考研高数总复习专题四第1讲立体几何(讲义)
- 格式:pptx
- 大小:1.86 MB
- 文档页数:37
平面与空间直线(Ⅰ)、平面的基本性质及其推论1、空间图形是由点、线、面组成的。
点、线、面的基本位置关系如下表所示:图形符号语言文字语言(读法) AaA a ∈ 点A 在直线a 上。
AaA a ∉ 点A 不在直线a 上。
AαA α∈点A 在平面α内。
AαA α∉ 点A 不在平面α内。
b a Aa b A = 直线a 、b 交于A 点。
aαaα直线a 在平面α内。
aαa α=∅ 直线a 与平面α无公共点。
aAαa A α= 直线a 与平面α交于点A 。
l αβ= 平面α、β相交于直线l 。
α⊄a αa )表示a α=∅或a A α=。
2、平面的基本性质公理1: 如果一条直线的两点在一个平面内,那么这条直线上的所有点都在这个平面内推理模式:A ABB ααα∈⎫⇒⎬∈⎭。
如图示:应用:是判定直线是否在平面内的依据,也是检验平面的方法。
BA α公理2:如果两个平面有一个公共点,那么它们还有其他公共点,且所有这些公共点的集合是一条过这个公共点的直线。
推理模式:A l A ααββ∈⎫⇒=⎬∈⎭且A l ∈且l 唯一如图示:应用:①确定两相交平面的交线位置;②判定点在直线上。
例1.如图,在四边形ABCD 中,已知AB ∥CD ,直线AB ,BC ,AD ,DC 分别与平面α相交于点E ,G ,H ,F .求证:E ,F ,G ,H 四点必定共线. 解:∵AB ∥CD ,∴AB ,CD 确定一个平面β. 又∵AB α=E ,AB ⊂β,∴E ∈α,E ∈β,即E 为平面α与β的一个公共点.同理可证F ,G ,H 均为平面α与β的公共点.∵两个平面有公共点,它们有且只有一条通过公共点的公共直线, ∴E ,F ,G ,H 四点必定共线.说明:在立体几何的问题中,证明若干点共线时,常运用公理2,即先证明这些点都是某二平面的公共点,而后得出这些点都在二平面的交线上的结论.例2.如图,已知平面α,β,且α β=l .设梯形ABCD 中,AD ∥BC ,且AB ⊂α,CD ⊂β,求证:AB ,CD ,l 共点(相交于一点). 证明 ∵梯形ABCD 中,AD ∥BC , ∴AB ,CD 是梯形ABCD 的两条腰. ∴ AB ,CD 必定相交于一点, 设AB CD =M .又∵AB ⊂α,CD ⊂β,∴M ∈α,且M ∈β.∴M ∈α β.又∵α β=l ,∴M ∈l ,即AB ,CD ,l 共点.说明:证明多条直线共点时,一般要应用公理2,这与证明多点共线是一样的.公理3: 经过不在同一条直线上的三点,有且只有一个平面。
立体几何复习讲义(1)知识点梳理: 1.四个公理公理1:如果一条直线上的 在一个平面内,那么这条直线上所有的点都在这个平面内. 公理2:如果两个平面有一个公共点,那么它们还有其他公共点,这些公共点的集合是公理3:经过 的三点,有且只有一个平面. 公理4:平行于同一条直线的两条直线互相 2.直线与直线的位置关系⎩⎨⎧共面直线⎩⎪⎨⎪⎧平行,相交,异面直线:不同在任何一个平面内,没有公共点.3.平行的判定与性质 (1)线面平行的判定与性质4.垂直的判定与性质(1)线面垂直的判定与性质(2)面面垂直的判定与性质5.空间角(1)异面直线所成的角①定义:设a与b是异面直线,经过空间任意一点O,作直线a′∥a,b′∥b,我们把a′与b′所成的叫做异面直线a,b所成的角.②范围:设两异面直线所成的角为θ,则(2)直线和平面所成的角①平面的一条斜线与它在这个所成的锐角,叫做这条直线与这个平面所成的角.②一条直线垂直于平面,我们说它们所成的角是直角;一条直线与平面平行或在平面内,我们说它们所成的角是0°的角.(3)二面角的有关概念①二面角:一般地,一条直线和由这条直线出发的所组成的图形叫做二面角.②二面角的平面角:一般地,以二面角的棱上任意一点为端点,在两个面内分别作的射线,这两条射线所成的角叫做二面角的平面角.6.几何体的侧面积和体积的有关计算柱体、锥体、台体和球体的侧面积和体积公式达标检测:1.下列结论正确的是( )A.各个面都是三角形的几何体是三棱锥B.以三角形的一条边所在直线为旋转轴,其余两边绕旋转轴旋转形成的曲面所围成的几何体叫圆锥C.棱锥的侧棱长与底面多边形的边长都相等,则该棱锥可能是六棱锥D.圆锥的顶点与底面圆周上的任意一点的连线都是母线2.如图,在Rt△ABC中,∠ABC=90°,P为△ABC所在平面外一点,PA⊥平面ABC,则四面体PABC中共有直角三角形的个数为( )A.4 B.3 C.2 D.13.已知直线m,l,平面α,β,且m⊥α,l⊂β,给出下列命题:①若α∥β,则m⊥l;②若α⊥β,则m∥l;③若m⊥l,则α⊥β;④若m∥l,则α⊥β.其中正确命题的个数是( )A.1 B.2 C.3 D.44.一个圆台上、下底面的半径分别为3 cm和8 cm,若两底面圆心的连线长为12 cm,则这个圆台的母线长为________cm.5.体积为8的正方体的顶点都在同一球面上,则该球的表面积为6.已知平面α∥β,P∉α且P∉β,过点P的直线m与α,β分别交于A,C,过点P的直线n 与α,β分别交于B,D,且P A=6,AC=9,PD=8,则BD的长为______________7.如图所示,正方体ABCDA1B1C1D1中,E,F分别为DD1,DB(1)求证:EF∥平面ABC1D1;(2)求证:CF⊥B1E.。
立体几何总复习一、几何平面的基本性质1α=∅ A α=b A =l αβ= a α=∅(α)或a A α=公理1 如果一条直线的两点在一个平面内,那么这条直线上的所有点都在这个平 推理模式:A AB B ααα∈⎫⇒⊂⎬∈⎭. 如图示: 公理2如果两个平面有一个公共点,那么它们还有其他公共点,且所有这些公共点的集合是一条过这个 推理模式:A l A ααββ∈⎫⇒=⎬∈⎭且A l ∈且l公理3 推理模式:,, A B C 不共线⇒存在唯一的平面α,使得,,A B C α∈ 推论1 经过一条直线和直线外的一点有且只有一个平面.推理模式:A a ∉⇒存在唯一的平面α,使得A α∈,l α⊂ 推论2 推理模式:P b a = ⇒存在唯一的平面α,使得,a b α⊂推论3 推理模式://a b ⇒存在唯一的平面α,使得,a b α⊂动手练习:1 下面是一些命题的叙述语,其中命题和叙述方法都正确的是( ) A .∵αα∈∈B A ,,∴α∈AB . B .∵βα∈∈a a ,,∴a =βα . C .∵α⊂∈a a A ,,∴A α∈. D .∵α⊂∉a a A ,,∴α∉A . 2.下列推断中,错误的是( )A .ααα⊂⇒∈∈∈∈lB l B A l A ,,,C .βα∈∈C B A C B A ,,,,,,且A,B,C 不共线βα,⇒B .B B A A =⇒∈∈∈∈βαβαβα ,,, D .αα∉⇒∈⊄A l A l ,3.两个平面把空间最多分成___ 部分,三个平面把空间最多分成__部分. 4.判断下列命题的真假,真的打“√”,假的打“×” (1)空间三点可以确定一个平面 ( )(2)两个平面若有不同的三个公共点,则两个平面重合( ) (3)两条直线可以确定一个平面( )(4)若四点不共面,那么每三个点一定不共线( ) (5)两条相交直线可以确定一个平面( ) (6)三条平行直线可以确定三个平面( ) (7)一条直线和一个点可以确定一个平面( ) (8)两两相交的三条直线确定一个平面( ) 5.看图填空(1)AC ∩BD = (4)平面A 1C 1CA ∩平面D 1B 1BD = (2)平面AB 1∩平面A 1C 1= (5)平面A 1C 1∩平面AB 1∩平面B 1C = (3)平面A 1C 1CA ∩平面AC = (6)A 1B 1∩B 1B ∩B 1C 1= 6 6.选择题(1)下列图形中不一定是平面图形的是 ( )A 三角形B 菱形C 梯形D 四边相等的四边形(2)空间四条直线每两条都相交,最多可以确定平面的个数是( )A 1个B 4个C 6个D 8个(3)空间四点中,无三点共线是四点共面的 ( )A 充分不必要条件B 必要不充分条件C 充分必要条件D 既不充分也不必要1二、立体几何线面关系(一)、判定两线平行的方法1、平行于同一直线的两条直线互相平行2、垂直于同一平面的两条直线互相平行3、如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线就和交线平行4、如果两个平行平面同时和第三个平面相交,那么它们的交线平行5、在同一平面内的两条直线,可依据平面几何的定理证明(二)、判定线面平行的方法6、据定义:如果一条直线和一个平面没有公共点7、如果平面外的一条直线和这个平面内的一条直线平行,则这条直线和这个平面平行8、两面平行,则其中一个平面内的直线必平行于另一个平面9、平面外的两条平行直线中的一条平行于平面,则另一条也平行于该平面10、平面外的一条直线和两个平行平面中的一个平面平行,则也平行于另一个平面(三)、判定面面平行的方法1、定义:没有公共点2、如果一个平面内有两条相交直线都平行于另一个平面,则两面平行3 垂直于同一直线的两个平面平行4、平行于同一平面的两个平面平行(四)、面面平行的性质1、两平行平面没有公共点2、两平面平行,则一个平面上的任一直线平行于另一平面3、两平行平面被第三个平面所截,则两交线平行4、垂直于两平行平面中一个平面的直线,必垂直于另一个平面(五)、判定线面垂直的方法1、定义:如果一条直线和平面内的任何一条直线都垂直,则线面垂直2、如果一条直线和一个平面内的两条相交线垂直,则线面垂直3、如果两条平行直线中的一条垂直于一个平面,则另一条也垂直于该平面4、一条直线垂直于两个平行平面中的一个平面,它也垂直于另一个平面5、如果两个平面垂直,那么在一个平面内垂直它们交线的直线垂直于另一个平面6、如果两个相交平面都垂直于另一个平面,那么它们的交线垂直于另一个平面(六)、判定两线垂直的方法1、 定义:成︒90角2、 直线和平面垂直,则该线与平面内任一直线垂直3、 在平面内的一条直线,如果和这个平面的一条斜线的射影垂直,那么它也和这条斜线垂直4、 在平面内的一条直线,如果和这个平面的一条斜线垂直,那么它也和这条斜线的射影垂直5、 一条直线如果和两条平行直线中的一条垂直,它也和另一条垂直 (七)、判定面面垂直的方法1、 定义:两面成直二面角,则两面垂直2、 一个平面经过另一个平面的一条垂线,则这个平面垂直于另一平面 (八)、面面垂直的性质 1、 二面角的平面角为︒902、 在一个平面内垂直于交线的直线必垂直于另一个平面3、 相交平面同垂直于第三个平面,则交线垂直于第三个平面(九)、各种角的范围 1、异面直线所成的角的取值范围是:︒≤<︒900θ (]︒︒90,0 2、直线与平面所成的角的取值范围是:︒≤≤︒900θ []︒︒90,0 3、斜线与平面所成的角的取值范围是:︒≤<︒900θ (]︒︒90,04、二面角的大小用它的平面角来度量;取值范围是:︒≤<︒1800θ (]︒︒180,0动手练习1.判断题(对的打“√”,错的打“×”)(1)垂直于两条异面直线的直线有且只有一条 ( )(2)两线段AB 、CD 不在同一平面内,如果AC =BD ,AD =BC ,则AB ⊥CD ( ) (3)在正方体中,相邻两侧面的一对异面的对角线所成的角为60º ( ) (4)四边形的一边不可能既和它的邻边垂直,又和它的对边垂直 ( ) 2.右图是正方体平面展开图,在这个正方体中①BM 与ED 平行;②CN 与BE 是异面直线; ③CN 与BM 成60º角;④DM 与BN 垂直.以上四个命题中,正确命题的序号是( )(A )①②③ (B )②④ (C )③④ (D 3 ,,,E F G H 分别是空间四边形四条边,,,AB BC CD DA 的中点,EA FB CMN D(1)求证四边形EFGH(2)若AC ⊥BD 时,求证:EFGH 为矩形; (3)若BD =2,AC =6,求22HF EG +;(4)若AC 、BD 成30º角,AC =6,BD =4,求四边形EFGH 的面积;(5)若AB =BC =CD =DA =AC =BD =2,求AC 与BD 间的距离.4 ABCD 中,2AD BC ==,,E F 分别是,AB CD 的中点,EF = 求异面直线,AD BC5. 在正方体ABCD -A 1B 1C 1D 1中,求(1)A 1B 与B 1D 1所成角; (2)AC 与BD 1所成角.6.在长方体D C B A ABCD '''-中,已知AB=a ,BC=b ,A A '=c(a >b),求异面直线B D '与AC7.如图,已知P 是平行四边形ABCD 所在平面外一点,M 、N 分别是AB 、PC (1)求证://MN 平面PAD ;(2)若4MN BC ==,PA = 求异面直线PA 与MN8.如图,正方形ABCD 与ABEF 不在同一平面内,M 、N 分别在AC 、BF 上,且AM FN =求证://MN 平面CBE三、空间图形一、面积:1、ch s =直棱柱侧 ()为直截面周长斜棱柱侧``c l c s = rh cl s π2==圆柱侧 2、中截面面积:2`0ss s += 3、`21ch s =正棱锥侧 rl cl s π==21圆锥侧 4、()``21h c c s +=正棱台侧()()l r r l c c s ``21+=+=π圆台 5、预备定理ph s π2=锥球内接圆台,圆柱,圆①24r s π=球 ②rh s π2=球带 ③)(222h r rh s +==ππ球冠 6、面积比是相似比的平方,体积比是相似比的立方7、圆锥轴截面的顶角α和侧面展开图的圆心角θ的关系为:2sin 22αππθ⋅=⋅=l r 8、圆台上、下底面半径为r`、r ,母线为l,圆台侧面展开后所得的扇环圆心角为θ,则:lc c l r r l r r `2`360`-=⋅-=︒⋅-=πθ 9、圆锥中,过两母线的截面面积为s当轴截面顶角(]︒︒∈90,0α时,αsin 212l s s ==轴截面截面最大 当轴截面顶角[)︒︒∈180,90α时,轴截面截面最大s l l s ≠=︒=222190sin 21 10、球面距离θ⋅=R l (θ用弧度表示,Rl =θ) 二、体积 1、l s sh V `==棱柱(s`为直截面面积) sh h r V =⋅=2π圆柱2、sh V 31=棱锥sh h r V 31312=⋅=π圆锥3、`)`(31s s s s h V +⋅+=棱台 =++=)``(3122r rr r h V π圆台`)`(31s s s s h +⋅+ 4、334R V π=球5、)3(31)3(61222h R h h r h V -=+=ππ球缺6、)(31体适用于有内切球的多面内切球半径表体r S V ⋅=1 n 面体共有8条棱,5个顶点,求n 2.一个正n 面体共有8个顶点,每个顶点处共有三条棱,求n 3.一个简单多面体的各面都是三角形,证明它的顶点数V 和面数F 有下面的关系:F =2V -4 4.有没有棱数是75.①过球面上任意两点,作球的大圆的个数是 .②球半径为25cm ,球心到截面距离为24cm ,则截面面积为 .③已知球的两个平行截面的面积分别是5π和8π,它们位于球心同一侧,且相距1,则球半径是 .④球O 直径为4,,A B 为球面上的两点且AB =,A B 两点的球面距离为 . ⑤北纬60圈上,M N 两地,它们在纬度圈上的弧长是2Rπ(R 为地球半径),则这两地间的球面距离为 .7.北纬45圈上有,A B 两地,A 在东径120,B 在西径150,设地球半径为R ,,A B 两地球面距离为 ;8.一个球夹在120二面角内,两切点在球面上最短距离为cm π,则球半径为 ;9.设地球的半径为R ,在北纬45°圈上有A 、B 两点,它们的经度相差90°,那么这两点间的纬线的长为_________,两点间的球面距离是_________. 球的大圆面积增大为原来的4倍,则体积增大为原来的 倍;11.三个球的半径之比为1:2:3,那么最大的球的体积是其余两个球的体积和的 倍; 12.若球的大圆面积扩大为原来的4倍,则球的体积比原来增加 倍; 13.把半径分别为3,4,5的三个铁球,熔成一个大球,则大球半径是 ; 14.正方体全面积是24,它的外接球的体积是 ,内切球的体积是 . 球O 1、O 2分别与正方体的各面、各条棱相切,正方体的各顶点都在球O 3的表面上,求三个球的表面积之比.16.表面积为324π的球,其内接正四棱柱的高是1417. 正四面体ABCD 的棱长为a ,球O 是内切球,球O 1是与正四面体的三个面和球O 都相切的一个小球,求球O 1的体积.D'C'B'A'D CBAH OA'D'C'B'DCBA判断下列结论是否正确,为什么?(1)有一个面是多边形,其余各面是三角形的几何体是棱锥; (2)正四面体是四棱锥;(3)侧棱与底面所成的角相等的棱锥是正棱锥;(4)侧棱长相等,各侧面与底面所成的角相等的棱锥是正棱锥.2 ABCD A B C D ''''-中,,3A AB A AD BAD π''∠=∠∠=,,AB AD a AA b '===,求对角面BB D D ''3.已知:正四棱柱ABCD A B C D ''''-的底面边长为2 (1)求二面角B AC B '--的大小;(2)求点B 到平面AB C '4.棱长为a 的正方体OABC O A B C ''''-中,,E F 分别为棱,AB BC 上的动点,且(0)AE BF x x a ==≤≤,(1)求证:A F C E ''⊥;(2)当BEF ∆的面积取得最大值时,求二面角B EF B '--的大小.5. 如图,M 、N 分别是棱长为1的正方体''''D C B A ABCD -的棱'BB 、''C B 的中点.求异面直线MN 与CBOCBA A GEP D CBA'CD 所成的角.6.在三棱锥P ABC -中,ABC ∆为正三角形,90PCA ∠=,D 为PA 中点,二面角P AC B --为120,2,PC AB ==(1)求证:AC BD ⊥;(2)求BD 与底面ABC 所成的角,(3)求三棱锥P ABC -的体积.7. 斜三棱柱的底面的边长是4cm 的正三角形,侧棱长为3cm,侧棱1AA 与底面相邻两边都成060角. (1)求证:侧面11CC B B 是矩形; (2)求这个棱柱的侧面积; (3)求棱柱的体积.。
第1讲 空间几何体高考《考试大纲》的要求:① 认识柱、锥、台、球及其简单组合体的结构特征,并能运用这些特征描述现实生活中简单物体的结构.② 能画出简单空间图形(长方体、球、圆柱、圆锥、棱柱等的简易组合)的三视图,能识别上述的三视图所表示的立体模型,会用斜二测法画出它们的直观图.③ 会用平行投影与中心投影两种方法,画出简单空间图形的三视图与直观图,了解空间图形的不同表示形式.④ 会画某些建筑物的视图与直观图(在不影响图形特征的基础上,尺寸、线条等不作严格要求). ⑤ 了解球、棱柱、棱锥、台的表面积和体积的计算公式(不要求记忆公式). (一)例题选讲:例1.四面体ABCD 的外接球球心在CD 上,且CD =2,AB =3,在外接球面上两点A 、B 间的球面距离是( )A .6π B .3πC .32πD .65π例2.如果圆台的母线与底面成60°角,那么这个圆台的侧面积与轴截面面积的比为( )A .π2B .π23C .π332D .π21例3.在正三棱柱ABC —A 1B 1C 1中,侧棱长为2,底面三角形的边长为1,则BC 1与侧面ACC 1A 1所成的角是 .例4.如图所示,等腰△ABC 的底边AB =66,高CD =3,点B 是线段BD 上异于点B 、D 的动点.点F 在BC 边上,且EF ⊥AB .现沿EF 将△BEF 折起到△PEF 的位置,使PE ⊥AE .记BE =x ,V (x )表示四棱锥P-ACFE 的体积.(1)求V (x )的表达式;(2)当x 为何值时,V (x )取得最大值?(3)当V (x )取得最大值时,求异面直线AC 与PF 所成角的余弦值。
(二)基础训练:1.下列几何体各自的三视图中,有且仅有两个视图相同的是( )A .①②B .①③C .①④D .②④2.设地球半径为R ,若甲地位于北纬045东经0120,乙地位于南纬度075东经0120,则甲、乙两地球面距离为( )(A(B) 6R π(C)56R π(D) 23R π①正方形 ②圆锥 ③三棱台 ④正四棱锥C3.若一个底面边长为2的正六棱柱的所有顶点都在一个球的面上,则此球的体积为 .4. 已知,,A B C 三点在球心为O ,半径为R 的球面上,AC BC ⊥,且AB R =,那么,A B 两点的球面距离为___________,球心到平面ABC 的距离为________ 5.如图,四棱锥P —ABCD 中,底面ABCD 为矩形,AB=8,AD=43,侧面PAD 为等边三角形,并且与底面所成二面角为60°. (Ⅰ)求四棱锥P —ABCD 的体积; (Ⅱ)证明PA ⊥BD.(三)巩固练习:1.若一个圆锥的轴截面是等边三角形,其面积为3,则这个圆锥的全面积是( )(A )π3 (B )π33 (C )π6 (D )π92、已知各顶点都在一个球面上的正四棱柱高为4,体积为16,则这个球的表面积是( )A .16πB .20πC .24πD .32π3.一个圆锥和一个半球有公共底面,如果圆锥的体积恰好与半球的体积相等,那么,这个圆锥轴截面顶角的余弦值是( ) A.34 B.45 C.35 D.-35 4.已知球O 的半径为1,A 、B 、C 三点都在球面上,且每两点间的球面距离为2π,则球心O 到平面ABC 的距离为( )(A )31 (B )33 (C )32 (D)36 5.表面积为的正八面体的各个顶点都在同一个球面上,则此球的体积为()A .3 B .13π C.23π D .36.已知正四棱锥的体积为12,底面对角线的长为,则侧面与底面所成的二面角等于________7.请您设计一个帐篷。
⽴体⼏何专题复习讲义资料1平⾏关系例题讲解:例1:已知四⾯体ABCD 中,M 、N 分别是△ABC 和△ACD 的重⼼,求证:(1)MN ∥平⾯ABD ; (2)BD ∥平⾯CMN 。
答案与提⽰:连CM 、CN 分别交AB 、AD 于E 、F ,连EF ,易证 MN ∥EF ∥BD例2.已知边长为10的等边三⾓形ABC 的顶点A 在平⾯α内,顶点B 、C 在平⾯α的上⽅,BD 为AC 边上的中线,B 、C 到平⾯α的距离BB 1=2,CC 1=4. (1)求证:BB 1∥平⾯ACC 1 (2)求证:BD ⊥平⾯ACC 1 (3)求四棱锥A -BCC 1B 1的体积答案与提⽰:(3)307例3.已知P A ⊥平⾯ABCD ,四边形ABCD 是矩形,M 、N 分别是AB 、PC 的中点.(1) 求证:MN ∥平⾯P AD ; (2) 求证:MN ⊥CD ;(3) 若平⾯PCD 与平⾯ABCD 所成⼆⾯⾓为θ,问能否确定θ的值,使得MN 是异⾯直线AB 与PC 的公垂线.答案与提⽰:(3)45°备⽤题如图,在三棱锥P -ABC 中,P A ⊥⾯ABC ,△ABC 为正三⾓形, D 、E 分别为BC 、AC 的中点,设AB =2P A =2,(1)如何在BC 上找⼀点F ,使AD ∥平⾯PEF ?说明理由; (2)对于(1)中的点F ,求⼆⾯⾓P -EF -A 的⼤⼩;答案与提⽰:(1)F 为CD 中点(2)arctan2作业在正四棱柱ABCD -A 1B 1C 1D 1中,AA 1=12 AB ,点E 、M 分别为A 1B 、C 1C 的中点,过A 1,B ,M 三点的平⾯交C 1D 1于点N 。
(1)求证:EM ∥平⾯ABCD ; (2)求⼆⾯⾓B -A 1N -B 1的正切值。
答案与提⽰:(2)arctan542垂直关系例题讲解:例1:如图,在三棱锥P -ABC 中,AB =BC =CA ,P A ⊥底⾯ABC ,D 为AB 的中点.(1)求证:CD ⊥PB ;(2)设⼆⾯⾓A -PB -C 的平⾯⾓为α,且tan α=7答案与提⽰:(2)18例2:已知ABCD —A 1B 1C 1D 1是棱长为a 的正⽅体,E 、F G 是A 1C 1的中点.(1)求证平⾯BFD 1E ⊥平⾯BGD 1; (2)求点G 到平⾯BFD 1E 的距离; (3)求四棱锥A 1-BFD 1E 的体积.答案与提⽰:(2)66a (3) 16a 3例3:四边形ABCD 中.AD ∥BC ,AD =AB ,∠BCD =45°,∠BAD =90°,将△ABD 沿对⾓线BD 折起,记折起点A 的位置为P ,且使平⾯PBD ⊥平⾯BCD . (1)求证:CD ⊥平⾯PBD ;(2)求证:平⾯PBC ⊥平⾯PDC ; (3)求⼆⾯⾓P —BC —D 的⼤⼩.答案与提⽰:(2)先证PB ⊥⾯PCD (3)arctan 2备⽤题在三棱锥S -ABC 中,已知SA =4,AB =AC ,BC =3 6 ,∠SAB =∠SAC =45°,SA 与底⾯ABC 所的⾓为30°. E(1)求证:SA ⊥BC ;(2)求⼆⾯⾓S —BC —A 的⼤⼩; (3)求三棱锥S —ABC 的体积.答案与提⽰:(2)arctan 23 3 (3)9 2作业1.在四棱锥P -ABCD 中,已知PD ⊥底⾯ABCD ,底⾯ABCD 为等腰梯形,且∠DAB =60°,AB =2CD ,∠DCP =45°,设CD =a .(1)求四棱锥P -ABCD 的体积. (2)求证:AD ⊥PB .答案与提⽰:(1)34a 32.如图,正三⾓形ABC 与直⾓三⾓形BCD 成直⼆⾯⾓,且∠BCD =90°,∠CBD =30°.(1)求证:AB ⊥CD ;(2)求⼆⾯⾓D —AB —C 的⼤⼩;答案与提⽰:(2)arctan 233 空间⾓例1、如图1,设ABC -A 1B 1C 1是直三棱柱,F 是A 1B 1的中点,且B(1)求证:AF ⊥A 1C ; (2)求⼆⾯⾓C -AF -B 的⼤⼩.解:(1)如图2,设E 是AB 的中点,连接CE ,EA 1.由ABC -A 1B 1C 1是直三棱柱,知AA 1⊥平⾯ABC ,⽽CE 平⾯ABC ,所以CE ⊥AA 1,∵AB =2AA 1=2a ,∴AA 1=a ,AA 1⊥AE ,知AA 1FE 是正⽅形,从⽽AF ⊥A 1E .⽽A 1E 是A 1C 在平⾯AA 1FE 上的射影,故AF ⊥A 1C ;(2)设G 是AB 1与A 1E 的中点,连接CG .因为CE ⊥平⾯AA 1B 1B ,AF ⊥A 1E ,由三垂线定理,CG ⊥AF ,所以∠CGE 就是⼆⾯⾓C -AF -B 的平⾯⾓.∵AA 1FE 是正⽅形,AA 1=a ,∴112EG EA ==,∴CG ==,∴tan ∠CGE=CG EG ===∠CGE =60 ,从⽽⼆⾯⾓C -AF -B 的⼤⼩为60 。
一、知识结构1.空间多边形不在同一平面内的若干线段首尾相接所成的图形叫做空间折线.若空间折线的最后一条线段的尾端与最初一条线段的首端重合,则叫做封闭的空间折线.若封闭的空间折线各线段彼此不相交,则叫做这空间多边形平面,平面是一个不定义的概念,几何里的平面是无限伸展的.平面通常用一个平行四边形来表示.平面常用希腊字母α、β、γ…或拉丁字母M 、N 、P 来表示,也可用表示平行四边形的两个相对顶点字母表示,如平面AC.在立体几何中,大写字母A ,B ,C ,…表示点,小写字母,a,b,c,…l,m,n,…表示直线,且把直线和平面看成点的集合,因而能借用集合论中的符号表示它们之间的关系,例如:A∈l—点A 在直线l 上;A ∉α—点A 不在平面α内;l ⊂α—直线l 在平面α内;a ⊄α—直线a 不在平面α内;l∩m=A—直线l 与直线m 相交于A 点;α∩l=A—平面α与直线l 交于A 点;α∩β=l —平面α与平面β相交于直线l.2.平面的基本性质公理1 如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在这个平面内.公理2 如果两个平面有一个公共点,那么它们有且只有一条通过这个点的公共直线. 公理3 经过不在同一直线上的三个点,有且只有一个平面.根据上面的公理,可得以下推论.推论1 经过一条直线和这条直线外一点,有且只有一个平面.推论2 经过两条相交直线,有且只有一个平面.推论3 经过两条平行直线,有且只有一个平面.3.证题方法4.空间线面的位置关系 平行—没有公共点 共面(1)直线与直线 相交—有且只有一个公共点异面(既不平行,又不相交)直线在平面内—有无数个公共点(2)直线和平面 直线不在平面内 平行—没有公共点(直线在平面外) 相交—有且只有一个公共点相交—有一条公共直线(无数个公共点)(3)平面与平面证题方法 间接证法直接证法反证法 同一法平行—没有公共点5.异面直线的判定证明两条直线是异面直线通常采用反证法.有时也可用定理“平面内一点与平面外一点的连线,与平面内不经过该点的直线是异面直线”.6.线面平行与垂直的判定(1)两直线平行的判定①定义:在同一个平面内,且没有公共点的两条直线平行.②如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行,即若a∥α,a β,α∩β=b,则a∥b.③平行于同一直线的两直线平行,即若a∥b,b∥c,则a∥c.④垂直于同一平面的两直线平行,即若a⊥α,b⊥α,则a∥b⑤两平行平面与同一个平面相交,那么两条交线平行,即若α∥β,α∩γ,β∩γ=b,则a∥b⑥如果一条直线和两个相交平面都平行,那么这条直线与这两个平面的交线平行,即若α∩β=b,a∥α,a∥β,则a∥b.(2)两直线垂直的判定①定义:若两直线成90°角,则这两直线互相垂直.②一条直线与两条平行直线中的一条垂直,也必与另一条垂直.即若b∥c,a⊥b,则a⊥c③一条直线垂直于一个平面,则垂直于这个平面内的任意一条直线.即若a⊥α,b⊂α,a⊥b.④三垂线定理和它的逆定理:在平面内的一条直线,若和这个平面的一条斜线的射影垂直,则它也和这条斜线垂直.⑤如果一条直线与一个平面平行,那么这条直线与这个平面的垂线垂直.即若a∥α,b⊥α,则a⊥b.⑥三个两两垂直的平面的交线两两垂直,即若α⊥β,β⊥γ,γ⊥α,且α∩β=a,β∩γ=b,γ∩α=c,则a⊥b,b⊥c,c⊥a.(3)直线与平面平行的判定①定义:若一条直线和平面没有公共点,则这直线与这个平面平行.②如果平面外一条直线和这个平面内的一条直线平行,则这条直线与这个平面平行.即若a⊄α,b⊂α,a∥b,则a∥α.③两个平面平行,其中一个平面内的直线平行于另一个平面,即若α∥β,l⊂α,则l∥β.④如果一个平面和平面外的一条直线都垂直于同一平面,那么这条直线和这个平面平行.即若α⊥β,l⊥β,l⊄α,则l∥α.⑤在一个平面同侧的两个点,如果它们与这个平面的距离相等,那么过这两个点的直线与这个平面平行,即若A∉α,B∉α,A、B在α同侧,且A、B到α等距,则AB∥α.⑥两个平行平面外的一条直线与其中一个平面平行,也与另一个平面平行,即若α∥β,a⊄α,a⊄β,a∥α,则α∥β.⑦如果一条直线与一个平面垂直,则平面外与这条直线垂直的直线与该平面平行,即若a⊥α,b⊄α,b⊥a,则b∥α.⑧如果两条平行直线中的一条平行于一个平面,那么另一条也平行于这个平面(或在这个平面内),即若a∥b,a∥α,b∥α(或b⊂α)(4)直线与平面垂直的判定①定义:若一条直线和一个平面内的任何一条直线垂直,则这条直线和这个平面垂直.②如果一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直于这个平面.即若m⊂α,n⊂α,m∩n=B,l⊥m,l⊥n,则l⊥α.③如果两条平行线中的一条垂直于一个平面,那么另一条也垂直于同一平面.即若l∥a,a⊥α,则l⊥α.④一条直线垂直于两个平行平面中的一个平面,它也垂直于另一个平面,即若α∥β,l⊥β,则l⊥α.⑤如果两个平面互相垂直,那么在一个平面内垂直于它们交线的直线垂直于另一个平面,即若α⊥β,a∩β=α,l⊂β,l⊥a,则l⊥α.⑥如果两个相交平面都垂直于第三个平面,则它们的交线也垂直于第三个平面,即若α⊥γ,β⊥γ,且a∩β=α,则a⊥γ.(5)两平面平行的判定①定义:如果两个平面没有公共点,那么这两个平面平行,即无公共点⇔α∥β.②如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行,即若a,b⊂α,a∩b=P,a∥β,b∥β,则α∥β.③垂直于同一直线的两平面平行.即若α⊥a,β⊥a,则α∥β.④平行于同一平面的两平面平行.即若α∥β,β∥γ,则α∥γ.⑤一个平面内的两条直线分别平行于另一平面内的两条相交直线,则这两个平面平行,即若a,b⊂α,c,d⊂β,a∩b=P,a∥c,b∥d,则α∥β.(6)两平面垂直的判定①定义:两个平面相交,如果所成的二面角是直二面角,那么这两个平面互相垂直,即二面角α-a-β=90°⇔α⊥β.②如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直,即若l⊥β,l⊂α,则α⊥β.③一个平面垂直于两个平行平面中的一个,也垂直于另一个.即若α∥β,α⊥γ,则β⊥γ.7.直线在平面内的判定(1)利用公理1:一直线上不重合的两点在平面内,则这条直线在平面内.(2)若两个平面互相垂直,则经过第一个平面内的一点垂直于第二个平面的直线在第一个平面内,即若α⊥β,A∈α,AB⊥β,则AB⊂α.(3)过一点和一条已知直线垂直的所有直线,都在过此点而垂直于已知直线的平面内,即若A∈a,a⊥b,A∈α,b⊥α,则a⊂α.(4)过平面外一点和该平面平行的直线,都在过此点而与该平面平行的平面内,即若P∉α,P∈β,β∥α,P∈a,a∥α,则a⊂β.(5)如果一条直线与一个平面平行,那么过这个平面内一点与这条直线平行的直线必在这个平面内,即若a∥α,A∈α,A∈b,b∥a,则b⊂α.8.存在性和唯一性定理(1)过直线外一点与这条直线平行的直线有且只有一条;(2)过一点与已知平面垂直的直线有且只有一条;(3)过平面外一点与这个平面平行的平面有且只有一个;(4)与两条异面直线都垂直相交的直线有且只有一条;(5)过一点与已知直线垂直的平面有且只有一个;(6)过平面的一条斜线且与该平面垂直的平面有且只有一个;(7)过两条异面直线中的一条而与另一条平行的平面有且只有一个;(8)过两条互相垂直的异面直线中的一条而与另一条垂直的平面有且只有一个.9.射影及有关性质(1)点在平面上的射影自一点向平面引垂线,垂足叫做这点在这个平面上的射影,点的射影还是点.(2)直线在平面上的射影自直线上的两个点向平面引垂线,过两垂足的直线叫做直线在这平面上的射影.和射影面垂直的直线的射影是一个点;不与射影面垂直的直线的射影是一条直线.(3)图形在平面上的射影一个平面图形上所有的点在一个平面上的射影的集合叫做这个平面图形在该平面上的射影.当图形所在平面与射影面垂直时,射影是一条线段;当图形所在平面不与射影面垂直时,射影仍是一个图形.(4)射影的有关性质从平面外一点向这个平面所引的垂线段和斜线段中:(i)射影相等的两条斜线段相等,射影较长的斜线段也较长;(ii)相等的斜线段的射影相等,较长的斜线段的射影也较长;(iii)垂线段比任何一条斜线段都短.10.空间中的各种角等角定理及其推论定理若一个角的两边和另一个角的两边分别平行,并且方向相同,则这两个角相等.推论若两条相交直线和另两条相交直线分别平行,则这两组直线所成的锐角(或直角)相等.异面直线所成的角(1)定义:a、b是两条异面直线,经过空间任意一点O,分别引直线a′∥a,b′∥b,则a′和b′所成的锐角(或直角)叫做异面直线a和b所成的角.(2)取值范围:0°<θ≤90°.(3)求解方法①根据定义,通过平移,找到异面直线所成的角θ;②解含有θ的三角形,求出角θ的大小.11.直线和平面所成的角(1)定义和平面所成的角有三种:(i)垂线面所成的角的一条斜线和它在平面上的射影所成的锐角,叫做这条直线和这个平面所成的角.(ii)垂线与平面所成的角直线垂直于平面,则它们所成的角是直角.(iii)一条直线和平面平行,或在平面内,则它们所成的角是0°的角.(2)取值范围0°≤θ≤90°(3)求解方法①作出斜线在平面上的射影,找到斜线与平面所成的角θ.②解含θ的三角形,求出其大小.③最小角定理斜线和平面所成的角,是这条斜线和平面内经过斜足的直线所成的一切角中最小的角,亦可说,斜线和平面所成的角不大于斜线与平面内任何直线所成的角.12.二面角及二面角的平面角(1)半平面直线把平面分成两个部分,每一部分都叫做半平面.(2)二面角条直线出发的两个半平面所组成的图形叫做二面角.这条直线叫做二面角的棱,这两个平面叫做二面角的面,即二面角由半平面一棱一半平面组成.若两个平面相交,则以两个平面的交线为棱形成四个二面角.二面角的大小用它的平面角来度量,通常认为二面角的平面角θ的取值范围是0°<θ≤180°(3)二面角的平面角①以二面角棱上任意一点为端点,分别在两个面内作垂直于棱的射线,这两条射线所组成的角叫做二面角的平面角.如图,∠PCD 是二面角α-AB-β的平面角.平面角∠PCD 的大小与顶点C 在棱AB 上的位置无关.②二面角的平面角具有下列性质:(i)二面角的棱垂直于它的平面角所在的平面,即AB⊥平面PCD.(ii)从二面角的平面角的一边上任意一点(异于角的顶点)作另一面的垂线,垂足必在平面角的另一边(或其反向延长线)上.(iii)二面角的平面角所在的平面与二面角的两个面都垂直,即平面PCD⊥α,平面PCD⊥β.③找(或作)二面角的平面角的主要方法.(i)定义法(ii)垂面法(iii)三垂线法(Ⅳ)根据特殊图形的性质(4)求二面角大小的常见方法①先找(或作)出二面角的平面角θ,再通过解三角形求得θ的值.②利用面积射影定理S′=S·cos α其中S 为二面角一个面内平面图形的面积,S′是这个平面图形在另一个面上的射影图形的面积,α为二面角的大小.③利用异面直线上两点间的距离公式求二面角的大小.13.空间的各种距离点到平面的距离(1)定义 面外一点引一个平面的垂线,这个点和垂足间的距离叫做这个点到这个平面的距离.(2)求点面距离常用的方法:1)直接利用定义求①找到(或作出)表示距离的线段;②抓住线段(所求距离)所在三角形解之.2)利用两平面互相垂直的性质.即如果已知点在已知平面的垂面上,则已知点到两平面交线的距离就是所求的点面距离.3)体积法其步骤是:①在平面内选取适当三点,和已知点构成三棱锥;②求出此三棱锥的体积V 和所取三点构成三角形的面积S ;③由V=31S·h,求出h 即为所求.这种方法的优点是不必作出垂线即可求点面距离.难点在于如何构造合适的三棱锥以便于计算.4)转化法将点到平面的距离转化为(平行)直线与平面的距离来求.14.直线和平面的距离(1)定义一条直线和一个平面平行,这条直线上任意一点到平面的距离,叫做这条直线和平面的距离.(2)求线面距离常用的方法①直接利用定义求证(或连或作)某线段为距离,然后通过解三角形计算之.②将线面距离转化为点面距离,然后运用解三角形或体积法求解之.③作辅助垂直平面,把求线面距离转化为求点线距离.15.平行平面的距离(1)定义个平行平面同时垂直的直线,叫做这两个平行平面的公垂线.公垂线夹在两个平行平面间的部分,叫做这两个平行平面的公垂线段.两个平行平面的公垂线段的长度叫做这两个平行平面的距离.(2)求平行平面距离常用的方法①直接利用定义求证(或连或作)某线段为距离,然后通过解三角形计算之.②把面面平行距离转化为线面平行距离,再转化为线线平行距离,最后转化为点线(面)距离,通过解三角形或体积法求解之.16.异面直线的距离(1)定义条异面直线都垂直相交的直线叫做两条异面直线的公垂线.两条异面直线的公垂线在这两条异面直线间的线段的长度,叫做两条异面直线的距离.任何两条确定的异面直线都存在唯一的公垂线段.(2)求两条异面直线的距离常用的方法①定义法题目所给的条件,找出(或作出)两条异面直线的公垂线段,再根据有关定理、性质求出公垂线段的长.此法一般多用于两异面直线互相垂直的情形.②转化法为以下两种形式:线面距离面面距离③等体积法④最值法⑤射影法⑥公式法。