新版高考物理 专题二 第5讲 应用“三大观点”解决力学综合问题课件.pptx
- 格式:pptx
- 大小:1004.48 KB
- 文档页数:67
(五)应用动力学观点和能量观点解决力学综合问题1.动力学观点和能量观点综合流程2.涉及问题(1)受力情况:几个力?恒力还是变力? (2)做功情况:是否做功?正功还是负功? (3)能量分析:建立功能关系式.►解题方法1.若只要求分析运动物体的动力学物理量而不涉及能量问题,则用牛顿运动定律和运动学规律求解.2.若物体在运动过程中涉及能量转化问题,则用功能关系求解.角度1 机械能守恒角度2[例1](2017·华中师大一附中模拟)如图甲所示,质量为m =1 kg 的滑块(可视为质点),从光滑、固定的14圆弧轨道的最高点A 由静止滑下,经最低点B 后滑到位于水平面的木板上.已知木板质量M =2 kg ,其上表面与圆弧轨道相切于B 点,且长度足够长.整个过程中木板的v -t 图象如图乙所示,g =10 m/s 2.求:(1)滑块经过B 点时对圆弧轨道的压力; (2)滑块与木板之间的动摩擦因数; (3)滑块在木板上滑过的距离.解析 (1)设圆弧轨道半径为R ,从A 到B 过程,滑块的机械能守恒mgR =12m v 2,经B 点时,根据牛顿第二定律有 F N -mg =m v 2R,整理得F N =3mg =30 N ,根据牛顿第三定律知,滑块对轨道的压力大小为30 N ,方向竖直向下.(2)由v -t 图象知,木板加速的加速度大小为a 1=1 m /s 2,滑块与木板共同减速的加速度大小为a 2=1 m/s 2,设木板与地面之间的动摩擦因数为μ1,滑块与木板之间的动摩擦因数为μ2,在0~1 s 内,对木板μ2mg -μ1(m +M )g =Ma 1, 在1 s ~2 s 内,对滑块和木板μ1(m +M )g =(m +M )a 2, 解得μ1=0.1,μ2=0.5.(3)滑块在木板上滑动过程中,设滑块与木板相对静止时的共同速度为v 1,滑块从滑上木板到两者达到共同速度所用时间为t 1.对滑块μ2mg =ma ,v 1=v -at 1,v 1=1 m/s ,t 1=1 s , 木板的位移x 1=v 12t 1,滑块的位移x 2=v 1+v2t 1,滑块在木板上滑过的距离Δx =x 2-x 1, 代入数据解得Δx =3 m.答案 (1)30 N ,方向竖直向下 (2)0.5 (3)3 m[例2]如图,—轻弹簧原长为2R ,其一端固定在倾角为37°的固定直轨道AC 的底端A 处,另一端位于直轨道B 处,弹簧处于自然状态.直轨道与一半径为56R 的光滑圆弧轨道相切于C 点,AC =7R ,A 、B 、C 、D 均在同一竖直平面内.质量为m 的小物块P 自C 点由静止开始下滑,最低到达E 点(未画出).随后P 沿轨道被弹回,最高到达F 点,AF =4R .已知P 与直轨道间的动摩擦因数μ=14,重力加速度大小为g .(取sin 37°=35,cos 37°=45)(1)求P 第一次运动到B 点时速度的大小. (2)求P 运动到E 点时弹簧的弹性势能.(3)改变物块P 的质量,将P 推至E 点,从静止开始释放.已知P 自圆弧轨道的最高点D 处水平飞出后,恰好通过G 点.G 点在C 点左下方,与C 点水平相距72R 、竖直相距R .求P 运动到D 点时速度的大小和改变后P 的质量.解析 (1)根据题意知,B 、C 之间的距离为l =7R -2R ,① 设P 到达B 点时的速度为v B ,由动能定理得 mgl sin θ-μmgl cos θ=12m v 2B , ②式中θ=37°,联立①②式并由题给条件得v B =2gR . ③(2)设BE =x .P 到达E 点时速度为零,设此时弹簧的弹性势能为E p .P 由B 点运动到E 点的过程中,由动能定理有mgx sin θ-μmgx cos θ-E P =0-12m v 2B , ④E 、F 之间的距离为l 1=4R -2R +x , ⑤P 到达E 点后反弹,从E 点运动到F 点的过程中,由动能定理有 E p -mgl 1sin θ-μmgl 1cos θ=0,⑥联立③④⑤⑥式并由题给条件得x =R , ⑦ E P =125mgR . ⑧(3)设改变后P 的质量为m 1.D 点与G 点的水平距离x 1和竖直距离y 1分别为x 1=72R -56R sinθ, ⑨y 1=R +56R +56R cos θ, ⑩式中,已应用了过C 点的圆轨道半径与竖直方向夹角仍为θ的事实.设P 在D 点的速度为v D ,由D 点运动到G 点的时间为t .由平抛运动公式有y 1=12gt 2,⑪x 1=v D t , ⑫联立⑨⑩⑪⑫式得v D =355gR . ⑬设P 在C 点速度的大小为v C .在P 由C 点运动到D 点的过程中机械能守恒,有 12m 1v 2C =12m 1v 2D +m 1g (56R +56R cos θ), ⑭ P 由E 点运动到C 点的过程中,由动能定理有 E p -m 1g (x +5R )sin θ-μm 1g (x +5R )cos θ=12m 1v 2C , ⑮ 联立⑦⑧⑬⑭⑮式得m 1=13m .答案 见解析1.(2017·江苏南京诊断)如图所示,质量M =0.4 kg 的长薄板BC 静置于倾角为37°的光滑斜面上,在A 点有质量m =0.1 kg 的小物体(可视为质点)以v 0=4.0 m /s 速度水平抛出,恰以平行斜面的速度落在薄板的最上端B 并在薄板上运动,当小物体落在薄板上时,薄板无初速度释放开始沿斜面向下运动,小物体运动到薄板的最下端C 时,与薄板速度恰好相等,已知小物体与薄板之间的动摩擦因数为μ=0.5,sin 37°=0.6,cos 37°=0.8,g =10 m/s 2.求:(1)A 点与B 点的水平距离; (2)薄板BC 的长度.解析 (1)小物体从A 到B 做平抛运动,下落时间为t 1,水平位移为x ,则 gt 1=v 0tan 37°, ① x =v 0t 1,②联立①②得x =1.2 m.(2)小物体落到B 点的速度为v ,则 v =v 20+(gt 1)2,③小物体在薄板上运动,则mg sin 37°-μmg cos 37°=ma 1,④ 薄板在光滑斜面上运动,则 Mg sin 37°+μmg cos 37°=Ma 2,⑤小物体从落到薄板到两者速度相等用时t 2,则 v +a 1t 2=a 2t 2,⑥小物体的位移x 1=v t 2+12a 1t 22,⑦薄板的位移x 2=12a 2t 22,⑧薄板的长度l =x 1-x 2,⑨ 联立③~⑨式得l =2.5 m. 答案 (1)1.2 m (2)2.5 m2.(2017·河北衡水一模)如图所示,滑块质量为m ,与水平地面间的动摩擦因数为0.1,它以v 0=3gR 的初速度由A 点开始向B 点滑行,AB =5R ,并滑上光滑的半径为R 的14圆弧BC ,在C 点正上方有一离C 点高度也为R 的旋转平台,沿平台直径方向开有两个离轴心距离相等的小孔P 、Q ,P 、Q 位于同一直径上,旋转时两孔均能达到C 点的正上方.若滑块滑过C 点后穿过P 孔,又恰能从Q 孔落下,则平台转动的角速度ω应满足什么条件?解析 设滑块滑至B 点时速度为v B ,对滑块由A 点到B 点应用动能定理有 -μmg 5R =12m v 2B -12m v 20, 解得v 2B =8gR .滑块从B 点开始,运动过程机械能守恒,设滑块到达P 处时速度为v P ,则 12m v 2B =12m v 2P +mg 2R , 解得v P =2gR ,滑块穿过P 孔后再回到平台的时间t =2v Pg =4R g, 要想实现题述过程,需满足ωt =(2n +1)π, ω=π(2n +1)4gR(n =0,1,2,…). 答案 ω=π(2n +1)4gR(n =0,1,2,…)3.(2017·湖北黄冈模拟)如图所示,半径R =1.0 m 的光滑圆弧轨道固定在竖直平面内,轨道的一个端点B 和圆心O 的连线与水平方向间的夹角θ=37°,另一端点C 为轨道的最低点.C 点右侧的光滑水平面上紧挨C 点静止放置一木板,木板质量M =1 kg ,上表面与C 点等高.质量为m =1 kg 的物块(可视为质点)从空中A 点以v 0=1.2 m /s 的速度水平抛出,恰好从轨道的B 端沿切线方向进入轨道.已知物块与木板间的动摩擦因数μ=0.2,取g =10 m/s 2.求:(1)物块经过C 点时的速度v C ;(2)若木板足够长,物块在木板上相对滑动过程中产生的热量Q .解析 (1)设物块在B 点的速度为v B ,在C 点的速度为v C ,从A 到B 物块做平抛运动,有v B sin θ=v 0,从B 到C ,根据动能定理有mgR (1+sin θ)=12m v 2C -12m v 2B ,解得v C =6 m/s.(2)物块在木板上相对滑动过程中由于摩擦力作用,最终将一起共同运动.设相对滑动时物块加速度为a 1,木板加速度为a 2,经过时间t 达到共同速度为v ,则μmg =ma 1,μmg =Ma 2, v =v C -a 1t ,v =a 2t . 根据能量守恒定律有 12(m +M )v 2+Q =12m v 2C 联立解得Q =9 J. 答案 (1)6 m/s (2)9 J。