x 1+2x 2+x 3=−12−x 1+4x 2+2x 3=202x 1−3x 2+10x 3=3试写出其Jacobi 分量迭代格式以及相应的迭代矩阵,并求解。
西南交大数值分析题库填空一. 填空2.Gauss型求积公式不是插值型求积公式。
(限填“是”或“不是”)3. 设l k(x)是关于互异节点x0, x1,…, x n, 的Lagrange 插值基函数,则 0m=1,2,…,n5.用个不同节点作不超过次的多项式插值,分别采用Lagrange 插值方法与Newton插值方法所得多项式相等(相等, 不相等)。
7. n个不同节点的插值型求积公式的代数精度一定会超过n-1次8.f(x)=ax7+x4+3x+1,f[20, 21,…,27]= a,f [20, 21,…,28]= 010设(i=0,1,…,n),则= _x_ , 这里(x i x j,ij, n2)11.设称为柯特斯系数则=______1____12采用正交多项式拟合可避免最小二乘或最佳平方逼近中常见的_法方程组病态___问题。
13辛卜生(Simpson)公式具有___3____次代数精度。
14 牛顿插商与导数之间的关系式为:15试确定[0,1]区间上2x3的不超过二次的最佳一致逼近多项式p(x), 该多项式唯一否?答:p(x)=(3/2)x, ; 唯一。
17.给定方程组记此方程组的Jacobi迭代矩阵为B J=(a ij)33,则a23= -1; ,且相应的Jacobi迭代序列是__发散_____的。
18.欧拉预报--校正公式求解初值问题的迭代格式(步长为h) ,此方法是阶方法。
,此方法是 2阶方法。
19. 2n阶Newton-Cotes公式至少具有2n+1次代数精度。
20.设,则关于的 ||f|| =121矩阵的LU分解中L是一个_为单位下三角阵,而U是一个上三角阵____。
22.设y=f (x1,x2) 若x1,x2,的近似值分别为x1*, x2*,令y*=f(x1*,x2*)作为y的近似值,其绝对误差限的估计式为: ||f(x1*,x2*)|x1-x*1|+ |f(x1*,x2*)|x2-x*2|23设迭代函数(x)在x*邻近有r(1)阶连续导数,且x* = (x*),并且有(k) (x*)=0 (k=1,…,r-1),但(r) (x*)0,则x n+1=(x n)产生的序列{ x n }的收敛阶数为___r___24设公式为插值型求积公式,则, 且=b-a25称微分方程的某种数值解法为p阶方法指的是其局部截断误差为O(h p+1)。
一、 填空题(每空2分,共40分) 07~081、求方程3310x x --= 的在02x =附近的根,用迭代公式1k x += 具有局部收敛性;用迭代公式3113k k x x ++=(是,否) 具有局部收敛性。
2、函数3320,10(),01(1),12x f x x x x x x -≤<⎧⎪=≤<⎨⎪+-≤≤⎩与函数3321,10()221,01x x x g x x x x ⎧++-≤<=⎨++≤≤⎩中,是三次样条函数的函数是 ,另一函数不是三次样条函数的理由是 。
3、若用复化梯形求积公式计算积分10x I e dx =⎰ 区间[0,1]应分 _______ 等分,即要计算个_______ 点的函数值才能使截断误差不超过71102-⨯;若改用复化Simpson 公式,要达到同样精度区间[0,1]应分_____ 等分,即要计算个 _____点的函数值。
4、设若⎥⎦⎤⎢⎣⎡-=3211A ,则=1||||A ,=2||||A ,=∞||||A ;则矩阵A 的谱半径(A)= ,cond 1(A)=5、在方阵A 的LU 分解中, 方阵A 的所有顺序主子不为零,是方阵A 能进行LU 分解的______(充 分,必要)条件;严格行对角占优阵______(能,不能)进行LU 分解;非奇异矩阵_______(一定,不一 定)能进行LU 分解。
6、设f (x )=2x 4在[-1,1]上的不超过3次最佳一致逼近多项式P (x )= 。
7. 在以10((),())()(),(),()[0,1]g x f x xf x g x dx f x g x C =?ò为内积的空间C[0,1] 中,与非零常数正交的一次多项式是8、能用乘幂法解n 阶矩阵A 的特征值中,能求出模最大特征值及对应的特征向量,那么矩阵A 应满足的特征值条件为 , 特征向量条件为 。
二、 计算题(共50分)1. (14分) 设方程组1231231235212422023103x x x x x x x x x ++=-⎧⎪-++=⎨⎪-+=⎩ (1)写出Jacobi 迭代格式及Gauss-seidel 迭代格式,指出是否收敛并证明你的结论(2)如果(0)( 3.9,3.1,1.9)T x =-,分别用Jacobi 迭代格式及Gauss-seidel 迭代格式计算 (1)x2. (20分)用Householder 方法将1220014112A -⎡⎤⎢⎥=-⎢⎥⎢⎥⎣⎦化为上Hessenberg 阵 要求 (1) 写出Householder 矩阵H(2) 对应的上Hessenberg 阵 21A HA H =3. (16分) 1)设{})(x P n 是[0,1]区间上带权x x =)(ρ的最高次项系数为1的正交多项式系,求)(2x P2)构造如下的Gauss 型求积公式100110()()()xf x dx A f x A f x ?ò三、证明题 (共10分)设()f x 在区间a b [,]上具有四阶连续导数,设3()H x 是满足3()H a =()f a ,3()()H b f b =, 3()H a '=()f a ',3()()H b f b ''= 的三次Hermite 插值多项式。