13级高等数学D期末试卷A参考答案
- 格式:doc
- 大小:80.56 KB
- 文档页数:1
高等数学期末试题(含答案) 高等数学检测试题一。
选择题(每题4分,共20分)1.计算 $\int_{-1}^1 xdx$,答案为(B)2.2.已知 $2x^2y=2$,求$\lim\limits_{(x,y)\to(0,0)}\frac{x^4+y^2}{x^2y}$,答案为(D)不存在。
3.计算 $\int \frac{1}{1-x}dx$,答案为(D)$-2(x+\ln|1-x|)+C$。
4.设 $f(x)$ 的导数在 $x=a$ 处连续,且 $\lim\limits_{x\to a}\frac{f'(x)}{x-a}=2$,则 $x=a$ 是 $f(x)$ 的(A)极小值点。
5.已知 $F(x)$ 的一阶导数 $F'(x)$ 在 $\mathbb{R}$ 上连续,且 $F(0)=0$,则 $\frac{d}{dx}\int_0^x F'(t)dt$ 的值为(D)$-F(x)-xF'(x)$。
二。
填空:(每题4分,共20分)1.$\iint\limits_D dxdy=1$,若 $D$ 是平面区域 $\{(x,y)|-1\leq x\leq 1,1\leq y\leq e\}$,则 $\iint\limits_D y^2x^2dxdy$ 的值为(未完成)。
2.$\lim\limits_{x\to\infty}\frac{\left(\cos\frac{\pi}{n}\right)^2+\left(\cos\frac{2\pi}{n}\right)^2+\cdots+\left(\cos\frac{(n-1)\pi}{n}\right)^2}{n\pi}$ 的值为(未完成)。
3.设由方程 $xyz=e$ 确定的隐函数为 $z=z(x,y)$,则$\frac{\partial z}{\partial x}\bigg|_{(1,1)}$ 的值为(未完成)。
4.设 $D=\{(x,y)|x^2+y^2\leq a^2\}$,若$\iint\limits_D\sqrt{a^2-x^2-y^2}dxdy=\pi$,则 $D$ 的面积为(未完成)。
高数期中2021年11月24日一、1:A 2: B 3:D 4:C 5: A 6:B二、1:4,||1,0,||1x x x ⎧≤⎨>⎩, 2:222()x x e f e dx --'-, 3:25y x =- 4:4, 5:(,)-∞+∞, 6:1111(1)!(2)(1)n n n n x x ++⎛⎫-- ⎪--⎝⎭, 7:1, 8:2sin sin 2x e x 。
三、2222000323431.lim lim lim .222x x x x x x x x x e e x e e e e x x---→→→--+--解原式==== 2. 解 42(1)4(1)(arctan )dy t t t dx t t '+==+'-, 222222222(4(1))4124(13)(1)(arctan )/(1)d y t t t t t t t dx t t t'++++==='-+,四、223/223/21ln((1)(1)x y x y x x 1.解'''=+-==++ 2320000sin sin ln 11ln sin cos 11lim lim lim lim tan 362..x x x x x x x x x x x x x x x x e e e e e→→→→⎛⎫⎛⎫+- ⎪ ⎪--⎝⎭⎝⎭-解原式===== 五、cos 1.cos sin , ,1sin dy y x y y x y y dx x y''=-⋅=+解两边对求导数: 22223sin cos (sin )sin 2cos (1sin ).(1sin )(1sin )d y y y y x y y x y y dx x y x y '--+++==-++ 2.解0000lim ()lim ()(0),lim ()lim 1,x x x x x f x ae b a b f f x --+→→→→=+=+===()01,f x x a b =⇔+=在点连续000()()()1(0)lim ,(0)lim lim ,2x x x x ae b a b a b f a f x x -++-+→→→+-++''=====1()02f x x a b =⇔==函数在点可导。
2013-14-1高等数学期末考试(试卷A )参考答案及评分标准一、填空题 (本大题分5小题,每小题4分,共20分)1、ln(dy x dx = 2、(0)f e = 3、(0,14]4、212x x C -+ 5、212()x y C C x e -=+ 二、选择题 (本大题共5小题,每小题4分,共20分)1、B2、C3、A4、D5、A三、解答下列各题(本大题共3小题,每小题7分,总计21分)1、解:原式=22111arctan arctan arctan 11xdx xdx xdx x x ⎛⎫-=- ⎪++⎝⎭⎰⎰⎰…………………2分 arctan arctan arctan arctan x x xd x xd x =--⎰⎰………………………………4分()()22211arctan arctan arctan ln arctan 122x x x dx x x x x C x =--=-++⎰…7分 2、解:令2sin x t =,则2cos dx tdt =,原式02sin 2cos 2cos t t tdt π=⋅⋅⎰………………3分2300888cos cos cos 33td t t ππ=-=-=⎰………每步2分 3、解:作图(略)。
所求22a a a V dx x π⎛⎫= ⎪⎝⎭⎰………………………………………………4分 2212aa a a x ππ=-=……………………………………………7分 四、解答下列各题(本大题共3小题,每小题7分,总计21分)1、解:原式=2420ln(1)lim cos sin x x x x x→++………………………………………………………3分 2420lim cos 1x x x x x→+==…………………………………………………………7分 2、解:由题意,0t =时,0,1x y ==;且有(1)t dx e t dt=+, 同时第二个方程两端同时对t 求导,有t tyt tydy ye ye dt e te +=-+………………………………4分 故0012(1)t ty t ty t t t dy ye ye dx e te e t ==+=-⋅=-++……………………………………………………7分 3、解:1()P x =,()x Q x =,于是所求通解为:()()()P x dx P x dx y e Q x e dx C -⎛⎫ ⎪⎝⎭⎰⎰=⋅+⎰……………………………………………………3分 dx dx e x e dx C -⎛⎫ ⎪⎝⎭⎰⎰=⋅+⎰1x Ce x -+-=……………………………………………每步2分 五、证明下列各题(本大题共3小题,每小题6分,总计18分)1、证:因00()()()a a a a f x dx f x dx f x dx --=+⎰⎰⎰, 而000()()()x t a a a f x dx f t dt f x dx =--=--=-⎰⎰⎰,故命题得证。
高数A(1)(A 卷)期末考试题参考答案一. 填空题(每小题3分,共33分)(1) 1,;e (2) 0,1; (3) 0;22111();28x x o x =+-+ (5)1;4 (6) 1;y x e =+ (7) ;x e C --+ (8) ;2π(9) 1(ln 21);2+ (10) 1;e e- (11) ().x y x C e =+ 二. 计算题(每小题8分,共48分)1. 解. 3311001tan tan sin lim lim 11sin 1sin x x x x x x x x x →→+-⎛⎫⎛⎫=+ ⎪ ⎪++⎝⎭⎝⎭ (2分) ()3()1()tan sin lim 1(),()1sin x x x x x xx x x ϕϕϕϕ→-⎡⎤=+=⎢⎥+⎣⎦(4分)因为 ()1()lim 1(),x x x e ϕϕ→+= ( 5分)3300()tan sin 1limlim,(1sin )2x x x x x x x x ϕ→→-==+ ( 7分)所以原式.= ( 8分) 解法二. 原式=⎭⎬⎫⎩⎨⎧⎪⎭⎫ ⎝⎛++→x x x x sin 1tan 1ln 1lim exp 30(1分) ⎭⎬⎫⎩⎨⎧+-+=→3)sin 1ln()tan 1ln(lim exp x x x x ( 3分) ⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧+-+=→2203sin 1cos tan 1sec lim exp x x x x x x (4分)⎭⎬⎫⎩⎨⎧+++-+=→)sin 1)(tan 1(3cos )tan 1(sec )sin 1(lim exp 220x x x x x x x x (5分) e = ( 8分) 解法三. 解. 原式⎭⎬⎫⎩⎨⎧⎪⎭⎫ ⎝⎛++=→x x x x sin 1tan 1ln 1limexp 3(1分) ⎭⎬⎫⎩⎨⎧+-⋅=→x x x x x sin 1sin tan 1lim exp 3( 5分) e = ( 8分)2. 解:3222243sin 2cos 4sin cos cos 2sin ,2cos 4cos 2cos x x x x x xx x x '++⎛⎫== ⎪⎝⎭(3分) 21111ln tan sec 2242224tan 24x x x πππ'⎛⎫⎛⎫⎛⎫+=⋅⋅⋅+ ⎪ ⎪ ⎪⎛⎫⎝⎭⎝⎭⎝⎭+ ⎪⎝⎭( 6分)12cos x=( 7分) 31.cos dy dx x= ( 8分) 3. 解. 方程两边同时对x 求导,得222[sec ()](1)[sec ()](1)x y y x y y ''--⋅-=-⋅- ( 4分)2sin ()y x y '=- ( 5分)2sin()cos()(1)y x y x y y '''=---( 7分)32sin()cos ().x y x y =-- ( 8分)4.解法一.12dx =-⎰( 2分)212⎡⎤⎢⎥⎢⎥=--⎢⎥⎢⎥⎢⎥⎣⎦⎰ ( 6分)3arcsin(21).2x C =--+ ( 8分)解法二.dx =⎰( 2分)令11sin ,,2222x u u ππ-=-<<( 3分) 则31sin 22dx u du ⎛⎫==+ ⎪⎝⎭⎰⎰ ( 5分) 31cos 22u u C =-+ ( 6分)3arcsin(21).2x C =--+ ( 8分)5.解. 2(1)0,()t f f t e -'== ( 1分)()112301()()3t f t dt f t d t =⎰⎰ ( 2分) 131301()()33t f t t f t dt '=-⎰ ( 4分)213013t t e dt -=-⎰ ( 5分) ()212016t t d e -=⎰( 6分) 121.6e ⎛⎫=- ⎪⎝⎭( 8分)6. 解. 齐次方程0y y ''+=的通解为12cos sin .y C x C x =+ ( 3分)211cos cos 222x x =+ ( 4分) 非齐次方程12y y ''+=的特解11.2y *= ( 5分)设非齐次方程1cos 22y y x ''+=的特解为2cos 2sin 2,y A x B x *=+ ( 6分) 代入计算得1,0,6A B =-= 于是得21cos 2.6y x *=- ( 7分) 原方程的通解为1211cos sin cos 2.26y C x C x x =++- ( 8分) 三.解. 抛物线2y x =在点2(,)a a 处的切线方程为22,y ax a =- ( 2分)这条切线与抛物线241y x x =-+-的两个交点的横坐标记为1x 和2x (不 妨设21(),x x > 则1x 和2x 是方程222(2)10x a x a +-+-=的两个根,从而得21212211,2(2),x x a x x a x x ⋅=-+=--= (4分)上述切线与抛物线 241y x x =-+-所围成的平面图形面积 2122(412)x x S x x ax a dx =-+--+⎰( 6分)3224(243)3a a =-+ (8分)122()8[2(1)1](1).S a a a '=-+- ( 9分)令()0S a '=得唯一驻点1,a = (10分)当1a <时,()0;S a '< 当1a >时, ()0,S a '> 所以1a =为极小值点,即最小值点,也就是说,1a =时所围图形面积最小。
共 7 页,第 1 页2013年河南省普通高等学校选拔优秀专科毕业生进入本科阶段学习考试高等数学 答案及解析一、选择题(每小题2分,共60分)1.答案:C【解析】:易知,需满足,即,故应选C.⎩⎨⎧>-≤≤-0111x x 21≤<x 2.答案:D【解析】:因为,则,,故应选D.1()1f x x =-()[]x x x x f f 11111-=--={}[()]f f f x =()[]x xx x f f =--=1113.答案:B【解析】:因为为奇函数,则也为奇函数,应选B.()x x -+21ln )y x =-∞<<+∞4.答案:B 【解析】:因为,故是的可去间断点,应选B.22lim 2sin lim 00==→→xxx x x x 0x =()f x 5.答案:A【解析】:当时,,则与是等价无穷小0x →()1112lim 11lim00=-++=--+→→x x x xxx x x x x x --+11x 量,应选A.6.答案:C【解析】:因,应选C.0()()lim x f x g x x →--=()()()()()()()()b a x x g g x f x f x x g g f x f x x x +=--+-=--+-→→→0lim 0lim 00lim 0007.答案:B【解析】:因为曲线,则,故对应点处的法线cos (0,0)sin x a t a b y b t=⎧>>⎨=⎩t a b t a t b dt dx dt dy dx dy cot sin cos //-=-==4π=t 斜率为,应选B.ba8.答案:D【解析】: 因为,则,应选D.()()f x g x '=2d (sin )f x =()()xdx x g xdx x x f 2sin sin cos sin 2sin 22='9.答案:A【解析】:设函数具有任意阶导数,且,则;()f x 2()[()]f x f x '=()()()()[]322x f x f x f x f ='='';()()[]()()[]42!332x f x f x f x f ='⨯='''()()()[]()()[]534!4432x f x f x f x f ='⨯⨯=()()n f x =1![()]n n f x +10.答案:A【解析】:方程两边对求导,其中看作的函数,,所以x yxy e+=y x y ()1+'⋅=+'+x ex y x yx ,应选A.()()11--=--=--=='++x y y x y xy xy x y e e x dy dx x y x y x 11.答案:B【解析】:因为,则在上单调增加,应选B.()0(0)f x x a ''><<()f x '[0,]a 12.答案:A【解析】:点是曲线的拐点,则,故,应选A.(0,1)32y x bx c =++()()00,10=''=y y 0,1b c ==13.答案:A【解析】:因为,则2216x y x x +=+--()()3221-+++=x x x ;;()()543221lim 621lim 222=⎪⎪⎭⎫ ⎝⎛-+++=⎪⎭⎫ ⎝⎛--++-→-→x x x x x x x x ()()∞=⎪⎪⎭⎫ ⎝⎛-+++=⎪⎭⎫ ⎝⎛--++→→3221lim 621lim 323x x x x x x x x 故是曲线的垂直渐近线,应选A.3=x 14.答案:B【解析】: 因为,则,故应选B.()xxf x e e -=-()()C e e dx e ex F x x x x++=-=--⎰15.答案:D【解析】: 根据不定积分的相关性质,易知,正确,应选D.22d ()d ()d f x x f x x =⎰16.答案:D【解析】:因为为奇函数,故,应选D.x x sin 20sin 2=⎰-dx x x ππ17.答案:A 【解析】:方程两边对求导,得,则,故221()d x x f t t xe ++=⎰x ()x x xe e x f +++=+222()()x x e x e x f 2-+=,应选A.()f x '=x xe 18.答案:C【解析】:由P 无穷广义积分的结论可知,应选C.19.答案:B【解析】:微分方程的阶数是指微分方程中最高导数的阶数,应选B.20.答案:B【解析】:对方程分离变量,得,两边积分,得,代入,2d 2d 0y xy x -=xdx y dy 22=C x y+=-21(1)1y =-,故方程的特解是,应选B.0=C 21y x -=21.答案:C【解析】:向量的方向角需满足,应选C.1cos cos cos 222=++γβα22.答案:B【解析】:直线的方向向量与平面法向量平行,故与垂直相交,应选B.L π23.答案:D【解析】:缺少变量的二次曲面方程为柱面,应选D.共 7 页,第 3 页24.答案:C 【解析】:,应选C.0x y →→=()()41421lim 42lim 0000-=++-=++-→→→→xy xy xy xy y x y x 25.答案:B【解析】:因为,则22(,23)z fx y x y =-+zy∂=∂1223yf f ''-+26.答案:A 【解析】:因为为X 型积分,则交换积分次序后,Y 型积分的2 22 00 2d (, )d (, )d x I x f x y y x f x y y =+⎰⎰⎰积分区域为:,故可以化为,应选A.(){}282,20,y x y y y x -≤≤≤≤I 2d (, )d y f x y x ⎰⎰27.答案:C 【解析】: 积分,应选C. 122 01d d x x y y =⎰⎰21213121210321102=⋅=⋅⎰⎰x x ydy dx x 28. 答案:D【解析】:参数方程,则,应L ()10,2≤≤⎩⎨⎧==y yy y x 22d d Lxy x x y +=⎰[]1522105141042===+⋅⋅⎰⎰y dy y dy y ydy y y 选D.29.答案:C 【解析】:因为,则收敛半径,收敛区间为,应选C.121lim lim 1=++=∞→+∞→n n u u n n n n 1=R (1,1)-30.答案:A【解析】:A 为交错级数,且单调递减,,故收敛;B 、C 中,11+n 011lim=+∞→n n 111sinlim ,1111ln lim ==⎪⎭⎫ ⎝⎛+∞→∞→nn n n n n 且发散,故B 、C 均发散;D 中,故D 发散;应选A.∑∞=11n n∞=∞→!lim n n nn 二、填空题(每小题2分,共20分)31.答案:既不充分也不必要【解析】:函数在点有定义与极限存在没有关系,故为既不充分也不必要()f x 0x 0lim ()x x f x →条件.32.答案:32【解析】:因为,故.2331lim --∞→==⎪⎭⎫⎝⎛-e e x p pxx p =3233.答案:21【解析】:因为函数为连续函数,则,得,故.()()a x x a a a e x axx =+-=-+-→→2cos lim ,1lim 0a a =-121=a 34.答案:32x -【解析】:因为,则,故.421f x x ⎛⎫=⎪⎝⎭()21x x f =()32x x f -='35.答案:C x x ++sin 2ln 【解析】:2cos d 2sin x x x x +=+⎰()Cx x x x x x d ++=++⎰sin 2ln sin 2sin 236.答案:π32【解析】:,则.21221,cos -=⋅-=⋅⋅>=<→→→→→→ba ba b a 32,π>=<→→b a 37.答案:1-+=-xCex y 【解析】:由一阶线性微分方程的通解公式得,.()1-+=+=⎪⎭⎫ ⎝⎛+⎰⎰=---⎰⎰xxxdx dx Cex C dx xe e C dx xe e y 38.答案:-5【解析】:令,则,将代入方程,则,()xyz z y x y x F 22,-++=xy F yz F z x 21,21-='-='1,0==y x 2-=z 故.52121101010-=---=''-=∂∂======y x y x z x y x xyyz F F xz39.答案:542=-+z y x 【解析】:令,故点处的切平面法向量,故切()1,2,2,,,22-='='='-+=z y x F y F x F z y x z y x F ()5,2,1{}1,4,2-平面方程为,即.()()()052412=---+-z y x 542=-+z y x 40.答案:()()nn n n x 44101-⋅-∑∞=+【解析】:.()()()()∑∑∞=+∞=--=⎪⎭⎫ ⎝⎛--=-+⋅=-+==010441441414411414411n nn n nn n x x x x x x f 三、计算题(每小题5分,共50分)41..011lim ln(1)x x x →⎡⎤-⎢⎥+⎣⎦共 7 页,第 5 页【解析】:原式=.()()()()21211lim 2111lim 1ln lim 1ln 1ln lim 200200-=+-=-+=-+=+-+→→→→x x x x x x x x x x x x x x42.已知函数由方程所确定,求.()x x y =arctanyx=d d x y 【解析】:方程两边同时对求导,可知,,即y 2222222222111yx y x x yx x x y x xy ++'⋅+='-⋅+,故.2222y x y x x y x x y x ++'=+'-d d xy yx yx y x x y x x +-=+'-='=2243.求不定积分.x ⎰【解析】:.Cx x x x C t t t t dt tt t t dtt t t t tdt dx x tx tdt dx ++-=++-⋅=+-+-⋅=+-⋅==⎰⎰⎰⎰==arctan arctan arctan arctan 111arctan 1arctan arctan arctan 22222222244.设,求.21,0(),0x x x f x e x ⎧+≤⎪=⎨>⎪⎩31(2)d f x x -⎰【解析】:.()()()e e t t dt e dt t dt tf dx x f ttt x +=+⎪⎪⎭⎫ ⎝⎛+=++==----=-⎰⎰⎰⎰313121013100121131245.求微分方程的通解.23xy y y e '''+-=【解析】:原方程对应的齐次方程为,则特征方程为,特征根为,02=-'+''y y y 0122=-+r r 21,121=-=r r 故原方程对应的齐次方程的通解为.又知不是特征根,则原方程的()为任意常数2121211,,C C e C eC y x x+=-1=λ特解可设为,代入原方程可得,即,故原方程的通解为xAe y =*xxxxe Ae Ae Ae 32=-+23=A .x x xe eC e C y 232121++=-46.设,求全微分.2+sin2+xyu x y e =d u 【解析】:方法一:由题意可知,所以,2cos 2,2xy xy xe y yu ye x x u +=∂∂+=∂∂.()()dy xe y dx ye x dy yudx x u du xy xy +++=∂∂+∂∂=2cos 22方法二:对等式两边同时求微分,可知.()()()()dyxe y dx ye x ydx xdy e ydy xdx xy d e ydy xdx de y d dx du xy xy xy xy xy +++=+⋅++=++=++=2cos 222cos 222cos 222sin 247.一平面过点且平行于向量和,求此平面方程.(1,0,1)-{2,1,1}a =-{1,1,2}b =- 【解析】:由题意可知,所求平面平行于向量和,则所求平面的法向量,即{2,1,1}a =-{1,1,2}b =- →→→⨯=b a n ,又知平面过点,由平面的点法式方程可知,平面方{}3,5,135211112--=--=--=⨯=→→→→→→→→→k j i kj ib a n (1,0,1)-程为,即.()()01351=+---z y x 435=--z y x 48.计算,其中是由所围成的闭区域.d d xyDex y ⎰⎰D 1,,2,0y y x y x ====【解析】:由题意可知,如图所示,该区域为Y 型区域,则.d d x yDe x y ⎰⎰()()()1232112122121021-=-=-=⎪⎪⎭⎫ ⎝⎛==⎰⎰⎰⎰e y e dy e y dy ye dx e dy y y x yyx 49.计算积分,其中为曲线上从点到点2222(210)d (215)d Lx xy y x x xy y y +-++--+⎰L cos y x =π,02A ⎛⎫ ⎪⎝⎭一段弧.π,02B ⎛⎫- ⎪⎝⎭【解析】:由题意可知,,则()()152,,102,2222+--=+-+=y xy x y x Q y xy x y x P ,即,说明该曲线积分与积分路径无关,选取直线路径y x x Q y x y P 22,22-=∂∂-=∂∂xQy P ∂∂=∂∂,故⎪⎭⎫ ⎝⎛-→=22:,0ππx y .2222(210)d (215)d Lxxy y x x xy y y +-++--+⎰()ππππππ1012103103222232--=⎪⎪⎭⎫ ⎝⎛+=+=⎰--x x dx x 50.求幂级数的收敛域.0(1)2(1)nn n x n ∞=-+∑【解析】:该幂级数的为非标准不缺项的类型,令,则原幂级数可变形为,因为t x =-1()∑∞=+012n n nn t ,则幂级数的收敛半径为,故幂级数的收敛区间()()2221121lim lim11=++=+∞←+∞←n n u u n n n n nn ()∑∞=+012n nn n t 2=R ()∑∞=+012n n n n t 为;()2,2-当时,级数收敛;当时,级数收敛发散;2-=t ()()∑∞=+-011n n n 2=t ()∑∞=+011n n共 7 页,第 7 页则幂级数的收敛域为,故原幂级数的收敛域为.()∑∞=+012n n n n t [)2,2-0(1)2(1)nn n x n ∞=-+∑[)3,1-四、应用题(每小题6分,共12分)51.某房地产公司有50套公寓要出租,当月租金定为2000元时,公寓会全部租出去,当月租金每增加100元时,就会多一套公寓租不出去,而租出去的公寓每月需花费200元的维修费,试问租金定为多少可获得最大收入?最大收入是多少?【解析】:设租金定位元时,收入为,则,即x ()x S ()()200100200050-⎪⎭⎫⎝⎛--=x x x S ,令,得唯一的驻点,又知()()2000,14000721002≥-+-=x x x x S ()07250=+-='x x S 3600=x ,则为的极小值点,结合实际情况,也就是对应的最大值,所以当租金定位3600()0501<-=''x S 3600=x ()x S 元时,有最大收入,最大收入为115600元.52.曲线,直线以及轴围成一平面图形,试求平面图形绕轴旋转一周所得旋转体3(0)y x x =≥2x y +=y D D y 的体积.【解析】:由题意可知,如图所示,该区域为X 型区域,则体积=.()()ππππ151453222221053214213=⎪⎪⎭⎫ ⎝⎛--=--=--⎰⎰x x x dx x x x dx x x x 五、证明题(8分)53.设在区间上连续,且,证明:方程在区间(0,1)内有且仅有一个实根.()f x [0,1]()1f x <02()d 1xx f t t -=⎰【证明】:存在性:令,因为在区间上连续,则在区间上()()[]1,0,120∈--=⎰x dt t f x x F x()f x [0,1]()x F [0,1]也连续,而且,由零点定理可知,在区间(0,1)内至少存在一点()()()()()1,011,1010<>-=-=⎰x f dt t f F F ξ,使得;()0=ξF 唯一性:因为,则在区间(0,1)内单调递增,故方程在()()()()1,02<>-='x f x f x F ()x F 02()d 1xx f t t -=⎰区间(0,1)内至多有一实根;综上所述,方程在区间(0,1)内有且仅有一个实根.2()d 1xx f t t -=⎰。
高等数学a试卷及答案【篇一:《高等数学a(上)》试题答案(b卷)2013】class=txt>科目:《高等数学a(上)》试题(b卷)学院:专业班级:姓名:学号:阅卷教师: 2013年月日考试说明:本课程为闭卷考试,可携带。
一、选择题(每题3分,共15分)(选择正确答案的编号,填在各题前的括号内)1.设f(x)?xsinx,则f(x)在(??,??)内为( b). a.周期函数 b.偶函数 c.单调函数 d.有界函数 2、下列正确的是(d )a.极大值一定大于极小值b. 拐点是函数单调性转变的点 c. 最值一定是极值 d. 拐点是凹凸性的转变的点 3、下列各式中,正确的是( d )1xa.lim(1?)?e x?0?xb.lim(1?x?01x)xec.lim(1?)x??ex??1x1d.lim(1?)x?e?1 x??x4、关于函数连续的说法中,哪一个正确d a.函数f(x)在点x?x0处有定义,则在该点连续; b.若limf(x)存在,则函数f(x)在x0处连续;x?x0c.若f(x)在x?x0处有定义,且limf(x)存在,则函数在x0处连续; x?x0d.若f(x0?0)?f(x0?0)?f(x0),则函数在x0处连续。
5、若?f(x)dx?f(x)?c,则?f(sinx)cosxdx=( a ) a . f(sinx)?cb. ?f(sinx)?cc. xf(sinx)?cd. f(sinx)sinx?c二、填空题(每题3分,共15分)1. 设曲线方程为y?x2?sinx,该曲线在点(0,0)处的切线方程__y=-x_________1sinxdx=___0______ 2.??11?x2sinx____0___ 3. limx??xx4. 函数f(x)?x?2的斜渐近线方程为___ y=x ___ x?15.函数xy?1在点(1,1)处的曲率为___ 2_____.三、计算题(每题8分,共56分)1求极限:lim(x?0x?1?1sinxx?1?11)lim1x?0x2xx(x?1?1)22.设f(x)?x(x?1)(x?2)?(x?100),求f?(0).limx?0f(x)?f(0)x(x?1()x?2)?(x?100)lim100! x0x0x1x3. 已知y?x,求dy.dy?d(x)?d(e1xlnxx)?elnxx1lnx1?lnx?d()?xx?dx 2xx4.5.112tdtdt?2?2arctant?c?c 22?1?tt1?tx0cos2xdx 111x120cos2xdx0xsecxdxxtanx00tanxdxtan1lncosx0tan1lncos1.6. 求由曲线y?x2与y?2x围成的平面图形的面积。
2020-2021《高等数学》(下)期末课程考试试卷适用专业:应化 考试日期:年 月 试卷类型:闭卷 考试时间:120分钟 试卷总分:100分一. 填空题:(共5小题,每小题3分,共15分)1.设()f x 是周期为2的周期函数,它在区间[1,1]-的定义为22,10(),01x f x x x -<≤⎧=⎨<≤⎩,则()f x 的傅里叶级数在2x =收敛于 1 . 2.设y zx =,则x z =1y yx - ; y z =ln y x x3.改变积分顺序1(,)dy f x y dx ⎰= 211(,)xdx f x y dy ⎰⎰ .4.将函数sin xx 展开成x 的幂级数为 ()()20121nn n x n ∞=-+∑5.设L 为圆周224x y +=,则22Lx y ds +⎰8π .二.单项选择. (共5小题,每小题3分,共15分)1.设D 为圆域: 224x y +≤,曲面1D 是D 在第一象限中的部分.则有( D ). (A) 14DD xd xd σσ=⎰⎰⎰⎰ (B) 14DD yd yd σσ=⎰⎰⎰⎰(C) 14DD xyd xyd σσ=⎰⎰⎰⎰ (D) 122224DD x y d x y d σσ=⎰⎰⎰⎰.2.lim 0n n u →∞≠是级数1nn u∞=∑发散的( A )(A)充分条件 (B)必要条件 (C)充要条件 (D)无关条件 3.设∑为曲面3z = ()221x y +≤则下面积分中不为0的是( D ) (A)xyzdydz ∑⎰⎰ (B)xyzdxdy ∑⎰⎰ (C)xyzdzdx ∑⎰⎰ (D)zdS ∑⎰⎰4.设123,,y y y 是常系数线性非齐次方程()ay by cy f x '''++=的三个线性无关的解,则0ay by cy '''++=的通解为( C ).(A)1122c y c y + (B)1223c y c y + (C) ()1122123c y c y c c y +-+ (D) 112233c y c y c y ++5.设∑为曲面)0(222>=+R R y x 上的10≤≤z 部分,则⎰⎰∑++dS y x ey x )sin(2222=( D ).(A) 0 (B)2sin Re R R π (C) R π4 (D)2sin Re 2R R π 三、解下列各题。
高等数学a试卷及答案【篇一:《高等数学a(上)》试题答案(b卷)2013】class=txt>科目:《高等数学a(上)》试题(b卷)学院:专业班级:姓名:学号:阅卷教师: 2013年月日考试说明:本课程为闭卷考试,可携带。
一、选择题(每题3分,共15分)(选择正确答案的编号,填在各题前的括号内)1.设f(x)?xsinx,则f(x)在(??,??)内为( b). a.周期函数 b.偶函数 c.单调函数 d.有界函数 2、下列正确的是(d )a.极大值一定大于极小值b. 拐点是函数单调性转变的点 c. 最值一定是极值 d. 拐点是凹凸性的转变的点 3、下列各式中,正确的是( d )1xa.lim(1?)?e x?0?xb.lim(1?x?01x)xec.lim(1?)x??ex??1x1d.lim(1?)x?e?1 x??x4、关于函数连续的说法中,哪一个正确d a.函数f(x)在点x?x0处有定义,则在该点连续; b.若limf(x)存在,则函数f(x)在x0处连续;x?x0c.若f(x)在x?x0处有定义,且limf(x)存在,则函数在x0处连续; x?x0d.若f(x0?0)?f(x0?0)?f(x0),则函数在x0处连续。
5、若?f(x)dx?f(x)?c,则?f(sinx)cosxdx=( a ) a . f(sinx)?cb. ?f(sinx)?cc. xf(sinx)?cd. f(sinx)sinx?c二、填空题(每题3分,共15分)1. 设曲线方程为y?x2?sinx,该曲线在点(0,0)处的切线方程__y=-x_________1sinxdx=___0______ 2.??11?x2sinx____0___ 3. limx??xx4. 函数f(x)?x?2的斜渐近线方程为___ y=x ___ x?15.函数xy?1在点(1,1)处的曲率为___ 2_____.三、计算题(每题8分,共56分)1求极限:lim(x?0x?1?1sinxx?1?11)lim1x?0x2xx(x?1?1)22.设f(x)?x(x?1)(x?2)?(x?100),求f?(0).limx?0f(x)?f(0)x(x?1()x?2)?(x?100)lim100! x0x0x1x3. 已知y?x,求dy.dy?d(x)?d(e1xlnxx)?elnxx1lnx1?lnx?d()?xx?dx 2xx4.5.112tdtdt?2?2arctant?c?c 22?1?tt1?tx0cos2xdx 111x120cos2xdx0xsecxdxxtanx00tanxdxtan1lncosx0tan1lncos1.6. 求由曲线y?x2与y?2x围成的平面图形的面积。
第1页 共2页淮 海 工 学 院12 – 13 学年 第 二 学期 高等数学A (2) 期末试卷(A 卷)1.向量(1,1,0)a =,(0,1,1)b =-所成夹角为----------------------------(C ) (A )6π (B )4π (C )3π (D )2π2.2(,)(2)tan(23)f x y x y x y =+-+,则(,2)xx f x =--------------------------------(B ) (A )1 (B )2 (C )x (D )x 2 3. 3sin xu e y z =-+在点(0,0,1)-处沿下列哪个方向的方向导数最大--------(D) (A ))1,1,0(- (B )(0,1,1)- (C )(3,1,1)- (D )(3,1,1)- 4.二次积分1ln 10(,)x edx f x y dy ⎰⎰的另一种积分次序为----------------------(B ) (A ) 011(,)ye dyf x y dx -⎰⎰(B )011(,)y e dy f x y dx -⎰⎰(C )1(,)ye dyf x y dx -⎰⎰(D )011(,)y edy f x y dx -⎰⎰5.设L 为椭圆2251x y +=,其周长为l ,则()(5)Lx y x yd s ++=⎰----------------(B ) (A ) 5l (B ) l (C ) (D ) 5l6.若级数1(65)nn p ∞=-∑收敛,则p 的取值范围是------------------------------------------(B )(A )(,2-∞ (B )(2 (C )(1,32) (D )(32,)+∞ 7.若幂级数21(4)n nn a x ∞+=-∑在7x =处条件收敛,则其收敛半径为-----------------(A )(A )3 (B )9 (C )11 (D )1218.12xy C C e -=+是下列哪个微分方程的通解------------------------------------------(C ) (A )0='-''y y (B )0=-''y y (C )0='+''y y (D )0=+''y y二、计算题(本大题共4小题,每题7分,共28分) 1.设(,)f u v 是二元可微函数,=(,)z f y x x y ,求+x y xz yz .解:21x u v y z f f x y =-+----------------------------------------------------------------------------2 21y u v xz f f x y=-----------------------------------------------------------------------------3故+0x y xz yz =.------------------------------------------------------------------------------22.求22xy De dxdy +⎰⎰D :2214x y ≤+≤.解: :02,12,D r θπ≤≤≤≤--------------------------------------------2 则原式2221r d e rdr πθ=⎰⎰----------------------------------------------22221r e dr π=⎰4()e e π=-.-----------------------------------------------------------33.设空间闭区域Ω{(,,)0x y z z =≤≤,∑是Ω的整个边界曲面的内侧,用高斯公式计算3222()3()(1)xz dydz y z x dzdx z z dxdy ∑++-+-⎰⎰.解: 3222,3(),(1)P x z Q y z x R z z =+=-=---------------------------------------1Ω是半径为1的半球体 --------------------------------------------------------------------2 则 原式()xyz Pdydz Qdzdx Rdxdy P QR dxdydz ∑Ω=++=-++⎰⎰⎰⎰⎰-------------2dv Ω=-⎰⎰⎰23π=-. ---------------------------------------------------------------24.求解微分方程111y y x x'-=++. 解: 公式法, 11111[(1)]dx dx x x y e e dx C x-++⎰⎰=++⎰------------------------------------------3 ln(1)ln(1)1[(1)]x x e e dx C x+-+=++⎰------------------------------------------21(1)()x dx C x=++⎰(1)(ln )x x C =++.---------------------2第2页 共2页三、计算题(本大题8分)设方程0132=--xz y z 确定了),(y x z z =,求(1))1,0,1(-dz;(2)曲面),(y x z z =在点)1,0,1(-处的切平面方程. 解: 令1),,(32--=xz y z z y x F则1)1,0,1(=-x F ,1)1,0,1(=-y F ,3)1,0,1(-=-z F ---------------------------------2(1)=-)1,0,1(dz dx F F z x )1,0,1()1,0,1(---)(31)1,0,1()1,0,1(dy dx dy F F z y +=----------------------2(2)切平面的法向量 )311(-=,,n--------------------------------------------2 切平面方程为 0)1(3)1(=+-+-z y x .----------------------------------------2 四、计算题(本大题8分)和建制造,乐在共享。
2013—2014学年第一学期《高等数学(2-1)》期末考试A 卷(工科类)参考答案及评分标准一.(共5小题,每小题3分,共计1 5 分)判断下列命题是否正确?在题后的括号内打“√”或“⨯” ,如果正确,请给出证明,如果不正确请举一个反例进行说明. 1.若)(x f 在),(∞+a 无界,则∞=∞+→)(lim x f x .( ⨯ )------------- ( 1分 )例如:x x x f sin )(=,在),1(∞+无界,但∞≠∞+→x x x sin lim . ------- ( 2分 )2.若)(x f 在0x 点连续,则)(x f 在0x 点必可导.( ⨯ )------------- ( 1分 ) 例如:x x f =)(,在0=x 点连续,但x x f =)( 在 0=x 不可导. ------ ( 2分 ) 3.若0lim =∞→n n n y x ,则0lim =∞→n n x 或.0lim =∞→n n y ( ⨯ )-------------- ( 1分 )例如:,0,1,0,1:n x,1,0,1,0:n y有0lim =∞→n n n y x ,但n n x ∞→lim ,n n y ∞→lim 都不存在. ---------------------------- ( 2分 ) 4.若0)(0='x f ,则)(x f 在0x 点必取得极值.( ⨯ )------------------- ( 1分 )例如:3)(x x f =,0)0(='f ,但3)(x x f =在0=x 点没有极值. ---------( 2分 )5.若)(x f 在],[b a 有界,则)(x f 在],[b a 必可积.( ⨯ )------------- ( 1分 ) 例如:⎩⎨⎧=.,0,1)(为无理数当为有理数,当x x x D ,在]1,0[有界,但)(x D 在]1,0[不可积. ( 2分 )二.(共3小题,每小题7分,共计2 1分)1. 指出函数x x x f cot )(⋅=的间断点,并判断其类型. 解 函数x x x f cot )(⋅=的间断点为:,2,1,0,±±==k k x π ------------------------------------------------------- ( 3分 )当 ,0=k 即 0=x 时, ,1sin cos limcot lim )(lim 0===→→→xxx x x x f x x x 0=∴x 为函数x x x f cot )(⋅=的第一类可去间断点; ----------------------- ( 2分 )当 ,2,1,±±==k k x π时, ,sin cos limcot lim )(lim ∞===→→→xxx x x x f k x k x k x πππ),2,1(, ±±==∴k k x π为函数x x x f cot )(⋅=的第二类无穷间断点 . --------- ( 2分 )2.求极限⎰-+∞→+x x t x dt e t x 022)1(1lim解 ⎰-+∞→+x xt x dt e t x 022)1(1lim⎪⎭⎫⎝⎛∞∞+=⎰+∞→xx t x e x dt e t 202)1(lim-------------------(3分) xxx e x x e x )2()1(lim22++=+∞→----------------------------------------------------------------- ( 3分 ).121lim 22=++=+∞→x x x x ---------------------------------------------------------------(1分) 3.设方程)0,0(>>=y x x y yx 确定二阶可导函数)(x y y =,求22d ydx.解1 对yx x y =两边取对数,得 x yy x ln 1ln 1=,即 x x y y ln ln =,-------------------------------------------------------------- ( 2分 )等式两边关于x 求导,得:x dx dy y ln 1)ln 1(+=+,即yx dx dy ln 1ln 1++=,------- ( 2分 ) ⎪⎭⎫⎝⎛=∴dx dy dx d dxy d 222)ln 1(1)ln 1()ln 1(1y dxdyy x y x +⋅⋅+-+=---------------------------- ( 2分 ) 322)ln 1()ln 1()ln 1(y xy x x y y ++-+=.------------------------------------------------ ( 1分 ) 解2 对yx x y =两边取对数,得 x yy x ln 1ln 1=,----------------- ( 2分 )等式两边关于x 求导,x y dx dy x y dx dy y x y x 11ln 111ln 122⋅+⋅⋅-=⋅⋅+-xx xy yy xy dx dy ln ln 22++=∴ (直接再求导比较繁琐,需化简后再求导)----------------------------------------------------------------------------------------- ( 2分 )由x yy x ln 1ln 1=得x x y y ln ln =, xx xy y y xy dx dy ln ln 22++=y xy xy x xy xy ln ln ++=y xln 1ln 1++=, 以下同解1. 三.(共3小题,每小题7分,共计2 1分)1.求不定积分⎰+dx xx x 23sin 1cos sin . 解 ⎰⎰+-=+)(s i n s i n 1)s i n 1(s i n s i n 1c o s s i n 2223x d xx x dx x x x ------------------------(2分) (令t x =sin ) =⎰+-dt t t t 221)1(=⎰⎪⎭⎫ ⎝⎛++-dt t t t 212 ------------------(2分) C t t +++-=)1ln(222=.)sin 1ln(sin 2122C x x +++-----------------(3分)2.设x 2ln 是函数)(x f 的一个原函数,求⎰'dx x f x )(.解 )(ln 2)ln (2x f xxx ==' ,------------------------------------------------- ( 2分 ) C x dx x f +=∴⎰2ln )(,------------------------------------------------------- ( 2分 ) ⎰⎰='∴)()(x df x dx x f x⎰-=dx x f x f x )()(.ln ln 22C x x +-=-------------------------------------------- ( 3分 )3.求定积分dx x x x )2cos sin (74344+⎰-ππ.解dx x x x )2cos sin (74344+⎰-ππ⎰⎰--+=44743442c o s s i n ππππdx x dx x x ------- ( 1分 )dx x 2cos 0744⎰-+=ππ-------------------------------------------------------(2分)dx x 2cos 274⎰=π----------------------------------------------------------(2分)(令t x =2) dt t 720cos ⎰=π----------------------------------------------------------------(1分).!!7!!6=---------------------------------------------------------------------------(1分) 四.(共2小题,每小题6分,共计1 2分)1.已知一个长方形的长l 以2cm/s 的速度增加,宽w 以3cm/s 的速度增加,则当长为12cm ,宽为5cm 时,它的对角线的增加率是多少?解:设长方形的对角线为y ,则 222w l y += ----------------------------------- ( 2分 )两边关于t 求导,得 dt dww dt dl l dt dy y ⋅+⋅=⋅222, 即 dtdw w dt dl l dt dy y ⋅+⋅=⋅------(1)-------------------------------- ( 2分 ) 已知,2=dt dl ,3=dtdw ,13512,5,1222=+=⇒==y w l 代入(1)式,得 对角线的增加率:3=dt dy(cm/s ). -------------------------------------------------- ( 2分 ) 2.物体按规律2x ct =做直线运动,该物体所受阻力与速度平方成正比,比例系数为1,计算该物体由0x =移至x a =时克服阻力所做的功.解 ct dtdxt v 2)(== ----------------------------------------------------------- ( 2分 ) cx t c t c k x f 444)(2222===, -------------------------------------------------- ( 2分 )⎰=acxdx W 04=22ca . ------------------------------------------------------ ( 2分 )五.(本题10分)已知x x x f arctan 5)(-=,试讨论函数的单调区间,极值,凹凸性,拐点,渐近线解 函数的定义域为.),(+∞-∞22214151)(x x x x f +-=+-=',令0)(='x f 得驻点.2±=x ----------------------------------------------------------------------------------- ( 1分 ),)1(10)(22x xx f +=''令0)(=''x f ,得可能拐点的横坐标:.0=x -------- ( 1分 ) 列表讨论函数的单调区间,极值,凹凸性,拐点:----------------------------------------------------------------------------------------------------- ( 6分 ),1)arctan 51(lim )(lim1=-==∞+→∞+→xxx x f a x x ,25)arctan 5(lim ])([lim 11π-=-=-=∞+→∞+→x x a x f b x x ,1)arctan 51(lim )(lim2=-==∞-→∞-→xxx x f a x x ,25)arctan 5(lim ])([lim 22π=-=-=∞-→∞-→x x a x f b x x 渐近线为:.25π±=x y ---------------------------------------------------------------- ( 2分 ) 六.(共2小题,每小题7分,共计14分) 1. 试求曲线)0(2≥=-x ex y x与x 轴所夹的平面图形绕x 轴旋转所得到的伸展到无穷远处的旋转体的体积 . 解:⎰⎰∞+-∞+==02dx xe dx y V x ππ------------------------------------------------------(4分)[]x x xe x ex -+∞→∞+-+-=+-=)1(lim )1(0πππππππ=-=+-=+∞→01limxx e x ----------------------------------------------(3分)2.求微分方程x y y y 2345-=+'+''的通解.解 特征方程为:,0452=++r r 特征根:.1,421-=-=r r ----------------- ( 2分 ) 对应齐次方程的通解为:.241x xe C eC y --+=------------------------------ ( 2分 )而0不是特征根,可设非齐次方程的特解为B Ax y +=*----------------- ( 1分 )代入原方程可得,.811,21=-=B A .8112*+-=∴x y -------------------- ( 1分 ) 故所要求的通解为.8112241+-+=--x e C eC y x x-------------------------------- ( 1分 )七.(本题7分)叙述罗尔)(Rolle 中值定理,并用此定理证明:方程0cos 2cos cos 21=+++nx a x a x a n在),0(π内至少有一个实根,其中n a a a ,,21为常数.罗尔)(Ro lle中值定理:设)(x f 在],[b a 上连续,在),(b a 内可导,)()(b f a f =,则),(b a ∈∃ξ,使得.0)(='ξf -------------------------------------------------------------- ( 3分 )令nnx a xa x a x f n sin 22sin sin )(21+++= ,-------------------------------------- ( 2分 ) 在],0[π上连续,在),0(π内可导,且nx a x a x a x f n cos 2cos cos )(21+++=' ,0)()0(==πf f ,由罗尔中值定理,),0(πξ∈∃,使得)(ξf '0cos 2cos cos 21=+++=ξξξn a a a n ,即方程0cos 2cos cos 21=+++nx a x a x a n 在),0(π内至少有一个实根. ---- ( 2分 )各章所占分值如下:第 一 章 函数与极限 13 %; 第 二 章 一元函数的导数与微分 16 %; 第 三 章 微分中值定理与导数的应用 20 %; 第 四 章 不定积分 14 %; 第 五 章 定积分及其应用 30 % . 第 六 章 常微分方程 7 % .。
高等数学D 期末试卷A 参考答案与评分标准(20140112)
一、单项选择题(每小题3分,共18分)
1:A 2: C 3:D 4:C 5: B 6:D
二、填空(每小题2分,共16分)
1:1, 2:()x x n e +, 3:1,2-, 4:21ln(1)arctan 2
x x c +++, 5:16, 6:1001⎛⎫ ⎪⎝⎭, 7:22(21)x x e c -+, 8:100110001⎛⎫ ⎪ ⎪ ⎪⎝⎭
. 三、计算题(每小题7分,共14分
)
23/223/2221.()(),().(232)(2)(2)f x f x df x dx x x '===++++解分 020*******ln(1)ln(1)112.lim lim lim .222x
x x x t dt x x x x
→→→+++====⎰解原式 四、计算题(每小题7分,共14分)
2()2()1.2220,,(0)0,.(2122)22y y y y x y x x e y y xy x y y dy dx e x e x ++''''+++==-==-+++++解两边对求导数:分 2.解 222357sin 2sin sin 2cos 2cos sin 2cos 2sin .x x x xdx x x x x xdx x x x x x c -+-+-+===⎰⎰原式
五、计算题(每小题8分,共16分)
1.解
21
110220045781(1)(arctan )|1.411t t dt dt t t t t π=---++====⎰⎰令原式 2.解 220000ln 1/sin 23568cot csc lim tan ln lim lim lim 1.x x x x x x x x x x x x e e e
e ++++→→→→----=====原式 六、计算题(每小题8分,共16分) 2357810101010111
111110022242224
200201.10101002080.2422242
20200200422242222000
====-=解原式 2.解 211
||11(2)(1),11a A a a a a
==+-12a a ≠≠-当且时,方程组有唯一解.3 分
211111212,()12110110,(,)3,()2,.11210001a A b R A b R A --⎛⎫⎛⎫ ⎪ ⎪=-=-→→-== ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭
当时方程组无解5 分 1122a x c c ξξη==++当1时,方程组有无穷多解,通解,
其中(0,0,1)T η=,12(1,1,0),(1,0,1)T T ξξ=-=- . 8 分
221()1()0,0,32()[0,),0,()(0)0,10162f x x f x x x f x x f x f x x '=+==>>+∞>>=>+> 七.证.令则分所以在内单调增加从而当时即当时,分。