2017届中考数学考点研究复习检测36
- 格式:doc
- 大小:229.00 KB
- 文档页数:27
二次函数的应用一、单选题(共12题;共24分)1、(2016•天津)已知二次函数y=(x﹣h)2+1(h为常数),在自变量x的值满足1≤x≤3的情况下,与其对应的函数值y的最小值为5,则h的值为()A、1或﹣5B、﹣1或5C、1或﹣3D、1或32、(2016•滨州)在平面直角坐标系中,把一条抛物线先向上平移3个单位长度,然后绕原点选择180°得到抛物线y=x2+5x+6,则原抛物线的解析式是()A、y=﹣(x﹣)2﹣B、y=﹣(x+ )2﹣C、y=﹣(x﹣)2﹣D、y=﹣(x+ )2+3、(2016•宁波)已知函数y=ax2﹣2ax﹣1(a是常数,a≠0),下列结论正确的是()A、当a=1时,函数图象过点(﹣1,1)B、当a=﹣2时,函数图象与x轴没有交点C、若a>0,则当x≥1时,y随x的增大而减小D、若a<0,则当x≤1时,y随x的增大而增大4、(2016•黄石)以x为自变量的二次函数y=x2﹣2(b﹣2)x+b2﹣1的图象不经过第三象限,则实数b的取值范围是()A 、b≥B、b≥1或b≤﹣1C、b≥2D、1≤b≤25、某商品现在的售价为每件60元,每星期可卖出300件.市场调查反映,如果调整商品售价,每降价1元,每星期可多卖出20件.设每件商品降价x元后,每星期售出商品的总销售额为y元,则y与x的关系式为()A、y=60(300+20x)B、y=(60﹣x)(300+20x)C、y=300(60﹣20x)D、y=(60﹣x)(300﹣20x)6、(2016•达州)如图,已知二次函数y=ax2+bx+c(a≠0)的图象与x轴交于点A(﹣1,0),与y轴的交点B在(0,﹣2)和(0,﹣1)之间(不包括这两点),对称轴为直线x=1.下列结论:①abc>0②4a+2b+c>0③4ac﹣b2<8a④ <a<⑤b>c.其中含所有正确结论的选项是()A、①③B、①③④C、②④⑤D、①③④⑤7、(2016•眉山)若抛物线y=x2﹣2x+3不动,将平面直角坐标系xOy先沿水平方向向右平移一个单位,再沿铅直方向向上平移三个单位,则原抛物线图象的解析式应变为()A、y=(x﹣2)2+3B、y=(x﹣2)2+5C、y=x2﹣1D、y=x2+48、(2016•张家界)在同一平面直角坐标系中,函数y=ax+b与y=ax2﹣bx的图象可能是()A 、B 、C 、D 、9、(2016•常德)二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论:①b<0;②c>0;③a+c <b;④b2﹣4ac>0,其中正确的个数是()A、1B、2C、3D、410、(2016•呼和浩特)已知a≥2,m2﹣2am+2=0,n2﹣2an+2=0,则(m﹣1)2+(n﹣1)2的最小值是()A、6B、3C、﹣3D、011、(2016•攀枝花)如图,二次函数y=ax2+bx+c(a>0)图象的顶点为D,其图象与x轴的交点A、B的横坐标分别为﹣1和3,则下列结论正确的是()A、2a﹣b=0B、a+b+c>0C、3a﹣c=0D、当a= 时,△ABD是等腰直角三角形12、(2016•安顺)某校校园内有一个大正方形花坛,如图甲所示,它由四个边长为3米的小正方形组成,且每个小正方形的种植方案相同.其中的一个小正方形ABCD如图乙所示,DG=1米,AE=AF=x 米,在五边形EFBCG区域上种植花卉,则大正方形花坛种植花卉的面积y与x的函数图象大致是()A 、B 、C 、D 、二、填空题(共5题;共5分)13、(2016•河南)已知A(0,3),B(2,3)是抛物线y=﹣x2+bx+c上两点,该抛物线的顶点坐标是________.14、(2016•丹东)某公司今年4月份营业额为60万元,6月份营业额达到100万元,设该公司5、6两个月营业额的月均增长率为x,则可列方程为________.15、(2016•大庆)直线y=kx+b与抛物线y= x2交于A(x1, y1)、B(x2, y2)两点,当OA⊥OB时,直线AB恒过一个定点,该定点坐标为________.16、(2016•内江)二次函数y=ax2+bx+c的图象如图所示,且P=|2a+b|+|3b﹣2c|,Q=|2a﹣b|﹣|3b+2c|,则P,Q的大小关系是________.17、(2016•十堰)已知关于x的二次函数y=ax2+bx+c的图象经过点(﹣2,y1),(﹣1,y2),(1,0),且y1<0<y2,对于以下结论:①abc>0;②a+3b+2c≤0;③对于自变量x的任意一个取值,都有x2+x≥﹣;④在﹣2<x<﹣1中存在一个实数x0,使得x0=﹣,其中结论错误的是________ (只填写序号).三、综合题(共5题;共65分)18、(2016•淮安)如图,在平面直角坐标系中,二次函数y=﹣x2+bx+c的图象与坐标轴交于A、B、C三点,其中点A的坐标为(0,8),点B的坐标为(﹣4,0).(1)求该二次函数的表达式及点C的坐标;(2)点D的坐标为(0,4),点F为该二次函数在第一象限内图象上的动点,连接CD、CF,以CD、CF为邻边作平行四边形CDEF,设平行四边形CDEF的面积为S.①求S的最大值;②在点F的运动过程中,当点E落在该二次函数图象上时,请直接写出此时S的值.19、(2016•义乌)课本中有一个例题:有一个窗户形状如图1,上部是一个半圆,下部是一个矩形,如果制作窗框的材料总长为6m,如何设计这个窗户,使透光面积最大?这个例题的答案是:当窗户半圆的半径约为0.35m时,透光面积最大值约为1.05m2.我们如果改变这个窗户的形状,上部改为由两个正方形组成的矩形,如图2,材料总长仍为6m,利用图3,解答下列问题:(1)若AB为1m,求此时窗户的透光面积?(2)与课本中的例题比较,改变窗户形状后,窗户透光面积的最大值有没有变大?请通过计算说明.20、(2016•连云港)如图,在平面直角坐标系xOy中,抛物线y=ax2+bx经过两点A(﹣1,1),B (2,2).过点B作BC∥x轴,交抛物线于点C,交y轴于点D.(1)求此抛物线对应的函数表达式及点C的坐标;(2)若抛物线上存在点M,使得△BCM的面积为,求出点M的坐标;(3)连接OA、OB、OC、AC,在坐标平面内,求使得△AOC与△OBN相似(边OA与边OB对应)的点N 的坐标.21、(2016•扬州)如图1,二次函数y=ax2+bx的图象过点A(﹣1,3),顶点B的横坐标为1.(1)求这个二次函数的表达式;(2)点P在该二次函数的图象上,点Q在x轴上,若以A、B、P、Q为顶点的四边形是平行四边形,求点P的坐标;(3)如图3,一次函数y=kx(k>0)的图象与该二次函数的图象交于O、C两点,点T为该二次函数图象上位于直线OC下方的动点,过点T作直线TM⊥OC,垂足为点M,且M在线段OC上(不与O、C重合),过点T作直线TN∥y轴交OC于点N.若在点T运动的过程中,为常数,试确定k的值.22、(12分)(2016•重庆)如图1,在平面直角坐标系中,抛物线y=﹣x2+ x+3与x轴交于A,B两点(点A在点B左侧),与y轴交于点C,抛物线的顶点为点E.(1)判断△ABC的形状,并说明理由;(2)经过B,C两点的直线交抛物线的对称轴于点D,点P为直线BC上方抛物线上的一动点,当△PCD 的面积最大时,Q从点P出发,先沿适当的路径运动到抛物线的对称轴上点M处,再沿垂直于抛物线对称轴的方向运动到y轴上的点N处,最后沿适当的路径运动到点A处停止.当点Q的运动路径最短时,求点N的坐标及点Q经过的最短路径的长;(3)如图2,平移抛物线,使抛物线的顶点E在射线AE上移动,点E平移后的对应点为点E′,点A的对应点为点A′,将△AOC绕点O顺时针旋转至△A1OC1的位置,点A,C的对应点分别为点A1,C1,且点A1恰好落在AC上,连接C1A′,C1E′,△A′C1E′是否能为等腰三角形?若能,请求出所有符合条件的点E′的坐标;若不能,请说明理由.答案解析部分一、单选题【答案】B【考点】二次函数的最值【解析】【解答】解:∵当x>h时,y随x的增大而增大,当x<h时,y随x的增大而减小,∴①若h<1≤x≤3,x=1时,y取得最小值5,可得:(1﹣h)2+1=5,解得:h=﹣1或h=3(舍);②若1≤x≤3<h,当x=3时,y取得最小值5,可得:(3﹣h)2+1=5,解得:h=5或h=1(舍).综上,h的值为﹣1或5,故选:B.【分析】本题主要考查二次函数的性质和最值,根据二次函数的性质和最值分类讨论是解题的关键.由解析式可知该函数在x=h时取得最小值1、x>h时,y随x的增大而增大、当x<h时,y 随x的增大而减小,根据1≤x≤3时,函数的最小值为5可分如下两种情况:①若h<1≤x≤3,x=1时,y取得最小值5;②若1≤x≤3<h,当x=3时,y取得最小值5,分别列出关于h的方程求解即可.【答案】A【考点】二次函数图象与几何变换【解析】【解答】解:∵抛物线的解析式为:y=x2+5x+6,∴绕原点选择180°变为,y=﹣x2+5x﹣6,即y=﹣(x﹣)2+ ,∴向下平移3个单位长度的解析式为y=﹣(x﹣)2+ ﹣3=﹣(x﹣)2﹣.故选A.【分析】先求出绕原点旋转180°的抛物线解析式,求出向下平移3个单位长度的解析式即可.本题考查的是二次函数的图象与几何变换,熟知二次函数的图象旋转及平移的法则是解答此题的关键.【答案】D【考点】二次函数的图象,二次函数的性质【解析】【解答】解:A、∵当a=1,x=﹣1时,y=1+2﹣1=2,∴函数图象不经过点(﹣1,1),故错误;B、当a=﹣2时,∵△=42﹣4×(﹣2)×(﹣1)=8>0,∴函数图象与x轴有两个交点,故错误;C、∵抛物线的对称轴为直线x=﹣=1,∴若a>0,则当x≥1时,y随x的增大而增大,故错误;D、∵抛物线的对称轴为直线x=﹣=1,∴若a<0,则当x≤1时,y随x的增大而增大,故正确;故选D.【分析】把a=1,x=﹣1代入y=ax2﹣2ax﹣1,于是得到函数图象不经过点(﹣1,1),根据△=8>0,得到函数图象与x轴有两个交点,根据抛物线的对称轴为直线x=﹣=1判断二次函数的增减性.本题考查的是二次函数的性质,熟练掌握二次函数的性质是解题的关键.【答案】A【考点】二次函数的性质,二次函数图象与系数的关系【解析】【解答】解:∵二次函数y=x2﹣2(b﹣2)x+b2﹣1的图象不经过第三象限,∴抛物线在x轴的上方或在x轴的下方经过一、二、四象限,当抛物线在x轴的上方时,∵二次项系数a=1,∴抛物线开口方向向上,∴b2﹣1≥0,△=[2(b﹣2)]2﹣4(b2﹣1)≤0,解得b≥ ;当抛物线在x轴的下方经过一、二、四象限时,设抛物线与x轴的交点的横坐标分别为x1, x2,∴x1+x2=2(b﹣2)≥0,b2﹣1≥0,∴△=[2(b﹣2)]2﹣4(b2﹣1)>0,①b﹣2>0,②b2﹣1>0,③由①得b<,由②得b>2,∴此种情况不存在,∴b≥ ,故选A.【分析】由于二次函数y=x2﹣2(b﹣2)x+b2﹣1的图象不经过第三象限,所以抛物线在x轴的上方或在x轴的下方经过一、二、四象限,根据二次项系数知道抛物线开口方向向上,由此可以确定抛物线与x轴有无交点,抛物线与y轴的交点的位置,由此即可得出关于b的不等式组,解不等式组即可求解.此题主要考查了二次函数的图象和性质,解题的关键是会根据图象的位置得到关于b 的不等式组解决问题.【答案】B【考点】根据实际问题列二次函数关系式【解析】【解答】解:降价x元,则售价为(60﹣x)元,销售量为(300+20x)件,根据题意得,y=(60﹣x)(300+20x),故选:B.【分析】根据降价x元,则售价为(60﹣x)元,销售量为(300+20x)件,由题意可得等量关系:总销售额为y=销量×售价,根据等量关系列出函数解析式即可.【答案】D【考点】二次函数的性质【解析】【解答】解:①∵函数开口方向向上,∴a>0;∵对称轴在原点左侧∴ab异号,∵抛物线与y轴交点在y轴负半轴,∴c<0,∴abc>0,故①正确;②∵图象与x轴交于点A(﹣1,0),对称轴为直线x=﹣1,∴图象与x轴的另一个交点为(3,0),∴当x=2时,y<0,∴4a+2b+c<0,故②错误;③∵图象与x轴交于点A(﹣1,0),∴当x=﹣1时,y=(﹣1)2a+b×(﹣1)+c=0,∴a﹣b+c=0,即a=b﹣c,c=b﹣a,∵对称轴为直线x=1∴ =1,即b=﹣2a,∴c=b﹣a=(﹣2a)﹣a=﹣3a,∴4ac﹣b2=4•a•(﹣3a)﹣(﹣2a)2=﹣16a2<0∵8a>0∴4ac﹣b2<8a故③正确④∵图象与y轴的交点B在(0,﹣2)和(0,﹣1)之间,∴﹣2<c<﹣1∴﹣2<﹣3a<﹣1,∴ >a>;故④正确⑤∵a>0,∴b﹣c>0,即b>c;故⑤正确;故选:D.【分析】根据对称轴为直线x=1及图象开口向下可判断出a、b、c的符号,从而判断①;根据对称轴得到函数图象经过(3,0),则得②的判断;根据图象经过(﹣1,0)可得到a、b、c之间的关系,从而对②⑤作判断;从图象与y轴的交点B在(0,﹣2)和(0,﹣1)之间可以判断c的大小得出④的正误.主要考查图象与二次函数系数之间的关系.解题关键是注意掌握数形结合思想的应用.【答案】C【考点】二次函数图象与几何变换【解析】【解答】解:将平面直角坐标系xOy先沿水平方向向右平移一个单位,再沿铅直方向向上平移三个单位,这个相当于把抛物线向左平移有关单位,再向下平移3个单位,∵y=(x﹣1)2+2,∴原抛物线图象的解析式应变为y=(x﹣1+1)2+2﹣3=x2﹣1,故答案为C.【分析】思想判定出抛物线的平移规律,根据左加右减,上加下减的规律即可解决问题.本题考查二次函数图象的平移,解题的关键是理解坐标系的平移和抛物线的平移是反方向的,记住左加右减,上加下减的规律,属于中考常考题型.【答案】C【考点】一次函数的图象,二次函数的图象【解析】【解答】解:A、对于直线y=ax+b来说,由图象可以判断,a>0,b>0;而对于抛物线y=ax2﹣bx来说,对称轴x= >0,应在y轴的右侧,故不合题意,图形错误;B、对于直线y=ax+b来说,由图象可以判断,a<0,b>0;而对于抛物线y=ax2+bx来说,对称轴x= <0,应在y轴的左侧,故不合题意,图形错误;C、对于直线y=ax+b来说,由图象可以判断,a>0,b>0;而对于抛物线y=ax2+bx来说,图象开口向上,对称轴x= >0,应在y轴的右侧,故符合题意;D、对于直线y=ax+b来说,由图象可以判断,a>0,b>0;而对于抛物线y=ax2+bx来说,图象开口向下,a<0,故不合题意,图形错误;故选:C.【分析】首先根据图形中给出的一次函数图象确定a、b的符号,进而运用二次函数的性质判断图形中给出的二次函数的图象是否符合题意,根据选项逐一讨论解析,即可解决问题.此主要考查了一次函数、二次函数图象的性质及其应用问题;解题的方法是首先根据其中一次函数图象确定a、b的符号,进而判断另一个函数的图象是否符合题意;解题的关键是灵活运用一次函数、二次函数图象的性质来分析、判断、解答.【答案】C【考点】二次函数图象与系数的关系【解析】【解答】解:∵二次函数的开口向下,与y轴的交点在y轴的正半轴,∴a<0,c>0,故②正确;∵0<﹣<1,∴b>0,故①错误;当x=﹣1时,y=a﹣b+c<0,∴a+c<b,故③正确;∵二次函数与x轴有两个交点,∴△=b2﹣4ac>0,故④正确正确的有3个,故选:C.【分析】由二次函数的开口方向,对称轴0<x<1,以及二次函数与y的交点在x轴的上方,与x 轴有两个交点等条件来判断各结论的正误即可.此题主要考查了二次函数的图象与系数的关系,要熟练掌握,解答此题的关键是要明确:①二次项系数a决定抛物线的开口方向和大小:当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;②一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右.(简称:左同右异)③常数项c决定抛物线与y轴交点.抛物线与y轴交于(0,c).【答案】A【考点】根与系数的关系,二次函数的最值【解析】【解答】解:∵m2﹣2am+2=0,n2﹣2an+2=0,∴m,n是关于x的方程x2﹣2ax+2=0的两个根,∴m+n=2a,mn=2,∴(m﹣1)2+(n﹣1)2=m2﹣2m+1+n2﹣2n+1=(m+n)2﹣2mn﹣2(m+n)+2=4a2﹣4﹣4a+2=4(a﹣)2﹣3,∵a≥2,∴当a=2时,(m﹣1)2+(n﹣1)2有最小值,∴(m﹣1)2+(n﹣1)2的最小值=4(a﹣)2+3=4(2﹣)2﹣3=6,故选A.【分析】根据已知条件得到m,n是关于x的方程x2﹣2ax+2=0的两个根,根据根与系数的关系得到m+n=2a,mn=2,于是得到4(a﹣)2﹣3,当a=2时,(m﹣1)2+(n﹣1)2有最小值,代入即可得到结论.本题考查了根与系数的关系,二次函数的最值,熟练掌握根与系数的关系是解题的关键.【答案】D【考点】二次函数图象与系数的关系【解析】【解答】解:∵抛物线与x轴的交点A、B的横坐标分别为﹣1,3,∴抛物线的对称轴为直线x=1,则﹣=1,∴2a+b=0,∴选项A错误;∴当自变量取1时,对应的函数图象在x轴下方,∴x=1时,y<0,则a+b+c<0,∴选项B错误;∵A点坐标为(﹣1,0),∴a﹣b+c=0,而b=﹣2a,∴a+2a+c=0,∴3a+c=0,∴选项C错误;当a= ,则b=﹣1,c=﹣,对称轴x=1与x轴的交点为E,如图,∴抛物线的解析式为y= x2﹣x﹣,把x=1代入得y= ﹣1﹣=﹣2,∴D点坐标为(1,﹣2),∴AE=2,BE=2,DE=2,∴△ADE和△BDE都为等腰直角三角形,∴△ADB为等腰直角三角形,∴选项D正确.故选D.【分析】由于抛物线与x轴的交点A、B的横坐标分别为﹣1,3,得到对称轴为直线x=1,则﹣=1,即2a+b=0,得出,选项A错误;当x=1时,y<0,得出a+b+c<0,得出选项B错误;当x=﹣1时,y=0,即a﹣b+c=0,而b=﹣2a,可得到a与c的关系,得出选项C错误;由a= ,则b=﹣1,c=﹣,对称轴x=1与x轴的交点为E,先求出顶点D的坐标,由三角形边的关系得出△ADE和△BDE都为等腰直角三角形,得出选项D正确;即可得出结论.本题考查了二次函数y=ax2+bx+c的图象与系数的关系:当a>0,抛物线开口向上;抛物线的对称轴为直线x=﹣;抛物线与y轴的交点坐标为(0,c).【答案】A【考点】二次函数的图象,二次函数的应用【解析】【解答】解:S△AEF = AE×AF= x2, S△DEG = DG×DE= ×1×(3﹣x)= ,S五边形EFBCG=S正方形ABCD﹣S△AEF﹣S△DEG=9﹣x2﹣=﹣x2+ x+ ,则y=4×(﹣x2+ x+ )=﹣2x2+2x+30,∵AE<AD,∴x<3,综上可得:y=﹣2x2+2x+30(0<x<3).故选:A【分析】先求出△AEF和△DEG的面积,然后可得到五边形EFBCG的面积,继而可得y与x的函数关系式.本题考查了动点问题的函数图象,解答本题的关键是求出y与x的函数关系式,对于有些题目可以不用求出函数关系式,根据走势或者特殊点的值进行判断.二、填空题【答案】(1,4)【考点】二次函数的性质,二次函数图象上点的坐标特征【解析】【解答】解:∵A(0,3),B(2,3)是抛物线y=﹣x2+bx+c上两点,∴代入得:,解得:b=2,c=3,∴y=﹣x2+2x+3=﹣(x﹣1)2+4,顶点坐标为(1,4),故答案为:(1,4).【分析】把A、B的坐标代入函数解析式,即可得出方程组,求出方程组的解,即可得出解析式,化成顶点式即可.本题考查了二次函数的性质,二次函数图象上点的坐标特征的应用,能求出函数的解析式是解此题的关键.【答案】60(1+x)2=100【考点】一元二次方程的应用,根据实际问题列二次函数关系式【解析】【解答】解:设平均每月的增长率为x,根据题意可得:60(1+x)2=100.故答案为:60(1+x)2=100.【分析】本题考查的是一个增长率问题,关键是知道4月份的钱数和增长两个月后6月份的钱数,列出方程.设平均每月的增长率为x,根据4月份的营业额为60万元,6月份的营业额为100万元,分别表示出5,6月的营业额,即可列出方程.【答案】(0,4)【考点】二次函数的性质,一次函数的性质【解析】【解答】解:∵直线y=kx+b与抛物线y= x2交于A(x1, y1)、B(x2, y2)两点,∴kx+b= ,化简,得 x2﹣4kx﹣4b=0,∴x1+x2=4k,x1x2=﹣4b,又∵OA⊥OB,∴ ,解得,b=4,即直线y=kx+4,故直线恒过顶点(0,4),故答案为:(0,4).【分析】根据直线y=kx+b与抛物线y= x2交于A(x1, y1)、B(x2, y2)两点,可以联立在一起,得到关于x的一元二次方程,从而可以得到两个之和与两根之积,再根据OA⊥OB,可以求得b的值,从而可以得到直线AB恒过的定点的坐标.本题考查二次函数的性质、一次函数的性质,解题的关键是明确题意,找出所求问题需要的条件,知道两条直线垂直时,它们解析式中的k 的乘积为﹣1.【答案】P>Q【考点】二次函数的性质,二次函数图象与系数的关系【解析】【解答】解:∵抛物线的开口向下,∴a<0,∵﹣>0,∴b>0,∴2a﹣b<0,∵﹣=1,∴b+2a=0,x=﹣1时,y=a﹣b+c<0.∴﹣b﹣b+c<0,∴3b﹣2c>0,∵抛物线与y轴的正半轴相交,∴c>0,∴3b+2c>0,∴p=3b﹣2c,Q=b﹣2a﹣3b﹣2c=﹣2a﹣2b﹣2c,∴Q﹣P=﹣2a﹣2b﹣2c﹣3b+2c=﹣2a﹣5b=﹣4b<0∴P>Q,故答案为:P>Q.【分析】由函数图象可以得出a<0,b>0,c>0,当x=1时,y=a+b+c>0,x=﹣1时,y=a﹣b+c <0,由对称轴得出2a+b=0,通过确定绝对值中的数的符号后去掉绝对值再化简就可以求出P、Q 的值.本题考查了二次函数的图象与系数的关系,去绝对值,二次函数的性质.熟记二次函数的性质是解题的关键.【答案】②【考点】二次函数图象与系数的关系,二次函数图象上点的坐标特征【解析】【解答】解:由题意二次函数图象如图所示,∴a<0.b<0,c>0,∴abc>0,故①正确.∵a+b+c=0,∴c=﹣a﹣b,∴a+3b+2c=a+3b﹣2a﹣2b=b﹣a,又∵x=﹣1时,y>0,∴a﹣b+c>0,∴b﹣a<c,∵c>O,∴b﹣a可以是正数,∴a+3b+2c≤0,故②错误.故答案为②.∵函数y′= x2+x= (x2+ x)= (x+ )2﹣,∵ >0,∴函数y′有最小值﹣,∴ x2+x≥﹣,故③正确.∵y=ax2+bx+c的图象经过点(1,0),∴a+b+c=0,∴c=﹣a﹣b,令y=0则ax2+bx﹣a﹣b=0,设它的两个根为x1, 1,∵x1•1= =﹣,∴x1=﹣,∵﹣2<x1<x2,∴在﹣2<x<﹣1中存在一个实数x0,使得x0=﹣,故④正确,【分析】①正确.画出函数图象即可判断.②错误.因为a+b+c=0,所以a+3b+2c=a+3b﹣2a﹣2b=b﹣a,又a﹣b+c>0,所以b﹣a<c,故b﹣a可以是正数,由此可以周长判断.③正确.利用函数y′= x2+x= (x2+ x)= (x+ )2﹣,根据函数的最值问题即可解决.④令y=0则ax2+bx﹣a﹣b=0,设它的两个根为x1, 1,则x1•1= =﹣,求出x1即可解决问题.本题考查二次函数的图象与系数的关系、二次函数图象上的点的坐标特征,解题的关键是灵活应用二次函数的性质解决问题,学会构建二次函数解决最值问题,属于中考填空题中的压轴题.三、综合题【答案】(1)解:把A(0,8),B(﹣4,0)代入y=﹣x2+bx+c得,解得,所以抛物线的解析式为y=﹣x2+x+8;当y=0时,﹣x2+x+8=0,解得x1=﹣4,x2=8,所以C点坐标为(8,0)(2)解:①连结OF,如图,设F(t,﹣t2+t+8),∵S四边形OCFD=S△CDF+S△OCD=S△ODF+S△OCF,∴S△CDF=S△ODF+S△OCF﹣S△OCD = •4•t + •8•(﹣t2+t+8)﹣•4•8=﹣t2+6t+16=﹣(t﹣3)2+25,当t=3时,△CDF的面积有最大值,最大值为25,∵四边形CDEF为平行四边形,∴S的最大值为50;②∵四边形CDEF为平行四边形,∴CD∥EF,CD=EF,∵点C向左平移8个单位,再向上平移4个单位得到点D,∴点F向左平移8个单位,再向上平移4个单位得到点E,即E(t﹣8,﹣t2+t+12),∵E(t﹣8,﹣t2+t+12)在抛物线上,∴﹣(t﹣8)2+t﹣8+8=﹣t2+t+12,解得t=7,当t=7时,S△CDF=﹣(7﹣3)2+25=9,∴此时S=2S△CDF=18.【考点】待定系数法求二次函数解析式,与二次函数有关的动态几何问题【解析】【分析】(1)把A点和B点坐标代入y=﹣x2+bx+c得到关于b、c的方程组,然后解方程组求出b、c即可得到抛物线的解析式;然后计算函数值为0时对应的自变量的值即可得到C点坐标(2)①连结OF,如图,设F(t,﹣t2+t+8),利用S四边形OCFD=S△CDF+S△OCD=S△ODF+S△OCF,利用三角形面积公式得到S△CDF=﹣t2+6t+16,再利用二次函数的性质得到△CDF的面积有最大值,然后根据平行四边形的性质可得S的最大值;②由于四边形CDEF为平行四边形,则CD∥EF,CD=EF,利用C点和D的坐标特征可判断点C向左平移8个单位,再向上平移4个单位得到点D,则点F向左平移8个单位,再向上平移4个单位得到点E,即E(t﹣8,﹣t2+t+12),然后把E(t﹣8,﹣t2+t+12)代入抛物线解析式得到关于t的方程,再解方程求出t后计算△CDF的面积,从而得到S的值.本题考查了二次函数的综合题:熟练掌握二次函数图象上点的坐标特征、二次函数的性质和平行四边形的性质;会利用待定系数法求二次函数解析式;理解坐标与图形性质,掌握点平移的坐标规律.【答案】(1)解:由已知可得:AD= ,则S=1× m2(2)解:设AB=xm,则AD=3﹣m,∵ ,∴ ,设窗户面积为S,由已知得:,当x= m时,且x= m在的范围内,,∴与课本中的例题比较,现在窗户透光面积的最大值变大【考点】二次函数的应用【解析】【分析】此题考查二次函数的应用,关键是利用二次函数的最值解答.(1)根据矩形和正方形的周长进行解答即可;(2)设AB为xcm,利用二次函数的最值解答即可.【答案】(1)解:把A(﹣1,1),B(2,2)代入y=ax2+bx得:,解得,故抛物线的函数表达式为y= x2﹣x,∵BC∥x轴,设C(x0, 2).∴ x02﹣x0=2,解得:x0=﹣或x0=2,∵x0<0,∴C(﹣,2)(2)解:设△BCM边BC上的高为h,∵BC= ,∴S△BCM = •h= ,∴h=2,点M即为抛物线上到BC的距离为2的点,∴M的纵坐标为0或4,令y= x2﹣x=0,解得:x1=0,x2= ,∴M1(0,0),M2(,0),令y= x2﹣x=4,解得:x3= ,x4=,∴M3(,0),M4(,4),综上所述:M点的坐标为:(0,0),(,0),(,0),(,4)(3)解:∵A(﹣1,1),B(2,2),C(﹣,2),D(0,2),∴OB=2 ,OA= ,OC= ,∴∠AOD=∠BOD=45°,tan∠COD= ,①如图1,当△AOC∽△BON时,,∠AOC=∠BON,∴ON=2OC=5,过N作NE⊥x轴于E,∵∠COD=45°﹣∠AOC=45°﹣∠BON=∠NOE,在Rt△NOE 中,tan∠NOE=tan∠COD= ,∴OE=4,NE=3,∴N(4,3)同理可得N(3,4);②如图2,当△AOC∽△OBN时,,∠AOC=∠OBN,∴BN=2OC=5,过B作BG⊥x轴于G,过N作x轴的平行线交BG的延长线于F,∴NF⊥BF,∵∠COD=45°﹣∠AOC=45°﹣∠OBN=∠NBF,∴tan∠NBF=tan∠COD= ,∴BF=4,NF=3,∴N(﹣1,﹣2),同理N(﹣2,﹣1),综上所述:使得△AOC与△OBN相似(边OA与边OB对应)的点N的坐标是(4,3),(3,4),(﹣1,﹣2),(﹣2,﹣1).【考点】二次函数的性质,相似三角形的性质,与二次函数有关的动态几何问题【解析】【分析】(1)把A(﹣1,1),B(2,2)代入y=ax2+bx求得抛物线的函数表达式为y= x2﹣x,由于BC∥x轴,设C(x0, 2).于是得到方程x02﹣x0=2,即可得到结论;(2)设△BCM边BC上的高为h,根据已知条件得到h=2,点M即为抛物线上到BC的距离为2的点,于是得到M的纵坐标为0或4,令y= x2﹣x=0,或令y= x2﹣x=4,解方程即可得到结论;(3)解直角三角形得到OB=2 ,OA= ,OC= ,∠AOD=∠BOD=45°,tan∠COD= ①如图1,当△AOC∽△BON时,求得ON=2OC=5,过N作NE⊥x轴于E,根据三角函数的定义得到OE=4,NE=3,于是得到结果;②如图2,根据相似三角形的性质得到BN=2OC=5,过B作BG⊥x轴于G,过N作x 轴的平行线交BG的延长线于F解直角三角形得到BF=4,NF=3于是得到结论.本题主要考查的是二次函数与相似三角形的综合应用,难度较大,解答本题需要同学们熟练掌握二次函数和相似三角形的相关性质.【答案】(1)解:∵二次函数y=ax2+bx的图象过点A(﹣1,3),顶点B的横坐标为1,则有解得∴二次函数y=x2﹣2x(2)解:由(1)得,B(1,﹣1),∵A(﹣1,3),∴直线AB解析式为y=﹣2x+1,AB=2 ,设点Q(m,0),P(n,n2﹣2n)∵以A、B、P、Q为顶点的四边形是平行四边形,①当AB为对角线时,根据中点坐标公式得,则有,解得或∴P(1+ ,2)和(1﹣,2)②当AB为边时,根据中点坐标公式得解得或∴P(1+ ,4)或(1﹣,4).(3)解:设T(m,m2﹣2m),∵TM⊥OC,∴可以设直线TM为y=﹣x+b,则m2﹣2m=﹣m+b,b=m2﹣2m+ ,由解得,∴OM= = ,ON=m• ,∴ = ,∴k= 时,= .∴当k= 时,点T运动的过程中,为常数.本题考查二次函数综合题,平行四边形的判定和性质,中点坐标公式等知识,解题【考点】待定系数法求二次函数解析式,二次函数与一次函数的交点问题【解析】【分析】(1)利用待定系数法即可解决问题(2)①当AB为对角线时,根据中点坐标公式,列出方程组解决问题.②当AB为边时,根据中点坐标公式列出方程组解决问题.(3)设T(m,m2﹣2m),由TM⊥OC,可以设直线TM为y=﹣x+b,则m2﹣2m=﹣m+b,b=m2﹣2m+ ,求出点M、N坐标,求出OM、ON,根据列出等式,即可解决问题.本题的关键是利用参数,方程组解决问题,学会转化的思想,属于中考压轴题.【答案】(1)解:△ABC为直角三角形,当y=0时,即﹣x2+ x+3=0,∴x1=﹣,x2=3∴A(﹣,0),B(3 ,0),∴O A= ,OB=3 ,当x=0时,y=3,∴C(0,3),∴OC=3,根据勾股定理得,AC2=OB2+OC2=12,BC2=OB2+OC2=36,∴AC2+BC2=48,∵AB2=[3 ﹣(﹣)]2=48,∴AC2+BC2=AB2,∴△ABC是直角三角形(2)解:如图,∵B(3 ,0),C(0,3),∴直线BC解析式为y=﹣x+3,过点P作∥y轴,设P(a,﹣a2+ a+3),∴G(a,﹣a+3),∴PG=﹣a2+ a,设点D的横坐标为x D, C点的横坐标为x C,S△PCD = ×(x D﹣x C)×PG=﹣(a﹣)2+ ,∵0<a<3 ,∴当a= 时,S△PCD最大,此时点P(,),将点P向左平移个单位至P′,连接AP′,交y轴于点N,过点N作MN⊥抛物线对称轴于点M,连接PM,点Q沿P→M→N→A,运动,所走的路径最短,即最短路径的长为PM+MN+NA的长,∴P(,)∴P′(,),∵点A(﹣,0),∴直线AP′的解析式为y= x+ ,当x=0时,y= ,∴N(0,),过点P′作P′H⊥x轴于点H,∴AH= ,P′H= ,AP′= ,∴点Q运动得最短路径长为PM+MN+AN= + = ;(3)解:在Rt△AOC中,∵tan∠OAC= = ,∴∠OAC=60°,∵OA=OA1,∴△OAA1为等边三角形,∴∠AOA1=60°,∴∠BOC1=30°,∵OC1=OC=3,∴C1(,),∵点A(﹣,0),E(,4),∴AE=2 ,∴A′E′=AE=2 ,∵直线AE的解析式为y= x+2,设点E′(a,a+2),∴A′(a﹣2 ,﹣2)∴C1E′2=(a﹣2 )2+(+2﹣)2= a2﹣a+7,C1A′2=(a﹣2 ﹣)2+(﹣2﹣)2= a2﹣a+49,①若C1A′=C1E′,则C1A′2=C1E′2即:a2﹣a+7= a2﹣a+49,∴a= ,∴E′(,5),②若A′C1=A′E′,∴A′C12=A′E′2即:a2﹣a+49=28,∴a1= ,a2= ,∴E′(,7+ ),或(,7﹣),③若E′A′=E′C1,∴E′A′2=E′C12即:a2﹣a+7=28,∴a1= ,a2= (舍),∴E′(,3+ ),即,符合条件的点E′(,5),(,7+ ),或(,7﹣),(,3+ )【考点】二次函数的最值,勾股定理的逆定理,与二次函数有关的动态几何问题【解析】【分析】(1)先求出抛物线与x轴和y轴的交点坐标,再用勾股定理的逆定理判断出△ABC 是直角三角形;(2)先求出S△PCD最大时,点P(,),然后判断出所走的路径最短,即最短路径的长为PM+MN+NA的长,计算即可;(3)△A′C1E′是等腰三角形,分三种情况分别建立方程计算即可.此题是二次函数综合题,主要考查了函数极值的确定方法,等边三角形的判定和性质,勾股定理的逆定理,等腰三角形的性质,解本题的关键是分类讨论,也是解本题的难点.。
第四单元三角形第17课时三角形的基础知识(建议答题时间:40分钟)基础过关1.(2017某某)若一个三角形的两边长分别为2和4,则该三角形的周长可能是( )A. 6B. 7C. 11D. 122.(2017某某模拟)△ABC的外心在三角形的外部,则△ABC是( )A. 锐角三角形B. 直角三角形C. 钝角三角形D. 无法判断3.(2017某某改编)三角形的内心是( )A. 三角形三条边上中线的交点B. 三角形三条边上高线的交点C. 三角形三条边垂直平分线的交点D. 三角形三条内角平分线的交点4.(2017德阳)如图,在△ABC中,AD是BC边上的高,BE平分∠ABC交AC边于点E,∠BAC=60°,∠ABE=25°,则∠DAC的大小是( )° B. 20° C. 25° D. 30°第4题图5.如图,在△ABC中,∠1=∠2,G为AD的中点,延长BG交AC于点E,F为AB上的一点,CF⊥AD于点H.下列判断正确的有( )第5题图①AD是△ABE的角平分线;②BE是△ABD边AD上的中线;③CH是△ACD边AD上的高.A. 1个B. 2个C. 3个D. 0个6.如图,在△ABC中,AD是BC边上的中线,点E是AD的中点,过点E作垂线交BC 于点F,已知BC=10,△ABD的面积为12,则EF的长为( )B. 2.4 C第6题图7.(2017某某)如图,△ABC中,E为BC边的中点,CD⊥AB,AB=2,AC=1,DE=32,则∠CDE+∠ACD=( )第7题图A.60° B.75° C.90° D.105°8.(2017某某)如图,△ABC中,E是BC的中点,AD是∠BAC的平分线,EF∥AD交AC 于点F.若AB=11,AC=15,则FC的长为( )A. 11B. 12C. 13D. 14第8题图9.(2017某某)在△ABC中,∠A∶∠B∶∠C=2∶3∶4,则∠A的度数为__________.第10题图10.(2017某某)如图,△ABC中,D,E分别是边AB,AC的中点,连接DE,若DE=3,则线段BC的长等于________.11.(2017某某)在“三角尺拼角”实验中,小明同学把一副三角尺按如图所示的方式放置,则∠1=________°.第11题图12.(2017来宾)如图,在△ABC中,∠ACB=90°,∠ABC的平分线BD交AC于点D,已知AC=3,AD=2,则点D到AB边的距离为________.第12题图13.(2017某某)已知一副三角板按如图所示的方式放置,其中AB//DF,∠A=45°,∠D=30°,∠C=∠F=90°,则∠α+∠β=________.第13题图14.(2017宿迁)如图,在△ABC中,∠ACB=90°,点D、E、F分别是AB、BC、CA的中点.若CD=2,则线段EF的长是________.第14题图15.(2017某某)如图,在△A B C中,AB=AC,∠BAC=36°,DE是线段AC的垂直平分线,若BE=a,AE=b,则用含a、b的代数式表示△ABC的周长为______.第15题图16.如图,△ABC 的中线AE ,BD 交于点G ,过点D 作DM ∥BC 交AE 于点M ,则△AMD ,△DMG 和△BEG 的面积之比为________.第16题图17.如图,在△ABC 中,CD 是AB 边上的高,CE 是∠ACB 的平分线.(1)若∠A =40°,∠B =80°,求∠DCE 的度数;(2)若∠A =α,∠B =β,求∠DCE 的度数(用含α、β的式子表示).第17题图满分冲关1.(2017某某)如图,Rt △ABC 中,∠ACB =90°,斜边AB =9,D 为AB 的中点,F 为CD 上一点,且CF =13CD ,过点B 作BE ∥DC第1题图交AF的延长线于点E,则BE的长为( )A. 6B. 4C. 7D. 122.(2017某某)在△ABC中,已知BD和CE分别是边AC,AB上的中线,且BD⊥CE,垂足为O,若OD=2 cm,OE=4 cm,则线段AO的长度为________cm.第3题图3.(2018原创)如图,在△ABC中,∠A=m°,∠ABC和∠ACD的平分线交于点A1,得∠A1;∠A1BC和∠A1CD的平分线交于点A2,得∠A2;…;∠A2017BC和∠A2017CD的平分线交于点A2018,则∠A2018=________.4.(1)如图①,在△ABC中,∠A=α,∠ABC和∠ACB的平分线交于点P,则∠BPC的度数是________;(2)类比探究:如图②,在△ABC中,∠ABC的平分线和∠ACB的外角∠ACE的角平分线交于点P,则∠BPC与∠A的关系是________;(3)类比延伸:如图③,在△ABC中,∠ABC的外角∠CBF的角平分线和∠ACB的外角∠BCE的角平分线交于点P,请直接写出∠BPC与∠A的关系是________.第4题图冲刺名校1.(1)如图①,已知,在△ABC中,AD,AE分别是△ABC的高和角平分线,若∠B=30°,∠C=50°.求∠DAE的度数;(2)如图②,已知AF平分∠BAC,交边BC于点E,过F作FD⊥BC,若∠B=x°,∠C =(x+36)°,①∠CAE=________;(用含x的代数式表示)②求∠F的度数.第1题图答案基础过关1.C 【解析】由三角形三边关系可知,该三角形第三边取值X围为4-2<x<4+2,即2<x<6.∵该三角形周长为2+4+x=6+x,∴该三角形的周长取值X围为大于8,小于12,故选C.2.C 【解析】根据三角形的外心的位置可断定三角形的形状:若外心在三角形的外部,则三角形是钝角三角形;若外心在三角形的内部,则三角形是锐角三角形;若外心在三角形的边上,则三角形是直角三角形,且这条边是斜边.3.D 【解析】根据三角形的内心的定义:三角形的三个内角的平分线交于一点,这点叫三角形的内心即可判定.4.B 【解析】∵BE 是∠ABC 的角平分线,∠ABE =25°,∴∠ABC =50°,又∵∠BAC =60°,∴∠C =180°-∠ABC -∠BAC =180°-50°-60°=70°,∴∠DAC =180°-∠ADC -∠C =180°-90°-70°=20°.5.A 【解析】①根据三角形的角平分线的概念,知AD 是△ABC 的角平分线,AG 是△ABE 的角平分线,故此说法错误;②根据三角形的中线的概念,知BG 是△ABD 的边AD 上的中线,故此说法错误;③根据三角形的高的概念,知CH 是△ACD 边AD 上的高,故此说法正确.6.B 【解析】∵AD 是BC 边上的中线,△ABD 的面积为12,∴△ADC 的面积为12,∵点E 是AD 中点,∴△CDE 的面积为6,∵BC =10,AD 是BC 边上的中线,∴DC =5,∴EF =2S △EDC DC =2×65=2.4. 7.C 【解析】∵点E 为BC 边的中点,CD ⊥AB ,DE =32,∴BE =CE =DE =32,即∠CDE =∠DCE ,∴BC = 3.在△ABC 中,AC 2+BC 2=1+(3)2=4=AB 2,∴∠ACB =90°,∴∠CDE +∠ACD =90°,故选C.8.C 【解析】∵AD 平分∠BAC,∴AB AC =BD CD =1115.设BD =11x ,CD =15x ,则BC =26x ,CE =12BC =13x .∵EF ∥AD ,∴CF AC =CE CD ,∴FC 15=13x 15x,解得FC =13. 9.40° 【解析】根据三角形内角和定理,∵∠A +∠B +∠C =180°,∠A ∶∠B ∶∠C =2∶3∶4,∴∠A =29×180°=40°. 10.6 【解析】∵D ,E 分别是AB ,AC 的中点,∴DE 是△ABC 的中位线,∴BC =2DE =6.11.120 【解析】由三角形的外角的性质可知,∠1=90°+30°=120°.12.1 【解析】如解图,过点D 作DE ⊥AB 于点E ,∵BD 平分∠ABC ,∴根据角平分线定理,得DE =DC =AC -ADD 到AB 边的距离为1.第12题解图13.210° 【解析】∵∠α=∠D +∠1=30°+∠1,∠β=∠F +∠2=90°+∠2,而∠1=∠A ,∠2=∠B ,∴∠α+∠β=120°+∠A +∠B ,又∵在Rt △ABC 中,∠A +∠B =90°,∴∠α+∠β=120°+90°=210°.第13题解图14.2 【解析】如解图,连接DF 、DE ,∵点D 、E 、F 分别是AB 、BC 、CA 的中点,∴DF ∥CE ,DE ∥CF ,∵∠ACB =90°,∴四边形CEDF 是矩形,∴EF =CD =2.第14题解图【一题多解】由三角形中位线的性质,可得EF =12AB ,在Rt △ABC 中,CD = 12AB ,∴CD =EF =2.15.2a +3b 【解析】∵在△ABC 中,AB =AC ,∠BAC =36°,∴∠ABC =∠ACB =72°,∵DE 垂直平分AC ,∴CE =AE ,∴∠ECA =∠A =36°,∴∠BEC =∠A +∠ECA =72°,∴∠BEC =∠B ,∴BC =CE =b ,∴△ABC 的周长=AB +AC +BC =2AB +BC =2(a +b )+b =2a +3b .16.2∶1∶4 【解析】∵点D 是AC 的中点,DM ∥BC ,∴MD 是△AEC 的中位线,∴MD =12CE .∵AE 是△ABC 的中线,∴BE =CE ,∴BE =2MD ,∵MD ∥BC ,∴△DMG ∽△BEG ,∴MG ∶EG =MD ∶EB =1∶2,∴AM =ME =2MG ,∴S △AMD =2S △MDG ,S △BGE =4S △MDG ,∴△AMD ,△DMG ,△BEG 的面积比为2∶1∶4.17.解:(1)∵∠A =40°,∠B =80°,∴∠ACB =60°,∵CE 是∠ACB 的平分线,∴∠ECB =12∠ACB =30°, ∵CD 是AB 边上的高,∴∠BDC =90°,∴∠BCD =90°-∠B =10°,∴∠DCE =∠ECB -∠BCD =30°-10°=20°;(2)∵∠A =α,∠B =β,∴∠ACB =180°-α-β,∵CE 是∠ACB 的平分线,∴∠ECB =12∠ACB =12(180°-α-β), ∵CD 是AB 边上的高,∴∠BDC =90°, ∴∠BCD =90°-∠B =90°-β, ∴∠DCE =∠ECB -∠BCD=12β-12α. 满分冲关1.A 【解析】在Rt △ABC 中,∠ACB =90°,AB =9,D 是AB 的中点,∴CD =12AB =92,∵CF =13CD ,∴CF =13×92=32,∴DF =CD -CF =92-32=3,∵D 是AB 的中点,BE ∥DF 交AF 的延长线于点E ,∴BE =2DF =6.2. 【解析】如解图,连接AO 并延长,交BC 于点H ,由勾股定理得,DE =OE 2+OD 2=2 5 cm ,∵BD 和CE 分别是边AC ,AB 上的中线,∴BC =2DE =4 5 cm ,∵O 是△ABC 的重心,∴AH 是中线,又∵BD ⊥CE ,∴OH =12BC =2 5 cm ,∵O 是△ABC 的重心,∴AO =2OH =4 5 cm.第2题解图3.(m 22018)° 【解析】∵A 1B 平分∠ABC ,A 1C 平分∠ACD ,∴∠A 1BC =12∠ABC ,∠A 1CA =12∠ACD ,∵∠A 1CD =∠A 1+∠A 1BC ,即12∠ACD =∠A 1+12∠ABC ,∴∠A 1=12(∠ACD -∠ABC ),∵∠A +∠ABC =∠ACD ,∴∠A =∠ACD -∠ABC ,∴∠A 1=12∠A ,∠A 2=12∠A 1=122∠A ,…,以此类推可知∠A 2018=122018∠A =(m 22018)°, 4.(1)90°+12α; 【解法提示】∵∠A =α,∴∠ABC +∠ACB =180°-α,∵∠ABC 和∠ACB 的平分线交于点P ,∴∠PBC =12∠ABC ,∠PCB =12∠ACB ,∴∠BPC =180°-12(∠ABC +∠ACB )=90°+12α; (2)∠BPC =12∠A ; 理由如下:∵∠ACE 是△ABC 的外角,∠PCE 是△PBC 的外角,∴∠ACE =∠ABC +∠A ,∠PCE =∠PBC +∠BPC ,∵BP 平分∠ABC ,CP 平分∠ACE ,∴∠PBC =12∠ABC ,∠PCE =12∠ACE , ∴12∠ACE =12∠ABC +∠BPC , ∴∠BPC =12∠AEC -12∠ABC =12(∠ACE -∠ABC ), ∴∠BPC =12∠A , (3)∠BPC =90°-12∠A . 冲刺名校1.解:(1)∵∠B =30°,∠C =50°,∴∠CAB =180°-∠B -∠C =100°,∵AE 是△ABC 的角平分线,∴∠CAE =12∠CAB =50°, ∵AD 是△ABC 的高,∴∠ADC =90°,∴∠CAD =90°-∠C =40°,∴∠DAE =∠CAE -∠CAD =50°-40°=10°;(2)①72°-x °;【解法提示】∵∠B =x °,∠C =(x +36)°,AF 平分∠BAC ,∴∠EAC =∠BAF ,∴∠CAE =12×[180°-x °-(x +36)°]=72°-x °; ②∵∠AEC =∠BAE +∠B =72°,∵FD ⊥BC ,∴∠F =90°-72°=18°.。
第八章统计与概率第一节统计玩转重庆9年中考真题(2008~2016)命题点1 调查方式(9年8考)1.(2016重庆B卷6题4分)下列调查中,最适合采用全面调查(普查)的是( )A. 对重庆市居民日平均用水量的调查B. 对一批LED节能灯使用寿命的调查C. 对重庆新闻频道“天天”栏目收视率的调查D. 对某校九年级(1)班同学的身高情况的调查2. (2011重庆5题4分)下列调查中,适宜采用抽样调查方式的是 ( )A. 调查我市中学生每天体育锻炼的时间B. 调查某班学生对“五个重庆”的知晓率C. 调查一架“歼20”隐形战机各零部件的质量D. 调查广州亚运会100米决赛参赛运动员兴奋剂的使用情况命题点2 平均数、中位数、众数(9年8考)3. (2008重庆4题4分)数据2,1,0,3,4的平均数是 ( )A. 0B. 1C. 2D. 34. (2015重庆B卷6题4分)某校为纪念世界反法西斯战争胜利70周年,举行了主题为“让历史照亮未来”的演讲比赛,其中九年级的5位参赛选手的比赛成绩(单位:分)分别为,,,,9,则这5个数据的中位数是 ( )A. 9.7B.C. 9D.5. (2014重庆B卷15题4分)在2014年重庆市初中毕业生体能测试中,某校初三有7名同学的体能测试成绩(单位:分)如下:50,48,47,50,48,49,48.这组数据的众数是________.6. (2013重庆A卷15题4分)某老师为了了解学生周末利用网络进行学习的时间,在所任教班级随机调查了10名学生,其统计数据如下表:时间(单位:小时) 4 3 2 1 0人数 2 4 2 1 1则这10名学生周末利用网络进行学习的平均时间是________小时.命题点3方差的意义(9年4考)7. (2014重庆B卷5题4分)某校将举办一场“中国汉字听写大赛”,要求各班推选一名同学参加比赛.为此,初三(1)班组织了五轮班级选拔赛.在这五轮选拔赛中,甲、乙两位同学的平均分都是96分,甲的成绩的方差是,乙的成绩的方差是.根据以上数据,下列说法正确的是 ( )A. 甲的成绩比乙的成绩稳定B. 乙的成绩比甲的成绩稳定C. 甲、乙两人的成绩一样稳定D. 无法确定甲、乙的成绩谁更稳定8. (2014重庆A卷7题4分)2014年8月26日,第二届青奥会将在南京举行,甲、乙、丙、丁四位跨栏运动员在为该运动会积极准备.在某天“110米跨栏”训练中,每人各跑5次,据统计,他们的平均成绩都是秒,甲、乙、丙、丁的成绩的方差分别是、、、.则当天这四位运动员“110米跨栏”的训练成绩最稳定的是 ( )A. 甲B. 乙C. 丙D. 丁命题点4统计图表的分析(必考)9. (2008重庆18题3分)光明中学七年级甲、乙、丙三个班中,每班的学生人数都为40名,某次数学考试的成绩统计如下:(每组分数含最小值,不含最大值)第9题图丙班数学成绩频数统计表分数50~60 60~70 70~80 80~90 90~100人数 1 4 15 11 9根据以上图、表提供的信息,则80~90分这一组人数最多的班是________.10. (2016重庆A卷20题7分)为响应“全民阅读”号召,某校在七年级800名学生中随机抽取100名学生,对该年级学生在2015年全年阅读中外名著的情况进行调查,整理调查结果发现,学生阅读中外名著的本数,最少的有5本,最多的有8本,并根据调查结果绘制了如图所示的不完整的条形统计图.其中阅读了6本的人数占被调查人数的30%.根据图中提供的信息,补全条形统计图并估计该校七年级全体学生在2015年全年阅读中外名著的总本数.第10题图11. (2016重庆B卷20题7分)某校组建了书法、音乐、美术、舞蹈、演讲五个社团,全校1600名学生每人都参加且只参加了其中一个社团的活动.校团委从这1600名学生中随机选取部分学生进行了参加活动情况的调查,并将调查结果制成了如下不完整的统计图.请根据统计图完成下列问题:第11题图参加本次调查有________名学生,根据调查数据分析,全校约有________名学生参加了音乐社团;请你补全条形统计图.【拓展猜押】为了解我市的空气质量情况,张老师从环境监测网随机抽取了若干天的空气质量情况作为样本进行统计,绘制了如图所示的条形统计图和扇形统计图(部分信息未给出).拓展猜押题图请你根据图中提供的信息,解答下列问题:(1)张老师一共抽取了__________天的空气质量进行统计;扇形统计图中表示优的扇形的圆心角大小为________;估计我市这一年(365天)约有________天达到优和良.(2)请补全条形统计图.答案命题点1 调查方式【解析】选项逐项分析正误A由于重庆市居民较多,对其居民日平均用水量进行全面调查工作量较大,也没有必要,适用抽样调查×B 对节能灯的使用寿命调查具有破坏性,不适用全面调查×C收看重庆新闻频道“天天”栏目的用户较多,不易做到全面调查,适用抽样调查×D 调查某校九年级(1)班同学的身高情况,范围小,要求准确,适用于普查√2. A 【解析】A.调查我市中学生人数相对较多,适宜抽样调查;B.某班学生的人数不多,适宜用普查的调查方式;C.考虑一架“歼20”隐形战机各零部件数量有限,对安全性质量要求高,适宜用普查的调查方式;D.为了对所有运动员公平,所以调查广州亚运会100米决赛参赛运动员兴奋剂的使用情况适宜用普查的调查方式.命题点2 平均数、中位数、众数3. C 【解析】x=2+1+0+3+45=2.4. C 【解析】将这组数据按从小到大的顺序排列为,,9,,,处于最中间位置的数是9,则中位数是9.5. 48 【解析】众数是一组数据中出现次数最多的那个数据,一组数据中众数可能有一个,可能有多个,也可能没有.这组数据:50、48、47、50、48、49、48中,出现次数最多的是48,共出现了3次,因此48是这组数据的众数.6. 2.5 【解析】利用加权平均数的公式计算即可.这10名学生周末利用网络进行学习的平均时间是:110×(2×4+4×3+2×2+1×1+1×0)=. 命题点3方差的意义7. A 【解析】方差越小,其波动性越小,就越稳定.甲、乙两名同学的平均分相同,甲成绩的方差为,乙成绩的方差为,∵<,∴甲的成绩比乙稳定.8. D 【解析】由于这四位运动员的平均成绩相同,且四位运动员成绩的方差大小为:s甲2=>s丙2=>s乙2=>s丁2=,因此可知丁的方差最小,根据方差越小,成绩越稳定,故丁的成绩最稳定.命题点4统计图表的分析9. 甲班【解析】求甲班80~90分这组的人数,可用该班总人数分别减去已知各组的人数,结果是13人;求乙班80~90分这组的人数,需先求出该组人数占乙班总人数的百分比,然后将该百分比乘以乙班总人数,可得该组人数为12人;丙班80~90分这组的人数可直接从统计表中获知,为11人.故80~90分这一组人数最多的班是甲班.10. 解:阅读6本书的人数为:100×30%=30(人),阅读7本书的人数为:100-20-30-15=35(人).补全条形统计图如解图.第10题解图…………………………………………………………………………………(5分)七年级全体学生2015年阅读中外名著的总本数为20×5+30×6+35×7+15×8100×800=5160(本).…………………………(7分)11. 解:240;400;补全条形统计图如解图所示.第11题解图………………………………………………………………………………(7分)【解法提示】参加本次调查的学生人数为:24÷10%=240(人);参加美术社团人数占所调查总人数的百分比为:72240×100%=30%; 全校参加音乐社团的人数为:1600×(1-20%-10%-15%-30%)=400(人); 所调查的参加书法社团的人数为:240×15%=36(人),所调查的参加音乐社团的人数为:240×(1-20%-10%-15%-30%)=60(人), 所调查的参加舞蹈社团的人数为:240×20%=48(人).【拓展猜押】解:(1)50;°;292.【解法提示】抽取的总天数为:32÷64%=50(天);表示优的扇形圆心角度数是850×360°=°;一年(365天)达到优和良的总天数约为8+3250×365=292(天). (2)补全条形统计图如解图所示:拓展猜押题解图。
江苏省2017年中考数学第一部分考点研究复习第二章方程(组)与不等式(组)第7课时一元二次方程及其应用真题精选(含解析)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(江苏省2017年中考数学第一部分考点研究复习第二章方程(组)与不等式(组)第7课时一元二次方程及其应用真题精选(含解析))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为江苏省2017年中考数学第一部分考点研究复习第二章方程(组)与不等式(组)第7课时一元二次方程及其应用真题精选(含解析)的全部内容。
第二章方程(组)与不等式(组)第7课时一元二次方程及其应用江苏近4年中考真题精选(2013~2016)命题点1 一元二次方程及其解法(2015年3次,2014年4次,2013年5次)1. (2016泰州14题3分)方程2x-4=0的解也是关于x的方程x2+mx+2=0的一个解,则m 的值为________.2. (2015徐州20(1)题5分)解方程:x2-2x-3=0。
3。
(2014泰州17(2)题6分)解方程:2x2-4x-1=0.命题点2 一元二次方程根的判别式及根与系数的关系(2016年5次,2015年7次,2014年6次,2013年3次)4。
(2014苏州7题3分)下列关于x的方程有实数根的是( )A。
x2-x+1=0 B. x2+x+1=0C. (x-1)(x+2)=0 D。
(x-1)2+1=05. (2016淮安14题3分)若关于x的一元二次方程x2+6x+k=0有两个相等的实数根,则k=________.6. (2016宿迁12题3分)若一元二次方程x2-2x+k=0有两个不相等的实数根,则k的取值范围是________.7。
2017年中考数学一轮复习专题图形折叠问题综合复习一选择题:1.如图.E是矩形ABCD中BC边的中点.将△ABE沿AE折叠到△AFE.F在矩形ABCD内部.延长AF交DC于G点.若∠AEB=55°.则∠DAF=( )A.40° B.35° C.20° D.15°2.如图.把一个长方形纸片沿EF折叠后.点D、C分别落在D′、C′的位置.若∠EFB=65°.则∠AED′等于()A.50° B.55° C.60° D.65°3.如图.把矩形ABCD沿EF翻折.点B恰好落在AD边的B′处.若AE=2.DE=6.∠EFB=60°.则矩形ABCD的面积是()A.12 B.24 C.12 D.164.如图.已知矩形ABCD沿着直线BD折叠.使点C落在C′处.BC′交AD于E.AD=8.AB=4.则DE长为()A.3 B.4 C.5 D.65.将矩形纸片ABCD按如图所示的方式折叠.得到菱形AECF.若AB=3.则BC的长为()A.1 B.2 C. D.6.如图.在矩形ABCD中.AB=8.BC=4.将矩形沿AC折叠.则重叠部分△AFC的面积为()A.12 B.10 C.8 D.67.如图.矩形ABCD中.点E在边AB上.将矩形ABCD沿直线DE折叠.点A恰好落在边BC的点F处.若AE=5.BF=3.则CD的长是()A.7B.8 C.9 D. 108.如图.菱形纸片ABCD中.∠A=60°.折叠菱形纸片ABCD.使点C落在DP(P为AB中点)所在的直线上.得到经过点D的折痕DE.则∠DEC的大小为()A.78° B.75° C.60° D.45°9.如图.将边长为12cm的正方形ABCD折叠.使得点A落在CD边上的点E处.折痕为MN.若CE的长为7cm.则MN 的长为()A. 10 B. 13 C. 15 D. 1210.如图.将矩形纸片ABCD的四个角向内翻折.恰好拼成一个无缝隙无重叠的四边形EFGH.若EH=12厘米.EF=16厘米.则边AD的长是 ( )A.12厘米 B.16厘米 C.20厘米 D.28厘米11.如图.在矩形 OABC 中.OA=8.OC=4.沿对角线 OB 折叠后.点 A 与点 D 重合.OD 与 BC交于点 E.则点 D 的坐标是()A.(4.8)B.(5.8)C.(.) D.(.)12.将矩形纸片ABCD按如图所示的方式折叠.AE、EF为折痕.∠BAE=30°..折叠后.点C落在AD边上的C1处.并且点B落在EC1边上的B1处.则BC的长为()A. B. 2 C. 3 D.13.如图.矩形纸片ABCD中.AD=3cm.点E在BC上.将纸片沿AE折叠.使点B落在AC上的点F处.且∠AEF=∠CEF.则AB的长是( )A.1 cm B.cm C.2 cm D. cm14.如图.在矩形ABCD中.AB=5.BC=7.点E是AD上一个动点.把△BAE沿BE向矩形内部折叠.当点A的对应点A1恰好落在∠BCD的平分线上时.CA1的长为()A.3或4 B.4或3C.3或4 D.3或415.如图.在矩形ABCD中.点E、F分别在边AB.BC上.且AE=AB.将矩形沿直线EF折叠.点B恰好落在AD边上的点P处.连接BP交EF于点Q.对于下列结论:①EF=2BE.②PF=2PE;③FQ=4EQ;④△PBF是等边三角形.其中正确的是( )A.①② B.②③C.①③ D.①④16.如图.点M、N分别在矩形ABCD边AD、BC上.将矩形ABCD沿MN翻折后点C恰好与点A重合.若此时=,则△AMD′的面积与△AMN的面积的比为( )A.1:3 B.1:4 C.1:6 D.1: 917.图.矩形ABCD中.点E是AD的中点.将△ABE折叠后得到△GBE.延长B G交CD于点F.若CF=1.FD=2.则BC的长为( )A.3B.2C.2D.218.如图.矩形ABCD边AD沿拆痕AE折叠.使点D落在BC上的F处.已知AB=6.△ABF的面积是24.则FC等于().A.2 B.3 C.4 D.519.如图.在菱形纸片ABCD中.∠A=60°.将纸片折叠.点A、D分别落在点A′、D′处.且A′D′经过点B.EF为折痕.当D′F⊥CD时.的值为()A.B.C.D.20.如图.在矩形纸片ABCD中.AB=3.AD=5.折叠纸片.使点A落在BC边上的A′处.折痕为PQ.当点A′在BC边上移动时.折痕的端点P.Q也随之移动。
甘肃省l兰州市第36中学2017年九年级数学中考模拟试卷(三)含答案甘肃省l兰州市第36中学2017年九年级数学中考模拟试卷含答案一、选择题 1.如图,在△PQR是⊙O的内接三角形,四边形ABCD是⊙O 的内接正方形,BC∥QR,则∠AOR= A.60°B.65°C.72°D.75°【答案】D. 【解析】试题分析:连结OD,如图,∵△PQR是⊙O的内接正三角形,∴PQ=PR=QR,∴∠POR=×360°=120°,OP⊥QR,∵BC ∥QR,∴OP⊥BC,∵四边形ABCD是⊙O的内接正方形,∴OP⊥AD,∠AOD=90°,∴弧AP=弧DP,∴∠AOP=∠DOP,∴∠AOP=×90°=45°,∴∠AOQ=∠POQ-∠AOP=75°.故选D. 考点:1.圆周角定理;2.垂径定理. 2.若关于x的方程x+2x+a =0不存在实数根,则a的取值范围是A.a<l B.a>1C.a≤1 D.a≥1 【答案】B 【解析】试题分析:△=4-4a<0,得a>1.故选:B 考点:一元二次方程根的判别式 3.图是一个横断面为抛物线形状的拱桥,当水面在l时,拱顶离水面2m,水面宽4m.如图建立平面直角坐标系,则抛物线的关系式是2A.y=﹣2x B.y=2x C.y=﹣x D.y=x 【答案】C 【解析】试题分析:图中可以看出,所求抛物线的顶点在原点,对称轴为y轴,可设此函数解析式2为:y=ax,利用待定系数法求解.解:设此函数解析式为:y=ax,a≠0;那么应在此函数解析式上.则﹣2=4a 即得a=﹣,那么y=﹣x.故选:C.【点评】根据题意得到函数解析式的表示方法是解决本题的关键,关键在于找到在此函数解析式上的点. 4.如图,抛物线y=ax+bx+c的对称轴为直线x=1,与x轴的一个交点坐标为,其部分图象如图所示,下列结论:2222222①4ac<b;②方程ax+bx+c=0的两个根是x1=﹣1,x2=3;③3a+c>0 ④当y>0时,x的取值范围是﹣1≤x<3 ⑤当x<0时,y随x 增大而增大其中结论正确的个数是22A.4个B.3个C.2个D.1个【答案】B.【解析】试题分析:图象可知抛物线与x轴有2个交点,所以b﹣4ac>0,所以①正确;再抛物线的对称轴为直线x=1,而点关于直线x=1的对称点的坐标为,所以方程ax+bx+c=0的两个根是x1=﹣1,x2=3,所以②正确;因x=﹣22 =1,即b=﹣2a,而x=﹣1时,y<0,即a﹣b+c<0,所以a+2a+c<0,即③错误;因抛物线与x轴的两点坐标为,,所以当﹣1<x<3时,y>0,④错误;抛物线的对称轴为直线x=1,即可得当x<1时,y随x增大而增大,所以⑤正确.故选B.考点:二次函数图象与系数的关系. 5.如图,在△ABC中,点D、E分别在边AB、AC上,如果DE∥BC,且∠DCE=∠B,那么下列说法中,错误的是A.△ADE∽△ABC B.△ADE∽△ACD C.△ADE∽△DCB D.△DEC∽△CDB 【答案】C 【解析】试题解析:∵DE∥BC,∴△ADE ∽△ABC,∠BCD=∠CDE,∠ADE=∠B,∠AED=∠ACB,∵∠DCE=∠B,∴∠ADE=∠DCE,又∵∠A=∠A,∴△ADE∽△ACD;∵∠BCD=∠CDE,∠DCE=∠B,∴△DEC∽△CDB;∵∠B=∠ADE,但是∠BCD<∠AED,且∠BCD≠∠A,∴△ADE与△DCB不相似;正确的判断是A、B、D,错误的判断是C;故选:C.考点:相似三角形的判定. 6.如图,已知AB是⊙O的直径,AD切⊙O于点A,点C是的中点,则下列结论不成立的是A.OC//AE B.EC=BC C.∠DAE=∠ABE D.AC⊥OE 【答案】D 【解析】试题分析:∵点C是的中点∴=∴EC=BC ∠CAE=∠CAB即∠BAE=2∠CAB ∵∠BOC=2∠CAB ∴OC//AE ∵AB 是直径∴∠BEA=90°∴∠ABE+∠EAB=90°∵AB是⊙O的直径,AD切⊙O于点A∴DA⊥BA ∴∠DAB=90°即∠DAE+∠EAB=90°∴∠DAE=∠ABE 所以A、B、C选项都正确,于点D和点E的不确定性,D选项不一定成立(如下图). 考点:1、圆周角定理;2、弧、弦、圆心角定理;3、平行线的判定. 7.教室里的饮水机接通电源就进入自动程序,开机加热时每分钟上升10℃,加热到100℃,停止加热,水温开始下降,此时水温与开机后用时成反比例关系.直至水温降至30℃,饮水机关机.饮水机关机后即刻自动开机,重复上述自动程序.若在水温为30℃时,接通电源后,水温y和时间的关系如图,为了在上午第一节下课时能喝到不超过50℃的水,则接通电源的时间可以是当天上午的A.7:20B.7:30C.7:45D.7:50 【答案】A. 【解析】试题分析:∵开机加热时每分钟上升10℃,∴从30℃到100℃需要7分钟. 设一次函数关系式为:y=k1x+b,将,代入y=k1x+b 得k1=10,b=30. ∴y=10x+30. 令y=50,解得x=2. 设反比例函数关系式为:将y=30代入,解得,将代入,∴. 得k=700,∴。
2017年全国36省市中考数学经典填空题及答案汇编1.(长沙市)如图,将正方形ABCD 折叠,使顶点A 与CD 边上的一点H 重合(H 不与端点D C ,重合),折痕交AD 于点E ,交BC 于点F ,边AB 折叠后与边BC 交于点G ,设正方形ABCD 的周长为m ,CHG ∆的周长为n ,则mn的值为( ) A .22B .21C .215-D .随H 点位置的变化而变化2.(安徽省)如图,在矩形ABCD 中,5AB =,3AD =.动点P 满足13PAB ABCD S S ∆=矩形.则点P 到A ,B 两点距离之和PA PB +的最小值为( ) A B C. D3.(北京市)下图显示了用计算机模拟随机投掷一枚图钉的某次实验的结果.下面有三个推断:当投掷次数是500时,计算机记录“钉尖向上”的次数是308,所以“钉尖向上”的概率是0.616;随着实验次数的增加,“钉尖向上”的频率总在0.618附近摆动,显示出一定的稳定性,可以估计“钉尖向上”的概率是0.618;若再次用计算机模拟实验,则当投掷次数为1000时,“钉尖向上”的概率一定是0.620.其中合理的是()A.①B.② C. ①②D.①③4.(福建省宁德市)如图,在△ABC中,AB=AC,点D,E分别在边BC 和AC 上,若AD=AE,则下列结论错误的是()A.∠ADB=∠ACB+∠CAD B.∠ADE=∠AEDC.∠CDE=∠BAD D.∠AED=2∠ECD5.(福建省)如图,网格纸上正方形小格的边长为1.图中线段AB和点P绕着同一个点做相同的旋转,分别得到线段A B''和点P',则点P'所在的单位正方形区域是()A .1区B .2区C .3区D .4区6.(兰州市) 如图1,在矩形中,动点从出发,沿方向运动,当点到达点时停止运动,过点做,交于点,设点运动路程为,,如图2所表示的是与的函数关系的大致图象,当点在上运动时,的最大长度是,则矩形的面积是( )图1 图2 A.B.C.6D.7.(广州市),函数与在同一直角坐标系中的大致图象可能是( )8.(贵州省安顺市)二次函数y=ax 2+bx+c (≠0)的图象如图,给出下列四个结论:①4ac ﹣b 2<0;②3b+2c <0;③4a+c <2b ;④m (am+b )+b <a (m ≠1),其中结论正确的个数是( )ABCD E A AB BC →E C E FE AE ^CD F E x FC y =y x E BC FC 25ABCD 23552540a ≠ay x=2y ax a =-+A.1 B.2 C.3 D.49.(贵州省贵阳市)如图,四边形ABCD中,AD∥BC,∠ABC+∠DCB=90°,且BC=2AD,以AB、BC、DC为边向外作正方形,其面积分别为S1、S2、S3,若S1=3,S3=9,则S2的值为()A.12 B.18 C.24 D.4810.(海南省)如图6,△ABC的三个顶点分别为A(1,2),B(4,2),C(4,4).若反比例函数ky在第一象限内的图象与△ABC有交点,则k的取值范围x是()219.A.1≤k≤4 B.2≤k≤8 C.2≤k≤16 D.8≤k≤1611(河北省)A .1.4B .1.1C .0.8D .0.512.(河南省)如图,将半径为2,圆心角为的扇形绕点逆时针旋转,点,的对应点分别为,,连接,则图中阴影部分的面积是( ) A .B . C. D .13.(黑龙江省大庆市)如图,BC AD //,AB AD ⊥,点B A ,在y 轴上,CD 与x轴交于点)0,2(E ,且DE AD =,CE BC 2=,则BD 与x 轴交点F 的横坐标为( )A .32B .43 C.54 D .6514.(哈尔滨市)周日,小涛从家沿着一条笔直的公路步行去报亭看报,看了一段时间后,他按原路返回家中,小涛离家的距离y (单位:m)与他所用的时间120︒OAB A 60︒O B 'O 'B 'BB 23π3π23π23πt(单位:min)之间的函数关系如图所示,下列说法中正确的是()A.小涛家离报亭的距离是900mB.小涛从家去报亭的平均速度是60m/minC.小涛从报亭返回家中的平均速度是80m/minD.小涛在报亭看报用了15min15.(黑龙江省鹤岗市)观察下列图形,第一个图形中有一个三角形;第二个图形中有5个三角形;第三个图形中有9个三角形;….则第2017个图形中有个三角形.16.(黑龙江省佳木斯市)如图,在边长为4的正方形ABCD中,E、F是AD边上的两个动点,且AE=FD,连接BE、CF、BD,CF与BD交于点G,连接AG交BE于点H,连接DH,下列结论正确的个数是()①△ABG∽△FDG ②HD平分∠EHG ③AG⊥BE ④S△HDG :S△HBG=tan∠DAG ⑤线段DH的最小值是2﹣2.A .2B .3C .4D .517.(湖北省鄂州市)如图四边形ABCD 中,AD ∥BC ,∠BCD=90°,AB =BC+AD ,∠DAC =45°,E 为CD 上一点,且∠BAE =45°,若CD =4,则△ABE 的面积为( ) A.127B.247C.487D.50718.(湖北省荆门市)已知:如图,在平面直角坐标系xoy 中,等边AOB ∆的边长为6,点C 在边OA 上,点D 在边AB 上,且3OC BD =.反比例函数()0ky k x=≠的图象恰好经过点C 和点D .则k 的值为 ( )A B . C. D 19.(武汉市)如图,在Rt △ABC 中,∠C =90°,以△ABC 的一边为边画等腰三角形,使得它的第三个顶点在△ABC 的其他边上,则可以画出的不同的等腰三角形的个数最多为( ) A .4 B .5 C .6D .720.(湖北省宜昌市)某学校要种植一块面积为100m 2的长方形草坪,要求两边长均不小于5m ,则草坪的一边长为y (单位:m )随另一边长x (单位:m )的变化而变化的图象可能是( )21.(湖南省衡阳市)如图,已知点A 、B 分别在反比例函数1y x =(0x >),4y x=-(0x >)的图像上,且OA ⊥OB ,则OBOA的值为( )A B .2 D .422.(湖南省益阳市)如图,空心卷筒纸的高度为12cm ,外径(直径)为10cm ,内径为4cm ,在比例尺为1:4的三视图中,其主视图的面积是2·1·c ·n ·j ·yA .214πcm 2 B .2116πcm 2C .30cm 2D .7.5cm 223.(吉林省长春市)如图,在平面直角坐标系中,平行四边形OABC 的顶点A 的坐标为(﹣4,0),顶点B 在第二象限,∠BAO=60°,BC 交y 轴于点D ,DB :DC=3:1.若函数y=kx(k >0,x >0)的图象经过点C ,则k 的值为( )AB D 24.(江苏省南通市) 如图,矩形ABCD 中,10,5AB BC ==,点,,,E F G H 分别在矩形ABCD 各边上,且,AE CG BF DH ==,则四边形EFGH 周长的最小值为( )A .B .C .D .25.(江苏省常州市)如图,已知□ABCD 的四个内角的平分线分别相交于点E 、F 、G 、H ,连接AC ,若EF=2,FG=GC=5,则AC 的长是( ).A.12 B.13 C.D.26.(江苏省淮安市)如图,在矩形纸片ABCD中,AB=3,点E在边BC上,将△ABE沿直线AE折叠,点B恰好落在对角线AC上的点F处,若∠EAC=∠ECA,则AC的长是()A.B.6 C.4 D.527.(江苏省连云港市)如图所示,一动点从半径为2的⊙O上的A0点出发,沿着射线A0O方向运动到⊙O上的点A1处,再向左沿着与射线A1O夹角为60°的方向运动到⊙O上的点A2处;接着又从A2点出发,沿着射线A2O方向运动到⊙O上的点A3处,再向左沿着与射线A3O夹角为60°的方向运动到⊙O上的点A4处;…按此规律运动到点A2017处,则点A2017与点A0间的距离是()A.4 B.23C.2 D.0A B C28.(南京市)过三点(2,2),(6,2),(4,5)的圆的圆心坐标为()A .(4,) B .(4,3) C.(5,) D .(5,3) 29.(江苏省苏州市)如图,在菱形CD AB 中,60∠A = ,D 8A =,F 是AB 的中点.过点F 作F D E ⊥A ,垂足为E .将F ∆AE 沿点A 到点B 的方向平移,得到F '''∆A E .设P 、'P 分别是F E 、F ''E 的中点,当点'A 与点B 重合时,四边形CD 'PP 的面积为A. B.C. D.8-30.(江苏省泰州市)如图,P 为反比例函数y=kx(k >0)在第一象限内图象上的一点,过点P 分别作x 轴,y 轴的垂线交一次函数y=﹣x ﹣4的图象于点A 、B .若∠AOB=135°,则k 的值是( )A .2B .4C .6D .831.(江苏省无锡市)如图,△ABC 中,∠BAC=90°,AB=3,AC=4,点D 是BC 的中点,将△ABD 沿AD 翻折得到△AED ,连CE ,则线段CE 的长等于( )17617632.(江苏省徐州市)若函数y=x2﹣2x+b的图象与坐标轴有三个交点,则b的取值范围是()A.b<1且b≠0 B.b>1 C.0<b<1 D.b<133.(江苏省盐城市)如图,将函数y=(x﹣2)2+1的图象沿y轴向上平移得到一条新函数的图象,其中点A(1,m),B(4,n)平移后的对应点分别为点A'、B'.若曲线段AB扫过的面积为9(图中的阴影部分),则新图象的函数表达式是()A.B.C.D.34.(江苏省扬州市)如图,已知△ABC的顶点坐标分别为A(0,2)、B(1,0)、C(2,1),若二次函数y=x2+bx+1的图象与阴影部分(含边界)一定有公共点,则实数b的取值范围是()A.b≤﹣2 B.b<﹣2 C.b≥﹣2 D.b>﹣235.(辽宁省大连市)如图,在△ABC中,∠ACB=90°,CD⊥AB,垂足为D,点E是AB的中点,CD=DE=a,则AB的长为()A.2a B.2 a C.3a D.36.(辽宁省葫芦岛市)如图,菱形ABCD的边长为2,∠A=60°,点P和点Q 分别从点B和点C出发,沿射线BC向右运动,过点Q作QH⊥BD,垂足为H,连接PH,设点P运动的距离为x(0<x≤2),△BPH的面积为s,则能反映s与x之间的函数关系的图象大致为()37.(辽宁省营口市)如图,直线l的解析式为4=-+,它与x轴和y轴分别相y x交于,A B两点,平行于直线l的直线m从原点O出发,沿x轴的正方向以每秒1个单位长度的速度运动.它与x轴和y轴分别相交于,C D两点,运动时间为t秒(04t≤≤),以CD为斜边作等腰直角三角形CDE(,E O两点分别在CD两侧),若CDE∆的重合部分的面积为S,则S与t之间的函数关系的图角大致∆和OAB是()参考答案:1.2.3.4.5.6.7.8.9.10.11.12.13.14.15.16.18.19.20.。
2017年浙江省杭州市中考数学模拟试卷(三)姓名:__________班级:__________考号:__________一 、选择题(本大题共10小题,每小题3分,共30分) 1.﹣的绝对值是( ) A .﹣B .﹣C .D .52.下列四个三角形,与图中的三角形相似的是( ).3.如图是由5个相同的小正方体组成的立体图形,这个立体图形的俯视图是( )A .B .C .D .4. 有一组数据:3,4,5,6,6,则这组数据的平均数、众数、中位数分别是( )A .,6,6B . 5,5,5C .,6,5D . 5,6,65.下列运算中,正确的是( )A .x 3÷x =x 4B .a 2+a 2=2a 4C .3x ﹣2x =1D .3x ﹣2x =x6.日历上竖列相邻的三个数,它们的和是39,则第一个数是( )A .6B .12C .13D .147.已知一次函数y 1=kx +b (k <O )与反比例函数y 2=xm(m ≠O )的图象相交于A .B 两点,其横坐标分别是-1和3,当y 1>y 2时,实数x 的取值范围是( )A .x <-l 或O <x <3B .一1<x <O 或O <x <3;C .一1<x <O 或x >3D .O <x <38.⊙O 过点B ,C ,圆心O 在等腰直角△ABC 内部,∠BAC =90°,OA =1,BC =6,则⊙O 的半径为( )A .B . 2C .D . 39.如图,D 是AB 边上的中点,将△ABC 沿过D 的直线折叠,使点A 落在BC 上F 处,若∠B =45°,则∠BDF度数是()A . 80°B . 90°C . 40°D . 不确定10.若“!”是一种数学运算符号,并且1!=1,2!=2×1=2,3!=3×2×1=6,4!=4×3 ×2×1=24,…,则100!98!的值是 ( ) A .5049B .99!C .9900D .2!二 、填空题(本大题共6小题,每小题4分,共24分) 11.反比例函数y =xk的图象经过点(tan 45°,cos 60°),则k 的值是_____. 12.从n 个桔子和5个橙子中任选一个.若选中橙子的概率为,则n 的值为 . 13.分解因式:ax 2﹣6ax +9a =___________________ .14.如图,点E 在▱ABCD 的边BC 上,BE =C D .若∠EAC =20°,∠B +∠D =80°,则∠ACD 的度数为 .15.如图,边长为2的正方形MNEF 的四个顶点在大圆O 上,小圆O 与正方形各边都相切,AB 与CD 是大圆O 的直径,AB ⊥CD ,CD ⊥MN ,则图中阴影部分的面积是 .16.若关于x的分式方程的解为正数,那么字母a的取值范围是.三、解答题(本大题共7小题,共66分).17.18.为倡导“低碳出行”,环保部门对某城市居民日常出行使用交通方式的情况进行了问卷调查,将调查结果整理后,绘制了如下不完整的统计图,其中“骑自行车、电动车”所在扇形的圆心角是162°.请根据以上信息解答下列问题:(1)本次调查共收回多少张问卷?(2)补全条形统计图,在扇形统计图中,“其他”对应扇形的圆心角是度;(3)若该城市有32万居民,通过计算估计该城市日常出行“骑自行车、电动车”和“坐公交车”的共有多少人?19.如图,AB是⊙O的直径,弦CD⊥AB于点E,点P在⊙O上,.(1)求证:CB∥PD;(2)若BC=6,BE=4,求⊙O的半径.20.某工厂设计了一款产品,成本为每件20元.投放市场进行试销,经调查发现,该种产品每天的销售量y(件)与销售单价x(元)之间满足y=﹣2x+80 (20≤x≤40),设销售这种产品每天的利润为W(元).(1)求销售这种产品每天的利润W(元)与销售单价x(元)之间的函数表达式;(2)当销售单价定为多少元时,每天的利润最大?最大利润是多少元?21.已知,四边形ABCD是菱形,点M、N分别在AB、AD上,且BM=DN,MG∥AD,NF∥AB,点F、G分别在BC、CD上,MG与NF相交于点E.(1)如图1,求证:四边形AMEN是菱形;(2)如图2,连接AC在不添加任何辅助线的情况下,请直接写出面积相等的四边形.22.一条抛物线y=x2+mx+n经过点(0,3)与(4,3).(1)求这条抛物线的解析式,并写出它的顶点坐标;(2)现有一半径为1,圆心P在抛物线上运动的动圆,当⊙P与坐标轴相切时,求圆心P的坐标;(3)⊙P能与两坐标轴都相切吗?如果不能,试通过上下平移抛物线y=x2+mx+n,使⊙P与两坐标轴都相切.(要说明平移方法)23.已知:如图,在矩形ABCD中,Ab=6cm,BC=8cm,对角线AC,BD交于点0.点P从点A出发,沿方向匀速运动,速度为1cm/s;同时,点Q从点D出发,沿DC方向匀速运动,速度为1cm/s;当一个点停止运动时,另一个点也停止运动.连接PO并延长,交BC于点E,过点Q作QF∥AC,交BD于点F.设运动时间为t(s)(0<t<6),解答下列问题:(1)当t为何值时,△AOP是等腰三角形?(2)设五边形OECQF的面积为S(cm2),试确定S与t的函数关系式;(3)在运动过程中,是否存在某一时刻t,使S五边形S五边形OECQF:S△ACD=9:16?若存在,求出t 的值;若不存在,请说明理由;(4)在运动过程中,是否存在某一时刻t,使OD平分∠COP?若存在,求出t的值;若不存在,请说明理由.答案解析一 、选择题1. 分析:直接利用绝对值的定义分析得出答案.解:|﹣|=.故选:C . 2.答案:B3.分析:从上面看到的平面图形即为该组合体的俯视图,据此求解.解:从上面看共有2行,上面一行有3个正方形,第二行中间有一个正方形, 故选C .4.分析: 众数是一组数据中出现次数最多的数据,注意众数可以不止一个;找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数;平均数是指在一组数据中所有数据之和再除以数据的个数.解:在这一组数据中6是出现次数最多的,故众数是6;而将这组数据从小到大的顺序排列3,4,5,6,6,处于中间位置的数是5,平均数是:(3+4+5+6+6),故选:C .5.分析:原式各项利用同底数幂的除法,以及合并同类项法则计算得到结果,即可作出判断.解:A .x 3÷x =x 2,错误; B 、a 2+a 2=2a 2,错误; C 、原式=(3﹣2)x =x ,错误; D 、原式=x ,正确, 故选D6.分析:设第一个数是x ,根据题意得出方程,解之得出答案解:设第一个数是,根据题意得,解得,.则第一个数是6,故选A .7.解:一次函数y 1=kx +b 与反比例函数y 2=xm的图象相交于A .B 两点,且A ,B 两点的横坐标分别为-1,3,故满足y2<y1的x的取值范围是x<-1或0<x<3.故选A.8.分析:根据等腰三角形三线合一的性质知:若过A作BC的垂线,设垂足为D,则AD必垂直平分BC;由垂径定理可知,AD必过圆心O;根据等腰直角三角形的性质,易求出BD、AD的长,进而可求出OD的值;连接OB根据勾股定理即可求出⊙O的半径.解:过A作AD⊥BC,由题意可知AD必过点O,连接OB;∵△BAC是等腰直角三角形,AD⊥BC,∴BD=CD=AD=3;∴OD=AD﹣OA=2;Rt△OBD中,根据勾股定理,得:OB==.故选C.9.分析:先根据图形翻折不变的性质可得AD=DF,根据等边对等角的性质可得∠B=∠BFD,再根据三角形的内角和定理列式计算即可求解.解:∵△DEF是△DEA沿直线DE翻折变换而来,∴AD=DF,∵D是AB边的中点,∴AD=BD,∴BD=DF,∴∠B =∠BFD , ∵∠B =45°,∴∠BDF =180°﹣∠B ﹣∠BFD =180°﹣45°﹣45°=90°. 故选:B .10.分析:由题目中的规定可知100!=100×99×98×…×1,98!=98×97×…×1,然后计算 100!98!的值.解:∵100!=100×99×98×...×1,98!=98×97× (1)所以100!98!=100×99=9900.故选C . 二 、填空题11.解:点(tan 45°,cos 60°)的坐标即为(1,21),y =x k 经过此点,所以满足21=1k .∴k =21. 答案:2112.分析:由从n 个桔子和5个橙子中任选一个.若选中橙子的概率为,即可得=,继而求得答案.解:根据题意得: =,解得:n =10,经检验:n =10是原分式方程的解. 故答案为:10.13.分析:先提取公因式a ,再根据完全平方公式进行二次分解.完全平方公式:(a ±b )2=a 2±2ab +b 2.解:ax 2﹣6ax +9a=a (x 2﹣6x +9)﹣﹣(提取公因式) =a (x ﹣3)2.﹣﹣(完全平方公式) 故答案为:a (x ﹣3)2.14.分析:由在▱ABCD 的边BC 上,BE =CD ,可得AB =BE ,又由∠B +∠D =80°,可求得∠B 的度数,继而求得∠BAE 的度数,则可求得∠BAC 的度数,然后由平行线的性质,求得答案. 解:∵四边形ABCD 是平行四边形, ∴AB =CD ,∠B =∠D , ∵∠B +∠D =80°, ∴∠B =∠D =40°, ∵BE =CD ,∴AB=BE,∴∠BAE=70°,∴∠BAC=∠BAE+∠EAC=70°+20°=90°,∵AB∥CD,∴∠ACD=∠BAC=90°.故答案为:90°.15.分析:由于图形是中心对称图形,则利用旋转把图中阴影部分可整合为扇形OBC,然后根据扇形的面积公式求解.解:∵小圆O与正方形各边都相切,AB与CD是大圆O的直径,AB⊥CD,CD⊥MN,∴图形是中心对称图形,大圆的半径为,∴图中阴影部分的面积=S扇形OBC==π.故答案为π.16.解:分式方程去分母得:2x﹣a=x﹣1,解得:x=a﹣1,根据题意得:a﹣1>0且a﹣1﹣1≠0,解得:a>1且a≠2.故答案为:a>1且a≠2.三、解答题17.分析:先算除法,再算乘法,最后算加法,由此顺序计算即可.解:原式=﹣1+(﹣2)×(﹣)×=﹣1+1=0.18.分析:(1)根据坐公交车的人数是80人,占总人数的40%,即可求得总人数;(2)先算出骑自行车、电动车和开私家车所占的比例,然后求其他所占的圆心角的度数,补全条形统计图;(3)求出“骑自行车、电动车”和“坐公交车”所占的百分比,计算即可.解:(1)本次调查的学生数是:80÷40%=200(人),即本次调查共收回200张问卷;(2)==12.5%,162÷360=45%,200×45%=90,1﹣40%﹣45%﹣12.5%=2.5%,200×2.5%=5,360°×2.5%=9°,(3)32万×(40%+45%)万.19.分析:(1)根据垂径定理得到=,于是得到∠BCD=∠D,根据平行线的判定定理即可得到结论;(2)连接AC,推出△BCE∽△BAE,根据相似三角形的性质得到,于是得到结论.(1)证明:∵CD⊥AB,AB是⊙O的直径,∴=,∵=,∴=,∴∠BCD=∠D,∴CB∥PD;(2)解:连接AC,∵AB是⊙O的直径,CD⊥AB,∴∠ACB=∠CEB=90°,∵=,∴∠BCE=∠A,∴△BCE∽△BAE,∴,∴AB===9,∴⊙O的半径为.20.分析:(1)根据“总利润=单件的利润×销售量”列出二次函数关系式即可;(2)将得到的二次函数配方后即可确定最大利润.解:(1)w=y(x﹣20)=(x﹣20)(﹣2x+80)=﹣2x2+120x﹣1600(2)w=2x2+120x﹣1600=﹣2(x﹣30)2+200,则当销售单价定为30元时,工厂每天获得的利润最大,最大利润是200元.21.分析:(1)由MG∥AD,NF∥AB,可证得四边形AMEN是平行四边形,又由四边形ABCD是菱形,BM=DN,可得AM=AN,即可证得四边形AMEN是菱形;(2)易得四边形CGEF是菱形;即可得S△AEM=S△AEN,S△CEF=S△CEG,S△ABC=S△ADC,继而求得答案.(1)证明:∵MG∥AD,NF∥AB,∴四边形AMEN是平行四边形,∴四边形ABCD是菱形,∴AB=AD,∵BM=DN,∴AB﹣BM=AD﹣DN,∴AM=AN,∴四边形AMEN是菱形;(2)解:∵四边形AMEN是菱形,∴S△AEM=S△AEN,同理:四边形CGEF是菱形,∴S△CEF=S△CEG,∵四边形ABCD是菱形,∴S△ABC=S△ADC,∴S四边形MBFE=S四边形DNEG,S四边形MBCE=S四边形DNEC,S四边形MBCG=S四边形DNFC,S四边形ABFE=S四边形ADGE,S四边形=S四边形ADGM.ABFN22.分析:(1)因为抛物线过点(0,3)与(4,3),所以可用待定系数法求出抛物线的解析式;(2)设点P的坐标为(x0,y0),分当⊙P与y轴相切及与y轴相切两种情况讨论,分别求出P点的坐标;(3)根据(2)中求出的P点坐标可知它们横纵坐标的绝对值均不相同,故⊙P不能与两坐标轴都相切.设出平移后的抛物线解析式,再根据圆与直线相切的特点列出方程即可求出未知数的值,从而求出函数的解析式.解:(1)∵抛物线过(0,3)(4,3)两点,∴解得∴抛物线的解析式是y=x2﹣4x+3,顶点坐标为(2,﹣1).(2)设点P的坐标为(x0,y0),当⊙P与y轴相切时,有|x0|=1,∴x0=±1.由x0=1,得y0=12﹣4+3=0;由x0=﹣1,得y0=(﹣1)2﹣4(﹣1)+3=8.此时,点P的坐标为P1(1,0),P2(﹣1,8).当⊙P与x轴相切时,有|y0|=1,∴y0=±1.由y0=1,得x02﹣4x0+3=1,解得;由y0=﹣1,得x02﹣4x0+3=﹣1,解得x0=2.此时,点P的坐标为P3(2﹣,1),P4(2+,1),P5(2,﹣1).综上所述,圆心P的坐标为:P1(1,0),P2(﹣1,8),P3(2﹣,1),P4(2+,1),P5(2,﹣1).注:不写最后一步不扣分.(3)由(2)知,不能.设抛物线y=x2﹣4x+3上下平移后的解析式为y=(x﹣2)2﹣1+h,若⊙P能与两坐标轴都相切,则|x0|=|y0|=1,即x0=y0=1;或x0=y0=﹣1;或x0=1,y0=﹣1;或x0=﹣1,y0=1.取x0=y0=1,代入y=(x﹣2)2﹣1+h,得h=1.取x0=﹣1,y0=﹣1,代入y=(x﹣2)2﹣1+h,得h=﹣9.取x0=1,y0=﹣1,代入y=(x﹣2)2﹣1+h,得h=﹣1.取x0=﹣1,y0=1,代入y=(x﹣2)2﹣1+h,得h=﹣7.∴将y=x2﹣4x+3向上平移1个单位,或向下平移9个单位,或向下平移1个单位,或向下平移7个单位,就可使⊙P与两坐标轴都相切.23.分析:(1)根据矩形的性质和勾股定理得到AC=10,①当AP=PO=t,如图1,过P作PM⊥AO,根据相似三角形的性质得到AP=t=,②当AP=AO=t=5,于是得到结论;(2)作EH⊥AC于H,QM⊥AC于M,DN⊥AC于N,交QF于G,根据全等三角形的性质得到CE=AP=t,根据相似三角形的性质得到EH=,根据相似三角形的性质得到QM=,FQ=,根据图形的面积即可得到结论,(3)根据题意列方程得到t=,t=0,(不合题意,舍去),于是得到结论;(4)由角平分线的性质得到DM=DN=,根据勾股定理得到ON=OM==,由三角形的面积公式得到OP=5﹣t,根据勾股定理列方程即可得到结论.解:(1)∵在矩形ABCD中,Ab=6cm,BC=8cm,∴AC=10,①当AP=PO=t,如图1,过P作PM⊥AO,∴AM=AO=,∵∠PMA=∠ADC=90°,∠P AM=∠CAD,∴△APM∽△ADC,∴,∴AP=t=,②当AP=AO=t=5,∴当t为或5时,△AOP是等腰三角形;(2)作EH⊥AC于H,QM⊥AC于M,DN⊥AC于N,交QF于G,在△APO与△CEO中,,∴△AOP≌△COE,∴CE=AP=t,∵△CEH∽△ABC,∴,∴EH=,∵DN==,∵QM∥DN,∴△CQM∽△CDN,∴,即,∴QM=,∴DG=﹣=,∵FQ∥AC,∴△DFQ∽△DOC,∴,∴FQ=,∴S五边形OECQF=S△OEC+S四边形OCQF=×5×+(+5)•=﹣t2+t+12,∴S与t的函数关系式为S=﹣t2+t+12;(3)存在,∵S△ACD=×6×8=24,∴S五边形OECQF:S△ACD=(﹣t2+t+12):24=9:16,解得t=,t=0,(不合题意,舍去),∴t=时,S五边形S五边形OECQF:S△ACD=9:16;(4)如图3,过D作DM⊥AC于M,DN⊥AC于N,∵∠POD=∠COD,∴DM=DN=,∴ON=OM==,∵OP•DM=3PD,∴OP=5﹣t,∴PM=﹣t,∵PD2=PM2+DM2,∴(8﹣t)2=(﹣t)2+()2,解得:t≈15(不合题意,舍去),t,∴当t时,OD平分∠COP.。
2017年中考数学总复习资料第一章 数与式考点一、实数的概念及分类 1、实数的分类正有理数有理数 零 有限小数和无限循环小数 实数 负有理数 正无理数无理数 无限不循环小数 负无理数2、无理数:在理解无理数时,要抓住“无限不循环”这一实质,归纳起来有四类:(1)开方开不尽的数,如32,7等; (2)有特定意义的数,如圆周率π,或化简后含有π的数,如3π+8等; (3)有特定结构的数,如0.1010010001…等; (4)某些三角函数,如sin60o 等 考点二、实数的倒数、相反数和绝对值 1、相反数实数与它的相反数是一对数(只有符号不同的两个数叫做互为相反数,零的相反数是零),从数轴上看,互为相反数的两个数所对应的点关于原点对称, 如果a 与b 互为相反数,则有a+b=0,a=—b ,反之亦成立。
2、绝对值一个数的绝对值就是表示这个数的点与原点的距离,|a|≥0。
零的绝对值时它本身,也可看成它的相反数,若|a|=a ,则a ≥0;若|a|=-a ,则a ≤0。
正数大于零,负数小于零,正数大于一切负数,两个负数,绝对值大的反而小。
3、倒数:如果a 与b 互为倒数,则有ab=1,反之亦成立。
倒数等于本身的数是1和-1。
零没有倒数。
考点三、平方根、算数平方根和立方根1、平方根:如果一个数的平方等于a ,那么这个数就叫做a 的平方根(或二次方跟)。
(1)一个数有两个平方根,他们互为相反数;零的平方根是零;负数没有平方根。
(2)正数a 的平方根记做“a ±”。
2、算术平方根:正数a 的正的平方根叫做a 的算术平方根,记作“a ”。
正数和零的算术平方根都只有一个,零的算术平方根是零。
a (a ≥0) 0≥a ==a a 2 ;注意a 的双重非负性:-a (a <0) a ≥03、立方根:如果一个数的立方等于a ,那么这个数就叫做a 的立方根(或a 的三次方根)。
一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根是零。
第一部分考点研究第三章函数第12课时一次函数的应用江苏近4年中考真题精选(2013~2016)命题点1 一次函数图象性质的综合应用(2016年2次,2015年2次,2014年2次,2013年2次)1. (2016盐城25题10分)如果两个一次函数y=k1x+b1和y=k2x+b2满足k1=k2、b1≠b2,那么称这两个一次函数为“平行一次函数”.如图,已知函数y=-2x+4的图象与x轴、y轴分别交于A、B两点,一次函数y=kx+b与y=-2x+4是“平行一次函数”.(1)若函数y=kx+b的图象过点(3,1),求b的值;(2)若函数y=kx+b的图象与两坐标轴围成的三角形和△AOB构成位似图形,位似中心为原点,位似比为1∶2,求函数y=kx+b的表达式.第1题图2. (2015泰州26题14分)已知一次函数y=2x-4的图象与x轴、y 轴分别相交于点A、B,点P在该函数的图象上,P到x轴、y轴的距离分别为d1、d2.(1)当P为线段AB的中点时,求d1+d2的值;(2)直接写出d1+d2的范围,并求当d1+d2=3时点P的坐标;(3)若在线段AB上存在无数个P点,使d1+ad2=4(a为常数),求a 的值.3. (2013无锡27题10分)如图①,菱形ABCD中,∠A=60°.点P从A出发,以2 cm/s的速度沿边AB、BC、CD匀速运动到D终止;点Q 从 A 与 P 同时出发,沿边 AD 匀速运动到 D 终止,设点 P 运动的时间为t(s).△APQ的面积S(cm2)与t(s)之间函数关系的图象由图②中的曲线段OE与线段EF、FG给出.第3题图(1)求点Q运动的速度;(2)求图②中线段FG的函数关系式;(3)问:是否存在这样的t,使 PQ将菱形ABCD的面积恰好分成1∶5的两部分?若存在,求出这样的t的值;若不存在,请说明理由.命题点2 一次函数的实际应用(2016年8次,2015年8次,2014年8次,2013年7次)第4题图4. (2014镇江11题2分)一辆货车从甲地匀速驶往乙地,到达乙地后用了半小时卸货,随即匀速返回,已知货车返回时的速度是它从甲地驶往乙地的速度的1.5倍,货车离甲地的距离y(千米)关于时间x(小时)的函数图象如图所示,则a=________(小时).5. (2015无锡25题8分)某工厂以80元/箱的价格购进60箱原材料,准备由甲、乙两车间全部用于生产A产品.甲车间用每箱原材料可生产出A产品12千克,需耗水4吨;乙车间通过节能改造,用每箱原材料可生产出的A产品比甲车间少2千克,但耗水量是甲车间的一半.已知A产品售价为30元/千克,水价为5元/吨.如果要求这两车间生产这批产品的总耗水量不得超过200吨,那么该厂如何分配两车间的生产任务,才能使这次生产所能获取的利润w最大?最大利润是多少?(注:利润=产品总售价-购买原材料成本-水费)6. (2014南通25题9分)如图①,底面积为30 cm2的空圆柱形容器内水平放置着由两个实心圆柱组成的“几何体”.现向容器内匀速注水,注满为止.在注水过程中,水面高度h(cm)与注水时间t(s)之间的关系如图②所示.请根据图中提供的信息,解答下列问题:第6题图(1)圆柱形容器的高为________cm,匀速注水的水流速度为________cm3/s;(2)若“几何体”的下方圆柱的底面积为15 cm2,求“几何体”上方圆柱的高和底面积.7. (2016南京23题8分)如图中的折线ABC表示某汽车的耗油量y(单位:L/km)与速度x(单位:km/h)之间的函数关系(30≤x≤120).已知线段BC表示的函数关系中,该汽车的速度每增加1 km/h,耗油量增加0.002 L/km.(1)当速度为50 km/h、100 km/h时,该汽车的耗油量分别为________L/km、________L/km;(2)求线段AB所表示的y与x之间的函数表达式;(3)速度是多少时,该汽车的耗油量最低?最低是多少?第7题图8. (2016淮安26题10分)甲、乙两家草莓采摘园的草莓品质相同,销售价格也相同.“五一”假期,两家均推出了优惠方案,甲采摘园的优惠方案是:游客进园需购买60元的门票,采摘的草莓六折优惠;乙采摘园的优惠方案是:游客进园不需购买门票,采摘的草莓超过一定数量后,超过部分打折优惠.优惠期间,设某游客的草莓采摘量为x(千克),在甲采摘园所需总费用为y1(元),在乙采摘园所需总费用为y2(元).图中折线OAB表示y2与x之间的函数关系.(1)甲、乙两采摘园优惠前的草莓销售价格是每千克________元;(2)求y1、y2与x的函数表达式;(3)在图中画出y1与x的函数图象,并写出选择甲采摘园所需总费用较少时,草莓采摘量x的范围.第8题图9. (2013徐州27题10分)为增强公民的节约意识,合理利用天然气资源,某市自1月1日起对市区民用管道天然气价格调整,实行阶梯式气价,调整后的收费价格如下表所示:(1)若甲用户3月份的用气量为60 m3,则应缴费______元;(2)若调价后每月支出的燃气费为y(元),每月的用气量为x(m3),y 与x之间的关系如图所示,求a的值及y与x之间的函数关系式;(3)在(2)的条件下,若乙用户2、3月份共用气175 m3(3月份用气量低于..2月份用气量),共缴费455元,乙用户2、3月份的用气量各是多少?第9题图10. (2013淮安27题12分)甲、乙两地之间有一条笔直的公路l,小明从甲地出发沿公路l步行前往乙地,同时小亮从乙地出发沿公路l 骑自行车前往甲地,小亮到达甲地停留一段时间,原路原速返回,追上小明后两人一起步行到乙地,设小明与甲地的距离为y1米,小亮与甲地的距离为y2米,小明与小亮之间的距离为s米,小明行走的时间为x分钟.y1、y2与x之间的函数图象如图①所示,s与x之间的函数图象(部分)如图②所示.第10题图(1)求小亮从乙地到甲地过程中y2(米)与x(分钟)之间的函数关系式;(2)求小亮从甲地返回到与小明相遇的过程中s(米)与x(分钟)之间的函数关系式;(3)在图②中,补全整个过程中s(米)与x(分钟)之间的函数图象,并确定a的值.答案(精讲版)1. 解:(1)由于函数y=kx+b平行于一次函数y=-2x+4,∴k=-2,∴函数的解析式为:y=-2x+b,将点(3,1)代入,第1题解图得1=-2×3+b,解得b=7,∴b的值为7. (4分)(2)对于直线y=-2x+4,令x=0,则y=4,令y=0,则x=2,∴A(2,0),B(0,4),(6分)如解图,设直线y=kx+b与y轴的交点为C(0,b),与x轴的交点为D,由题意可知:△OCD与△OBA是以原点为位似中心的位似图形,且位似比为1∶2,∴CD∥AB,OC∶OB=1∶2,∴y=kx+b的解析式为y=-2x+b,而|b|∶4=1∶2,解得b=±2.(8分)知识改变命运知识改变命运∴函数y =kx +b 的解析式为:y =-2x +2或y =-2x -2.(10分)2. (1)【思维教练】对于一次函数解析式,求出A 与B 的坐标,即可求出P 为线段AB 的中点时d 1+d 2的值.解:由y =2x -4易得A (2,0),B (0,-4), 因为P 是线段AB 的中点, 则P (1,-2), 所以d 1=2,d 2=1, 则d 1+d 2=3.(3分)(2)【思维教练】根据题意确定出d 1+d 2的范围,设P(m ,2m -4),表示出d 1+d 2,分类讨论m 的范围,根据d 1+d 2=3求出m 的值,即可确定出P 的坐标.解:d 1+d 2≥2.(4分)设P (m ,2m -4),则d 1=|2m -4|,d 2=|m |, ∴|2m -4|+|m |=3,当m <0时,4-2m -m =3,解得m =13(舍);(5分)当0≤m <2时,4-2m +m =3,解得m =1,则2m -4=-2;(6分)当m ≥2时,2m -4+m =3,解得m =73,则2m -4=23.(7分)∴点P 的坐标为(1,-2)或(73,23).(8分)知识改变命运(3)【思维教练】设P(m ,2m -4),表示出d 1与d 2,由P 在线段上求出m 的范围,利用绝对值的代数意义表示出d 1与d 2,代入d 1+ad 2=4,根据存在无数个点P 求出a 的值即可.解:设P (m ,2m -4),则d 1=|2m -4|,d 2=|m |, ∵点P 在线段AB 上,∴0≤m ≤2,则d 1=4-2m ,d 2=m ,(10分) ∴4-2m +am =4,即m (a -2)=0,(12分) ∵在线段AB 上存在无数个P 点, ∴关于m 的方程m (a -2)=0有无数个解, 则a -2=0, ∴a =2.(14分)3. (1)【思维教练】根据函数图象中E 点所代表的实际意义求解.E 点表示点P 运动到与点B 重合时的情形,运动时间为3s ,可得AB =6 cm ;再由S △APQ =932 cm 2,可求得AQ的长度,进而得到点Q 的运动速度.第3题解图①解:由题意,可知题图②中点E 表示点P 运动至点B 时的情形,所用时间为3 s ,则菱形的边长AB =2×3=6 cm.此时如解图①所示:知识改变命运AQ 边上的高h =AB·sin 60°=6×32=3 3 cm ,S △APQ =12AQ ·h =12AQ ×33=932 cm 2,解得AQ =3 cm ,∴点Q 的运动速度为:3÷3=1 cm/s ;(3分)(2)【思维教练】函数图象中线段FG ,表示点Q 运动至终点D 之后停止运动,而点P 在线段CD 上继续运动的情形.如解图②所示,求出S 的表达式,并确定t 的取值范围.解:由题意,可知题图②中FG 段表示点P 在线段CD 上运动时的情形,如解图②所示:点Q 运动至点D 所需时间为:6÷1=6 s ,点P 运动至点C 所需时间为12÷2=6 s ,至终点D 所需时间为18÷2=9 s.因此在FG 段内,点Q 运动至点D 停止运动,点P 在线段CD 上继续运动,且时间t 的取值范围为:6≤t ≤9.第3题解图②过点P 作PE⊥AD 交AD 的延长线于点E ,则PE =PD·sin60°=(18-2t)×32=-3t +9 3.知识改变命运S △APQ =12AD ·PE =12×6×(-3t +93)=-33t +273,∴FG 段的函数表达式为:S =-33t +273(6≤t≤9).(6分) (3)【思维教练】当点P 在AB 上运动时,PQ 将菱形ABCD 分成△APQ 和五边形PBCDQ 两部分,如解图③所示,求出t 的值;当点P 在BC 上运动时,PQ 将菱形分为四边形ABPQ 和四边形PCDQ 两部分,如解图④所示,求出t 的值.解:存在.菱形ABCD 的面积为:6×6×sin60°=18 3.当点P 在AB 上运动时0<t ≤3,PQ 将菱形ABCD 分成△APQ 和五边形PBCDQ 两部分,如解图③所示.此时S △APQ =12AQ ·AP ·sin60°=12t ·2t ×32=32t 2,根据题意,得32t 2=16×183,解得t = 6 s(舍去负值);第3题解图当点P 在BC 上运动时3<t ≤6,PQ 将菱形分成四边形ABPQ 和四边形PCDQ 两部分,如解图④所示.此时,当S 四边形ABPQ =56S 菱形ABCD ,知识改变命运即12(2t -6+t )×6×32=56×183, 解得t =163s.当S 四边形ABPQ =16S 菱形ABCD 时,即12(2t -6+t)×6×32=16×183, 解得t =83(舍去).综上所述,存在t = 6 s 或t =163 s 时,使PQ 将菱形ABCD 的面积恰好分成1∶5的两部分.(10分)4. 5 【解析】由题意可知,货车从甲地匀速驶往乙地所用时间为3.2-0.5=2.7(小时),因为货车返回的速度是它从甲地驶往乙地的速度的1.5倍,则返回时所用时间为2.7÷1.5=1.8(小时),所以a =3.2+1.8=5(小时).5. 【思维教练】由条件很容易得出乙车间用每箱原材料生产出的A 产品数及耗水量.然后根据条件“这两车间生产这批产品的总耗水量不得超过200吨”可列出不等式.由利润=产品总售价-购买原材料成本-水费,可得到w 关于x 的一次函数,根据一次函数的增减性,结合x 的取值范围,即可求出答案.解:设甲车间用x 箱原材料生产A 产品,则乙车间用(60-x)箱原材料生产A 产品,由题意得4x+2(60-x)≤200, 解得x≤40,(3分)w=30[12x+10(60-x)]-80×60-5[4x+2(60-x)]=50x+12600,(5分)∵50>0,∴w随x的增大而增大.∴当x=40时,w取得最大值,为14600元,(7分)答:甲车间用40箱原材料生产A产品,乙车间用20箱原材料生产A产品,可使工厂所获利润最大,最大利润为14600元.(8分)6. (1)【思维教练】根据图象,分三个部分:漫过“几何体”下方圆柱需18 s,漫过“几何体”上方圆柱需24 s-18 s=6 s,注满“几何体”上面的空圆柱形容器需42 s-24 s=18 s,再设匀速注水的水流速度为x cm3/s,根据圆柱的体积公式列方程,解方程.解:14,5.(4分)【解法提示】根据函数图象得到圆柱形容器的高为14 cm,两个实心圆柱组成的“几何体”的高度为11 cm,水从刚漫过由两个实心圆柱组成的“几何体”到注满用了42-24=18 s,这段高度为14-11=3 cm,设匀速注水的水流速度为x cm3/s,则18·x=30·3,解得x=5,即匀速注水的水流速度为5 cm3/s,故答案为14,5.(2)【思维教练】根据圆柱的体积公式得a×(30-15)=18×5,解得a=6,于是得到“几何体”上方圆柱的高为5 cm,设“几何体”上方圆柱的底面积为S cm2,根据圆柱的体积公式得5×(30-S)=5×(24-18),再解方程即可.知识改变命运知识改变命运解:由题图知“几何体”下方圆柱的高为a , 则a ×(30-15)=18×5,解得a =6, ∴“几何体”上方圆柱的高为11-6=5 cm , 设“几何体”上方圆柱的底面积为S cm 2,根据题意, 得5×(30-S)=5×(24-18),解得S =24,即“几何体”上方圆柱的底面积为24 cm 2,高为5 cm.(9分) 7. (1)0.13,0.14;(2分)【解法提示】x 轴表示速度,从30到60之间为40,50,对应的y 轴汽车耗油量由0.15到0.12,列表如下:∴当速度为50 km/h 时,该汽车耗油量为0.13 L/km ,当速度为100 km/h 时,该汽车耗油量为0.12+0.002×(100-90)=0.14 L/km.(2)设线段AB 所表示的y 与x 之间的函数表达式为y =kx +b , ∵y =kx +b 的图象过点(30,0.15)与(60,0.12),∴⎩⎪⎨⎪⎧30k +b =0.1560k +b =0.12, 解方程组,得⎩⎪⎨⎪⎧k =-0.001b =0.18,∴线段AB 所表示的y 与x 之间的函数表达式为知识改变命运y =-0.001x +0.18;(5分)(3)根据题意,得线段BC 所表示的y 与x 之间的函数表达式为y =0.12+0.002(x -90)=0.002x -0.06,由图象可知,B 是折线ABC 的最低点,解方程组⎩⎪⎨⎪⎧y =-0.001x +0.18y =0.002x -0.06,得⎩⎪⎨⎪⎧x =80y =0.1, 因此,速度是80 km/h 时,该汽车的耗油量最低,最低是0.1 L/km.(8分)8. 解:(1)30;(2分)【解法提示】由图象可知,乙在0≤x ≤10时,未优惠. 当x =10时,y =300.∴采摘园优惠之前的单价为300÷10=30(元).(2)因为甲需要购买60元的门票,采摘的草莓六折优惠, ∴y 1=0.6×30×x +60(3分)=18x +60,直线OA 段:y 2=30x ,直线AB 段:设直线AB 段的解析式为y 2=kx +b ,∴⎩⎪⎨⎪⎧10k +b =30020k +b =450, ∴⎩⎪⎨⎪⎧k =15b =150, ∴AB 段的解析式为y 2=15x +150,∴y 1与x 的函数关系式为y 1=18x +60,知识改变命运y 2与x 的函数关系式为y 2=⎩⎪⎨⎪⎧30x (0≤x≤10)15x +150 (x >10);(5分)第8题解图(3)y 1与x 的函数图象,如解图所示.当直线y 1与y 2交于OA 段时,18x +60=30x ,解得x =5,(7分)当直线y 1与y 2交于AB 段时,18x +60=15x +150,解得x =30,(9分)所以当5<x <30时,选择甲采摘园的总费用最少.(10分)9. (1)【思维教练】根据单价×数量=总价,就可以求出3月份应该缴纳的费用.解:由题意,得60×2.5=150(元).(2分)(2)【思维教练】结合统计表的数据,根据单价×数量=总价的关系建立方程就可以求出a 值,再从0≤x ≤75,75<x ≤125和x >125运用待定系数法分别表示出y 与x 的函数关系式即可.解:由题意,得:知识改变命运a =(325-75×2.5)÷(125-75),a =2.75,∴a +0.25=3,设线段OA 的解析式为y 1=k 1x ,则有2.5×75=75k 1,∴k 1=2.5,∴线段OA 的解析式为y 1=2.5x (0≤x≤75);(4分)当x =75时,y 1=187.5,设线段AB 的解析式为y 2=k 2x +b ,由图象,得⎩⎪⎨⎪⎧187.5=75k 2+b 325=125k 2+b . 解得⎩⎪⎨⎪⎧k 2=2.75b =-18.75, ∴线段AB 的解析式为:y 2=2.75x -18.75(75<x ≤125). ∵(385-325)÷3=20,故C(145,385),设射线BC 的解析式为y 3=k 3x +b 1,由图象,得⎩⎪⎨⎪⎧325=125k 3+b 1385=145k 3+b 1, 解得:⎩⎪⎨⎪⎧k 3=3b 1=-50, ∴射线BC 的解析式为y 3=3x -50(x >125);综上所述,y 与x 之间的函数关系式为:知识改变命运y =⎩⎪⎨⎪⎧2.5x (0≤x≤75)2.75x -18.75(75<x≤125)3x -50(x >125),(6分) (3)【思维教练】设乙用户2月份用气x m 3,则3月份用气(175-x )m 3,分3种情况:x >125,175-x ≤75时,75<x ≤125,175-x ≤75时,当75<x ≤125,75<175-x ≤125时分别建立方程求出其解就可以.解:设乙用户2月份用气x m 3,则3月份用气(175-x)m 3, 当x >125,175-x ≤75时,3x -50+2.5(175-x )=455,解得:x =135,175-135=40,符合题意;(8分)当75<x ≤125,175-x ≤75时,2.75x -18.75+2.5(175-x )=455,解得:x =145,不符合题意,舍去;当75<x ≤125,75<175-x ≤125时,2.75x -18.75+2.75(175-x)-18.75=455,此方程无解. ∴乙用户2、3月份的用气量各是135 m 3,40 m 3.(10分)10. (1)【思维教练】设小亮从乙地到甲地过程中y 2(米)与x(分钟)之间的函数关系式为y 2=k 2x +b ,由待定系数法根据图象就可以求出解析式.解:设小亮从乙地到甲地过程中y 2(米)与x (分钟)之间的函数关系式为y 2=k 2x +b ,由图象,得:知识改变命运⎩⎪⎨⎪⎧b =200010k 2+b =0, 解得:⎩⎪⎨⎪⎧k 2=-200b =2000, ∴y 2=-200x +2000.(4分)(2)【思维教练】先根据函数图象求出两人的速度,然后由追击问题就可以求出小亮追上小明的时间,还可以求出小亮从甲地返回到与小明相遇的过程中s (米)与x (分钟)之间的函数关系式.解:由题意,得小明步行的速度为:2000÷40=50(米/分钟), 小亮骑自行车的速度为:2000÷10=200(米/分钟), ∴小亮从甲地追上小明的时间为24×50÷(200-50)= 8(分钟),∴24分钟时两人的距离为:s =24×50=1200(米),32分钟时s =0,设s 与x 之间的函数关系式为:s =kx +b 1,由题意,得⎩⎪⎨⎪⎧24k +b 1=120032k +b 1=0,解得:⎩⎪⎨⎪⎧k =-150b 1=4800, ∴s =-150x +4800(24≤x ≤32). (8分)(3)【思维教练】先根据相遇问题建立方程求出a 值,再根据10分钟时小亮到达甲地,小明走的路程就是相距的距离,24分钟小明走的路程和小亮追到小明时的时间就可以补充完图象.解:由题意,得小明小亮第一次相遇的时间:a =2000÷(200+50)=8分钟, (9分)小亮到达甲地是在第10分钟,此时小明距甲地50×10=500米,知识改变命运∴小明与小亮之间的距离s =500米. 当x =24时,s =24×50=1200,由(2)知小亮追上小明是在第32分钟时,故描出相应的点就可以补全图象,如解图所示.第10题解图(12分)沁园春·雪 <毛泽东>北国风光,千里冰封,万里雪飘。