2015省考行测备考:浅谈立体图形的视图与截面问题
- 格式:doc
- 大小:128.00 KB
- 文档页数:3
空间类(三视图、截面图和立体拼合)1.,国考会经常考查三视图、截面图和立体拼合,备考国考的同学一定要掌握这三类题型,备考江苏省考的同学需要掌握三视图和截面图。
2.可能很多同学会觉得立体拼合较难,故课上要认真听老师讲解的方法和技巧。
三视图题型判定:a.下面四个选项中,符合左边立体图形的俯视图和左视图的是:b.从所给四个选项中,选择最合适的一个填入问号处,使之呈现一定规律性:考查立体图形的三个观察角度:主视图(从正面看)俯视图(从头顶向下看)左视图(从左侧看)空间类 三视图 截面图 立体拼合:图一解题原则:(1)观察到的三视图都是平面图(1)(2)(3)(2)原图有线就有线,原图没线就没线(3)当被遮挡住时,看不见被遮挡部分(4)有些角度下弧会被压平【注意】三视图:三视图相对来说比较简单,故优先讲解。
1.题型判定:图二图三图四(1)若问法为“下面四个选项中,符合左边立体图形的俯视图和左视图的是”,题干中明确说明了出现“视图”,则考查三视图。
(2)若问法为“从所给四个选项中,选择最合适的一个填入问号处,使之呈现一定规律性”,问法很平常,此时需要观察题干特征。
如图一中,第一组图1为立体图形,图 2、图 3 为平面图形。
第二组图 1 为立体图形,图 2 为平面图形。
题干中出现两组图,且每组图形的第一幅图为立体图形,后两幅图为平面图形,则考查三视图。
2.考查立体图形的三个观察角度(常考):(1)主视图:从前往后看。
(2)俯视图:从上往下看。
(3)左视图:从左往右看。
(4)例:图(1)为梯形加 1个小圆,是从左向右观察得到的视图,为左视图;图(2)中间为梯形中间加 1 个小矩形,是从前向后观察得到的视图,为主视图;图(3)可以看见所有的图案(上帝视角),是从上向下观察得到的视图,为俯视图。
3.解题原则:(1)观察到的三视图都是平面图(想象自己有“铁砂掌”,从观察的角度将图形“拍扁”,得到的视图一定是平面图)。
2015河北公务员考试行测技巧:数学运算中的几何问题讲解近年来,在公务员考试行测数学运算部分,几何问题深受命题人的青睐,几乎每年都有考察,是考试的重点内容之一。
与数学运算的其他题型相比,几何问题较为简单,可以较为轻松地将分数拿到,应引起广大考生的重视。
中公教育专家通过对近年来行测考试中几何问题的研究,发现几何问题呈现出三个特点。
1.多考察立体几何。
相比于平面几何,立体几何能够更加全面地考察考生的思维能力。
2.空间想象力很重要。
空间想象力是命题人重点考察的一种思维能力。
3.公式要熟悉。
想要在短时间内将几何问题做好,要求考生对各种几何图形的面积、体积公式烂熟于心。
【例题1】若干个相同的立方体摆在一起,前、后、左、右的视图都是,问这堆立方体最少有多少个?A.4B.6C.8D.10【答案】A【中公解析】此题考察立体几何中的三视图问题,解题的关键在于考生的空间想象力。
上图中的立体图形满足题干要求,且立方体数最少。
易知,立方体数最少有4个。
【例题2】用一个平面将一个边长为1的正四面体切分为两个完全相同的部分,则切面的最大面积为:【答案】C【中公解析】此题重点考察平面几何中的面积计算公式,要求考生熟练掌握等边三角形、等腰三角形的特点及计算公式,空间想象力是此题的突破口。
用平面将正四面体切分为两个完全相同的部分,就是沿正四面体的其中一个三角形面垂直切下来,得到的最大切面就是一个等腰三角形。
因为正四面体的边长为1,由勾股定理,切面等腰三角形的腰长是,底边是1,再由勾股定理,等腰三角形的高就是,有三角形的面积公式,切面的最大面积,故C为正确选项。
【例题3】连接正方体每个面的中心构成一个正八面体(如下图所示)。
已知正方体的边长为6厘米,问正八面体的体积为多少立方厘米?【答案】C【中公解析】此题考察立体几何中的体积计算公式,合理拆分正八面题是解题的关键。
图中的正八面体可以拆解为两个相同的四棱锥,而棱锥的体积为,其中h为正方体边长的一半,则需要求出棱锥的底面积S;正方体的横截面如下图所示,单独分析该截面,可得棱锥的底面积为正方体底面积的一半。
高考数学立体几何截面问题在高考数学立体几何中,截面问题是一个重要的考点。
本文将从以下几个方面对截面问题进行讲解:截面的形状和性质、截面与几何体的关系、截面与投影的关系以及截面与面积的关系。
一、截面的形状和性质1.截面的形状截面是指通过一个平面与一个几何体相交,所得的交线。
截面的形状可能是一个点、一条直线、一个平面多边形或一个圆。
在解决立体几何问题时,我们需要根据题目所给的条件,判断出截面的形状,并进一步解决问题。
2.截面的性质截面的性质包括以下几点:(1)截面是平面图形,其形状取决于几何体和截面的位置关系。
(2)截面与几何体的边界相交,但不穿过几何体的内部。
(3)截面与几何体的表面平行,因此可以运用平行投影的知识来研究截面的性质。
二、截面与几何体的关系1.截面与正方体的关系正方体的截面有三种情况:三角形、矩形和五边形。
当截面与正方体的中心轴平行时,可以得到一个正方形;当截面与正方体的中心轴垂直时,可以得到一个三角形;当截面与正方体的中心轴斜交时,可以得到一个矩形或五边形。
长方体的截面也有三种情况:三角形、矩形和五边形。
当截面与长方体的中心轴平行时,可以得到一个矩形;当截面与长方体的中心轴垂直时,可以得到一个三角形;当截面与长方体的中心轴斜交时,可以得到一个梯形或不规则四边形。
三、截面与投影的关系1.投影的定义及性质投影是指将一个几何体投射到一个平面上的结果。
投影的性质包括以下几点:(1)投影是直线与平面相交的结果。
(2)投影的长度等于被投影线段的长度。
(3)投影的方向与被投影线段的方向相同或相反。
2.截面与投影的关系截面与投影之间存在一定的关系。
如果一个几何体在一个平面上的投影是一个多边形,那么这个多边形的形状就取决于该几何体的形状以及它与平面的相对位置。
因此,在解决立体几何问题时,我们需要通过判断几何体在某一平面上的投影来推断出它的形状和性质。
四、截面与面积的关系1.面积的定义及计算方法面积是指一个平面图形所占的面积大小。
立体几何中的截面问题立体几何中的截面问题⒈简介立体几何是研究物体的形状、尺寸和空间关系的一门学科。
在立体几何中,截面问题是一个重要的研究方向。
截面问题指的是在一个立体物体中,通过给定的切割平面,研究切割所得的平面图形与原立体物体的关系。
⒉切割平面的表示方法在研究截面问题时,我们通常将切割所用的平面表示为一个方程。
常见的表示方法有点法式、一般式和截距式等。
⑴点法式点法式是通过给定平面上的一点和法向量来表示平面的方程。
设平面上一点为P(x0, y0, z0),法向量为n(n1, n2, n3),则平面的点法式为:n1(x ●x0) + n2(y ●y0) + n3(z ●z0) = 0⑵一般式一般式将平面的方程表示为一个二次齐次方程,形式为Ax +By + Cz + D = 0。
其中A、B、C是平面的法向量的坐标,D是一个与平面有关的常数。
⑶截距式截距式是通过平面与坐标轴交点的位置来表示平面的方程。
设平面与x轴、y轴、z轴的交点分别为(x0, 0, 0),(0, y0, 0),(0, 0, z0),则平面的截距式为:x/x0 + y/y0 + z/z0 = 1⒊平面与立体物体的相交及分类当给定切割平面后,它可能与立体物体相交于不同的方式。
根据相交情况的不同,我们将平面与立体物体的相交分为以下几类:⑴完全相交当切割平面与立体物体完全相交时,即切割平面穿过了立体物体的内部,并将其分成两个或多个部分。
⑵部分相交当切割平面与立体物体部分相交时,即切割平面与立体物体的边界相交。
⑶不相交当切割平面与立体物体不相交时,即切割平面与立体物体没有交点。
⒋截面图形的性质通过研究切割平面与立体物体的相交情况,可以得到截面图形的一些性质。
⑴形状截面图形的形状与切割平面的位置和方向有关。
在同一个立体物体中,不同位置和方向的切割平面可能得到不同形状的截面图形。
⑵面积截面图形的面积可以通过计算得到。
对于平面图形,常用的计算方法有面积公式和积分法。
⾏测-三视图、截⾯图、⽴体拼合⼀、三视图
是⼯程制图上的概念,从主视图、左视图、俯视图三个⽅向去看⼀个图形
1.观察到的三视图都是平⾯图
2.原图有线就有线,原图没线就没线
3.当被遮挡住时,看不见被遮挡部分(也可以画虚线)
4.有些⾓度下弧会被压平
⼩技巧:
(1)先根据外部轮廓确定⽅向,再根据内部线条确定对错。
(2)第 2 题中只能看清前⾯和右侧,左侧和后⾯看不到,所以从好观察的
位置⼊⼿来解题。
(3)⼩⽅块类题⽬,找同⼀⾓度下的相同视图。
主视图基本不考查,考查
的是左视图和俯视图。
⼆、截⾯图
1.六⾯体
(1)矩形(拦腰切、上下切、斜切)
(2)梯形(斜切)
(3)三⾓形(从棱上的某⼀点开始斜着切到⾯)
注意:六⾯体只能切出锐⾓三⾓形
2.圆柱
3.圆锥
三、⽴体拼合
解题原则
凹凸对应:有凹必有凸,有凸必有凹俄罗斯⽅块型⽴体拼合
(1)俄罗斯⽅块式的⽴体拼合题⽬要保证块数⼀致(2)⼤⽴⽅体的拼合——化繁为简切⽚法。
掌握这些知识点再也不怕⽴体截⾯图形题了⽴体图形截⾯图浅谈⽴体图形截⾯图浅谈在国考中,总共有10道图形题。
其中规律类的图形题占7-8道,⽽重构类的图形题占1-2道。
但随着考试难度的增加,国考中也常常考⼀些新的题型如⽴体截⾯图或⽴体拼合图等。
由于⽴体图形经过截⾯后所呈现的图形种类特别多,很多同学都对之较为陌⽣,所以我们在这为⼤家讲⼀讲⽴体图形截⾯的解题⽅法。
⾸先,我们要清楚截⾯的定义:在⽴体⼏何中,截⾯是指⽤⼀个平⾯去截⼀个⼏何体(包括圆柱,圆锥,球,棱柱,棱锥、长⽅体,正⽅体等等),得到的平⾯图形,叫截⾯。
其次,我们要清楚⽴体图形的截⾯⽅式,总共有三种,分别为横截、竖截、斜截。
最后,我们要了解每⼀种⽴体图形通过上述三种截⾯⽅式所得到的截⾯图有哪些。
斜截⾯⼀、正六⾯体的基本六⾯体的基本斜的基本截⾯在这⾥需要给⼤家强调⼀下,正六⾯体斜截⾯是不会出现以下⼏种图⼆、圆柱体圆柱体的基本截⾯形:直⾓三⾓形、钝⾓三⾓形、直⾓梯形、正五边形。
就⽬前考试来说,我们常考的⽴体图形截⾯多以六⾯体为主,在六⾯体的基础上再叠加⼀些圆柱、三棱锥等其他图形。
我们在解题的过程中,只需要把每⼀个⽴体图形的截⾯记住,并在考试中熟练应⽤就可以解决很多题型了。
【例1】⼀圆柱如图所⽰从中挖掉⼀个圆锥体,然后从任意⾯剖开,下⾯哪⼀项不可能是该圆柱的截⾯?【答案】C【解析】A是竖着切,B是横着切,D是从底⾯在不触碰中间⼩圆的情况下向外斜着切。
C是斜着切,圆锥斜切的截⾯是个椭圆,但是位置应该偏向于⼀边,⽽不应该处于正中⼼。
故答案为C。
【例2】⼀⽴⽅体如图所⽰从中挖掉⼀个四棱锥,然后从任意⾯剖开,下⾯哪⼀项不可能是该⽴⽅体的截⾯?【答案】A【解析】B是竖着切,C是从正⽅体⼀个侧⾯出发斜着向下切。
D是从正⽅体⼀个侧边出发,斜着向下切。
A选项四棱锥不能切出长⽅形,内侧出现长⽅形就是错误的。
故选A。
【例3】⼀圆锥如图所⽰,在上⾯叠加⼀个正⽅体,然后从任意⾯剖开,下⾯哪⼀项不可能是该⽴体图形的截⾯?【答案】C【解析】A是竖着切,B是从棱锥的顶点出发斜着向上切,D只要找到有四个⾯符合正⽅体的特征,⼀定可以切出。
高三二轮专题复习立体几何中截面问题重难考点归纳总结作空间几何体截面的常见方法:(1)直接连接法:有两点在几何体的同一个面上,连接该两点即为几何体与截面的交线,找截面就是找交线的过程;(2)作平行线法:过直线与直线外一点作截面,若直线所在的平面与点所在的平面平行,可以通过过点找直线的平行线找到几何体与截面的交线;(3) 作延长线找交点法:若直线相交但是立体图形中未体现,可通过作延长线的方法先找到交点,然后借助交点找到截面形成的交线;(4)辅助平面法:若三个点两两都不在一个侧面或者底面中,则在作截面时需要作一个辅助平面.考点一:截面形状的判断1.在立体几何中,用一个平面去截一个几何体得到的平面图形叫截面.平面以任意角度截正方体,所截得的截面图形不可能为() A .等腰梯形B .非矩形的平行四边形C .正五边形D .正六边形2.在立体几何中,用一个平面去截一个几何体得到的平面图形叫截面,如图,在正方体ABCD ﹣A 1B 1C 1D 1中,点E 、F 分别是棱B 1B 、B 1C 中点,点G 是棱CC 1的中点,则过线段AG 且平行于平面A 1EF 的截面图形为( )A .矩形B .三角形C .正方形D .等腰梯形3.如图所示的几何体是由一个圆柱挖去一个以圆柱的上底面为底面,下底面圆心为顶点的圆锥而得到的组合体,现用一个垂直于圆柱底面的平面去截这个组合体﹐则截面图形可能是______(填序号).4.(多选题)一个正方体内有一个内切球,用一个平面去截,所得截面图形可能是图中的( )A .AB .BC .CD .D5.在正方体中,M ,N ,Q 分别为棱AB ,的中点,过点M ,N ,Q 作该正方体的截面,则所得截面的形状是() A .三角形B .四边形C .五边形D .六边形考点二:求截面面积6.已知圆柱的上、下底面的中心分别为,,过直线的平面截该圆柱所得的截面是面积为16的正方形,则该圆柱的表面积为() A . B . C . D . 7.已知球O 的表面积为,则过球Q 一条半径的中点,且与该半径垂直的截面圆的面积为___________. 8.已知圆锥的侧面积为,若其过轴的截面为正三角形,则该圆锥的母线的长为___________. 9.已知正四棱柱中、的交点为,AC 、BD 的交点为,连接,点为的中点.过点且与直线AB 平行的平面截这个正四棱柱所得截面面积的最小值和最大值分别为1,则正四棱柱的体积为______________.111-ABCD A B CD 111,B B C D 1O 2O 12O O 24π20π8π29π11A C 11B D 1O 2O 12O O O 12O O O 1111ABCD A B C D -10.已知正四棱柱中,,,则该四棱柱被过点,C ,E 的平面截得的截面面积为______. 11.已知圆锥的侧面积为20π,底面圆O 的直径为8,当过圆锥顶点的平面截该圆锥所得的截面面积最大时,则点O 到截面的距离为______________.12.在立体几何中,用一个平面去截一个几何体得到的平面图形叫截面. 如图,在棱长为1的正方体中,点分别是棱的中点,点是棱的中点,则过线段且平行于平面的截面的面积为A . B. C . D13.已知棱长为的正四面体,,,分别是棱,,的中点,则正四面体的外接球被三角形所在的平面截得的截面面积是( )A .B .C .D . 14.已知三棱锥的所有棱长均相等,四个顶点在球的球面上,平面经过棱,,的中点,若平面截三棱锥和球所得的截面面积分别为,,则( ) ABC .D . 15.已知正方体的长为2,直线平面,下列有关平面截此正方体所得截面的结论中,说法正确的序号为______.①截面形状一定是等边三角形:②截面形状可能为五边形;③截面面积的最大值为④存在唯一截面,使得正方体的体积被分成相等的两部分.16.已知某圆锥轴截面的顶角为,过圆锥顶点的平面截此圆锥所得截面面积的最大值为,则该圆锥的1111ABCD A B C D -1124BE BB ==143AB AA =1A 1111ABCD A B C D -,E F 111,B B B C G 1CC AG 1A EF 198894ABCD E F N AB AC AD ABCD EFN 73π83π103π163πA BCD -O αAB AC AD αA BCD -O 1S 2S 12S S =38π364π1111ABCD A B C D -1AC ⊥αα120 2底面半径为() ABC .D .17.在长方体中,已知,,分别为,的中点,则平面被三棱锥外接球截得的截面圆面积为___________.考点三:求截面周长18.如图,在正方体中,,为棱的中点,为棱的四等分点(靠近点),过点作该正方体的截面,则该截面的周长是___________.19.已知在棱长为6的正方体ABCD -A 1B 1C 1D 1中,点E ,F 分别是棱C 1D 1,B 1C 1的中点,过A ,E ,F 三点作该正方体的截面,则截面的周长为________.20.正三棱柱ABC ﹣A 1B 1C 1中,所有棱长均为2,点E ,F 分别为棱BB 1,A 1C 1的中点,若过点A ,E ,F 作一截面,则截面的周长为( )1111ABCD A B C D -122AA AB AD ===E F 1BB 11D C 11A BCD 1C CEF -1111ABCD A B C D -4AB =E BC F 11A D 1D ,,A E FA .B .C .D .21.在三棱锥中,,截面与,都平行,则截面的周长等于( )A .B .C .D .无法确定考点四:截面最值问题22.已知三棱锥的四个顶点在球的球面上,,的正三角形,三棱锥的体积为,为的中点,则过点的平面截球所得截面面积的取值范围是( ) A . B . C . D . 23.正四面体ABCD 的棱长为4,E 为棱AB 的中点,过E 作此正四面体的外接球的截面,则该截面面积的取值范围是( ) A . B . C . D . 24.已知球O 是正三棱锥A -BCD (底面是正三角形,顶点在底面的射影为底面中心)的外接球,BC =3,AB =E 在线段BD 上,且BD =3BE .过点E 作球O 的截面,则所得截面面积的最小值是( ) A . B. C . D .25.如图,四边形为四面体的一个截面,若四边形为平行四边形,,,则四边形的周长的取值范围是___________.26.如图,设正三棱锥的侧棱长为,,分别是上的点,过作三棱锥的截面,则截面周长的最小值为________.+A BCD -AB CD a ==MNPQ AB CD MNPQ 2a 4a a P ABC -O PA PB PC ==ABC ∆P ABC -16Q BC Q O 13,24ππ⎡⎤⎢⎥⎣⎦12,23ππ⎡⎤⎢⎥⎣⎦13,44ππ⎡⎤⎢⎥⎣⎦12,43ππ⎡⎤⎢⎥⎣⎦[]46ππ,[]412ππ,[]4ππ,[]6ππ,2π3π4π5πEFGH ABCD EFGH 4AB =6CD =EFGH P ABC -240APB ∠=︒,E F ,BP CP ,,A E F AEF27.正三棱锥,点在棱上,且,已知点都在球的表面上,过点作球的截面,则截球所得截面面积的最小值为___________.考点五:有关截面的综合问题28.如图,在正方体中,点P 为线段上的动点(点与,不重合),则下列说法不正确的是( )A .B .三棱锥的体积为定值C .过,,三点作正方体的截面,截面图形为三角形或梯形D .DP 与平面所成角的正弦值最大为 29.(多选题)在棱长为2的正方体中,以下结论正确的有()A .三棱锥外接球的体积是B .当点在直线上运动时,的最小值是P ABC -AB ==E PA 3PE EA =P A B C 、、、O E O ααO 1111ABCD A B C D -11A C P 1A 1C BD CP ⊥C BPD -P C 1D 1111D C B A 131111ABCD A B C D -11B A DC -Q 1BC 1A Q QC +8+C .若棱,,的中点分别是,,,过,,三点作正方体的截面,则所得截面面积为D .若点是平面上到点和距离相等的点,则点的轨迹是直线30.(多选题)如图,正方体的棱长为1,P 为的中点,Q 为线段上的动点,过点A ,P ,Q 的平面截该正方体所得的截面多边形记为S ,则下列命题正确的是( )A .当时,S 为等腰梯形B .当时,S 与的交点R 满足C .当时,S 为六边形D .当时,S31.(多选题)在正方体中,,点E ,F 分别为,中点,点P 满足,,则( )A .当时,平面截正方体的截面面积为B .三棱锥体积为定值 AB 1AA 11CDEFG E F G M 1111D C B A D 1C M 11A D 1111ABCD A B C D -BC 1CC 12CQ =34CQ =11C D 113C R =314CQ <<1CQ =1111ABCD A B C D -2AB =AB BC 1AP AA λ= [0,1]λ∈1λ=PEF 941P ECC -C .当时,平面截正方体的截面形状为五边形D .存在点P ,二面角为45°10,3λ⎛⎤∈ ⎥⎝⎦PEF P EF A --Word 版见:高考高中资料无水印无广告word 群559164877详细解析1.C 【详解】画出截面图形如图:可以画出等腰梯形,故A 正确;在正方体中,作截面(如图所示)交,,,分别于点,,,,根据平面平行的性质定理可得四边形中,,且,故四边形是平行四边形,此四边形不一定是矩形,故B 正确;经过正方体的一个顶点去切就可得到五边形.但此时不可能是正五边形,故C 错误;正方体有六个面,用平面去截正方体时最多与六个面相交得六边形,且可以画出正六边形,故D 正确. 故选:C1111ABCD A B C D EFGH 11C D 11A B AB CD E F G H EFGH //EF HG //EH FGEFGH高中数学教研群 QQ 群号929518278 精品资料每天更新2.D 【详解】取的中点,如图连接、、、,由题意得:,, 不在平面内,平面内,∴平面.不在平面内,平面内,∴平面.,平面,平面平面,过线段且平行于平面的截面图形为等腰梯形.故选:.3.①⑤【详解】由题意,当截面过旋转轴时,圆锥的轴截面为等腰三角形,此时①符合条件; 当截面不过旋转轴时,圆锥的轴截面为双曲线的一支,此时⑤符合条件, 综上可知截面的图形可能是①⑤.故答案为:①⑤4.AB 【详解】由组合体的结构特征可知:当截面过球与正方体切点时可知A 正确、C 错误;当截面过正方体的对角面时可知B 正确;此题是正方体的内切球,可知D 错误.故选:AB5.D 【详解】如图所示:分别为中点,M ,N ,Q 确定平面, 且,故,,故,同理可得,,,故截面为六边形.故选:D. BC H AH GH 1D G 1AD //GH EF 1//AH A F GH 1A EF EF ⊆1A EF ||GH 1A EF AH 1A EF 1A F ⊆1A EF ||AH 1A EF GH AH H = ,GH AH ⊆1AHGD ∴1//AHGD 1A EF AG AEF 1AHGDD ,,EF H 111,,AD DD B C αNH MQ ∥N α∈NH α⊂,Q H αα∈∈QH α⊂FQ α⊂EF α⊂EM α⊂6.B 【详解】根据题意,所得截面是边长为4的正方形,结合圆柱的特征,可知该圆柱的底面是半径为的圆,且高为4,所以其表面积.故选:B. 7.【详解】 设球的半径为,则,解得.设截面圆的半径为,由题知:, 所以截面圆的面积.故答案为: 8.【详解】 设圆锥的底面半径为r ,圆锥的母线为l ,又圆锥过轴的截面为正三角形,圆锥的侧面积为, ∴, ∴.故答案为:. 9.3【详解】设正四棱柱的底面边长为a ,高为h ,由题知当截面平行于平面时,截面面积最小;当截面为平面时,截面面积最大,2()22222424S =⨯+⨯⨯=πππ32ππR 248R ππ=R =r r ==232S ππ==32π2329π22,9l r rl ππ==23l =23ABCD 11A B CD因为过点且与直线AB 平行的平面截这个正四棱柱所得截面面积的最小值和最大值分别为1,所以, 于是正四棱柱的体积为.故答案为:3.10.由题意,正四棱柱中,,, 可得,在上取点,使得,连接,则有, 所以四边形是平行四边形,由勾股定理可得,所以所以, 所以四边形是平行四边形的面积为, 故答案为:O 21a ⎧=⎪⎨=⎪⎩13a h =⎧⎨=⎩1111ABCD A B C D -23a h =1111ABCD A B C D -1124BE BB ==143AB AA =1118,2AA BB CC BE ====1DD F 12D F =1,A F CF 11,//A F CE A F CE =1A ECF 11A E CE A C ====2221111cos 2A E CE A C A EC A E CE +-∠===⨯1sin A EC ∠=1A ECF 11sin A E EC A EC ⨯⨯∠==11设圆锥的底面圆的半径为r ,高为h ,母线长为l ,则,∴,h =3,由于h<r ,所以圆锥的轴截面为钝角三角形,所以过圆锥顶点的平面截该圆锥所得的截面为直角三角形时面积最大,如图,△SAB 为截面三角形,SO 为圆锥的高,设点O 到截面的距离为d ,则∴,即, ∴,即点O. 12.B 【详解】取BC 的中点H ,连接,4,20r rl ππ==5l =25,2SAB AB S == 14,2AOB OA OB S ===⨯= 1133SAB AOB S d S h ⋅=⋅ 12513323d ⨯⋅=d =,AH GH因为面AHGD1,面AHGD1,面AHGD1,同理,面AHGD1,又,则平面AHGD1∥平面A1EF,等腰梯形AHGD1,,故选B.13.D【详解】过点作平面的垂线,垂足为,交平面于点,设该四面体外接球球心为,连接,作图如下所示:因为四面体为正四面体,且面,故点为△的外心,则该四面体的球心一定在上,不妨设外接球球心为;因为分别为的中点,则//,//,又,且面,面,故平面//平面,故面,又为中点,故也为中点.因为正四面体的所有棱长为,故1,EF BC GH EF⊄GH⊂EF∴∥1A E∥1A E EF E⋂=98A BCD H EFN'O O,OB BHABCD AH⊥BCDH BCD AH O,,E F N,,AB AC AD EF BC FN CD,EF FN F BC CD C⋂=⋂= ,EF FN⊂EFN,BC CD⊂BCD EFN BCDAO'⊥EFN E AB'O AHABCD4243BH==则设该四面体的外接球半径为,即,则, 在△中,,即, 解得即外接球球心到平面, 设平面截外接球所得圆的半径为,则,解得,故截面圆的面积为.故选:D. 14.B 【详解】设平面截三棱锥所得正三角边长为a ,截面圆的半径为r ,则, 由正弦定理可得, ,故选:B15.④【详解】如图可知,截面形状可以是等边三角形、六边形、正六边形,∴①②明显错误;截面面积的最小值可以趋向于零,故③错误;当截面为正六边形时,截面过正方体的中心,此时正方体的体积被分成相等的两部分.故④正确.故答案为:④AH ===12O H AH ='=R OA OB R ==OH AH R R =-=Rt OHB 222OH BH OB +=222R R ⎫+=⎪⎪⎭R =OO R AO =-==''O EFN EFN r 222r +=2163r =163παA BCD -21S =sin 60a r ==︒22243πa S πr ∴==12S S =∴16.A 【详解】如图,由题可知,,又过圆锥顶点的平面截此圆锥所得截面面积的最大值为,∴,即, 在中,.故选:A. 17.【详解】 以点为原点建立空间直角坐标系如图所示:120APB ∠= 30ABP ∠= 22122l =2l =Rt POB cos302r l === 98πD依题意得:,,,则,,所以,则;设为中点,因为则,所以点为三棱锥外接球的球心,则设球心到平面的距离为,又因为为中点,所以点到平面的距离为,由于,所以故截面圆的半径为,所以截面圆面积为. 故答案为:18如图,取的中点,取上靠近点的三等分点,()0,2,0C ()1,2,1E ()0,1,2F ()1,0,1EC =-- ()111EF ,,=-- 1010EC EF ⋅=+-= EF EC ⊥O CF EF EC ⊥1EO OC FO C O ===O 1C CEF -12R CF ==O 11A BCD h O CF F 11A BCD 2h 111244h C D ==⨯=h =r ==98π98π11C D H 1CC 1C G连接,易证,则五边形为所求截面.因为,所以, 则, 故该截面的周长是.19.如图,延长EF ,A 1B 1,相交于点M ,连接AM ,交BB 1于点H ,延长FE ,A 1D1,相交于点N ,连接AN,交DD 1于点G ,连接FH,EG,可得截面为五边形AHFEG .因为ABCD-A 1B 1C 1D1是棱长为6的正方体,且E ,F 分别是棱C 1D 1,B 1C 1的中点,由中位线定理易得:EF =:AG =AH =EG =FH AH +HF +EF +EG +AG =故答案为:20.B 【详解】如图,在正三棱柱中,延长AF 与CC 1的延长线交于M ,连接EM 交B 1C 1于P ,连接FP ,则四边形AEPF 为所求截面.,,,,AE EG GH HF FA //,//AE HF AF EG AEGHF 4AB =111182,3,1,3BE CE C H D H A F D F CG =======143C G =103AE EG ==5,GH HF AF ===AE EG GH HF AF ++++=+111ABC A B C -过E 作EN 平行于BC 交CC 1于N ,则N 为线段CC 1的中点,由相似于可得MC 1=2,由相似于可得:, 在中,,则,在中,,则在中,,则在中,, 由余弦定理:,则故选:B.21.A 【详解】 设,因为平面,平面平面,平面,所以,同理可得,,,故四边形为平行四边形, 所以,. 因为,所以,, 1MFC MAC △1MPC △MEN 111242,2333PC PC B P =⇒==1Rt AA F 112,1AA A F ==AF ==Rt ABE △2,1AB BE ==AE ==1Rt B EP 1121,3B E B P ==PE ==1C FP 11141,,603C F C P FC P ==∠=︒2224413121cos 60339PF ⎛⎫=+-⨯⨯⨯︒= ⎪⎝⎭PF ==AM k CM=//AB MNPQ ABC MNPQ MN =AB ÌABC //MN AB //PQ AB //MQ CD //NP CD MNPQ 11MN PQ AB AB k ==+1MQ NP k CD CD k==+AB CD a ==1a MN PQ k ==+1ak MQ NP k==+所以四边形的周长为. 故选:A.22.A 【详解】设在底面上的射影为,因为,所以为的中心,由题可知,,由,解得 在正中,可得.从而直角在中解得. 进而可得,,,因此正三棱锥可看作正方体的一角, 正方体的外接球与三棱锥的外接球相同,正方体对角线的中点为球心. 记外接球半径为,则所以过的平面截球所得截面的面积最大为; 又为中点,由正方体结构特征可得 由球的结构特征可知,当垂直于过的截面时, MNPQ 2211a ak MN PQ MQ NP a k k ⎛⎫+++=+= ⎪++⎝⎭P ABC M PA PB PC ==M ABC ∆ABC S ∆1136P ABC ABC V PM S -∆=⨯⨯=PM =ABC ∆AM =ABC 1PA =PA PB ⊥PB PC ⊥PC PA ⊥P ABC -P ABC -O R R Q O 2max 34S R ππ==Q BC 1122OQ PA ==OQ Q截面圆半径最小为. 因此,过的平面截球所得截面的面积范围为. 故选:A.23.A 【详解】如图,将正四面体补为边长是ABCD 的外接球为正方体 的外接球,球心O在体对角线的中点,且球的半径;当OE 垂直于截面时,截面面积最小,截面圆的半径为面积为;当截面过球心O 时,截面面积最大,截面圆的半径为,面积为故选:A24.A【详解】解:如图,O 1是A 在底面的射影,由正弦定理得,△BCD 的外接圆半径r ==2min 12S r ππ==Q O 13,24ππ⎡⎤⎢⎥⎣⎦R =12r ==4π1r R =6π1031sin 602r =⨯=由勾股定理得棱锥的高AO 1;设球O 的半径为R ,则,解得,所以OO 1=1;在△BO 1E 中,由余弦定理得 所以O 1E =1;所以在△OEO 1中,OE;当截面垂直于OE. 故选:A25.【详解】解:四边形为平行四边形,;平面,平面, 平面;又平面,平面平面,,同理可得;设,, ,, ; 又,,, ,且; 四边形的周长为 ,;四边形周长的取值范围是.故答案为:26.将正三棱锥的三个侧面展开如图,由图可知,为使的周长最小,只需让四点共线即可,则当为与交点时,的周长最小,由题意,,∴,得的周长3==()223R R =-2R =2113211,O E =+-⨯==2π(8,12) EFGH //EH FG ∴EH ⊂/ ABD FG ⊂ABD //EH ∴ABD EH ⊂ ABC ABC ABD AB =//EH AB ∴//EF CD EH x =EF y =∴EH CE AB CA =EF AE CD AC =∴1EH EF CE AE AC AB CD CA AC AC+=+==4AB =Q 6CD =∴146x y +=614x y ⎛⎫∴=- ⎪⎝⎭04x <<∴EFGH 2()2[6(1)]4xl x y x =+=+-12x =-81212x ∴<-<∴EFGH (8,12)(8,12)AEF 1,,,A E F A ,E F 1AA ,BP CP AEF 140BPC CPA APB ∠=∠=∠=︒1120APA ∠=︒1AA ===AEF的最小值为故答案为:27.【详解】,,, 同理,故可把正三棱锥补成正方体(如图所示),其外接球即为球,直径为正方体的体对角线,故,设的中点为,连接,则.所以,当平面时,平面截球O 的截面面积最小,,故截面的面积为.故答案为:28.D 【详解】由题可知平面,所以,故A 正确; 由等体积法得为定值,故B 正确; 设的中点为,当时,如下图所示:3π4PA PC PB === AB AC BC ===222PA PC AC ∴+=2CPA π∴∠=2CPB BPA π∠=∠=O 2R =PA F OF OF =OF PA ⊥3OE ==OE ⊥αα=3π3πBD ⊥11ACC A BD CP ⊥113C BPD P BCD BCD V V S AA --==⋅⋅ 11A C M 1P MC ∈此时截面是三角形,当时,如下图所示:此时截面是梯形,故C 正确;选项D ,在正方体中,连接,则为在平面上的射影,则为与平面所成的角,设正方体的棱长为1,,则当取得最小值时,的值最大,即时,, 所以D 不正确. 故选:D.29.ACD 【详解】对于A :三棱锥的外接球即为正方体的外接球,因为正方体的外接球的直径即为正方体的体对角线,即所以外接球的体积是,故选项A 正确;1D QC 1PMA ∈1D QRC 1D P 1D P DP 1111D C B A 1D PD ∠DP 1111D C B A 1PD x =DP =1sin D PD ∠x 1sin D PD ∠111D P A C ⊥x 1sin D PD ∠11B A DC -1111ABCD A B C D -2R =R 34π3V =´=对于B :把沿翻折到与在同一个平面(如图所示),连接,则是的最小值,其中是边长为的等边三角形,是直角边为的等腰直角三角形,所以, 即故选项B 错误;对于C :分别取棱,,的中点,,,连接,,,,,,则易知过,,三点的截面是正六边形,1BCC 1BC 11A C B △1A C 1A C 1A Q QC +11A C B △1BCC 211A C A Q QC =+==1A Q QC +11A D 1CC BC H M N EF FH HG GM MN NE E F G EFHGMN所以截面面积为故选项C 正确;对于D :因为是平面上到点和距离相等的点,所以点的轨迹是平面与线段的垂直平分平面的交线,即点的轨迹是平面与平面的交线,所以点的轨迹是直线,即选项D 正确.故选:ACD.30.ABD 【详解】解:过点A ,P ,Q 的平面截正方体,当时,其截面形状为梯形如图1,特别地当时,截面形状为等腰梯形, 当时,其截面形状为五边形如图2. 若,则,所以. 当时,与重合,其截面形状为四边形如图3,此时,因为P 为的中点,且,所以为的中点,所以,同理,所以四边形为平行四边形,所以四边形为菱形,其面积为ABD 正确. 故选:ABD.31.BCD 【详解】A 选项中,当时,与重合,则截面为等腰梯形,其面积为,故A 选项错误; 1(62⨯=M 1111D C B A D 1C M 1111D C B A 1DC 11A BCD M 1111D C B A 11A BCD 11A D M 11A D 102CQ <≤12CQ =112CQ <<34CQ =1113C Q C R QC CM ==113C R =1CQ =Q 1C PQ AP =BC CP AD ∕∕Q MN PC AE ∕∕QE AP ∕∕APQE APQE 112AC PE ⋅==1λ=P 1A 92B 选项中,因为平面,故P 到平面的距离不变,故三棱锥体积为定值.故B 选项正确:C 选项中,当时,其截面刚好为五边形,时,截面为五边形;故C 选项正确;D 选项中,当点P 与重合时,其二面角正切值为,此时二面角大于45°, 所以存在点P ,二面角为45°,D 选项正确;故选:BCD .1//AA 1ECC 1ECC 1P ECC -13λ=103λ<<1A P EF A --。
2015公务员行测数量关系之立体几何问题近几年,在国家公务员考试中经常涉及几何问题。
在数学运算题型中,几何问题包含两种题型:平面几何问题和立体几何问题。
为了便于分析和计算,多数立体几何问题需要转化到平面上进行求解,关注和学习相关的平面几何知识是解决立体几何问题的基础。
平面几何知识较为简单,易于掌握,而立体几何问题较为复杂,考生需要掌握更复杂的计算公式和一定的空间想象能力,难度较大。
解决此类题型的技巧方法一一详解如下:一、球、圆柱与锥体平面图形通常要计算周长、面积,对立体图形则计算表面积、体积。
二、正多面体正多面体指各面都是全等的正多边形且每个顶点所接面数都是一样的凸多面体。
这个定义有两个要点①每个面全等;②顶点所接面数均相等。
如正方体每个面都是全等的正方形;每个顶点都接3个面,所以它是正六面体。
在《几何原本》3的最后一卷(第13卷)中,欧几里得给出了五个正多面体的做法,并且证明只存在这五个正多面体。
它们是:考生需要着重掌握前三个正多面体,因为这三个正多面体易于计算与想象,真题多有涉及。
【例题2】连接正方体每个面的中心构成一个正八面体(如下图所示)。
已知正方体的边长为6厘米,问正八面体的体积为多少立方厘米?解析:此题的一般思路是在脑海中搜寻正八面体的体积计算公式,而这个公式我们不常用。
从方法优化来看,解决复杂体积问题的核心是将其转化为简单几何体进行计算。
由图不难看出,正八面体可以看成由上下(或左右)两个椎体(是正四面体)组成。
锥体的高等于正方体棱长的一半,为3;锥体的底面是正方体四面中心的连线,面积等于正方【例题3】一个正八面体两个相对的顶点分别为A和B,一个点从A出发,沿八面体的棱移动到B位置,其中任何顶点最多到达1次,且全程必须走过所有8个面的至少1条边,问有多少种不同的走法?()A.8B.16C.24D.32解析:如图所示,把这个正八面体的各顶点标记。
从A点出发沿棱移动到达B点。
任何顶点最多到达1次,说明A和B分别是起点和终点,且中途不能经过。
巧用“降维”方法判断立体图形截面图【导读】中公事业单位为帮助各位考生顺利通过事业单位招聘考试!今天为大家带来事业单位判断推理:巧用“降维”方法判断立体图形截面图。
给出一个立体图形,和四个截面图,让考生判断哪个截面图是立体图形中不能截出的。
这类型的题目是行测考试中最常考的题目。
如何快速做出这类题型最先要掌握的就是“降维”思想。
降维思想指的就是将立体图形中展现出来的点线面,降维到二维图形的点线面中。
举个简单的例子,如果将一个正方体用一个平面去截出一个截面,这个截面肯定是一个二维图形,而构成这个截面的线,应该是位于立体图形的面上,这个截面的点,应该是位于立体图形的线(棱)上。
因此如果要给一个六面体截出一个平面,则这个平面最多有6条边。
因此,我们可以得出一个结论“不含曲面的立体图形,其截面图的边数≤立体图形的面数”。
那接着我们就来看看一个简单的立体图形:立方体和圆柱体可以截出什么样的图形呢?一、立方体可以切出的截面图1、三角形(正三角形、等边锐角三角形,不能切除直角和钝角三角形)。
2、正方形3、长方形4、平行四边形5、菱形6、梯形(可以切出等腰梯形)7、五边形(不能切出正五边形)8、六边形(可以切出正六边形)二、圆柱体可以切出的截面图1、正圆形2、椭圆形3、鼓形4、拱形5、矩形那有考生可能会说我们在考试的时候图形并没有那么简单,其实所有复杂的图形都是由简单的图形拼凑而成的,我们首先要牢记基础图形可以切出的截面图,然后根据,判断复杂的图形是由哪些基本图形拼接而成的,再在脑中将截面图做加减法就行。
接下来我们就以几道真题为例,进行讲解:例1 一正方体如下图所示切掉了上半部分的3/4。
现在从任意面剖开,下面哪一项不可能是该多面体的截面?(2015-地市)解析:这个立体图形可以看成是由两个立方体拼成的,立方体可以切出的图形有矩形、梯形、三角形。
因此我们可以发现A选项由两个梯形构成,只要截面斜着切过上面立方体的顶面一直切到地面,就可以切出A的形状,B和D选项也可以切出来。
立体几何专题(部分内容)一.圆柱的截面用一个平面去截(分三种情形:①用与圆柱的底面平行的平面去截;②用与圆柱的底面垂直的平面去截;③用与圆柱的底面不垂直的平面去截.),观察图1,很容易得出它们分别是:圆、长方形、椭圆.图1二.圆锥的截面用一个平面去截一个圆锥体,圆、三角形、椭圆.图2三.球的截面用一个平面去截一个球体图3四.三棱锥的截面请同学们尝试用一个平面去截一个三棱锥,试判断所截得的平面图形是什么?观察图4图4五.正方体的截面(需补充两面截图)补充:三视图或投影经典考题公式:空间几何体的表面积棱柱、棱锥的表面积:各个面面积之和圆柱的表面积 :222S rl r ππ=+ 圆锥的表面积:2Srl r ππ=+圆台的表面积:22S rl r Rl R ππππ=+++球的表面积:24SR π=扇形的面积公式2211=36022n R S lr r πα==扇形(其中l 表示弧长,r 表示半径,α表示弧度) 空间几何体的体积 柱体的体积 :VS h =⨯底锥体的体积 :13V S h =⨯底 台体的体积 : 1)3V S S S S h =++⨯下下上上( 球体的体积:343V R π=空间几何体的三视图和直观图:正俯长相等、正侧高相同、俯侧宽一样正视图:光线从几何体的前面向后面正投影,得到的投影图。
侧视图:光线从几何体的左边向右边正投影,得到的投影图。
俯视图:光线从几何体的上面向右边正投影,得到的投影图。
1、线线平行的判断:(1)、平行于同一直线的两直线平行。
(3)、如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行。
(6)、如果两个平行平面同时和第三个平面相交,那么它们的交线平行。
(12)、垂直于同一平面的两直线平行。
2、线线垂直的判断:(7)、在平面内的一条直线,如果和这个平面的一条斜线的射影垂直,那么它也和这条斜线垂直。
(8)、在平面内的一条直线,如果和这个平面的一条斜线垂直,那么它和这条斜线的射影垂直。
2015省考行测备考:浅谈立体图形的视图与
截面问题
华图交流群166582774
近几年在省考判断推理考试中对立体图形的考查力度加大,除了传统的立体图形的折叠问题之外,立体图形的不同方位视图和立体图形的截面问题也开始进行考查,这对于广大考生来说也算是新颖的一类题型。
因此在备考的过程中要重视,勤加练习,培养自己的空间想象能力。
下面华图教育公考研究专家就以过往真题为例对这一类问题进行探究,希望对广大考生朋友的备考有所帮助!
一、立体图形的视图问题
立体图形的视图一般分为三种:俯视图(从上方)、正视图(从正面)、侧视图(从侧面)。
当然图形推理中我们可以只分为俯视图和侧视图两种,即除了俯视图之外,其他的方位视图均可统称为侧视图。
该类问题难度不大,在解题时最重要的是观察图形的细节问题。
【例1】从所给的四个选项中,选择最适合的一个填入问号处,使之呈现一定的规律性( )。
【答案】A。
解析:本题考查立体图形的不同方位视图。
注意观察两组图形,第一个图形均为立体图形,后面的图形为平面图形,所以很容易了解到该题目考查的是立体图形的截面问题。
第一组图形,第二个图是第一个图的俯视图;第三个图形是第一个图形的一个侧视图。
因此第二组图形也遵循同样的规律。
“?”处图形是第二组第一个图的侧视图。
故选A。
【例2】从所给的四个选项中,选择最合适的一个填入问号处,使之呈现一定的规律性( )。
【答案】D。
解析:本题考查立体图形不同方位的视图。
给出的这组图形第二个图形和第三个图形分别是第一个图形的俯视图和正视图。
第一组图形是一个台阶状的图形,其视图问题比较简单。
第二组图形上方是一个细的圆柱体,下方是一圆锥体的一部分。
所以第二组图形“?”处应该是第一个图形的正面视图,只有D选项符合。
故选D。
二、立体图形的截面问题
立体图形的截面即沿着任意一个面切开立体图形得到的切面,该问题主要考查考生的平面意识和空间想象能力。
建议考生多观察多练习,必要时可进行实际的操作来帮助达到学习的目的。
【例3】一立方体如图所示,从中挖掉一个圆锥体,然后从任意面剖开,下面哪项不可能是该立方体的截面?( )
【答案】A。
解析:本题考查立体图形的截面问题。
首先要看清题目,注意此题考查的不是整个立方体的截面问题,而是立方体中挖掉一个圆锥体后所剩下的图形的截面问题。
观察图形可知B、C、D均可由左侧图形截得,A项不能由左侧图形截得。
其中,B项三角形沿着立方体的一个顶角切掉一个角即可得到;C 项,沿着平行于上顶面的平面在立方体上拦腰截断即可得到,注意因为中间挖去了圆锥体,所以截面的中间是一个圆,只是越往下截面中的圆越小;D项,沿着平行于立方体的四个侧面中的任何一个垂直向下切可得到。
故选A。