中考数学总复习单元测试卷(3)有答案
- 格式:docx
- 大小:648.58 KB
- 文档页数:16
阶段检测卷(三)(测试X围:第四单元、第五单元满分:120分考试时间:120分钟)题号一二三四五六总分总分人核分人得分一、选择题(本大题共6小题,每小题3分,共18分.每小题只有一个正确选项)1.如图C3-1,经过刨平的木板上的A,B两个点,能弹出一条笔直的墨线,而且只能弹出一条墨线.能解释这一实际应用的数学知识是()图C3-1A.两点确定一条直线B.两点之间线段最短C.垂线段最短D.在同一平面内,过一点有且只有一条直线与已知直线垂直2.如图C3-2,▱ABCD中,全等三角形的对数共有 ()图C3-2A.2对B.3对C.4对D.5对3.将一副三角板按如图C3-3的位置摆放在直尺上,则∠1的度数为()图C3-3A.60°B.65°C.75°D.85°4.下列命题是假命题的是()A.三角形两边的和大于第三边B.正六边形的每个中心角都等于60°C.半径为R的圆内接正方形的边长等于√2RD.只有正方形的外角和等于360°5.如图C3-4,在正方形ABCD中,AB=4.若以CD边为底边向外作等腰直角三角形DCE,连接BE,则BE的长为()图C3-4A.4√5B.2√2C.2√10D.2√36.如图C3-5,在边长为√3的菱形ABCD中,∠B=30°,过点A作AE⊥BC于点E,现将△ABE沿直线AE翻折至△AFE的位置,AF与CD交于点G.则CG等于()图C3-5A.√3-1B.1C.12D.√32二、填空题(本大题共6小题,每小题3分,共18分)7.如图C3-6,E为△ABC边CA延长线上一点,过点E作ED∥BC,若∠BAC=70°,∠CED=50°,则∠B=.图C3-68.如图C3-7,以正方形ABCD的AB边向外作正六边形ABEFGH,连接DH,则∠ADH=°.图C3-79.如图C3-8,在△ABC中,D在AC边上,AD∶DC=1∶2,O是BD的中点,连接AO并延长交BC于E,则BE∶EC=.图C3-810.如图C3-9,在矩形ABCD中,AD=8,对角线AC与BD相交于点O,AE⊥BD,垂足为E,且AE平分∠BAC,则AB的长为.图C3-911.如图C3-10,一轮船在M 处观测灯塔P 位于南偏西30°方向,该轮船沿正南方向以15海里/时的速度匀速航行2小时后到达N 处,再观测灯塔P 位于南偏西60°方向,若该轮船继续向南航行至距离灯塔P 最近的位置T 处,此时轮船与灯塔之间的距离PT 为海里(结果保留根号).图C3-1012.把边长为2的正方形纸片ABCD 分割成如图C3-11的四块,其中点O 为正方形的中心,点E ,F 分别是AB ,AD 的中点.用这四块纸片拼成与此正方形不全等的四边形MNPQ (要求这四块纸片不重叠无缝隙),则四边形MNPQ 的周长是.图C3-11三、(本大题共5小题,每小题6分,共30分)13.(1)计算:|-√3|-(4-π)0+2sin60°+14-1.(2)如图C3-12,在四边形ABCD 中,AB ∥DC ,点E 是CD 的中点,AE=BE. 求证:∠D=∠C.图C3-1214.如图C3-13,点O 是线段AB 的中点,OD ∥BC 且OD=BC. (1)求证:△AOD ≌△OBC ;(2)若∠ADO=35°,求∠DOC 的度数.图C3-1315.如图C3-14,在菱形ABCD 中,AC 为对角线,点E ,F 分别在AB ,AD 上,BE=DF ,连接EF. (1)求证:AC ⊥EF ;(2)延长EF 交CD 的延长线于点G ,连接BD 交AC 于点O ,若BD=4,tan G=12,求AO 的长.图C3-1416.图C3-15①、②、③均是6×6的正方形网格,每个小正方形的顶点称为格点,小正方形的边长为1,点A,B,C,D,E,F均在格点上.在图①、图②、图③中,只用无刻度的直尺,在给定的网格中按要求画图,所画图形的顶点均在格点上,不要求写出画法.(1)在图①中以线段AB为边画一个△ABM,使其面积为6.(2)在图②中以线段CD为边画一个△CDN,使其面积为6.(3)在图③中以线段EF为边画一个四边形EFGH,使其面积为9,且∠EFG=90°.图C3-1517.如图C3-16,AC=8,分别以A,C为圆心,以长度5为半径作弧,两条弧分别相交于点B和D.依次连接A,B,C,D,连接BD交AC于点O.(1)判断四边形ABCD的形状,并说明理由;(2)求BD的长.图C3-16 四、(本大题共3小题,每小题8分,共24分)18.如图C3-17,在△ABC中,AB=6,AC=8,D,E分别在AB,AC上,连接DE,设BD=x(0<x<6),CE=y(0<y<8).(1)当x=2,y=5时,求证:△AED∽△ABC;(2)若△ADE和△ABC相似,求y与x的函数表达式.图C3-1719.如图C3-18,矩形ABCD中,AB=8,AD=6,点O是对角线BD的中点,过点O的直线分别交AB,CD边于点E,F.(1)求证:四边形DEBF是平行四边形;(2)当DE=DF时,求EF的长.图C3-1820.某市政府为了方便市民绿色出行,推出了共享单车服务.图C3-19①是某品牌共享单车放在水平地面上的实物图,图②是其示意图,其中AB,CD都与地面l平行,车轮半径为32 cm,∠BCD=64°,BC=60cm,坐垫E与点B的距离BE为15 cm.(1)求坐垫E到地面的距离.(2)根据经验,当坐垫E到CD的距离调整为人体腿长的0.8时,坐骑比较舒适.小明的腿长约为80 cm,现将坐垫E调整至坐骑舒适高度位置E',求EE'的长.(结果精确到0.1 cm,参考数据:sin64°≈0.90,cos64°≈0.44,tan64°≈2.05)图C3-19五、(本大题共2小题,每小题9分,共18分)21.如图C3-20,在▱ABCD中,点E在边BC上,连接AE,EM⊥AE,垂足为E,交CD于点M,AF⊥BC,垂足为F,BH⊥AE,垂足为H,交AF于点N,点P是AD上一点,连接CP.(1)若DP=2AP=4,CP=√17,CD=5,求△ACD的面积;(2)若AE=BN,AN=CE,求证:AD=√2CM+2CE.图C3-20 22.图C3-21①是实验室中的一种摆动装置,BC在地面上,支架ABC是底边为BC的等腰直角三角形,摆动臂AD可绕点A旋转,摆动臂DM可绕点D旋转,AD=30,DM=10.(1)在旋转过程中:①当A,D,M三点在同一直线上时,求AM的长;②当A,D,M三点在同一直角三角形的顶点时,求AM的长.(2)若摆动臂AD顺时针旋转90°,点D的位置由△ABC外的点D1转到其内的点D2处,连接D1D2,如图②,此时∠AD2C=135°,CD2=60,求BD2的长.①②图C3-21六、(本大题共12分)23.折纸是同学们喜欢的手工活动之一,通过折纸我们可以得到许多美丽的图形,同时折纸的过程还蕴含着丰富的数学知识.折一折:如图C3-22①,把边长为4的正方形纸片ABCD对折,使边AB与CD重合,展开后得到折痕EF.如图②,点M为CF上一点,将正方形纸片ABCD沿直线DM折叠,使点C落在EF上的点N处,展开后连接DN,MN,AN.图C3-22(一)填一填,做一做:(1)图②中,∠CMD=°,线段NF=.(2)图②中,试判断△AND的形状,并给出证明.剪一剪、折一折:将图②中的△AND剪下来,将其沿直线GH折叠,使点A落在点A'处,分别得到图③,图④.图C3-22(二)填一填:(3)图③中,阴影部分的周长为. (4)图③中,若∠A'GN=80°,则∠A'HD=°.(5)图③中的相似三角形(包括全等三角形)共有对.(6)如图④,点A'落在边ND上,若A'NA'D=mn,则AGAH=.(用含m,n的代数式表示)【参考答案】1.A2.C[解析]∵四边形ABCD是平行四边形,∴AB=CD,AD=BC,OD=OB,OA=OC.∵OD=OB,OA=OC,∠AOD=∠BOC,∴△AOD≌△COB(SAS).同理可得△AOB≌△COD(SAS).∵BC=AD,CD=AB,BD=BD,∴△ABD≌△CDB(SSS).同理可得△ACD≌△CAB(SSS).因此共有4对全等三角形,故选C.3.C[解析]如图,由题意知∠BAC=180°-60°-45°=75°.又因为直尺的上下两边平行,所以∠1=∠BAC=75°.故选C.4.D[解析]三角形的任意两边之和大于第三边,故选项A正确,是真命题;正六边形的每个中心角都等于360°6=60°,故选项B是真命题;半径为R的圆内接正方形的边长等于√2R,故选项C是真命题;任何多边形的外角和都等于360°,故选项D错误,是假命题.5.C[解析]如图,连接BD.因为四边形ABCD为正方形,所以∠BDC=45°,AD=AB=4,∠A=90°,所以BD=√mm2+mm2=4√2.因为△DCE是等腰直角三角形,所以∠CDE=45°,所以∠BDE=∠BDC+∠CDE=90°,DE=EC=√22CD=2√2,所以BE=√mm2+mm2=2√10.6.A[解析]∵AE ⊥BC ,∴∠AEB=90°.∵菱形ABCD 的边长为√3,∠B=30°,∴AE=12AB=12√3,BE=EF=√mm 2-mm 2=1.5,BF=3,CF=BF -BC=3-√3.∵AD ∥CF ,∴△AGD ∽△FGC , ∴mm mm =mm mm ,∴√3-mmmm=√33-√3,解得CG=√3-1.故选A .7.60° 8.159.1∶3[解析]过点D 作DF ∥AE ,则mm mm =mm mm =1,mm mm =mm mm =12,∴BE ∶EF ∶FC=1∶1∶2,∴BE ∶EC=1∶3.10.83√3[解析]∵四边形ABCD 是矩形, ∴∠BAD=90°,OA=12AC ,OB=12BD ,AC=BD. ∴OA=OB.∵AE ⊥BD ,∴∠AEB=∠AEO=90°.∵AE 平分∠BAC ,∴∠BAE=∠OAE.在△ABE 和△AOE 中,{∠mmm =∠mmm ,mm =mm ,∠mmm =∠mmm ,∴△ABE ≌△AOE.∴AB=AO.∴AB=AO=OB.∴△ABO 是等边三角形,∴∠ABO=60°.在Rt △ABD 中,tan ∠ABO=mmmm , ∴AB=mm tan∠mmm =8tan60°=√3=83√3.11.15√3[解析]由题意得,MN=15×2=30(海里).∵∠PMN=30°,∠PNT=60°,∴∠MPN=∠PMN=30°,∴PN=MN=30海里,∴PT=PN ·sin∠PNT=15√3(海里). 12.10或6+2√2或8+2√2[解析]通过动手操作可得如图①,②,③,再根据周长的定义即可求解.图①的周长为1+2+3+2√2=6+2√2; 图②的周长为1+4+1+4=10; 图③的周长为3+5+√2+√2=8+2√2.故四边形MNPQ 的周长是6+2√2或10或8+2√2.故答案为:6+2√2或10或8+2√2. 13.(1)解:原式=√3-1+2×√32+4=2√3+3. (2)证明:∵AE=BE ,∴∠EAB=∠EBA. ∵DC ∥AB ,∴∠DEA=∠EAB ,∠CEB=∠EBA , ∴∠DEA=∠CEB.在△DEA 和△CEB 中,{mm =mm ,∠mmm =∠mmm ,mm =mm ,∴△DEA ≌△CEB (SAS),∴∠D=∠C. 14.解:(1)证明:∵点O 是线段AB 的中点, ∴AO=BO. ∵OD ∥BC , ∴∠AOD=∠OBC.在△AOD 与△OBC 中,{mm =mm ,∠mmm =∠mmm ,mm =mm ,∴△AOD ≌△OBC (SAS). (2)∵△AOD ≌△OBC , ∴∠OCB=∠ADO=35°.∵OD ∥BC ,∴∠DOC=∠OCB=35°. 15.解:(1)证明:∵四边形ABCD 为菱形, ∴AB=AD ,AC 平分∠BAD. ∵BE=DF ,∴AB -BE=AD -DF , ∴AE=AF ,∴△AEF 是等腰三角形. ∵AC 平分∠BAD ,∴AC ⊥EF.(2)∵四边形ABCD 为菱形, ∴CG ∥AB ,BO=12BD=2. 易知EF ∥BD ,∴四边形EBDG 为平行四边形, ∴∠G=∠ABD ,∴tan ∠ABD=tan G=12,∴tan ∠ABD=mm mm =mm 2=12, ∴AO=1.16.解:(1)如图.(答案不唯一)(2)如图.(答案不唯一)(3)如图.17.解:(1)四边形ABCD 是菱形. 理由:由作法得,AB=BC=CD=DA=5, ∴四边形ABCD 是菱形. (2)∵四边形ABCD 是菱形,AC=8, ∴OA=12AC=4,BD=2BO.∵AB=5,∴在Rt △AOB 中,BO=√52-42=3, ∴BD=6.18.解:(1)证明:∵AB=6,BD=2,∴AD=4. ∵AC=8,CE=5,∴AE=3. ∴mm mm =36=12,mm mm =48=12,∴mm mm =mmmm. ∵∠EAD=∠BAC ,∴△AED ∽△ABC. (2)①若△ADE ∽△ABC ,则6-m 6=8-m 8,∴y=43x (0<x<6). ②若△ADE ∽△ACB ,则6-m 8=8-m 6,∴y=34x +72(0<x<6).19.解:(1)证明:∵四边形ABCD 是矩形, ∴AB ∥CD , ∴∠DFO=∠BEO. 又∵∠DOF=∠BOE ,OD=OB , ∴△DOF ≌△BOE (AAS),∴DF=BE.又∵DF ∥BE ,∴四边形DEBF 是平行四边形.(2)∵DE=DF ,四边形BEDF 是平行四边形,∴四边形BEDF 是菱形, ∴DE=BE ,EF ⊥BD ,OE=OF.设AE=x ,则DE=BE=8-x.在Rt △ADE 中,根据勾股定理,得AE 2+AD 2=DE 2,∴x 2+62=(8-x )2, 解得x=74, ∴DE=8-74=254.在Rt △ABD 中,根据勾股定理,得AB 2+AD 2=BD 2,∴BD=√62+82=10, ∴OD=12BD=5.在Rt △DOE 中,根据勾股定理,得DE 2-OD 2=OE 2, ∴OE=√(254) 2-52=154, ∴EF=2OE=152.20.解:(1)如图①,过点E 作EM ⊥CD 于点M.由题意知∠BCM=64°,EC=BC +BE=60+15=75(cm),∴EM=EC sin ∠BCM=75sin64°≈67.5(cm). 故坐垫E 到地面的距离为67.5+32=99.5(cm). (2)如图②,过点E'作E'H ⊥CD 于点H.由题意知E'H=80×0.8=64(cm), 则E'C=m 'm sin∠mmm =64sin64°≈71.1(cm),∴EE'=CE -CE'=75-71.1=3.9(cm).21.[解析](1)过点C 作CQ ⊥AD 于点Q ,利用勾股定理,建立关于PQ 的方程,求出PQ 的值,进而求得AD 边上的高,即可求得△ACD 的面积.(2)连接NE.首先由EM ⊥AE ,AF ⊥BC ,BH ⊥AE ,得到∠EAF=∠NBF=∠MEC ,再证明△BFN ≌△AFE ,从而BF=AF ,NF=EF.于是∠ABC=45°,∠ENF=45°,FC=AF=BF.然后通过证明△ANE ≌△ECM ,得到CM=NE.最后在等腰直角三角形EFN 中,由NF=√22NE=√22CM ,加上AD=2AF ,AF=AN +NF ,AN=EC ,即可锁定答案.解:(1)如图①,过点C 作CQ ⊥AD 于点Q.∵DP=2AP=4, ∴AP=2,AD=6.设PQ=x ,则DQ=4-x ,根据勾股定理,得CP 2-PQ 2=CD 2-DQ 2,即17-x 2=52-(4-x )2,解得x=1,从而CQ=√52-32=4,故S △ACD =12AD ·CQ=12×6×4=12. (2)证明:如图②,连接NE.∵EM ⊥AE ,AF ⊥BC ,BH ⊥AE ,∴∠AEB +∠FBN=∠AEB +∠EAF=∠AEB +∠MEC=90°, ∴∠EAF=∠NBF=∠MEC.在△BFN 和△AFE 中,{∠mmm =∠mmm ,∠mmm =∠mmm ,mm =mm ,∴△BFN ≌△AFE (AAS). ∴BF=AF ,NF=EF.∴∠ABC=45°,∠ENF=45°,FC=AF=BF.∴∠ANE=∠BCD=135°,AD=BC=2AF. 在△ANE 和△ECM 中,{∠NAE =∠CEM,AN =EC,∠ANE =∠ECM,∴△ANE ≌△ECM (ASA). ∴CM=NE.又∵NF=√22NE=√22CM , ∴AF=√22CM +CE. ∴AD=√2CM +2CE.22.解:(1)①AM=AD +DM=40,或AM=AD -DM=20. ②显然∠MAD 不能为直角. 当∠AMD 为直角时,AM 2=AD 2-DM 2=302-102=800,∴AM=20√2. 当∠ADM 为直角时,AM 2=AD 2+DM 2=302+102=1000,∴AM=10√10. (2)如图,连接CD 1.由题意得∠D 1AD 2=90°,AD 1=AD 2=30,∴∠AD 2D 1=45°,D 1D 2=30√2. 又∵∠AD 2C=135°,∴∠CD 2D 1=90°,∴CD 1=√mm 22+m 1m 22=30√6.∵∠BAC=∠D 2AD 1=90°,∴∠BAC -∠CAD 2=∠D 2AD 1-∠CAD 2, 即∠BAD 2=∠CAD 1. 又∵AB=AC ,AD 2=AD 1, ∴△ABD 2≌△ACD 1, ∴BD 2=CD 1=30√6.23.解:(1)754-2√3[解析]由折叠的性质得,四边形CDEF 是矩形,∴EF=CD ,∠DEF=90°,DE=AE=12AD. ∵将正方形纸片ABCD 沿直线DM 折叠,使点C 落在EF 上的点N 处,∴DN=CD=2DE ,MN=CM , ∴∠EDN=60°,∴∠CDM=∠NDM=15°,EN=√32DN=2√3,∴∠CMD=75°,NF=EF -EN=4-2√3. (2)△AND 是等边三角形. 证明:在△AEN 与△DEN 中,{mm =mm ,∠mmm =∠mmm =90°,mm =mm ,∴△AEN ≌△DEN (SAS),∴AN=DN. ∵∠EDN=60°,∴△AND 是等边三角形.(3)12[解析]∵将图②中的△AND 沿直线GH 折叠,使点A 落在点A'处, ∴A'G=AG ,A'H=AH ,∴图③中阴影部分的周长=△ADN 的周长=3×4=12.(4)40[解析]∵将图②中的△AND 沿直线GH 折叠,使点A 落在点A'处, ∴∠AGH=∠A'GH ,∠AHG=∠A'HG. ∵∠A'GN=80°,∴∠AGH=50°, ∴∠AHG=∠A'HG=70°,∴∠A'HD=180°-70°-70°=40°.(5)4[解析]如图,设A'G 与ND 的交点为P ,A'H 与ND 的交点为Q. ∵∠N=∠D=∠A'=60°,∠NPG=∠A'PQ ,∠A'QP=∠DQH , ∴△NPG ∽△A'PQ ∽△DHQ ,∵△AGH ≌△A'GH ,∴题图③中的相似三角形(包括全等三角形)共有4对. (6)2m +mm +2m[解析]∵m 'm m 'm =mm,∴设A'N=am (a>0),则A'D=an.∵∠N=∠D=∠A=∠GA'H=60°,∴∠NA'G +∠A'GN=∠NA'G +∠DA'H=120°, ∴∠A'GN=∠DA'H ,∴△A'GN ∽△HA'D , ∴m 'm m 'm =m 'm mm =mmm 'm. 设A'G=AG=x ,A'H=AH=y ,则GN=4-x ,DH=4-y ,∴m m =mm 4-m =4-mmm , 解得m m =mm +44+mm , ∴mm mm =m m =mm +44+mm =mm +mm +mm mm +mm +mm =2m +mm +2m.。
2020年中考数学总复习《方程(组)与不等式(组)》单元测试卷(总分:120分)一、选择题(每小题3分,共30分)1.已知实数a ,b.若a >b ,则下列结论正确的是( )A .a -5<b -5B .2+a <2+b C.a 3<b3 D .3a>3b2.方程x +5=3x +1的解是( )A .x =2B .x =-2C .x =4D .x =-4 3.用配方法解方程x 2-2x -1=0时,配方后所得的方程为( )A .(x +1)2=2 B .(x -1)2=2 C .(x +1)2=0 D .(x -1)2=0 4.方程x -2=x(x -2)的解是( )A .x =1B .x 1=0,x 2=2C .x =2D .x 1=1,x 2=2 5.分式方程1x =2x +3的解是( )A .x =3B .x =2C .x =1D .x =-2 6.关于x 的一元二次方程kx 2+2x -1=0有两个不相等的实数根,则k 的取值范围是( )A .k >-1B .k ≥-1C .k ≠0D .k >-1且k ≠0 7.一元二次方程3x 2-1=2x +5两个实数根的和与积分别是( )A.32,-2 B .-23,2 C.23,-2 D .-32,2 8.不等式组⎩⎪⎨⎪⎧12x +1≥-3,x -2(x -3)>0的最大整数解为( )A .x =8B .x =6C .x =5D .x =4 9.某班为奖励在校运动会上取得较好成绩的运动员,花了400元钱购买了甲、乙两种奖品共30件,其中甲种奖品每件16元,乙种奖品每件12元,求甲、乙两种奖品各购买了多少件?若购买甲种奖品x 件,乙种奖品y 件,则列方程正确的是( )A.⎩⎪⎨⎪⎧x +y =3012x +16y =400B⎩⎪⎨⎪⎧x +y =3016x +12y =400 C.⎩⎪⎨⎪⎧12x +16y =400x +y =400 D.⎩⎪⎨⎪⎧16x +12y =300x +y =400 10.用一条长40 cm 的绳子围成一个面积为64 cm 2的长方形.设长方形的长为x cm ,则可列方程为( )A .x(20-x)=64B .x(20+x)=64C .x(40-x)=64D .x(40+x)=64 二、填空题(每小题3分,共18分)11.已知关于x 的方程2x +a -5=0的解是x =2,则a 的值为 . 12.不等式2-2x <x -4的解集为 .13.关于x 的一元二次方程(a +1)x 2-ax +a 2-1=0的一个根为0,则另一个根为 . 14.如果⎩⎪⎨⎪⎧x =12,y =-1是方程组⎩⎪⎨⎪⎧ax -3y =5,2x +by =2的解,那么a -b 的值为 .15.若关于x 的一元二次方程ax 2+bx +5=0(a ≠0)的解是x =1,则 2 020-a -b 的值是 .16.暑假期间,几名同学共同租一辆面包车去某地旅游,面包车的租价为120元,出发时又有2名同学参加进来,结果每位同学少分摊3元,则原来旅游同学的人数为 . 三、解答题(共52分)17.(6分)解方程组:⎩⎪⎨⎪⎧2x -3y =3,①x +2y =-2.②18.(6分)解方程:x 2+1=2(x +1).19.(8分)解不等式组⎩⎪⎨⎪⎧5x -1>3x -4,23-x ≥-13,并把不等式组的解集在数轴上表示出来.20.(10分)为顺利通过“国家文明城市”验收,某市政府拟对城区部分路段的人行道路地砖、绿化带、排水管道等公用设施全面更新改造,根据市政建设的需要,需在40天内完成工程,现有甲、乙两个工程队有意承包这项工程,经调查知道,乙工程队单独完成此项工程的时间是甲工程队单独完成此项工程的时间的2倍.若甲、乙两个工程队合作只需10天完成.(1)甲、乙两个工程队单独完成此项工程各需多少天?(2)若甲工程队每天的工程费用是4.5万元,乙工程队每天的工程费用是2.5万元.请你设计一种方案,既能使工程按时完工,又能使工程费用最少.21.(10分)某特产专卖店销售核桃,其进价为每千克40元,按每千克60元出售,平均每天可售出100千克,后来经过市场调查发现,单价每降低2元,则平均每天的销售量可增加20千克.若该专卖店销售这种核桃想要平均每天获利2 240元,请回答:(1)每千克核桃应降价多少元?(2)在平均每天获利不变的情况下,为了尽可能让利于顾客,赢利市场,该店应按原售价的几折出售?22.(12分)小明所在的学校为了加强学生体育锻炼,准备从某体育用品商店一次性购买若干个足球和篮球(每个足球的价格相同,每个篮球的价格相同),若购买2个篮球和3个足球共需310元;购买5个篮球和2个足球共需500元.(1)每个篮球和足球各需多少元?(2)根据学校的实际情况,需从该商店一次性购买篮球和足球共60个,要求购买篮球和足球费用不超过4 000元,那么最多可以购买多少个篮球?23.(10分)李宁准备完成题目:解二元一次方程组⎩⎪⎨⎪⎧x -y =4,□x +y =-8,发现系数“□”印刷不清楚.(1)他把“□”猜成3,请你解二元一次方程组⎩⎪⎨⎪⎧x -y =4,3x +y =-8;(2)张老师说:“你猜错了,我看到该题标准答案的结果x ,y 是一对相反数.”通过计算说明原题中“□”是几?24.(10分)HW 公司2018年使用自主研发生产的“QL ”系列甲、乙、丙三类芯片共2 800万块,生产了2 800万部手机,其中乙类芯片的产量是甲类芯片的2倍,丙类芯片的产量比甲、乙两类芯片产量的和还多400万块.这些“QL ”芯片解决了该公司2018年生产的全部手机所需芯片的10%.(1)求2018年甲类芯片的产量;(2)HW公司计划2020年生产的手机全部使用自主研发的“QL”系列芯片.从2019年起逐年扩大“QL”芯片的产量,2019年、2020年这两年,甲类芯片每年的产量都比前一年增长一个相同的百分数m%,乙类芯片的产量平均每年增长的百分数比m%小1,丙类芯片的产量每年按相同的数量递增.2018年到2020年,丙类芯片三年的总产量达到1.44亿块.这样,2020年的HW公司的手机产量比2018年全年的手机产量多10%,求丙类芯片2020年的产量及m的值.答案解析一、选择题(每小题3分,共30分)1.已知实数a ,b.若a >b ,则下列结论正确的是(D)A .a -5<b -5B .2+a <2+b C.a 3<b3 D .3a>3b2.方程x +5=3x +1的解是(A)A .x =2B .x =-2C .x =4D .x =-4 3.用配方法解方程x 2-2x -1=0时,配方后所得的方程为(B)A .(x +1)2=2 B .(x -1)2=2 C .(x +1)2=0 D .(x -1)2=0 4.方程x -2=x(x -2)的解是(D)A .x =1B .x 1=0,x 2=2C .x =2D .x 1=1,x 2=2 5.分式方程1x =2x +3的解是(A)A .x =3B .x =2C .x =1D .x =-2 6.关于x 的一元二次方程kx 2+2x -1=0有两个不相等的实数根,则k 的取值范围是(D)A .k >-1B .k ≥-1C .k ≠0D .k >-1且k ≠07.一元二次方程3x 2-1=2x +5两个实数根的和与积分别是(C)A.32,-2 B .-23,2 C.23,-2 D .-32,2 8.不等式组⎩⎪⎨⎪⎧12x +1≥-3,x -2(x -3)>0的最大整数解为(C)A .x =8B .x =6C .x =5D .x =4 9.某班为奖励在校运动会上取得较好成绩的运动员,花了400元钱购买了甲、乙两种奖品共30件,其中甲种奖品每件16元,乙种奖品每件12元,求甲、乙两种奖品各购买了多少件?若购买甲种奖品x 件,乙种奖品y 件,则列方程正确的是(B)A.⎩⎪⎨⎪⎧x +y =3012x +16y =400B.⎩⎪⎨⎪⎧x +y =3016x +12y =400C.⎩⎪⎨⎪⎧12x +16y =400x +y =400D.⎩⎪⎨⎪⎧16x +12y =300x +y =400 10.用一条长40 cm 的绳子围成一个面积为64 cm 2的长方形.设长方形的长为x cm ,则可列方程为(A)A .x(20-x)=64B .x(20+x)=64C .x(40-x)=64D .x(40+x)=64二、填空题(每小题3分,共18分)11.已知关于x 的方程2x +a -5=0的解是x =2,则a 的值为1. 12.不等式2-2x <x -4的解集为x >2.13.关于x 的一元二次方程(a +1)x 2-ax +a 2-1=0的一个根为0,则另一个根为12.14.如果⎩⎪⎨⎪⎧x =12,y =-1是方程组⎩⎪⎨⎪⎧ax -3y =5,2x +by =2的解,那么a -b 的值为5.15.若关于x 的一元二次方程ax 2+bx +5=0(a ≠0)的解是x =1,则2 020-a -b 的值是2__025.16.暑假期间,几名同学共同租一辆面包车去某地旅游,面包车的租价为120元,出发时又有2名同学参加进来,结果每位同学少分摊3元,则原来旅游同学的人数为8. 三、解答题(共52分)17.(6分)解方程组:⎩⎪⎨⎪⎧2x -3y =3,①x +2y =-2.②解:①-②×2,得 -7y =7,∴y =-1.③ 将③代入②,得x =0.∴原方程组的解为⎩⎪⎨⎪⎧x =0,y =-1.18.(6分)解方程:x 2+1=2(x +1).解:x 2-2x -1=0. (x -1)2=2.∴x 1=1+2,x 2=1- 2.19.(8分)解不等式组⎩⎪⎨⎪⎧5x -1>3x -4,23-x ≥-13,并把不等式组的解集在数轴上表示出来. 解:不等式组的解集为-32<x ≤1.在数轴上表示不等式组的解集如图所示.20.(10分)为顺利通过“国家文明城市”验收,某市政府拟对城区部分路段的人行道路地砖、绿化带、排水管道等公用设施全面更新改造,根据市政建设的需要,需在40天内完成工程,现有甲、乙两个工程队有意承包这项工程,经调查知道,乙工程队单独完成此项工程的时间是甲工程队单独完成此项工程的时间的2倍.若甲、乙两个工程队合作只需10天完成.(1)甲、乙两个工程队单独完成此项工程各需多少天?(2)若甲工程队每天的工程费用是4.5万元,乙工程队每天的工程费用是2.5万元.请你设计一种方案,既能使工程按时完工,又能使工程费用最少.解:(1)设甲、乙工程队单独完成此项工程各需x 天,2x 天,根据题意,得 1x +12x =110. 解得x =15,2x =30.答:甲、乙工程队单独完成此项工程各需15天,30天. (2)分三种情况讨论:①甲单独做费用:4.5×15=67.5(万元); ②乙单独做费用:2.5×30=75(万元);③甲、乙合作完成费用:(4.5+2.5)×10=70(万元). ∵75>70>67.5,∴甲工程队单独做既能使工程按时完工,又能使工程费用最小,为67.5万元.21.(10分)某特产专卖店销售核桃,其进价为每千克40元,按每千克60元出售,平均每天可售出100千克,后来经过市场调查发现,单价每降低2元,则平均每天的销售量可增加20千克.若该专卖店销售这种核桃想要平均每天获利2 240元,请回答:(1)每千克核桃应降价多少元?(2)在平均每天获利不变的情况下,为了尽可能让利于顾客,赢利市场,该店应按原售价的几折出售?解:(1)设每千克核桃应降价x 元,依题意,得 (60-40-x)(100+x2·20)=2 240,解得x =4或x =6.答:每千克核桃应降价4元或6元.(2)由(1)可知,每千克核桃应降价4元或6元, 为了尽可能让利于顾客,每千克核桃应降价6元, 此时售价为60-6=54(元),5460×100%=90%.答:该店应按原售价的九折出售.22.(12分)小明所在的学校为了加强学生体育锻炼,准备从某体育用品商店一次性购买若干个足球和篮球(每个足球的价格相同,每个篮球的价格相同),若购买2个篮球和3个足球共需310元;购买5个篮球和2个足球共需500元.(1)每个篮球和足球各需多少元?(2)根据学校的实际情况,需从该商店一次性购买篮球和足球共60个,要求购买篮球和足球费用不超过4 000元,那么最多可以购买多少个篮球?解:(1)设每个篮球x 元,每个足球y 元,由题意,得⎩⎪⎨⎪⎧2x +3y =310,5x +2y =500,解得⎩⎪⎨⎪⎧x =80,y =50. 答:每个篮球80元,每个足球50元. (2)设购买z 个篮球,由题意,得 80z +50(60-z)≤4 000,解得z ≤3313.∵z 为整数, ∴z 最大取33.答:最多可以购买33个篮球.23.(10分)李宁准备完成题目:解二元一次方程组⎩⎪⎨⎪⎧x -y =4,□x +y =-8,发现系数“□”印刷不清楚.(1)他把“□”猜成3,请你解二元一次方程组⎩⎪⎨⎪⎧x -y =4,3x +y =-8;(2)张老师说:“你猜错了,我看到该题标准答案的结果x ,y 是一对相反数.”通过计算说明原题中“□”是几?解:(1)⎩⎪⎨⎪⎧x -y =4,①3x +y =-8,②②+①,得4x =-4.解得x =-1.把x =-1代入①,得-1-y =4.解得y =-5. ∴方程组的解是⎩⎪⎨⎪⎧x =-1,y =-5.(2)设“□”为a ,∵x ,y 是一对相反数,∴把x =-y 代入x -y =4,得-y -y =4. 解得y =-2.∴x =2. ∴方程组的解是⎩⎪⎨⎪⎧x =2,y =-2.代入ax +y =-8,得2a -2=-8.解得a =-3.∴原题中“□”是-3.24.(10分)HW 公司2018年使用自主研发生产的“QL ”系列甲、乙、丙三类芯片共2 800万块,生产了2 800万部手机,其中乙类芯片的产量是甲类芯片的2倍,丙类芯片的产量比甲、乙两类芯片产量的和还多400万块.这些“QL ”芯片解决了该公司2018年生产的全部手机所需芯片的10%.(1)求2018年甲类芯片的产量;(2)HW 公司计划2020年生产的手机全部使用自主研发的“QL ”系列芯片.从2019年起逐年扩大“QL ”芯片的产量,2019年、2020年这两年,甲类芯片每年的产量都比前一年增长一个相同的百分数m%,乙类芯片的产量平均每年增长的百分数比m%小1,丙类芯片的产量每年按相同的数量递增.2018年到2020年,丙类芯片三年的总产量达到1.44亿块.这样,2020年的HW 公司的手机产量比2018年全年的手机产量多10%,求丙类芯片2020年的产量及m 的值.解:(1)设2018年甲类芯片的产量为x 万块,由题意,得 x +2x +(x +2x)+400=2 800. 解得x =400.答:2018年甲类芯片的产量为400万块.(2)2018年丙类芯片的产量为3x +400=1 600(万块),设丙类芯片的产量每年增加的数量为y 万块,则1 600+1 600+y +1 600+2y =14 400. 解得y =3 200.∴丙类芯片2020年的产量为1 600+2×3 200=8 000(万块).2018年HW 公司手机产量为2 800÷10%=28 000(万部).根据题意,得400(1+m%)2+2×400(1+m%-1)2+8 000=28 000×(1+10%),设m%=t ,化简,得3t 2+2t -56=0.解得t =4或t =-143(舍去). ∴m%=4.∴m =400.答:丙类芯片2020年的产量为8 000万块,m =400.。
一、选择题1.如图,在半径为6的O 中,点A 是劣弧BC 的中点,点D 是优弧BC 上一点,33tanD =,下列结论正确的个数有:( ) ①63BC =; ②3sin 2AOB ∠=; ③四边形ABOC 是菱形;④劣弧BC 的长度为4π.A .4个B .3个C .2个D .1个 2.如图,ABC ∆是O 的内接三角形,AB BC =,30BAC ∠=︒,AD 是直径,8AD =,则AC 的长为( )A .4B .43C .83D .23.如图,AB 是⊙O 的直径,∠BOD =120°,点C 为弧BD 的中点,AC 交OD 于点E ,DE =1,则AE 的长为( )A 3B 5C .23D .254.已知△ABC 是半径为2的圆内接三角形,若BC =23∠A 的度数( )A .30°B .60°C .120°D .60°或120° 5.如图,⊙O 半径为5,PC 切⊙O 于点C ,PO 交⊙O 于点A ,PA =4,则PC 的长为( )A .6B .25C .210D .214 6.如图,AB 是O 的直径,CD 是O 的弦,30,3ACD AD ∠=︒=,下列说法错误的是( )A .30B ∠=︒ B .60BAD ∠=︒C .23BD = D .23AB = 7.如图,AB 为半圆O 的直径,C 是半圆上一点,且60COA ∠=º,设扇形AOC 、COB △、弓形BmC 的面积为1S 、2S 、3S ,则他们之间的关系是( )A .123S S S <<B .213S S S <<C .132S S S <<D .321S S S << 8.如图,ABC 中,10,8,4AB AC BC ===,以点A 为圆心,AB 为半径作圆,交BC 的延长线于点D ,则CD 长为( )A .10B .9C .45D .89.如图,在ABC 中,5AB AC ==,6BC =,D ,E 分别为线段AB ,AC 上一点,且AD AE =,连接BE 、CD 交于点G ,延长AG 交BC 于点F .以下四个结论正确的是( )①BF CF =;②若BE AC ⊥,则CF DF =;③若BE 平分ABC ∠,则32FG =; ④连结EF ,若BE AC ⊥,则2DFE ABE ∠=∠. A .①②③ B .③④C .①②④D .①②③④ 10.如图,有一块半径为1m ,圆心角为120︒扇形铁皮,要把它做成一个圆锥体容器(接缝忽略不计),那么这个圆锥体容器的高为( )A .13mB .23mC .223mD .43m 11.如图,AB 是O 的直径,C 、D 分别是O 上的两点.若33BAC ∠=︒,则D∠的度数等于( )A .57︒B .60︒C .66︒D .67︒12.4.如图,AD 是ABC ∆的外接圆O 的直径,若50BCA ︒∠=,则BAD ∠=( )A .30︒B .40︒C .50︒D .60︒二、填空题13.如图,四边形OABC 是菱形,点B ,C 在以点O 为圆心的弧EF 上,且∠1=∠2,若菱形边OA=3,则扇形OEF 的面积为___________14.如图,在矩形ABCD 中,∠DBC=30º,DC=2,E 为AD 上一点,以点D 为圆心,以DE 为半径画弧,交BC 于点F ,若CF=CD ,则图中的阴影部分面积为______________.(结果保留π)15.如图,点P 为⊙O 外一点,PA ,PB 分别与⊙O 相切于点A ,B ,∠APB =90°.若⊙O 的半径为2,则图中阴影部分的面积为_____(结果保留π).16.如图,是由一个大圆和四个相同的小圆组成的图案,若大圆的半径为2,则阴影部分的面积为______.17.如图,菱形ABCD 中,已知2AB =,60DAB ∠=︒将它绕着点A 逆时针旋转得到菱形ADEF ,使AB 与AD 重合,则点C 运动的路线CE 的长为________.18.如图,从一块直径为2m 的圆形铁皮上画出一个圆心角为90的扇形.若随机在圆及其内部投针,则针孔扎在扇形(阴影部分)的概率为____.19.已知扇形的弧长为4π,半径为9,则此扇形的圆心角为_______度.20.如图,已知⊙O 的两条弦AC ,BD 相交于点E ,70A ∠=,50C ∠=,那么tan AEB ∠=___________.三、解答题21.在下列网格图中,每个小正方形的边长均为1个单位.Rt ABC 中,∠C =90°,AC =3,BC =4(1)试在图中作出ABC 绕A 顺时针方向旋转90°后的图形11AB C △;(2)求1BB 的长.22.如图,⊙O 是△ABC 的外接圆,AB 是⊙O 的直径,D 为⊙O 上一点,OD ⊥AC ,垂足为E ,连接BD .(1)求证:BD 平分∠ABC ;(2)若OE =3,AO =5,求AC 的长.23.如图,AB 是O 的弦,AC 是O 的直径,将AB 沿着AB 弦翻折.恰好经过圆心O .若O 的半径为6,求图中阴影部分的面积.24.如图,已知AB 是O 的直径,BC AB ,连接OC ,弦//AD OC ,直线CD 交BA 的延长线于点E .(1)求证:CD 是O 的切线; (2)若2DE BC =,O 的半径为2,求线段EA 的长.25.如图所示,AC 与O 相切于点C ,线段AO 交O 于点B .过点B 作//BD AC 交O 于点D ,连结,CD OC ,且OC 交DB 于点E .若30,53cm ∠=︒=CDB DB .(1)求COB ∠的大小和O 的半径长.(2)求由弦,CD BD 与弧BC 所围成的阴影部分的面积(结果保留π).26.如图,某零件的截面为弓形.(1)请用直尺和圆规作出该弓形的圆心.(2)若23AB =,弓形的高为1.①求弓形的半径②求AB 的长【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】利用特殊角的三角函数值求得∠D=30°,由点A 是劣弧BC 的中点,根据圆周角定理得到∠AOC=∠AOB=2∠D=60°,可对②进行判断;证得△OAC 、△OAB 都为等边三角形,根据等边三角形的性质和垂径定理可计算出BC ,可对①进行判断;利用AB=AC=OA=OC=OB 可对③进行判断;利用弧长公式,可对④进行判断.【详解】∵3tanD =, ∴∠D=30°,∵点A 是劣弧BC 的中点,∴OA ⊥BC ,∴∠AOC=∠AOB=2∠D=60°,∴sin AOB sin 60∠=︒=,所以②正确; 而OA=OC=OB=6,∴△OAC 、△OAB 都为等边三角形,∴BC26=⨯=①正确; ∵△OAC 、△OAB 都为等边三角形,∴AB=AC=OA=OC=OB ,∴四边形ABOC 是菱形,所以③正确;∵△OAC 、△OAB 都为等边三角形,∴∠COB=120°,∴劣弧BC 的长度为12064180ππ⨯=,所以④正确. 综上,正确的个数有4个,故选:A .【点睛】 本题考查了圆周角定理,弧长公式,菱形的判定和性质,解直角三角形等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.2.B解析:B【分析】连接CD ,根据圆周角定理,可以得到30CAD ∠=︒,在Rt ACD △中,利用锐角三角函数求出AC 的长即可.【详解】解:如图,连接CD ,∵AB BC =,30BAC ∠=︒,∴AB 和BC 所对的圆心角都是60︒,∵AD 是直径,∴CD 所对的圆心角也是60︒,∴30CAD ∠=︒,在Rt ACD △中,3cos308432AC AD =⋅︒=⨯=. 故选:B .【点睛】本题考查圆周角定理和锐角三角函数,解题的关键是掌握圆周角定理,以及利用锐角三角函数解直角三角形的方法. 3.A解析:A【分析】连接AD ,可证∠ODA=∠OAD=∠AOD=60°,根据弧中点,得出∠DAC=30°,△ADE 是直角三角形,用勾股定理求AE 即可.【详解】解:连接AD ,∵∠BOD =120°,AB 是⊙O 的直径,∴∠AOD =60°,∵OA=OD ,∴∠OAD =∠ODA =60°,∵点C 为弧BD 的中点,∴∠CAD =∠BAC =30°,∴∠AED =90°,∵DE =1,∴AD=2DE=2,AE 2222213AD DE -=-=故选:A .【点睛】本题考查了圆周角的性质、勾股定理,解题关键是通过连接弦构造直角三角形,并通过弧相等导出30°角.4.D解析:D【分析】首先根据题意画出图形,然后由圆周角定理与含30°角的直角三角形的性质,求得答案.【详解】解:如图,作直径BD,连接CD,则∠BCD=90°,∵△ABC是半径为2的圆内接三角形,BC=23∴BD=4,∴22,BD BC∴CD=1BD,2∴∠CBD=30°,∴∠A=∠D=60°,∴∠A′=180°-∠A=120°,∴∠A的度数为:60°或120°.故选:D.【点睛】此题考查了圆周角定理与含30°角的直角三角形的性质.此题难度适中,注意掌握数形结合思想的应用.5.D解析:D【分析】延长AO 交⊙O 于B ,连接AC ,证明△PAC ∽△PCB ,进而得到PC 2=PA•PB 即可求出PC 的长.【详解】解:如下图所示:连接OC ,延长AO 交⊙O 于B ,连接AC ,BC ,∵AB 为直径,∴∠1+∠2=90°,∵OC=OA ,∴∠1=∠3,∵PC 为圆的切线,∴∠3+∠4=90°,∴∠2=∠4,又∠P=∠P ,∴△PCA ∽△PBC , ∴=PC PA PB PC,即24(104)56=⨯=⨯+=PC PA PB , ∴214=PC故选:D .【点睛】本题考查了相似三角形的性质和判定,圆的切线及圆周角定理等,熟练掌握圆的性质及相似三角形的性质和判定是解决本题的关键.6.C解析:C【分析】根据圆周角定理得到∠ADB=90°,∠B=∠ACD=30°,再利用互余可计算出∠BAD 的度数,然后利用含30度的直角三角形三边的关系求出BD 、AB 的长即可.【详解】解:∵AB 是⊙O 的直径,∴∠ADB=90°,∵∠B=∠ACD=30°,∴∠BAD=90°-∠B=90°-30°=60°,故选项A 、B 不符合题意,在Rt △ADB 中,3,3故选项C 符合题意,选项D 不符合题意,故选:C .本题考查了圆周角定理以及含30°角的直角三角形的性质等知识;熟练掌握圆周角定理是解题的关键.7.B解析:B【分析】设出半径,作出△COB 底边BC 上的高,利用扇形的面积公式和三角形的面积公式表示出三个图形面积,比较即可求解.【详解】解:作OD ⊥BC 交BC 与点D ,∵∠COA =60°,∴∠COB =120°,则∠COD =60°.∴S 扇形AOC =22603606ππ=R R ; S 扇形BOC =221203603ππ=R R . 在三角形OCD 中,∠OCD =30°,∴OD =2R ,CD =3R ,BC =3R , ∴S △OBC =23R ,S 弓形=2233R R π-=2(433)π-R , 2(433)12π-R >26πR >234R , ∴S 2<S 1<S 3.故选:B .【点睛】此题考查扇形面积公式及弓形面积公式,解题的关键是算出三个图形的面积,首先利用扇形公式计算出第一个扇形的面积,再利用弓形等于扇形﹣三角形的关系求出弓形的面积,进行比较得出它们的面积关系.8.B解析:B【分析】如图,过点A 作AE ⊥BD 于点E ,连接AD ,可得AD=AB=10,根据垂径定理可得DE=BE ,得CE=BE-BC=DE-4,再根据勾股定理即可求得DE 的长,进而可得CD 的长.解:如图,过点A作AE⊥BD于点E,连接AD,∴AD=AB=10,根据垂径定理,得DE=BE,∴CE=BE-BC=DE-4,根据勾股定理,得AD2-DE2=AC2-CE2,102-DE2=82-(DE-4)2,解得DE=132,∴CD=DE+CE=2DE-4=9,故选:B.【点睛】本题考查了垂径定理,解决本题的关键是掌握垂径定理.9.D解析:D【分析】先证明∆BAE≅ ∆CAD,再证明∆ABG≅ ∆ACG,得AF是∠BAC的平分线,进而即可判断①;先证明BDC=∠CEB=90°,根据直角三角形的性质,即可判断②;根据角平分线的性质,得点G到∆ABC的三边距离都相等,结合“等积法”即可判断③;先证明B,C,D,E在以点F为圆心的圆上,进而即可判断④.【详解】∵AB=AC,∠BAE=∠CAD,AE=AD,∴∆BAE≅ ∆CAD,∴∠ABE=∠ACD,∵AB=AC,∴∠ABC=∠ACB,∴∠ABC-∠ABE=∠ACB-∠ACD,即:∠GBC=∠GCB,∴BG=CG,∴∆ABG≅ ∆ACG,∴∠BAG=∠CAG,即AF是∠BAC的平分线,∴BF CF=,故①正确;∵BE AC⊥,∴∠CEB=90°,由①可知:BD=CE ,∠ABC=∠ACB ,又∵BC=CB ,∴∆BDC ≅∆CEB ,∴∠BDC=∠CEB=90°,∵点F 是BC 的中点,∴CF DF =,故②正确;∵BE 平分ABC ∠,AF 平分∠BAC ,∴点G 是角平分线的交点,∴点G 到∆ABC 的三边距离都相等,且等于FG ,∵5AB AC ==,6BC =,AF ⊥BC ,∴AF=22AB BF -= 22534-=, ∴S ∆ABC =12(AB+AC+BC)∙FG=12×16FG=8FG ,S ∆ABC =12BC∙AF=12, ∴8FG=12,即:32FG =,故③正确; ∵BE AC ⊥,由①可知:CD ⊥AB , ∴B ,C ,D ,E 在以点F 为圆心的圆上,∴2DFE ABE ∠=∠,故④正确. 故选D .【点睛】本题主要考查等腰三角形的性质,全等三角形的判定和性质,直角三角形的性质,勾股定理,角平分线的性质,圆周角定理,熟练掌握“等腰三角形三线合一”,“直角三角形,斜边上的中线等于斜边的一半”,是解题的关键.10.C解析:C【分析】设做成圆锥之后的底面半径为r ,可得12012180r ππ⋅=,再利用勾股定理即可求解. 【详解】 解:设做成圆锥之后的底面半径为r ,则12012180r ππ⋅=, 解得13r =, ∴这个圆锥体容器的高为22122133h ⎛⎫=-= ⎪⎝⎭, 故选:C .【点睛】本题考查圆锥的计算,求出圆锥的底面半径是解题的关键.11.A解析:A【分析】连接OC ,根据圆周角定理计算即可;【详解】连接OC ,∵33BAC ∠=︒,∴266BOC AOC ∠=∠=︒,又∵180DOC AOC ∠+∠=︒,∴180114AOC BOC ∠=︒-∠=︒,∴1572D AOC ∠=∠=︒; 故答案选A .【点睛】本题主要考查了圆周角定理,准确计算是解题的关键.12.B解析:B【分析】根据圆周角定理即可得到结论.【详解】解:∵AD是△ABC的外接圆⊙O的直径,∴∠ABD=90°,∵∠BCA=50°,∴∠ADB=∠BCA=50°,∴BAD∠=90°-50°=40°故选:B.【点睛】本题考查了三角形的外接圆与外心,圆周角定理,熟练掌握圆周角定理是解题的关键.二、填空题13.3π【分析】算出扇形OEF的圆心角即可得到解答【详解】解:如图连结OB由题意可知:OC=OB=BC∴∠COB=60°∠COA=120°∵∠1=∠2∴∠FOE=∠COE+∠1=∠COE+∠2=∠COA解析:3π【分析】算出扇形OEF的圆心角,即可得到解答.【详解】解:如图,连结OB,由题意可知:OC=OB=BC,∴∠COB=60°,∠COA=120°,∵∠1=∠2,∴∠FOE=∠COE+∠1=∠COE+∠2=∠COA=120°,∴扇形OEF的面积=22 12012033360360OAπππ⨯⨯⨯⨯==,故答案为3π .【点睛】本题考查扇形与菱形的综合应用,熟练掌握菱形的性质及扇形面积的计算是解题关键.14.【分析】连接由矩形ABCD分别求解再求解从而可得答案【详解】解:连接矩形ABCD 故答案为:【点睛】本题考查的是矩形的性质等腰直角三角形的性质含的直角三角形的性质勾股定理的应用扇形的面积掌握以上知识是 解析:432.π--【分析】 连接DF ,由矩形ABCD ,30,2,DBC DC CF ∠=︒==分别求解,,,EDF DF BC ∠ 再求解43,,2DFC ABCD DEF S S Sπ===矩形扇形,从而可得答案.【详解】解:连接DF ,矩形ABCD ,30,2,DBC DC CF ∠=︒== 2290,4,45,2222,ADC BD DFC FDC DF ∴∠=︒=∠=∠=︒=+=224223,904545,BC EDF ∴=-=∠=︒-︒=︒(24522123243,,2223602DFC ABCD DEF S S S ππ⨯∴=====⨯⨯=矩形扇形, 432.S π∴=-阴影故答案为:32.π-【点睛】本题考查的是矩形的性质,等腰直角三角形的性质,含30的直角三角形的性质,勾股定理的应用,扇形的面积,掌握以上知识是解题的关键.15.4-π【分析】连接OAOB 由S 阴影=S 正方形OBPA-S 扇形AOB 则可求得结果【详解】解:连接OAOB ∵PAPB 分别与⊙O 相切于点AB ∴OA ⊥APOB ⊥PBPA=PB ∴∠OAP=∠OBP=90°=∠解析:4-π【分析】连接OA ,OB ,由S 阴影=S 正方形OBPA -S 扇形AOB 则可求得结果.【详解】解:连接OA ,OB ,∵PA ,PB 分别与⊙O 相切于点A ,B ,∴OA ⊥AP ,OB ⊥PB ,PA=PB ,∴∠OAP=∠OBP=90°=∠BPA ,∴四边形OBPA 是正方形,∴∠AOB=90°,∴阴影部分的面积=S 正方形OBPA -S 扇形AOB 则=22-904360π⨯⨯=4-π. 故答案为:4-π.【点睛】此题考查了切线长定理,正方形的判定与性质,扇形面积公式等知识.解题关键是连接半径,构造正方形,把阴影部分面积转化为正方形面积与扇形面积差.16.【分析】如图由圆的对称性及割补法可得阴影部分的面积为大圆的面积减去正方形的面积再由勾股定理可得:从而可得答案【详解】解:如图由圆的对称性及割补法可得阴影部分的面积为大圆的面积减去正方形的面积大圆的半 解析:48π-【分析】如图,由圆的对称性及割补法可得阴影部分的面积为大圆的面积减去正方形的面积,再由勾股定理可得:28,AC =从而可得答案.【详解】解:如图,由圆的对称性及割补法可得阴影部分的面积为大圆的面积减去正方形的面积,大圆的半径为2,90,,ACB AC BC ∠=︒=∴ 4,AB =2216,AC BC +=28,AC ∴=22248.S AC ππ∴=⨯-=-故答案为:48.π-【点睛】本题考查的是阴影部分面积的求解,勾股定理的应用,圆的对称性与正方形的性质,扇形面积与弓形面积的理解,正多边形与圆,掌握以上知识是解题的关键.17.【分析】连接ACBD 交于点O 由菱形的性质得出AC 的长由旋转的性质∠EAC=60゜再根据弧长公式求解即可【详解】解:连接ACBD 交于点O 如图∵四边形ABCD 是菱形∴AC ⊥BDOA=OC ∠BAC=∠DA 解析:233π 【分析】连接AC ,BD 交于点O ,由菱形的性质得出AC 的长,由旋转的性质∠EAC=60゜,再根据弧长公式求解即可.【详解】解:连接AC ,BD 交于点O ,如图,∵四边形ABCD 是菱形 ∴AC ⊥BD ,OA=OC ,∠BAC=12∠DAB=30゜ ∴ 112OB AB == 由勾股定理得,3OA =∴23AC =连接AE , 当AB 与AD 重合时,旋转了60゜,则∠EAC=60゜ ∴6023231803CE π== 23 【点睛】此题主要考查了旋转的性质、菱形的性质以及求弧长,运用菱形的性质求出AC 是解答此题的关键.18.【分析】连接AC 根据圆周角定理得出AC 为圆的直径解直角三角形求出AB 求出扇形面积和面积两者的面积比即是针孔扎在扇形(阴影部分)的概率【详解】解:连接AC ∵从一块直径为2m 的圆形铁皮上剪出一个圆心角为 解析:12【分析】连接AC ,根据圆周角定理得出AC 为圆的直径,解直角三角形求出AB ,求出扇形面积和O 面积,两者的面积比,即是针孔扎在扇形(阴影部分)的概率.【详解】解:连接AC ,∵从一块直径为2m 的圆形铁皮上剪出一个圆心角为90︒的扇形,即∠ABC=90︒, ∴AC 为直径,即AC=2m ,AB=BC (扇形的半径相等),∵AB 2+BC 2=22, ∴2m ,∴S 阴影部分=29023602ππ︒⨯=︒(m 2), 则:P 针孔扎在扇形(阴影部分)=212==2OS S OA =阴影部分ππ故答案为:12. 【点睛】 本题考查了几何概率:求概率时,已知和未知与几何有关的就是几何概率.计算方法是长度比,面积比,体积比等.19.80【分析】设此扇形的圆心角为x°代入弧长公式计算得到答案【详解】解:设此扇形的圆心角为x°由题意得解得x=80故答案为:80【点睛】本题考查的是弧长的计算掌握弧长的公式是解题的关键解析:80【分析】设此扇形的圆心角为x°,代入弧长公式计算,得到答案.【详解】解:设此扇形的圆心角为x°,由题意得,94180x ππ=, 解得,x=80,故答案为:80.【点睛】 本题考查的是弧长的计算,掌握弧长的公式180n r l π=是解题的关键. 20.【分析】求出∠AEB 的度数再求三角函数值即可【详解】解:∵∠B=∠C=50°∠A=70°∴∠AEB=180°-∠A-∠B=60°故答案为:【点睛】本题考查了圆周角的性质三角形内角和特殊角的三角函数值解析:3【分析】求出∠AEB 的度数,再求三角函数值即可.【详解】解:∵∠B=∠C=50°,∠A=70°,∴∠AEB=180°-∠A-∠B=60°,tan tan 603AEB ∠=︒=,故答案为:3.【点睛】本题考查了圆周角的性质,三角形内角和,特殊角的三角函数值,解题关键是灵活运用圆中角的关系,把已知条件集中在一个三角形中求角.三、解答题21.(1)见解析;(2)52π. 【分析】(1)根据△ABC 绕A 顺时针方向旋转90°,即可得到△AB 1C 1;(2)根据弧长计算公式,即可得出点B 运动路径的长.【详解】解:(1)如图所示,△AB 1C 1即为所求;(2)Rt ABC 中,∠C =90°,AC =3,BC =4∴AB 5==又∠BAB 1=90°,∴点B 的运动路径的长为:90551802ππ⨯=. 【点睛】本题考查了利用旋转变换作图,熟练掌握网格结构准确找出对应点的位置是解题的关键. 22.(1)见解析;(2)8.【分析】(1)先根据垂径定理得出AD =CD ,再利用圆周角定理即可得出结论;(2)先根据垂径定理得出AE =12AC ,在Rt △AOE 中,利用勾股定理即可求出AE 的长,进而得出结论.【详解】(1)证明:∵OD ⊥AC ,∴AD =CD ,∴∠ABD =∠CBD ,即BD 平分∠ABC ;(2)解:∵OD ⊥AC ,∴AE =12AC ,∠OEA =90°, ∵OE =3,OA =5,∴在Rt △AOE 中,AE 2222534OE ,∴AC =2AE =8.【点睛】 本题考查了垂径定理、圆周角性质等知识,熟练掌握垂径定理与圆周角的相关性质是解答此题的关键.23【分析】根据翻折的意义,垂径定理的性质,直径上的圆周角是直角,扇形的面积等,把阴影的面积等量转化为三角形OBC 的面积求解即可.【详解】解:如图,连接OB ,BC .过点O 作OD ⊥AB ,垂足为E ,连接BD ,根据题意,得OE=ED=12OD=12OB , ∴∠ABO=∠OAB=30°,∵AC 是圆的直径,∴∠ABC=90°,∠ACB=60°,∴△OBC 是等边三角形,△OBD 是等边三角形,∴弓形OnB 的面积=弓形BmC 的面积,∴=S S △OBC 阴影=34×26=93.【点睛】本题考查了垂径定理,直径上的圆周角,阴影部分的面积,熟练掌握圆的基本性质,把阴影面积合理转型为三角形的面积是解题的关键.24.(1)见解析;(2)22AE =.【分析】(1)连接OD ,通过证明△COD ≌△COB 得到90CDO CBO ∠=∠=︒即可得到结论; (2)根据全等三角形的性质,在结合平行线分线段成比例的性质,即可求解【详解】(1)如图,连接OD .∵//AD OC ,∴DAO COB ∠=∠,ADO COD ∠=∠.又∵OA OD =,∴DAO ADO ∠=∠,∴COD COB ∠=∠.∵OD OB =,OC OC =,∴在COD △和COB △中OD OB COD COB OC OC =⎧⎪∠=∠⎨⎪=⎩∴()SAS COD COB ≌△△, ∴90CDO CBO ∠=∠=︒.又∵点D 在O 的切线. ∴CD 是O 的切线.(2)∵COD COB ≌△△,∴CD CB =. ∵DE =, ∴ED =.∵//AD OC , ∴DE AE CE OE=. ∵O 的半径为2,∴2AE AE =+, ∴AE =【点睛】本题考查了圆切线的判定,以及平行线分线段成比例的性质,熟练掌握圆切线的判定定理是解题关键.25.(1)60COB ∠=︒,O 的半径长为5cm ;(2)()225cm 6π 【分析】(1)根据切线的性质定理和平行线的性质定理得到OC ⊥BD ,根据垂径定理得到BE 的长,再根据圆周角定理发现∠BOE=60°,从而根据锐角三角函数求得圆的半径;(2)结合(1)中的有关结论证明△DCE ≌△BOE ,则它们的面积相等,故阴影部分的面积就是扇形OBC 的面积.【详解】解:(1)∵AC 与⊙O 相切于点C ,∴∠ACO=90°,∵BD ∥AC ,∴∠BEO=∠ACO=90°,∴DE=EB=12(cm ) ∵∠D=30°,∴∠O=2∠D=60°,在Rt △BEO 中,sin60°=BE OB,∴22OB=, ∴OB=5,即⊙O 的半径长为5cm .(2)由(1)可知,∠O=60°,∠BEO=90°,∴∠EBO=∠D=30°,又∵∠CED=∠BEO ,BE=ED ,∴△CDE ≌△OBE ,∴S 阴=S 扇OBC =60360π•52=256π(cm 2), 答:阴影部分的面积为256πcm 2.【点睛】本题考查扇形面积的计算,全等三角形的判定与性质,圆周角定理,切线的性质,解直角三角形,掌握扇形面积的计算,全等三角形的判定与性质,圆周角定理,切线的性质,解直角三角形是解题关键.26.(1)见解析;(2)①2;②4=3AB π的长 【分析】(1)在弧AB 上取一点C ,连接AC ,分别作出AC 、AB 的垂直平分线即可;(2)①根据垂径定理可得3AE BE ==,再根据勾股定理求解即可;②根据1cos 2OE AOE OA ∠==,求出圆心角,根据公式计算即可; 【详解】 (1)在弧AB 上取一点C ,连接AC ,分别作出AC 、AB 的垂直平分线,如图,点O 即为所求.(2)①如图,过点O 作OE AB ⊥交圆O 与点D ,∵23AB = ∴3AE BE ==设弓形的半径为r ,在Rt △AOE 中,222OA AE OE =+, 即()22231r r =+-, 解得:2r;②∵2OA =,1OE =, ∴1cos 2OE AOE OA ∠==, ∴60AOE =︒∠,∴2120AOB AOE ∠=∠=︒, ∴120241801803n rl πππ⨯⨯===; 【点睛】本题主要考查了尺规作图垂直平分线、垂径定理、锐角三角函数、弧长的计算,准确计算是解题的关键.。
第三章 概率的进一步认识时间:90分钟 满分:100分一、选择题(共8小题,每小题3分,共24分.每小题有四个选项,其中只有一个选项符合题意)1.用频率估计概率,可以发现抛掷硬币“正面向上”的概率为0.5,那么掷一枚质地均匀的硬币10次,下列说法正确的是( )A.每两次必有1次正面向上B.可能有5次正面向上C.必有5次正面向上D.不可能有10次正面向上2.[教材变式P 61练习](2021·辽宁阜新中考)小颖有两顶帽子,分别为红色和黑色,有三条围巾,分别为红色、黑色和白色,她随机拿出一顶帽子和一条围巾戴上,恰好为红色帽子和红色围巾的概率是( )A.12 B.23 C.56 D.163.(2022·山东济南历城区期末)一个不透明的袋子里装有白棋子、黑棋子共20个,这些棋子除颜色外都相同.小明从中随机摸出一颗棋子,记下颜色后放回,通过多次重复试验发现,摸出白棋子的频率稳定在0.6,则袋子中白棋子的个数最有可能是( )A.5B.8C.12D.154.(2022·安徽宿州期中)2022年冬奥会吉祥物为“冰墩墩”,冬残奥会吉祥物为“雪容融”.现有三张正面印有吉祥物的不透明卡片,卡片除正面图案不同外,其余均相同,其中两张正面印有“冰墩墩”图案,一张正面印有“雪容融”图案,将三张卡片正面向下洗匀,从中随机一次性抽取两张卡片,则抽出的两张卡片正面都印有“冰墩墩”图案的概率是( )A.13 B.12 C.49 D.235.(2021·重庆期末)一个不透明的袋子中装有3个白球,2个黑球,它们除颜色外都相同.将球摇匀后,从中随机摸出一个球,记下颜色后不放回,再随机摸出一个球.两次摸到的球颜色相同的概率是( )A.23 B.25 C.1325 D.13206.(2022·河南许昌一中月考)某市教委部门高度重视自然灾害中的安全教育,要求各级各类学校从认识安全警示标志入手开展安全教育活动.某数学兴趣小组准备了4张印有安全警示标志的卡片,正面图案如图所示,它们除此之外完全相同,把这4张卡片背面朝上洗匀,从中随机抽取两张卡片,则这两张卡片上的正面图案中有一张是轴对称图形的概率是( )A.12B.13C.14D.167.(2021·辽宁铁岭期末)若从1,2,3,4这四个数字中任选一个记为a ,再从这四个数字中任选一个记为c ,则关于x 的一元二次方程ax 2+4x+c=0没有实数根的概率为( )A.14B.13C.12D.238.(2022·江苏南京鼓楼区期中)如图是用画树状图的方法画出的某个试验的所有可能发生的结果,则这个试验不可能是( )A.在一个不透明的袋中有3个除颜色外完全相同的小球,其中2个黑球,1个白球,从中随机取出2个球B.小明,小王两个人分别去买一个盲盒,在三款盲盒中买到同一款盲盒C.从某学习小组的两名男生和一名女生中随机选取两名学生进行竞答D.体育测试中,随机从足球、篮球、排球三个项目中选择两个项目二、填空题(共5小题,每小题4分,共20分)9.(2022·北京期末)经过某个十字路口的汽车,可能直行,也可能向左转或向右转.如果这三种可能性大小相同,那么甲汽车经过这个十字路口时,向右转的概率是 .10.为积极响应“无偿献血,传递温暖”的号召,某高校一寝室的4个同学参与到爱心献血的活动中,他们其中有2个A 型血,1个B 型血,还有1个O 型血,现从该寝室随机抽取2个同学参与第一批次献血,则2个同学都是A 型血的概率为 .11.(2021·广东汕头潮阳区模拟)在如图所示的电路图中,随机闭合开关S 1,S 2,S 3中的两个,能让灯泡L 1发光的概率是 .12.(2022·辽宁锦州期中)一张纸片上有一个不规则的图案,小雅想了解该图案的面积是多少,她采取了以下的试验办法:用一个长为5 cm,宽为3 cm的长方形,将不规则图案围起来如图(1)所示,然后在适当位置随机地向长方形区域扔小球,并记录小球落在不规则图案内的次数(球落在界线上或长方形区域外不计入试验结果),她将若干次有效试验的结果绘制成了图(2)所示的折线统计图,由此她估计此不规则图案的面积为 cm2.(结果保留整数)图(1)图(2)13.(2021·江苏镇江中考)一只不透明的袋子中装有1个黄球,现放若干个红球进去,它们与黄球除颜色外都相同,搅匀后从中任意摸出两个球,若使得P(摸出一红一黄)=P(摸出两红),则放入的红球个数为 .三、解答题(共6小题,共56分)14.(8分)近几年,各式各样的共享经济模式在各个领域迅速普及应用,如图是某同学收集的四个共享经济领域的图标,将收集到的图标制成编号为A,B,C,D的四张卡片(除编号和内容外,其余完全相同),背面朝上,洗匀放好.(1)从中随机抽取一张,抽到的卡片上的图标恰好是“共享知识”的概率为 ;(2)从中随机抽取一张卡片,放回后洗匀,再从中随机抽取一张卡片,请用列表或画树状图的方法求抽到的两张卡片上的图标恰好是“共享出行”和“共享知识”的概率.15.(8分)某商场在“五一”促销活动中规定,顾客每消费100元就能获得一次抽奖机会.为了活跃气氛,设计了两种抽奖方案.方案一:转动转盘A一次,指针指向红的部分可领取一份奖品.方案二:转动转盘B两次,两次指针都指向红的部分可领取一份奖品.(两个转盘都被平均分成3份,若指针指向分界线,则重转)(1)转动一次转盘A,获得奖品的概率是 ;(2)如果你获得一次抽奖机会,你会选择哪种方案?请用列表法或画树状图法说明理由.16.(9分)(2022·辽宁抚顺新抚区期末)一个黑箱子里装有红、白两种颜色的球共4只,它们除颜色外,其他都相同.小明将球搅匀后从箱子中随机摸出一个球,记下颜色,再把它放回,不断重复试验,根据多次试验结果画出如下的折线统计图.(1)当试验次数很大时,摸到白球的频率将会接近 (精确到0.01),从箱子中摸一次球,摸到红球的概率是 ;(2)从该箱子里随机摸出一个球,不放回,再摸出一个球.用画树状图法或列表法求摸到一个红球和一个白球的概率.17.(10分)甲、乙、丙、丁四名同学进行一次乒乓球单打比赛,要从中选两位同学打第一场比赛.(1)请用画树状图法或列表法求出恰好选中甲、乙两位同学的概率;(2)请利用若干个除颜色外其他都相同的球,设计一个摸球试验(至少摸两次),并根据该试验写出一个发生概率与(1)中所求概率相同的事件.18.(10分)(2021·黑龙江大庆期中)如图(1),一枚质地均匀的正四面体骰子,它有四个面,每个面上分别以1,2,3,4标号;如图(2),等边三角形ABC的三个顶点处各有一个圆圈.明明和亮亮想玩跳圈游戏,游戏的规则为:游戏者从圈A起跳,每投掷一次骰子,骰子着地的一面点数是几,就沿着三角形的边逆时针方向连续跳跃几个边长.如:若第一次掷得点数为2,就逆时针连续跳2个边长,落到圈C;若第二次掷得点数为4,就从圈C继续逆时针连续跳4个边长,落到圈A.(1)明明随机掷一次骰子,她跳跃后落到圈A的概率为 ;(2)明明和亮亮一起玩跳圈游戏:明明随机投掷一次骰子,亮亮随机投掷两次骰子,以最终落到圈A为胜者.这个游戏公平吗?请说明理由. 图(1) 图(2)19.(11分)(2021·辽宁本溪期末)为了解学生对食品安全知识的了解情况,学校随机抽取了部分学生进行问卷调查,将调查结果按照“A:非常了解,B:了解,C:了解较少,D:不了解”四类分别进行统计,并绘制了下列两幅统计图(不完整).请根据图中信息,解答下列问题:(1)此次共调查了 名学生;扇形统计图中D所在扇形的圆心角为 ;(2)将上面的条形统计图补充完整;(3)若该校共有800名学生,请你估计对食品安全知识“非常了解”的学生的人数;(4)现有“非常了解”的男生2名,女生2名,从这4名学生中随机抽取2名学生进行座谈,刚好抽到同性别学生的概率是多少?第三章 概率的进一步认识12345678BD C A B A C B9.1310.1611.1312.613.31.B 抛掷硬币“正面向上”的概率为0.5,那么掷一枚质地均匀的硬币10次,可能有5次正面向上.2.D 画树状图如图所示,可知共有6种等可能的结果,恰好拿到红色帽子和红色围巾的结果有1种,∴恰好拿到红色帽子和红色围巾的概率为16.3.C 设袋子中白棋子有x 个,根据题意,得x20=0.6,解得x=12,∴袋子中白棋子的个数最有可能是12.4.A 把两张正面印有“冰墩墩”图案的卡片分别记为A 1,A 2,正面印有“雪容融”图案的卡片记为B,根据题意画树状图如下:从树状图可知,共有6种等可能的结果,其中抽出的两张卡片正面都印有“冰墩墩”图案的结果有2种,故P (抽出的两张卡片正面都印有“冰墩墩”图案)=26=13.5.B 画树状图如图:由树状图可知,共有20种等可能的结果,两次摸到的球颜色相同的结果有8种,∴两次摸到的球颜色相同的概率为820=25.6.A 把4张卡片从左到右依次标记为A,B,C,D,画树状图如图所示:由树状图可知,共有12种等可能的结果,因为只有C 卡片上的正面图案是轴对称图形,所以这两张卡片上的正面图案中有一张是轴对称图形的结果有6种,故P (这两张卡片上的正面图案中有一张是轴对称图形)=612=12.7.C 画树状图如图:由树状图可知,共有16种等可能的结果,其中使Δ=42-4ac<0,即ac>4的结果有8种,∴关于x 的一元二次方程ax 2+4x+c=0没有实数根的概率为816=12.8.B 在一个不透明的袋中有3个除颜色外完全相同的小球,其中2个黑球,1个白球,从中随机取出2个球,设A ,B 表示黑球,C 表示白球,则可画出题中的树状图;从某学习小组的两名男生和一名女生中随机选取两名学生进行竞答,设A ,B 表示男生,C 表示女生,则可画出题中的树状图;体育测试中,随机从足球、篮球、排球三个项目中选择两个项目,设A 表示足球,B 表示篮球,C 表示排球,则可画出题中的树状图;而小明,小王两个人分别去买一个盲盒,在三款盲盒中买到同一款盲盒,设A ,B ,C 分别表示三款盲盒,树状图为:9.1310.16 列表如下:AA B O A(A,A)(A,B)(A,O)A(A,A)(A,B)(A,O)B(B,A)(B,A)(B,O)O (O,A)(O,A)(O,B)由表可知共有12种等可能的结果,其中2个同学都是A 型血的结果有2种,∴P (2个同学都是A 型血)=212=16.11.13 根据题意画出树状图如下.由树状图可知,共有6种等可能的情况,其中能让灯泡L 1发光的情况有2种,即S 1S 2,S 2S 1,所以能让灯泡L 1发光的概率为26=13.12.6 假设不规则图案的面积为x cm 2,由题意得长方形的面积为15 cm 2,当事件A 试验次数足够多,即样本足够大时,其频率可估计事件A 发生的概率,故由题中折线统计图可知,小球落在不规则图案内的概率大约为0.4,所以x 15=0.4,解得x=6,所以估计此不规则图案的面积为6 cm 2.13.3 假设袋中的红球个数为1,此时袋中有1个黄球、1个红球,搅匀后从中任意摸出两个球,P (摸出一红一黄)=1,P (摸出两红)=0,不符合题意;假设袋中的红球个数为2,画树状图如下:由树状图可知,共有6种等可能的结果,其中两次摸到红球的结果有2种,摸出一红一黄的结果有4种,∴P (摸出一红一黄)=46=23,P (摸出两红)=26=13,不符合题意;假设袋中的红球个数为3,画树状图如下:由树状图可知,共有12种等可能的结果,其中两次摸到红球的结果有6种,摸出一红一黄的结果有6种,∴P (摸出一红一黄)=P (摸出两红)=612=12,符合题意,∴放入的红球个数为3.14.【参考答案】(1)14(3分)(2)根据题意画出如图所示的树状图:由树状图可知,共有16种等可能的结果,其中抽到的两张卡片上的图标是“共享出行”和“共享知识”的结果有2种,所以抽到的两张卡片上的图标是“共享出行”和“共享知识”的概率是216=18.(8分)15.【参考答案】(1)13(3分)(2)选择方案二.(4分)理由:画树状图如下.由树状图可知,共有9种等可能的结果,其中两次指针都指向红的部分的结果有4种,所以P (转动转盘B 两次,领取一份奖品)=49.(6分)由(1)知转动转盘A 一次,领取一份奖品的概率是13,因为13<49,所以选择方案二.(8分)16.【解题思路】(1)当试验次数达到1 500次时,摸到白球的频率接近于0.75,由此可估计摸到红球的概率;(2)先根据(1)的结论求出白球的个数和红球的个数,再列表得出所有等可能的结果,从中找到符合条件的结果,进而可求得概率.【参考答案】(1)0.75 14(4分)解法提示:由折线统计图可知,当试验次数很大时,摸到白球的频率将会接近0.75,从箱子中摸一次球,摸到红球的概率为1-0.75=0.25=14.(2)由(1)知,箱中白球的个数为4×0.75=3,则红球的个数为4-3=1,列表如下:白白白红白(白,白)(白,白)(红,白)白(白,白)(白,白)(红,白)白(白,白)(白,白)(红,白)红(白,红)(白,红)(白,红)由表知,共有12种等可能的结果,其中摸到一个红球和一个白球的结果有6种,∴摸到一个红球和一个白球的概率为612=12.(9分)17.【参考答案】(1)根据题意,画树状图如下: (3分)由树状图,可知共有12种等可能的结果,其中恰好选中甲、乙两位同学的结果有2种,所以P (恰好选中甲、乙两位同学)=212=16.(5分)(2)答案不唯一.如:在一个不透明的袋子中,放入四个除颜色外其他都相同的球,它们的颜色分别为白、黄、粉、橙,从袋中随机摸出一个球记下颜色,不放回,再从袋中随机摸出一个球,记下颜色.事件:两次摸出的球一个是白球,一个是粉球.(10分)18.【参考答案】(1)14(3分)(2)这个游戏不公平.(4分)理由:画树状图如图,共有16种等可能的结果,其中亮亮随机投掷两次骰子,最终落到圈A 的结果数为5,即共跳3个边长或6个边长,所以P (亮亮随机投掷两次骰子,最终落回到圈A )=516.(8分)因为14<516,所以这个游戏不公平.(10分)19.【参考答案】(1)120 54°(2分)解法提示:(25+23)÷40%=120(名),360°×10+8120=54°.(2)D 所占的百分比为(10+8)÷120×100%=15%,A 中的人数为120×(1-40%-20%-15%)=30(名),其中男生有30-16=14(名),C 中的人数为120×20%=24(名),其中女生有24-12=12(名).补全条形统计图如图所示:(4分)(3)800×(1-40%-20%-15%)=200(名),答:估计对食品安全知识“非常了解”的学生的人数为200.(7分)(4)画树状图:由树状图可知,共有12种等可能的结果,抽到同性别学生的结果有4种,所以P (刚好抽到同性别学生)=412=13.(11分)。
单元测试(三) 函数(时间:45分钟 满分:100分)一、选择题(每小题4分,共32分)1.(2016·南宁)已知正比例函数y =3x 的图像经过点(1,m),则m 的值为( B ) A.13 B .3 C .-13D .-3 2.(2016·滦南一模)函数y =2x +6自变量x 的取值范围在数轴上表示出来,正确的是( C )A BC D3.(2016·兰州)二次函数y =x 2+2x +4化为y =a(x -h)2+k 的形式,下列正确的是( B )A .y =(x +1)2+2B .y =(x +1)2+3C .y =(x -2)2+2D .y =(x -2)2+4 4.(2016·达州)下列说法中不正确的是( D ) A .函数y =2x 的图像经过原点 B .函数y =1x 的图像位于第一、三象限C .函数y =3x -1的图像不经过第二象限D .函数y =-3x的值随x 的值的增大而增大5.(2016·唐山开平区二模)若点(x 1,y 1),(x 2,y 2),(x 3,y 3)都是反比例函数y =1x 图像上的点,并且y 1<0<y 2<y 3,则下列各式中正确的是( B )A .x 1<x 2<x 3B .x 1<x 3<x 2C .x 2<x 1<x 3D .x 2<x 3<x 16.(2016·襄阳)一次函数y =ax +b 和反比例函数y =cx 在同一平面直角坐标系中的图像如图所示,则二次函数y=ax 2+bx +c 的图像大致为( C )A B C D 7.(2016·张家口二模)设圆、等腰直角三角形、正方形和等腰三角形边界上的一个定点为Q(如四个选项中的图形),动点P 从点Q 出发,在其边界上按顺时针方向匀速运动一周后又回到起点Q.设点P 运动的时间是t ,点P 和点Q 之间的距离是d ,如图是d 与t 之间函数关系的大致图像,则该图形可能是( D )A B C D8.甲、乙两车从A 城出发匀速行驶至B 城.在整个行驶过程中,甲、乙两车离开A 城的距离y(千米)与甲车行驶的时间t(小时)之间的函数关系如图所示.则下列结论:①A ,B 两城相距300千米;②乙车比甲车晚出发1小时,却早到1小时;③乙车出发后2.5小时追上甲车;④当甲、乙两车相距50千米时,t =54或154.其中正确的结论有( C )A .1个B .2个C .3个D .4个二、填空题(每小题5分,共20分)9.(2016·邵阳)已知反比例函数y =kx(k≠0)的图像如图所示,则k 的值可能是-1(写一个即可).10.(2016·巴中)已知二元一次方程组⎩⎪⎨⎪⎧x -y =-5,x +2y =-2的解为⎩⎪⎨⎪⎧x =-4,y =1,则在同一平面直角坐标系中,直线l 1:y =x +5与直线l 2:y =-12x -1的交点坐标为(-4,1).11.已知抛物线y =x 2+2x +m 与x 轴只有一个交点,则m =1.12.某商店销售某件商品所获的利润y(元)与所卖的件数x 之间的关系满足y =-x 2+1 000x -200 000,则当0<x ≤450时的最大利润为47_500元. 三、解答题(共48分)13.(14分)(2016·金华)如图1表示同一时刻的韩国首尔时间和北京时间,两地时差为整数.(1)设北京时间为x(时),首尔时间为y(时),就0≤x≤12,求y 关于x 的函数表达式,并填写下表(同一时刻的两地时间).北京时间 7:30 11:15 2:50 首尔时间8:3012:153:50(2)如图2表示同一时刻的英国伦敦时间(夏时制)和北京时间,两地时差为整数.如果现在伦敦(夏时制)时间为7:30,那么此时韩国首尔时间是多少?图1 图2 解:(1)从图1看出,同一时刻,首尔时间比北京时间多1小时, ∴y 关于x 的函数表达式为y =x +1.(2)从图2看出,设伦敦(夏时制)时间为t 时,则北京时间为(t +7)时, 由(1),知韩国首尔时间为(t +8)时,∴当伦敦(夏时制)时间为7:30,韩国首尔时间为15:30.14.(16分)(2016·唐山路北区二模)已知二次函数y =kx 2-4kx +3k(k≠0).(1)当k =1时,求该抛物线与坐标轴的交点的坐标; (2)当0≤x≤3时,求y 的最大值;(3)若直线y =2k 与二次函数的图像交于E ,F 两点,问线段EF 的长度是否是定值?如果是,求出其长度;如果不是,请说明理由.解:(1)当k =1时,该抛物线为y =x 2-4x +3, x 2-4x +3=0, 解得x 1=1,x 2=3.∴抛物线与x 轴的交点的坐标为(1,0),(3,0). 当x =0时,y =3,∴抛物线与y 轴的交点的坐标为(0,3). (2)对称轴为直线x =--4k2k=2,当k >0时,x =0时,y 有最大值3k ,当k <0时,y 的最大值即顶点的纵坐标,为-k.(3)⎩⎪⎨⎪⎧y =kx 2-4kx +3k ,y =2k , 解得⎩⎨⎧x 1=2+3,y 1=2k ,⎩⎨⎧x 2=2-3,y 2=2k.∴EF =23,即EF 为定值.15.(18分)(2016·唐山路南区二模)如图,一次函数y =kx +b 的图像与反比例函数y =mx 的图像相交于点A(-2,1),B(1,n).(1)求此一次函数和反比例函数的解析式; (2)请直接写出满足不等式kx +b -mx<0的解集;(3)在平面直角坐标系的第二象限内,边长为1的正方形EFDG 的边均平行于坐标轴,若E(-a ,a),如图,当曲线y =mx(x <0)与此正方形的边有交点时,求a 的取值范围.解:(1)把A(-2,1)代入y =m x ,得m =-2, ∴反比例函数的解析式为y =-2x .把B(1,n)代入y =-2x,得n =-2,∴B(1,-2).将A(-2,1),B(1,-2)分别代入y =kx +b ,得⎩⎪⎨⎪⎧-2k +b =1,k +b =-2. 解得⎩⎪⎨⎪⎧k =-1,b =-1. ∴一次函数的解析式为y =-x -1.(2)-2<x <0或x >1.(3)∵正方形EFDG 在第二象限,边均平行于坐标轴,且边长为1,E(-a ,a), ∴D(-a +1,a -1). ∴a >0,a -1>0.∴a>1.∴把E(-a ,a)和D(-a +1,a -1)分别代入y =-2x. ∴a =-2-a,a 2=2.∵a >1,∴a = 2.∴a -1=-2-a +1,(a -1)2=2,a =±2+1.∵a >1,∴a =2+1, ∴2≤a≤2+1.。
一、选择题1.函数y =ax 2与y =ax +a ,在第一象限内y 随x 的减小而减小,则它们在同一直角坐标系中的图象大致位置是( )A .B .C .D .2.设函数()()12y x x m =--,23y x=,若当1x =时,12y y =,则( ) A .当1x >时,12y y < B .当1x <时,12y y > C .当0.5x <时,12y y <D .当5x >时,12y y >3.下列函数关系式中,属于二次函数的是( ) A .21y x =+ B .21y x x=+C .()()221y x x x=+-- D .21y x =-4.已知关于x 的二次函数y=(x-h )2+3,当1≤x≤3时,函数有最小值2h ,则h 的值为( ) A .32B .32或2 C .32或6 D .32或2或6 5.若()14,A y -,()21,B y -,()30,C y 为二次函数2(2)3y x =-++的图象上的三点,则1y ,2y ,3y 的大小关系是( ) A .123y y y <=B .312y y y =<C .312 y y y <<D .123y y y =<6.已知二次函数()()2y x p x q =---,若m ,n 是关于x 的方程()()20x p x q ---=的两个根,则实数m ,n ,p ,q 的大小关系可能是( )A .m <p <q <nB .m <p <n <qC .p <m <n <qD .p <m <q <n7.我校门口道路的隔离栏通常会涂上醒目的颜色,呈抛物线形状(如图1),图2是一个长为2米,宽为1米的矩形隔离栏,中间被4根栏杆五等分,每根栏杆的下面一部分涂上醒目的蓝色,颜色的分界处(点E ,点P )以及点A ,点B 落上同一条抛物线上,若第1根栏杆涂色部分(EF )与第2根栏杆未涂色部分(PQ )长度相等,则EF 的长度是( )A .13米 B .12米 C .25米 D .35米 8.要在抛物线()4y x x =-上找点(),P a b ,针对b 的不同取值,所找点P 的个数,三人的说法如下( )甲:若5b =,则点P 的个数为0 乙:若4b =,则点P 的个数为1 丙:若3b =,则点P 的个数为1 A .甲乙错,丙对 B .甲丙对,乙错C .甲乙对,丙错D .乙丙对,甲错9.表格对应值:x1 2 3 4 2ax bx c ++ 0.5-512.522判断关于x 的方程2ax bx c ++=的一个解x 的范围是( )A .01x <<B .12x <<C .23x <<D .34x <<10.二次函数2y ax bx c =++的图象如图所示,那么一次函数y ax b =+的图象大致是( ).A .B .C .D .11.已知点1(1,)y -,(,)23y ,31(,)2y 在函数22y x x m =++的图象上,则1y ,2y ,3y 的大小关系是( )A .123y y y >>B .213y y y >>C .231y y y >>D .312y y y >>12.如图,以直线1x =为对称轴的二次函数2y ax bx c =++的图象与x 轴负半轴交于A 点,则一元二次方程20ax bx c ++=的正数解的范围是( ).A .23x <<B .34x <<C .45x <<D .56x <<二、填空题13.在ABC 中,A ∠,B 所对的边分别为a ,b ,30C ∠=︒.若二次函数2()()()y a b x a b x a b =+++--的最小值为2a-,则A ∠=______︒. 14.二次函数223y x =的图象如图所示,点0A 位于坐标原点,点1A ,2A ,3A ,…,2013A 在y 轴的正半轴上,点1B ,2B ,3B ,…,2013B 在二次函数223y x =位于第一象限的图象上,若011A B A △,122A B A △,233A B A △,…,201220132013A B A △都为等边三角形,则201220132013A B A △的边长=________.15.如图,平面直角坐标系中,桥孔抛物线对应的二次函数关系式是y =﹣13x 2,桥下的水面宽AB 为6m ,当水位上涨2m 时,水面宽CD 为_____m (结果保留根号).16.把函数y =(x ﹣1)2+2图象向右平移1个单位长度,平移后图象的函数解析式为_____.17.单行隧道的截面是抛物线形,且抛物线的解析式为21 3.258y x =-+,一辆车高3米,宽4米,该车________(填“能”或“不能”)通过该隧道.18.将抛物线y =2(x ﹣1)2+3绕着点A (2,0)旋转180°,则旋转后的抛物线的解析式为_____.19.定义:在平面直角坐标系中,若点A 满足横、纵坐标都为整数,则把点A 叫做“整点”.如:()3,0B 、()1,3C -都是“整点”.抛物线()2220y ax ax a a =++->与x 轴交于点M ,N 两点,若该抛物线在M 、N 之间的部分与线段MN 所围的区域(包括边界)恰有5个整点,则a 的取值范围是_______.20.在平面直角坐标系xOy 中,函数y=x 2的图象经过点M (x 1,y 1),N (x 2,y 2)两点,若﹣4<x 1<﹣2,0<x 2<2,则y 1 ______y 2 .(用“<”,“=”或“>”号连接)三、解答题21.某超市销售一种牛奶,进价为每箱36元,规定售价不低于进价.现在的售价为每箱60元,每月可销售100箱.市场调查发现:若这种牛奶的售价每降价1元,则每月的销量将增加10箱,设每箱牛奶降价x 元(x 为正整数),每月的销量为y 箱.(1)写出y 与x 之间的函数关系式和自变量x 的取值范围;(2)超市如何定价,才能使每月销售牛奶的利润最大?最大利润是多少元?22.如图,已知抛物线y =ax 2+bx +c (a ≠0)经过A (﹣1,0),B (3,0),C (0,﹣3)三点,直线l 是抛物线的对称轴.(1)求抛物线的函数解析式;(2)在抛物线的对称轴上是否存在一点M ,使得△ACM 的周长最短?若存在,求点M 的坐标;若不存在,请说明理由. 23.阅读下列材料:我们知道,一次函数y kx b =+的图象是一条直线,而y kx b =+经过恒等变形可化为直线的另一种表达形式0Ax By C ++=(A 、B 、C 是常数,且A 、B 不同时为0).如图1,点()P m n ,到直线l :0Ax By C ++=的距离(d )计算公式是:22A mB n Cd A B⨯+⨯+=+.例:求点()1,2P 到直线51126y x =-的距离d 时,先将51126y x =-化为51220x y --=,再由上述距离公式求得()()()225112222113512d ⨯+-⨯+-==+-. 解答下列问题:如图2,已知直线443y x =--与x 轴交于点A ,与y 轴交于点B ,抛物线245y x x =-+上的一点()3,2M .(1)请将直线443y x =--化为“0Ax By C ++=”的形式; (2)求点M 到直线AB 的距离;(3)抛物线上是否存在点P ,使得PAB △的面积最小?若存在,求出点P 的坐标及PAB △面积的最小值;若不存在,请说明理由.24.如图,抛物线()20y ax bx c a =++≠经过原点,点11,8⎛⎫ ⎪⎝⎭和动点P 都是该抛物线上点.(1)求该抛物线的解析式.(2)若y 轴上点()0,A m ,()()0,0B m m ->,//BC x 轴,过点P 作PC BC ⊥于C ,设点(),P x y 满足AP PC =,求m 的值.25.某片果园有果树60棵,现准备多种一些果树提高果园产量,但是如果多种树,那么树与树之间的距离和每棵树所受光照就会减少,单棵树的产量随之降低.若该果园每棵果树产果y (千克)与增种果树x (棵)之间的函数关系如图所示. (1)求每棵果树产果y (千克)与增种果树x (棵)之间的函数关系式; (2)设果园的总产量为w (千克),求w 与x 之间的函数表达式;(3)试说明(2)中总产量w (千克)随增种果树x (棵)的变化而变化的情况,并指出增种果树x 为多少棵时获得最大产量,最大产量w 是多少?26.为了在体育中考中取得更好地成绩,小明积极训练.在某次试投中,实心球经过的路线是如图所示的抛物线的一部份.已知实心球出手处A 距离地面的高度是169米,当实心球运行的水平距离为3米时,达到最大高度259米的B 处,实心球的落地点为C .(1)如图,已知AD CD于D,以D为原点,CD所在直线为x轴建立平面直角坐标系,在图中画出坐标系,点B的坐标为________;(2)小明此次投掷的成绩是多少米?【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】先根据二次函数y=ax2的增减性确定出 a >0,然后判断出二次函数的开口方向,再根据一次函数的性质确定出一次函数图象经过的象限与 y 轴的交点,然后判断即可.【详解】解:∵函数y=ax2在第一象限内y随x的减小而减小,∴a>0,∴y=ax2的图象经过原点且开口方向向上,y=ax+a经过第一三象限,且与y轴的正半轴相交.A.二次函数开口向上,一次函数与y轴的负半轴相交,不符合题意B.二次函数开口向上,一次函数与y轴的正半轴相交,符合题意C.二次函数开口向下,一次函数与y轴的负半轴相交,不符合题意D.二次函数开口向下,一次函数与y轴的正半轴相交,不符合题意故选:B.【点睛】本题考查了二次函数的图象,一次函数的图象,是基础题,根据二次函数的增减性确定出a 是正数是解题的关键.2.D解析:D【分析】当y1=y2,即(x﹣2)(x﹣m)=3x,把x=1代入得,(1﹣2)(1﹣m)=3,则m=4,画出函数图象即可求解.【详解】解:当y1=y2,即(x ﹣2)(x ﹣m )=3x, 把x =1代入得,(1﹣2)(1﹣m )=3, ∴m =4,∴y 1=(x ﹣2)(x ﹣4), 抛物线的对称轴为:x =3,如下图:设点A 、B 的横坐标分别为1,5,则点A 、B 关于抛物线的对称轴对称,从图象看在点B 处,即x =5时,y 1>y 2, 故选:D . 【点睛】本题考查的是二次函数与不等式(组),主要要求学生通过观察函数图象的方式来求解不等式.3.D解析:D 【分析】利用二次函数定义进行解答即可. 【详解】A 、21y x =+是一次函数,故A 不符合题意;B 、2y x =+1x不是二次函数,故B 不符合题意; C 、()()2222122y x x x x x x x =+--=+--=-,此函数是一次函数,故C 不符合题意;D 、21y x =-是二次函数,故D 符合题意; 故答案为:D . 【分析】本题主要考查了二次函数定义,关键是掌握形如2y ax bx c =++(a 、b 、c 是常数,a≠0)的函数,叫做二次函数.4.C解析:C 【分析】依据二次函数的增减性分1≤h≤3、h <1、h >3三种情况,由函数的最小值列出关于h 的方程,解之可得. 【详解】∵()2=+3y x h -中a=1>0,∴当x <h 时,y 随x 的增大而减小;当x >h 时,y 随x 的增大而增大; ①若1≤h≤3,则当x=h 时,函数取得最小值2h ,即3=2h , 解得:h=32; ②若h <1,则在1≤x≤3范围内,x=1时,函数取得最小值2h , 即()2132h h -+=, 解得:h=2>1(舍去);③若h >3,则在1≤x≤3范围内,x=3时,函数取得最小值2h , 即()2332h h -+=, 解得:h=2(舍)或h=6, 综上,h 的值为32或6, 故选C . 【点睛】本题主要考查二次函数的最值,熟练掌握分类讨论思想和二次函数的增减性是解题的关键.5.B解析:B 【分析】根据二次函数的解析式可得图象开口向下,对称轴为2x =-,故点()14,A y -与点()30,C y 关于对称轴对称,即13y y =,再根据点()21,B y -与点()30,C y 在对称轴右侧,y 随x 增大而减小即可得出结论. 【详解】解:二次函数2(2)3y x =-++的图象开口向下,对称轴为2x =-, ∴点()14,A y -与点()30,C y 关于对称轴对称, ∴13y y =,∵点()21,B y -与点()30,C y 在对称轴右侧,y 随x 增大而减小, ∴23y y >, ∴312y y y =<, 故选:B .【点睛】本题考查二次函数的性质,根据二次函数解析式得到对称轴是解题的关键.6.A解析:A 【分析】根据二次函数图象性质和一元二次方程的知识结合已知条件,可以得到结论:m 、n 一定是一个最大、一个最小,而p 、q 一定介于m 、n 之间,从而解答本题. 【详解】解:∵二次函数的解析式是()()2y x p x q =--- ∴1a =∴该二次函数的抛物线开口向上∵m 、n 是关于x 的方程()()20x p x q ---=的两个根 ∴当x m =或xn =时,0y =∵当x p =或x q =时,2y =-∴m 、n 一定是一个最大、一个最小,而p 、q 一定介于m 、n 之间. 故选:A 【点睛】本题考查了抛物线与x 轴的交点情况和一元二次方程根的关系、二次函数图象性质,解题的关键是明确题意,利用二次函数的图象性质解答.7.C解析:C 【分析】根据抛物线形状建立二次函数模型,以AB 中点为原点,建立坐标系xOy ,通过已知线段长度求出A(1,0)B(-1,O),由二次函数的性质确定y =ax 2-a ,利用PQ =EF 建立等式,求出二次函数中的参数a ,即可得出EF 的值. 【详解】解:如图,令P 下方的点为H ,以AB 中点为原点,建立坐标系xOy ,则A(1,0)B(-1,O), 设抛物线的方程为y=ax 2+bx+c ∴抛物线的对称轴为x=0,则2ba-=0,即b =0.∴y =ax 2 +c .将A(1,0)代入得a+c =0,则c =-a .∴y =ax 2-a .∵OH =2×15×12=0.2,则点H 的坐标为(-0.2,0) 同理可得:点F 的坐标为(-0.6,0).∴PH =a×(-0.2)2-a =-0.96aEF =a×(-0.6)2-a =-0.64a .又∵PQ =EF =1-(-0.96a )=-0.64a∴1+0.96a =-0.64a . 解得a =58-.∴y =58-x 2+58. ∴EF =(58-)×(-0.6)2+58=25. 故选:C .【点睛】 本题考查了二次函数的应用,解题的关键是能在几何图形中建立适当的坐标系并结合图形的特点建立等式求出二次函数表达式.8.C解析:C【分析】求出抛物线的顶点坐标为(2,4),由二次函数的性质对甲、乙、丙三人的说法分别进行判断,即可得出结论.【详解】解:y=x (4-x )=-x 2+4x=-(x-2)2+4,∴抛物线的顶点坐标为(2,4),∴在抛物线上的点P 的纵坐标最大为4,∴甲、乙的说法正确;若b=3,则抛物线上纵坐标为3的点有2个,∴丙的说法不正确;故选:C .【点睛】本题考查了二次函数图象上点的坐标特征、抛物线的顶点坐标等知识;熟练掌握二次函数图象上点的坐标特征是解题的关键.9.B解析:B【分析】利用x =1和x =2所对应的函数值可判断抛物线y=ax 2+bx +c 与x 轴的一个交点在(1,0)和(2,0)之间,则根据抛物线于x 轴的交点问题可判断关于x 的方程ax 2+bx +c =0(a≠0)的一个解x 的范围.【详解】解:∵x =2时,y =5,即ax 2+bx +c >0;x =1时,y =-0.5,即ax 2+bx +c <0,∴抛物线y=ax 2+bx +c 与x 轴的一个交点在(1,0)和(2,0)之间,∴关于x 的方程ax 2+bx +c =0(a ≠0)的一个解x 的范围是1<x <2.故选:B .【点睛】本题考查了抛物线与x 轴的交点:把求二次函数y =ax 2+bx +c (a ,b ,c 是常数,a ≠0)与x 轴的交点坐标问题转化为解关于x 的一元二次方程.10.C解析:C【分析】根据二次函数图象,知道开口和对称轴,判断a 、b 的符号,再进行判断一次函数的图象.【详解】解:根据二次函数图象知:开口向下,则0a < 故一次函数从左往右是下降趋势.对称轴再y 轴左边,故02b a-< 即得:0b < 故一次函数交y 轴的负半轴. 则一次函数y ax b =+图象便为C 选项故本题选择C .【点睛】本题属于二次函数与一次函数的综合,关键在意找到系数的正负.11.C解析:C【分析】由抛物线222(1)1y x x m x m =++=++-,可知抛物线对称轴为x =-1,开口向上,然后根据各点到对称轴的结论可判断y 1,y 2,y 3的大小.【详解】∵222(1)1y x x m x m =++=++-,∴抛物线对称轴为x =-1,开口向上,又∵点((,)23y 离对称轴最远,点1(1,)y -在对称轴上,∴231y y y >>.故选:C .【点睛】本题考查了二次函数图象上点的坐标特征,熟练掌握二次函数的性质是解题的关键.12.C解析:C【分析】先根据图象得出对称轴左侧图象与x 轴交点横坐标的取值范围,再利用对称轴1x =,可以算出右侧交点横坐标的取值范围.【详解】∵二次函数2y ax bx c =++的对称轴为1x =,而对称轴左侧图象与x 轴交点横坐标的取值范围是32x -<<-,∴右侧交点横坐标的取值范围是45x <<.故选:C .【点睛】本题主要考查了图象法求一元二次方程的近似根,解答本题首先需要观察得出对称轴左侧图象与x 轴交点横坐标的取值范围,再根据对称性算出右侧交点横坐标的取值范围.二、填空题13.75【分析】根据二次函数的性质当时y 有最小值为由此得到=整理得a=b 从而将问题转化为等腰三角形底角计算问题【详解】∵ab 是的边∴a+b >0;∴有最小值且当x=时取得最小值y=根据题意得=整理得a=b解析:75【分析】 根据二次函数的性质,当1x 2=-时,y 有最小值为534a b -+,由此得到534a b -+=2a -,整理得a=b ,从而将问题转化为等腰三角形底角计算问题. 【详解】∵a ,b 是ABC 的边,∴a+b >0;∴2()()()y a b x a b x a b =+++--有最小值,且当x=()12()2a b a b +-=-+时,取得最小值, y=534a b -+,根据题意,得534a b -+=2a -, 整理,得a=b , ∴ABC 是等腰三角形,∵30C ∠=︒, ∴180180307522C A -∠-∠===︒, ∴∠A 的度数为75︒,故填75.【点睛】本题考查了二次函数的最小值,等腰三角形的判定和性质,灵活利用二次函数的最小值构造等式是解题的关键.14.2013【分析】分别过B1B2B3作y 轴的垂线垂足分别为ABC 设A0A1=aA1A2=bA2A3=c 则AB1=aBB2=bCB3=c 再根据所求正三角形的边长分别表示B1B2B3的纵坐标逐步代入抛物线解析:2013【分析】分别过B 1,B 2,B 3作y 轴的垂线,垂足分别为A 、B 、C ,设A 0A 1=a ,A 1A 2=b ,A 2A 3=c ,则AB 1=32a ,BB 2=32b ,CB 3=32c ,再根据所求正三角形的边长,分别表示B 1,B 2,B 3的纵坐标,逐步代入抛物线y=23x 2中,求a 、b 、c 的值,得出规律. 【详解】分别过1B ,2B ,3B 作y 轴的垂线,垂足分别为A 、B 、C ,设01A A a =,12A A b =,23A A c =,由勾股定理则22101032AB A B AA a =-=,232BB b =,332CB c =, 1111312233AA AB a a ==⨯=,则13,22a B a ⎛⎫ ⎪ ⎪⎝⎭, 2231233BA BB b b ==⨯=,则23,2b B b a ⎛⎫+ ⎪ ⎪⎝⎭, 33312233CA c c ===,则33,2c B a b ⎫++⎪⎪⎝⎭, 在正011A B A △中,13,2a B ⎫⎪⎪⎝⎭,代入223y x =中,得223234a a =⨯,解得1a =,即011A A =, 在正122A B A △中,23,12b B ⎫+⎪⎪⎝⎭,代入223y x =中,得2231234b b +=⨯,解得2b =,即122A A =, 在正233A B A △中,33,32c B c ⎛⎫+ ⎪ ⎪⎝⎭, 代入223y x =中,得2233234c c ⎛⎫+=⨯ ⎪⎝⎭,解得3c =,即233A A =, …,依此类推由此可得201220132013A B A △的边长2013=.故答案为:2013.【点睛】本题考查了二次函数的综合运用.勾股定理应用,掌握探究规律题的解题方法,关键是根据正三角形的性质用边长表示抛物线上点的坐标,利用抛物线解析式求正三角形的边长,得到规律.15.2【分析】首先求出B 点纵坐标进而得出D 点纵坐标即可求出D 点横坐标进而得出CD 的长【详解】解:由题意可得:当AB =6m 则B 点横坐标为3故此时y =﹣×32=﹣3当水位上涨2m 时此时D 点纵坐标为:﹣3+2解析:3【分析】首先求出B 点纵坐标,进而得出D 点纵坐标,即可求出D 点横坐标,进而得出CD 的长.【详解】解:由题意可得:当AB =6m ,则B 点横坐标为3,故此时y =﹣13×32=﹣3, 当水位上涨2m 时,此时D 点纵坐标为:﹣3+2=﹣1,则﹣1=﹣13x 2, 解得:x =3故当水位上涨2m时,水面宽CD为.故答案为:【点睛】此题主要考查了二次函数的应用,求出D点横坐标是解题关键.16.y=(x﹣2)2+2【分析】根据原二次函数的解析式可得原抛物线的顶点进而可得新抛物线的顶点根据平移不改变二次项的系数利用顶点式可得新函数解析式【详解】∵二次函数y=(x﹣1)2+2的图象的顶点坐标为解析:y=(x﹣2)2+2【分析】根据原二次函数的解析式可得原抛物线的顶点,进而可得新抛物线的顶点,根据平移不改变二次项的系数利用顶点式可得新函数解析式.【详解】∵二次函数y=(x﹣1)2+2的图象的顶点坐标为(1,2),∴向右平移1个单位长度后的函数图象的顶点坐标为(2,2),∴所得的图象解析式为y=(x﹣2)2+2.故答案为y=(x﹣2)2+2.【点睛】本题考查了二次函数的平移问题;用到的知识点为:平移不改变二次项的系数;二次函数的平移,看顶点的坐标平移即可,用顶点式较简便.17.不能【分析】根据题意将x=2代入求出相应的y值然后与车高比较大小即可解答本题【详解】解:将x=2代入y=-x2+325得y=-×22+325=275∵275<3∴该车不能通过隧道故答案为:不能【点睛解析:不能.【分析】根据题意,将x=2代入求出相应的y值,然后与车高比较大小即可解答本题.【详解】解:将x=2代入y=-18x2+3.25,得y=-18×22+3.25=2.75,∵2.75<3,∴该车不能通过隧道,故答案为:不能.【点睛】本题考查二次函数的应用,解题的关键是明确题意,找出所求问题需要的条件.18.y=﹣2(x﹣3)2﹣3【分析】由题意根据抛物线的顶点变换规律得到新抛物线解析式的顶点坐标进而由此写出旋转后的抛物线所对应的函数表达式即可【详解】解:抛物线y=2(x﹣1)2+3的顶点为(13)设绕解析:y=﹣2(x﹣3)2﹣3【分析】由题意根据抛物线的顶点变换规律得到新抛物线解析式的顶点坐标,进而由此写出旋转后的抛物线所对应的函数表达式即可.【详解】解:抛物线y=2(x﹣1)2+3的顶点为(1,3),设绕着点A(2,0)旋转180°得到(x,y),∴12x+=2,32y+=0,解得x=3,y=﹣3,∴绕着点A(2,0)旋转180°得到(3,﹣3),故旋转后的抛物线解析式是y=﹣2(x﹣3)2﹣3.故答案为:y=﹣2(x﹣3)2﹣3.【点睛】本题考查二次函数图象与几何变换,由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.19.1<a≤2【分析】画出图象找到该抛物线在MN之间的部分与线段MN所围的区域(包括边界)恰有5个整点的边界利用与y交点位置可得a的取值范围【详解】解:抛物线y=ax2+2ax+a−2(a>0)化为顶点解析:1<a≤2【分析】画出图象,找到该抛物线在M、N之间的部分与线段MN所围的区域(包括边界)恰有5个整点的边界,利用与y交点位置可得a的取值范围.【详解】解:抛物线y=ax2+2ax+a−2(a>0)化为顶点式为y=a(x+1)2−2,∴函数的对称轴:x=−1,顶点坐标为(−1,−2),∴M和N两点关于x=−1对称,根据题意,抛物线在M、N之间的部分与线段MN所围的区域(包括边界)恰有5个整点,这些整点是(0,0),(−1,0),(−1,−1),(−1,−2),(−2,0),如图所示:∵当x=0时,y=a−2,∴−1<a−2≤0,当x=1时,y=4a−2>0,即:120 420aa--≤-⎧⎨⎩<>,解得1<a≤2,故答案为:1<a≤2.【点睛】本题考查抛物线与x轴的交点、配方法确定顶点坐标、待定系数法等知识,利用函数图象确定与y轴交点位置是本题的关键.20.>【分析】根据二次函数的性质即可求解【详解】解:由y=x2可知∵a=1>0∴抛物线的开口向上∵抛物线的对称轴为y轴∴当x>0时y随x的增大而增大∵-4<x1<-20<x2<2∴2<-x1<4∴y1>解析:>【分析】根据二次函数的性质即可求解.【详解】解:由y=x2可知,∵a=1>0,∴抛物线的开口向上,∵抛物线的对称轴为y轴,∴当x>0时,y随x的增大而增大,∵-4<x1<-2,0<x2<2,∴2<-x1<4,∴y1>y2.故答案为:>.【点睛】本题考查了二次函数图象上的点的坐标特征及二次函数的性质.当a>0时,开口向上,在对称轴的左侧y随x的增大而减小,在对称轴的右侧,y随x的增大而增大;当a<0,开口向下,在对称轴的左侧y随x的增大而增大,在对称轴的右侧,y随x的增大而减小;三、解答题21.(1)10010y x =+,1≤x ≤24,且x 为整数;(2)超市定价为53元时,才能使每月销售牛奶的利润最大,最大利润是2890元.【分析】(1)根据价格每降低1元,平均每月多销售10箱,由每箱降价x 元,多卖10x ,据此可以列出函数关系式;(2)由利润=(售价-成本)×销售量列出函数关系式,求出最大值.【详解】解:(1)根据题意,得:y =100+10x ,由60﹣x ≥36得x ≤24,∴1≤x ≤24,且x 为整数;(2)设所获利润为W ,则W =(60﹣x ﹣36)(10x +100)=﹣10x 2+140x +2400=﹣10(x ﹣7)2+2890,∵此二次函数的二次项系数小于0,∴函数开口向下,有最大值,∴当x =7时,W 取得最大值,最大值为2890,此时售价为60-7=53(元),答:超市定价为53元时,才能使每月销售牛奶的利润最大,最大利润是2890元.【点睛】本题主要考查二次函数应用,由利润=(售价-成本)×销售量列出函数关系式求最值,用二次函数解决实际问题是解题的关键.22.(1)223y x x =--;(2)存在,M (1,﹣2)【分析】(1)把A (﹣1,0),B (3,0),C (0,﹣3)代入y =ax 2+bx +c 可求出a 、b 、c 的值,即可确定二次函数关系式;(2)由对称可知,直线BC 与直线x =1的交点就是要求的点M ,求出直线BC 的关系式即可.【详解】解:(1)把A (﹣1,0),B (3,0),C (0,﹣3)代入y =ax 2+bx +c 得,09303a b c a b c c -+=⎧⎪++=⎨⎪=-⎩,解得,123a b c =⎧⎪=-⎨⎪=-⎩, ∴抛物线的关系式为223y x x =--;(2)抛物线223y x x =--的对称轴为212x -=-=, ∵点M 在对称轴x =1上,且△ACM 的周长最短,∴MC +MA 最小,∵点A 、点B 关于直线x =1对称,∴连接BC 交直线x =1于点M ,此时MC +MA 最小,设直BC 的关系式为y =kx +b ,∵B (3,0),C (0,﹣3),∴303k b b +=⎧⎨=-⎩,解得,13k b =⎧⎨=-⎩, ∴直线BC 的关系式为3y x =-,当x =1时,132y =-=-,∴点M (1,﹣2),∴在抛物线的对称轴上存在一点M ,使得△ACM 的周长最短,此时M (1,﹣2).【点睛】本题考查二次函数综合,解题的关键是掌握抛物线解析式的方法和利用轴对称的性质解决线段和最短问题.23.(1)43120x y ++=;(2)点M 到直线AB 的距离为6;(3)存在,413,39P ⎛⎫ ⎪⎝⎭,△PAB 面积最小值为656. 【分析】(1)根据题意可直接进行化简;(2)根据题中所给公式可直接进行代值求解;(3)设点()2,45P a a a -+,根据题意可得点P 到直线AB 的距离,然后根据三角形面积计算公式可得2327422PAB Sa a =-+,最后根据二次函数的性质可进行求解. 【详解】 解:(1)由443y x =--可得:43120x y ++=; (2)由公式22A m B n Cd A B ⨯+⨯+=+()3,2M 可得:点M 到直线AB的距离为:3065d ===; (3)存在点P ,使△PAB 的面积最小,理由如下:设点()2,45P a a a -+,则有:点P 到直线AB的距离为:238275a a d -+==,由图像可得当y>0时,x 的值为全体实数,∴238270a a -+>,∵直线443y x =--与x 轴交于点A ,与y 轴交于点B , ∴当x=0时,y=-4,当y=0时,x=-3, ∴()()3,0,0,4A B --,∴5AB =, ∴22132734654222236PAB S AB d a a a ⎛⎫=⋅=-+=-+ ⎪⎝⎭, ∴当43a =时,△PAB 的面积最小,即为656PAB S =, ∴此时点P 的坐标为413,39⎛⎫ ⎪⎝⎭. 【点睛】本题主要考查二次函数的图像与性质及点到直线的距离公式,关键是根据题中所给点到直线的距离公式进行分析和求解问题即可.24.(1)218y x =;(2)m=2 【分析】(1)运用待定系数法求解即可;(2)分别求出PC ,PA 的长,根据PC=PA 列方程求解即可.【详解】解:(1)由于该抛物线经过原点(0,0),对称轴为y 轴,∴c=0,b=0∴该抛物线的解析式为2y ax =,把点(1,18)代入得,18a = ∴该抛物线的解析式为218y x =; (2)∵()0,A m ,B(0,-m),P(x ,y)且//BC x 轴,PC BC ⊥,P 在抛物线上,∴C (x ,-m ),P (x ,21x 8) ∴PC=218x m + 作AM ⊥PC 于M ,则222PA AM PM =+∴221()8PA x x m =+- ∵PA=PC ∴22PA PC =即2222211()()88x m x x m +=+-整理得,2202m x x -= ∴2(1)02m x -= ∵0x ≠∴102m -= 解得,m=2.【点睛】 此题主要考查了运用待定系数法求二次函数解析式以及二次函数图象上点的坐标特征,求出PC ,PA 的长是解答此题的关键.25.(1)1802y x =-+;(2)215048002w x x =-++ ;(3)当x=50时,w 的最大值为6050.【分析】(1)由图像可得坐标()()12,74,28,66,设y kx b =+,然后代入求解即可;(2)根据(1)及题意可直接进行求解;(3)由(2)及二次函数的性质可进行求解.【详解】解:(1))由图像可得坐标()()12,74,28,66,则设y kx b =+,把点()()12,74,28,66代入得:12742866k b k b +=⎧⎨+=⎩,解得:1280k b ⎧=-⎪⎨⎪=⎩, ∴1802y x =-+; (2)由(1)及题意得:()()16060802w x y x x ⎛⎫=+⋅=+⋅-+ ⎪⎝⎭215048002x x =-++; (3)由(2)得:()221150480050605022w x x x =-++=--+, ∴102a =-<,开口向下,对称轴为直线50x =, ∴当50x ≤时,y 随x 的增大而增大,当50x ≥时,y 随x 的增大而减小,∴当50x =时,w 取最大,最大值为6050.【点睛】本题主要考查二次函数的实际应用,熟练掌握二次函数的应用是解题的关键.26.(1)253,9B ⎛⎫ ⎪⎝⎭;(2)8米 【分析】(1)根据题意直接写出坐标即可;(2)求出二次函数表达式,求C 点横坐标即可;【详解】(1)坐标系253,9B ⎛⎫ ⎪⎝⎭(2)设抛物线的表达式为225(3)(0)9y a x a =-+≠ 由抛物线经过点160,9A ⎛⎫ ⎪⎝⎭得21625(3)99a =-+解得19a =-2125(3)99y x =--+ 0y =时,18x =,22x =-(舍) 答:小明此次投掷的成绩是8米【点睛】此题考查利用二次函数解决实际问题,理解函数定义是关键。
第二十章达标检测卷(150分 90分钟)题号一二三总分得分一、选择题(每题4分,共40分)1.为了了解学生的考试成绩,数学老师将全班50名学生的期末数学考试成绩(满分100分)进行了统计分析,发现在60分以下的有3人,在60~70分的有8人,在70~80分的有13人,在80~90分的有11人,在90分以上(含90分)的有15人.则该统计过程中的数据11应属于的统计量是( )A.众数 B.中位数 C.频数 D.频率2.甲、乙两组数据的频数直方图如下,其中方差较大的一组是( )A.甲 B.乙 C.一样大 D.不能确定3.王老师对本班40名学生的血型进行了统计分析,列出如下的统计表,则本班A型血的人数是( )组别A型B型AB型O型频率0.4 0.35 0.1 0.15A.16人 B.14人 C.4人 D.6人4.某校组织了“讲文明、守秩序、迎南博”知识竞赛活动,从中抽取了7名同学的参赛成绩如下(单位:分):80,90,70,100,60,80,80.则这组数据的中位数和众数分别是( )A.90,80 B.70,80C.80,80 D.100,805.今年,我省启动了“关爱留守儿童工程”.某村小学为了了解各年级留守儿童的数量,对一到六年级留守儿童数量进行了统计,得到每个年级的留守儿童人数分别为10,15,10,17,18,20.对于这组数据,下列说法错误..的是( )A.平均数是15 B.众数是10C .中位数是17D .方差是4436.小明在统计某市6月1日到10日每一天最高气温的变化情况时制作的折线图如图所示,则这10天最高气温的中位数和众数分别是( )A .33℃,33℃ B.33℃,32℃ C.34℃,33℃ D.35℃,33℃7.期中考试后,班里有两位同学议论他们所在小组同学的数学成绩,小明说:“我们组成绩是86分的同学最多”,小英说:“我们组的7位同学成绩排在最中间的恰好也是86分”.上面两位同学的话能反映出的统计量是( )A .众数和平均数B .平均数和中位数C .众数和方差D .众数和中位数8.正整数4,5,5,x ,y 从小到大排列后,其中位数为4,如果这组数据唯一的众数是5,那么,所有满足条件的x ,y 中,x +y 的最大值是( )A .3B .4C .5D .69.如果一组数据a 1,a 2,a 3,…,a n 的方差是2,那么一组新数据2a 1,2a 2,…,2a n的方差是( )A .2B .4C .8D .1610.甲、乙两班举行电脑汉字输入比赛,参赛学生每分钟输入汉字的个数统计结果如下表:班级 参赛人数 中位数 方差 平均数 甲 55 149 191 135 乙55151110135某同学分析上表后得出如下结论:①甲、乙两班学生汉字输入的平均水平相同;②乙班优秀的人数多于甲班优秀的人数(每分钟输入汉字的个数不少于150为优秀);③甲班成绩的波动比乙班大.上述结论正确的是( )A .①②③B .①②C .①③D .②③ 二、填空题(每题5分,共20分) 11.为测试两种电子表的走时误差,进行了如下统计:平均数方差[甲0.4 0.026乙0.4 0.137则这两种电子表走时稳定的是______________.12.两组数据:3,a,2b,5与a,6,b的平均数都是6,若将这两组数据合并为一组数据,则这组新数据的中位数为________.13.已知一组数据1,2,3,…,n(从左往右数,第1个数是1,第2个数是2,第3个数是3,依次类推,第n个数是n).设这组数据的各数之和是s,中位数是k,则s=________(用只含有k的代数式表示).14.某校举办以“保护环境,治理雾霾,从我做起”为主题的演讲比赛,现将所有比赛成绩(得分取整数,满分为100分)进行整理后分为5组,并绘制成如图所示的频数直方图.根据频数分布直方图提供的信息,下列结论:①参加比赛的学生共有52人;②比赛成绩为65分的学生有12人;③比赛成绩的中位数落在70.5~80.5分这个分数段;④如果比赛成绩在80分以上(不含80分)可以获得奖励,则本次比赛的获奖率约为30.8%.正确的是________.(把所有正确结论的序号都填在横线上)三、解答题(每题15分,共90分)15.某学校招聘教师,王明、李红和张丽参加了考试,评委从三个方面对他们进行打分,结果如下表所示(各项的满分为30分),最后总分的计算按课堂教学效果的分数:教学理念的分数:教材处理能力的分数=5:2:3的比例计算,如果你是该学校的教学校长,你会录用哪一位应聘者?试说明理由.王明李红张丽课堂教学效果25 26 25教学理念23 24 25教材处理能力24 26 2516.如图,是交警在一个路口统计的某个时段来往车辆的车速(单位:km/h).(第16题)(1)计算这些车的平均速度.(2)车速的众数是多少?(3)车速的中位数是多少?17.已知一组数据x1,x2,x3,…,x n的平均数是p,方差是q.试证明:数据ax1+b, ax2+b,ax3+b,…,ax n+b的平均数是ap+b,方差是a2q.18.某单位招聘员工,采取笔试与面试相结合的方式进行,两项成绩的原始分均为100分.前6名选手的得分如下:序号[来源:Z§xx§1 2 3 4 5 6]项目笔试成绩/分85 92 84 90 84 80面试成绩/分90 88 86 90 80 85 根据规定,笔试成绩和面试成绩分别按一定的百分比折合成综合成绩(综合成绩的满分仍为100分).(1)这6名选手笔试成绩的中位数是________分,众数是________分;(2)现得知1号选手的综合成绩为88分,求笔试成绩和面试成绩各占的百分比;(3)求出其余五名选手的综合成绩,并以综合成绩排序确定前两名人选.19.某农民在自己家承包的甲、乙两片荒山上各栽了200棵苹果树,成活率均为96%,现已挂果.他随意从甲山采摘了4棵树上的苹果,称得质量(单位:千克)分别为36,40,48,36;从乙山采摘了4棵树上的苹果,称得质量(单位:千克)分别为50,36,40,34,将这两组数据组成一个样本,回答下列问题:(1)样本容量是多少?(2)样本平均数是多少?并估算出甲、乙两山苹果的总产量;(3)甲、乙两山哪个山上的苹果长势较整齐?20.嘉兴市2010~2014年社会消费品零售总额及增速统计图如下:请根据图中信息,解答下列问题:(1)求嘉兴市2010~2014年社会消费品零售总额增速..这组数据的中位数.(2)求嘉兴市近三年(2012~2014年)的社会消费品零售总额....这组数据的平均数.(3)用适当的方法预测嘉兴市2015年社会消费品零售总额(只要求列出算式,不必计算出结果).(第20题)参考答案一、1.C 2.A 3.A 4.C 5.C6.A 点拨:将图中10个数据(单位:℃)按从小到大的顺序排列为:31,32,32,33,33,33,34,34,35,35,位于最中间的两个数都是33,故这组数据的中位数是33℃.这10个数据中,出现次数最多的是33,故众数是33℃.故选A.7.D8.C 点拨:不妨设x <y ,根据题意,将这组数据按从小到大的顺序排列为x ,y ,4,5,5,则x =1,y =2或x =1,y =3或x =2,y =3,故x +y 的最大值为5.9.C 10.A二、11.甲 点拨:比较统计表中甲、乙方差的大小,方差小的稳定. 126 点拨:由题意得⎩⎪⎨⎪⎧3+a +2b +54=6,a +6+b 3=6,解得⎩⎪⎨⎪⎧a =8,b =4.∴这组新数据是3,4,5,6,8,8,8,其中位数是6. 13.2k 2-k14.①③④ 点拨:由题中的频数分布直方图可知,比赛成绩在50.5~60.5分数段的有4人,60.5~70.5分数段的有12人,70.5~80.5分数段的有20人,80.5~90.5分数段的有10人,90.5~100.5分数段的有6人,所以参加比赛的学生共有4+12+20+10+6=52(人),①正确;由已知条件和频数分布直方图得不出比赛成绩为65分的学生人数,②错误;将比赛成绩按从小到大的顺序排列,第26,27个数据都在70.5~80.5分数段内,故比赛成绩的中位数落在70.5~80.5分这个分数段,③正确;如果比赛成绩在80分以上(不含80分)可以获得奖励,则本次比赛的获奖率为10+652×100%≈30.8%,④正确.三、15.解:王明的成绩为25×5+23×2+24×35+2+3=24.3(分),李红的成绩为26×5+24×2+26×35+2+3=25.6(分),张丽的成绩为25×5+25×2+25×35+2+3=25(分).∵25.6>25>24.3,∴李红将被录用.16.解:(1)这些车的平均速度是(40×2+50×3+60×4+70×5+80×1)÷(1+2+3+4+5)=60(km/h).(2)车速的众数是70 km/h. (3)车速的中位数是60 km/h.点拨:直接由条形图中数据信息求加权平均数,再根据图中具体数据和中位数、众数的定义,求出车速的众数和中位数.17.证明:设数据ax 1+b, ax 2+b, ax 3+b ,…, ax n +b 的平均数为M ,方差为N.由题意得p =x 1+x 2+…+x n n ,q =1n×[(x 1-p)2+(x 2-p)2+…+(x n -p)2].因为M =ax 1+b +ax 2+b +…+ax n +b n =a (x 1+x 2+…+x n )+nbn ,所以M =ap +b ,N =1n ×[(ax 1+b -M)2+(ax 2+b -M)2+…+(ax n +b -M)2]=1n ×[(ax 1+b -ap -b)2+(ax 2+b -ap -b)2+…+(ax n +b -ap -b)2]=1n×[(ax 1-ap)2+(ax 2-ap)2+…+(ax n -ap)2]=a 2n×[(x 1-p)2+(x 2-p)2+…+(x n -p)2]=a 2q. 即数据ax 1+b, ax 2+b, ax 3+b ,…, ax n +b 的平均数是ap +b ,方差是a 2q. 18.解:(1)84.5;84(2)设笔试成绩和面试成绩所占的百分比分别是x ,y ,根据题意得:⎩⎪⎨⎪⎧x +y =1,85x +90y =88,解得⎩⎪⎨⎪⎧x =0.4=40%,y =0.6=60%. 答:笔试成绩和面试成绩所占的百分比分别是40%,60%. (3)2号选手的综合成绩是92×40%+88×60%=89.6(分), 3号选手的综合成绩是84×40%+86×60%=85.2(分), 4号选手的综合成绩是90×40%+90×60%=90(分), 5号选手的综合成绩是84×40%+80×60%=81.6(分), 6号选手的综合成绩是80×40%+85×60%=83(分), 则综合成绩排序前两名的人选是4号和2号选手. 19.解:(1)样本容量为4+4=8.(2)x -=36+40+48+36+50+36+40+348=40.甲、乙两山苹果的总产量约为400×40×96%=15 360(千克). (3)∵x -甲=14×()36+40+48+36=40,∴s 甲2=14×[(36-40)2+(40-40)2+(48-40)2+(36-40)2]=24.∵x -乙=14×()50+36+40+34=40,∴s 乙2=14×[(50-40)2+(36-40)2+(40-40)2+(34-40)2]=38.∴s 甲2<s 乙2,∴甲山上的苹果长势较整齐.20.解:(1)数据从小到大排列为10.4%,12.5%,14.2%,15.1%,18.7%,则嘉兴市2010~2014年社会消费品零售总额增速这组数据的中位数为14.2%;(2)嘉兴市近三年(2012~2014年)的社会消费品零售总额这组数据的平均数是:(1 083.7+1 196.9+1 347.0)÷3=1 209.2(亿元);(3)从增速中位数分析,嘉兴市2015年社会消费品零售总额为1 347×(1+14.2%)亿元.(方法不唯一)高频考点强化训练:三视图的有关判断及计算时间:30分钟 分数:50分 得分:________ 一、选择题(每小题4分,共24分)1.(2016·杭州中考)下列选项中,如图所示的圆柱的三视图画法正确的是( )2.(2016·贵阳中考)如图是一个水平放置的圆柱形物体,中间有一细棒,则此几何体的俯视图是【易错6】( )3.如图所示的主视图、左视图、俯视图是下列哪个物体的三视图( )4.如图所示的几何体的主视图、左视图、俯视图中有两个视图乡镇__________________ 学校_____________________ 班级____________ 姓名____________ 座号__________………………………………密………………………………….封……………………….线…………………………………………………………………………..是相同的,则不同的视图是( )5.一个长方体的主视图、俯视图如图所示(单位:cm),则其左视图的面积为( )A .36cm 2B .40cm 2C .90cm 2D .36cm 2或40cm 2第5题图 第6题图6.(2016·承德模拟)由一些大小相同的小正方体组成的几何体的俯视图和左视图如图所示,那么组成这个几何体的小正方体个数可能有( )A .8个B .6个C .4个D .12个二、填空题(每小题4分,共16分)7.下列几何体中:①正方体;②长方体;③圆柱;④球.其中,三个视图形状相同的几何体有________个,分别是________(填几何体的序号).8.如图,水平放置的长方体的底面是边长为3和5的长方形,乡镇__________________ 学校_____________________ 班级____________ 姓名____________ 座号__________………………………………密………………………………….封……………………….线…………………………………………………………………………..它的左视图的面积为12,则长方体的体积等于________.9.如图,由五个小正方体组成的几何体中,若每个小正方体的棱长都是1,则该几何体的主视图和左视图的面积之和是________. 第8题图 第9题图 第10题图 10.(2016·秦皇岛卢龙县模拟)由若干个相同的小立方体搭成的一个几何体的主视图和俯视图如图所示,俯视图的方格中的字母和数字表示该位置上小立方体的个数,则x 的值为________,y 的值为________. 三、解答题(10分) 11.如图所示的是某个几何体的三视图. (1)说出这个几何体的名称; (2)根据图中的有关数据,求这个几何体的表面积. 中考必考点强化训练专题:简单三视图的识别 ◆类型一 简单几何体的三视图乡镇__________________ 学校_____________________ 班级____________ 姓名____________ 座号__________ ……………………密………………………………….封……………………….线…………………………………………………………………………..1.(2016·杭州中考)下列选项中,如图所示的圆柱的三视图画法正确的是( ) 第1 题图 第2题图 第3题图 2.(2016·抚顺中考)如图所示几何体的主视图是( ) 3.(2016·南陵县模拟)如图,图中的几何体是圆柱沿竖直方向切掉一半后得到的,则该几何体的俯视图是( ) 4.(2016·肥城市一模)如图所示的四个几何体中,它们各自的主视图与俯视图不相同的几何体的个数是( )乡镇__________________ 学校_____________________ 班级____________ 姓名____________ 座号__________ ……………………密………………………………….封……………………….线…………………………………………………………………………..A .1个B .2个C .3个D .4个5.(2016·宁波中考)如图所示的几何体的主视图为( ) 6.(2016·鄂州中考)一个几何体及它的主视图和俯视图如图所示,那么它的左视图正确的是( ) 7.(2016·菏泽中考)如图所示,该几何体的俯视图是( ) ◆类型二 简单组合体的三视图 8.(2016·黔西南州中考)如图,是由几个完全相同的小正方体搭建的几何体,它的左视图是( ) 9.(2016·营口中考)如图所示的物体是由两个紧靠在一起的圆柱体组成,小明准备画出它的三视图,那么他所画的三视图中的主视图应该是( )乡镇__________________ 学校_____________________ 班级____________ 姓名____________ 座号__________ ……………………密………………………………….封……………………….线…………………………………………………………………………..10.(2016·日照中考)如图,小明同学将一个圆锥和一个三棱柱组成组合图形,观察其三视图,其俯视图是( )11.(2016·烟台中考)如图,圆柱体中挖去一个小圆柱,那么这个几何体的主视图和俯视图分别为( )。
一、选择题1.已知:如图,四边形AOBC是矩形,以O为坐标原点,OB、OA分别在x轴、y轴上,点A的坐标为(0,3),∠OAB=60°,以AB为轴对折后,C点落在D点处,则D点的坐标为()A.33(3,)22-B.33(3,)22--C.33(,3)22D.(3,33)-2.如图,在矩形ABCD中,G是AB边上一点,连结GC,取线段CG上点E,使ED DC=且90AED∠=︒,AF CG⊥于F,2AF=,1FG=,则EC的长()A.4 B.5 C.163D.833.如图,为方便行人推车过天桥,市政府在10m高的天桥两端分别修建了50m长的斜道.用科学计算器计算这条斜道的倾斜角,下列按键顺序正确的是()A.sin0.2= B.2ndF sin0.2=C.tan0.2= D.2ndF tan0.2=4.如图,以O为圆心,任意长为半径画弧,与射线OA交于点B,再以B为圆心,BO长为半径画弧,两弧交于点,C画射线OC,则tan AOC∠的值为()A.12B.33C.32D.35.小明在学完《解直角三角形》一章后,利用测角仪和校园旗杆的拉绳测量校园旗杆的高度,如图,旗杆PA的高度与拉绳PB的长度相等,小明先将PB拉到'PB的位置,测得(''PB C a B C∠=为水平线),测角仪/B D的高度为1米,则旗杆PA的高度为()A.11sin a+米B.11cos a-米C.11sin a-米D.11cos a+米6.如图,将一副三角尺如图所示叠放在一起,则BECE的值是()A.3B.3C.2 D.37.如图,在4×5的正方形网格中,每个小正方形的边长都是1,ΔABC的顶点都在这些小正方形的顶点上,那么cos∠ACB值为()A 35B17C.35D.458.如图,四边形 ABCD中,BD是对角线,AB=BC,∠ABC=60°,CD=4,∠ADC=60°,则△BCD的面积为()A .43B .8C .23+4D .36 9.如图,半径为5的O 中, OA BC ⊥,30ADC ∠=︒,则BC 的长为( )A .52B .53C .522D .53210.如图,在平面直角坐标系中,等边三角形OAB 的边长为4,点A 在第二象限内,将OAB 沿射线AO 平移,平移后点A '的横坐标为43,则点B ′的坐标为( )A .(63,2)-B .(63,23)-C .()6,2-D .(63,2)-11.如图,在扇形OAB 中,120AOB ∠=︒,点P 是弧AB 上的一个动点(不与点A 、B 重合),C 、D 分别是弦AP ,BP 的中点.若33CD =,则扇形AOB 的面积为( )A .12πB .2πC .4πD .24π 12.如图,四边形ABCD 中,AB=AD ,AD ∥BC ,∠ABC=60°,∠BCD=30°,BC=6,那么△ACD 的面积是( )A .3B .32C .3D .934二、填空题13.如图,在边长为10的菱形ABCD 中,AC 为对角线,∠ABC =60°,M 、N 分别是边BC ,CD 上的点,BM =CN ,连接MN 交AC 于P 点,当MN 最短时,PC 长度为_____.14.如图,在矩形ABCD 中,6BC =,4cos 5CAB ∠=, P 为对角线AC 上一动点,过线段BP 上的点M 作EF BP ⊥,交AB 边于点E ,交BC 边于点 F ,点N 为线段EF 的中点,若四边形BEPF 的面积为18,则线段BN 的最大值为 ________ .15.01sin 4513(32018)6tan 302-++︒︒=________. 16.如图,在ABC 中,已知90,4,8C AC BC ∠=︒==,将ABC 绕着点C 逆时针旋转到''A B C 处,此时线段''A B 与BC 的交点D 为BC 的中点,那么'B D 的长度为_________.17.在ABCD 中,若30B ∠=︒,BC 10cm =,6AB cm =,则ABCD 的面积是__________.18.如图,MN 是半径为1的O 的直径,点A 在O 上,30AMN ∠=︒,点B 是AN 的中点,点P 是直径MN 上一个动点,则PA PB +的最小值为______.19.如图,我市在建高铁的某段路基横断面为梯形ABCD ,DC ∥AB ,BC 长为6米,坡角β为45°,AD 的坡角α为30°,则AD 的长为 ________ 米 (结果保留根号)20.如图,∠EFG =90°,EF =10,OG =17,cos ∠FGO =0.6,则点F 的坐标是_______.三、解答题21.位于河南省登封市境内的元代观星台,是中国现存最早的天文台,也是世界文化遗产之一.某校数学社团的同学们使用卷尺和自制的测角仪测量观星台的高度.如图所示,他们在地面一条水平步道MP 上架设测角仪,先在点M 处测得观星台最高点A 的仰角为22°,然后沿MP 方向前进16m 到达点N 处,测得点A 的仰角为45°.测角仪的高度为1.6m 求观星台最高点A 距离地面的高度(结果精确到0.1m .参考数据:sin22°≈0.37,cos22°≈0.93,tan22°≈0.402≈1.41).22.如图,在一次数学课外实践活动中,要求测教学楼的高度AB 、小刚在D 处用高1.5m 的测角仪CD ,测得教学楼顶端A 的仰角为30°,然后向教学楼前进40m 到达E ,又测得教学楼顶端A 的仰角为60°.求这幢教学楼的高度AB .(结果带根号)23.小鹏学完解直角三角形知识后,给同桌小艳出了一道题:“如图所示,把一张长方形卡片ABCD 放在每格宽度为12mm 的横格纸中,恰好四个顶点都在横格线上,已知36a =︒,求长方形卡片的周长.”请你帮小艳解答这道题.(精确到1mm )(参考数据:360.60︒≈sin ,360.80cos ≈,360.75tan ≈)24.计算:(1)()2222cos30sin 45cos 601tan 60tan 45-+︒+-︒︒︒︒(2)23260x x --=(3)2(1)5(1)140x x -+--= 25.已知:如图,在△ABC 中,∠A=30°,点D 是AB 中点,E 在边AC 上,且∠AED=∠ABC ,如果AE=6,EC=2.(1)求边AB 的长;(2)求tan ∠AED 的值.26.平面直角坐标系中,抛物线y=ax2+bx+3交x轴于A,B两点,点A,B的坐标分别为(﹣3,0),(1,0),与y轴交于点C,点D为顶点.(1)求抛物线的解析式和tan∠DAC;(2)点E是直线AC下方的抛物线上一点,且S△ACE=2S△ACD,求点E的坐标;(3)如图2,若点P是线段AC上的一个动点,∠DPQ=∠DAC,DP⊥DQ,则点P在线段AC上运动时,D点不变,Q点随之运动.求当点P从点A运动到点C时,点Q运动的路径长.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】如图,作 DE x 轴于点E ,灵活运用三角函数解直角三角形来求点 D 的坐标.【详解】解:如图,作DE⊥x轴于点E,∵点A的坐标为(0,3),∴OA=3.又∵∠OAB=60°,∴OB =OA•tan ∠OAB =33,∠ABO =30°. ∴BD =BC =OA =3.∵根据折叠的性质知∠ABD =∠ABC =60°,∴∠DBE =30°,∴DE =12BD =32,BE =33 ∴OE =33-33=33, ∴E 33(3,)22-. 故选:A .【点睛】本题考查了矩形的性质、坐标与图形性质以及折叠问题,翻折前后对应角相等,对应边相等;注意构造直角三角形利用相应的三角函数值求解.2.C解析:C【分析】如图,过D 作DP CE ⊥于,P 证明:,EP CP EDP CDP =∠=∠, ,DEC DCE ∠=∠再证明,AEF BCG EDP ∠=∠=∠ 结合矩形的性质证明:,AFG EFA ∽利用相似三角形的性质可得4EF =,再求解,AG AE ,设,BG x = 可得5,2,DE x AD x =+= 利用勾股定理求解,x 再由,BCG EDP ∠=∠可得:1,2EP DP =设,EP m = 则2,DP m = 由勾股定理求解m , 从而可得答案.【详解】解:如图,过D 作DP CE ⊥于,P,DE DC =,EP CP EDP CDP ∴=∠=∠, ,DEC DCE ∠=∠90,AED DCB ∠=︒=∠90,AEF DEC DCE BCG DEC EDP ∴∠+∠=︒=∠+∠=∠+∠,AEF BCG EDP ∴∠=∠=∠,,90AGF CGB AF CG B ∠=∠⊥∠=︒,,FAG BCG ∴∠=∠,FAG AEF ∴∠=∠90AFG EFA ∠=∠=︒,,AFG EFA ∴∽ ,AF FG EF FA ∴= 21AF FG ==,,21,2EF ∴= 4EF ∴=,2225AE AF EF ∴=+=, 225,AG AF FG =+= 设BG x =,则5,AB CD x DE ==+=AEF BCG ∠=∠,1tan tan ,2AF AEF BCG EF ∴∠=∠== 1,2BG BC ∴= 2,BC x AD ∴== ()()()2222255,x x ∴=++235250,x x ∴--=553x ∴=5x = 55855DE ∴== ,EDP BCG ∠=∠1,2EP DP ∴= 设,EP m = 则2,DP m =()22285+2,m m ⎛⎫∴= ⎪ ⎪⎝⎭ 83m ∴=(负根舍去) 162.3EC EP ∴==故选:.C【点睛】 本题考查的是矩形的性质,勾股定理的应用,等腰三角形的性质,三角形相似的判定与性质,锐角三角函数的应用,掌握以上知识是解题的关键.3.B解析:B【分析】先利用正弦的定义得到10sin 0.250A ==,然后利用计算器求锐角∠A . 【详解】∵ 10sin 0.250A ==, ∴ 用计算器求值的顺序为20.2ndFsin =,故选:B .【点睛】本题考查了锐角三角函数及计算器的应用,掌握科学计算器的应用是解决本题的关键. 4.D解析:D【分析】由题意可以得到∠AOC 的度数,再根据特殊角的锐角三角函数值可以得解.【详解】解:如图,连结BC ,则由题意可得OC=OB ,CB=OB ,∴OC=OB=BC ,∴△BOC 是等边三角形,∴∠AOC=60°,∴tan ∠AOC=tan60°故选D .【点睛】本题考查尺规作图与三角形的综合应用,由尺规作图的作法得到所作三角形是等边三角形是解题关键.5.C解析:C【分析】设PA=PB=PB′=x ,在RT △PCB′中,根据sin αPC PB =',列出方程即可解决问题. 【详解】解:设PA=PB=PB′=x ,在RT △PCB′中,sin αPC PB ='∴1sin αx x-=∴x 1xsin α-=, ∴(1-sin α)x=1,∴x=11sin α-. 故选C .【点睛】 本题考查解直角三角形、三角函数等知识,解题的关键是设未知数列方程,属于中考常考题型.6.B解析:B【分析】设AC=AB=x,求得tan AC CD D ===,根据相似三角形的性质即可得到结论. 【详解】解:设AC=AB=x ,则tan AC CD D ===, ∵∠BAC=∠ACD=90°,∴∠BAC+∠ACD=180°,∴AB ∥CD ,∴△ABE ∽△DCE , ∴33BE AB CE CD x===, 故选:B .【点睛】本题主要考查相似三角形的判定与性质,熟练掌握相似三角形的判定与性质是解题的关键.7.C解析:C【分析】如图,过点A 作AH BC ⊥于H .利用勾股定理求出AC 即可解决问题.【详解】解:如图,过点A 作AH BC ⊥于H .在Rt ACH ∆中,4AH =,3CH =,2222435AC AH CH ∴=+=+=,3cos 5CH ACH AC ∴∠==, 故选:C .【点睛】本题考查解直角三角形,解题的关键是学会添加常用辅助线,构造直角三角形解决问题. 8.A解析:A【分析】先证明△ABC 是等边三角形,以C 为圆心,CD 为半径作圆,交AD 边与点M ,可得△CDM是等边三角形,进而得到∆BCM ≅∆ACD ,可得到60BMC ∠=︒,得到BM ∥CD ,过点M 作MH CD ⊥,根据△BCD 的面积等于△CDM 的面积求解即可;【详解】∵BD 是对角线,AB=BC ,∠ABC=60°,∴△ABC 是等边三角形,以C 为圆心,CD 为半径作圆,交AD 边与点M ,延长BC ,交C 于点N ,如图所示,∵∠ADC=60°,CM=CD ,∴△CDM 是等边三角形,∴60MCD ∠=︒,∴∠ACB+∠ACM=∠MCD+∠ACM ,即:∠BCM=∠ACD ,∴∆BCM ≅∆ACD ,∴∠BMC=∠ADC=60°,∴∠BMC=∠MCD ,∴BM ∥CD ,根据平行线间的距离相等得到△BCD 的面积等于△CDM 的面积,过点M 作MH CD ⊥,∵CD=4,∴2==CH HD , ∴tan 602MH MH DH ︒==, ∴23MH =, ∴△△1423432BDC CDM S S ==⨯⨯= 故答案选A .【点睛】本题主要考查了四边形综合,结合等边三角形性质,构造等边△CDM 是解题的关键. 9.B解析:B【分析】连接OC ,设BC 与OA 交于点E ,根据圆周角定理即可求出∠AOC ,然后根据垂径定理可得BC=2CE ,利用锐角三角函数求出CE ,即可求出结论.【详解】解:连接OC ,设BC 与OA 交于点E∵30ADC ∠=︒∴∠AOC=2∠ADC=60°∵OA BC ⊥∴BC=2CE ,在Rt △OCE 中,CE=OC·sin ∠AOC=532 ∴BC=53故选B .【点睛】此题考查的是圆周角定理、垂径定理和锐角三角函数,掌握圆周角定理、垂径定理和锐角三角函数是解题关键. 10.D解析:D【详解】如解图,过点A 作AC x ⊥轴,过点A '作A D x '⊥轴,∵AOB 是等边三角形,∴4AO BO ==,60AOB ∠=︒,∴30AOC ∠=︒,∴·cos 23CO OA AOC ==,2AC =,∴(23,2)A -,∵30AOD AOC ∠'=∠=︒,43OD =,∴·t 34343an A D OD A OD ⨯=∠'==',∴(43,4)A '-,∴点A '是将点A 向右平移63个单位,向下平移6个单位得到的,∴点B '也是将点B 向右平移63个单位,向下平移6个单位得到的,∵()0,4B ,∴B '的坐标为(63,2)-.11.A解析:A【分析】如图,作OH ⊥AB 于H .利用三角形中位线定理求出AB 的长,解直角三角形求出OB 即可解决问题.【详解】解:如图作OH ⊥AB 于H .∵C 、D 分别是弦AP 、BP 的中点.∴CD 是△APB 的中位线,∴AB =2CD =63∵OH ⊥AB ,∴BH =AH =33∵OA =OB ,∠AOB =120°,∴∠AOH =∠BOH =60°,在Rt △AOH 中,sin ∠AOH =AH AO, ∴AO =336sin 3AH AOH ==∠, ∴扇形AOB 的面积为:2120612360ππ=, 故选:A .【点睛】本题考查扇形面积公式,三角形的中位线定理,解直角三角形等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.12.A解析:A【分析】如图,过点A 作AE ⊥BC 于E ,过点D 作DF ⊥BC 于F .构建矩形AEFD 和直角三角形,通过含30度角的直角三角形的性质求得AE 的长度,然后由三角形的面积公式进行解答即可.【详解】解:如图,过点A 作AE ⊥BC 于E ,过点D 作DF ⊥BC 于F .设AB=AD=x .又∵AD∥BC,∴四边形AEFD是矩形,∴AD=EF=x.在Rt△ABE中,∠ABC=60°,则∠BAE=30°,∴BE=12AB=12x,∴22AB BE3,在Rt△CDF中,∠FCD=30°,则CF=DF•cot30°=32 x.又∵BC=6,∴BE+EF+CF=6,即12x+x+32x=6,解得 x=2∴△ACD的面积是:12AD•DF=12x×32x=34×223故选:A.【点睛】此题考查了勾股定理,三角形的面积以及含30度角的直角三角形.解题的关键是作出辅助线,构建矩形和直角三角形,目的是求得△ADC的底边AD以及该边上的高线DF的长度.二、填空题13.【分析】连接AMAN证明△AMB≌△ANC推出△AMN为等边三角形当AM⊥BC时AM最短即MN最短在Rt△ABM中求出AM的长在Rt△AMP中求出AP的长即可解决问题【详解】解:连接AMAN∵ABC解析:5 2【分析】连接AM,AN,证明△AMB≌△ANC,推出△AMN为等边三角形,当AM⊥BC时,AM最短,即MN最短,在Rt△ABM中求出AM的长,在Rt△AMP中求出AP的长,即可解决问题.【详解】解:连接AM,AN,∵ABCD是菱形,∠ABC=60°,∴△ABC为等边三角形,∴∠BAC=60°,AB=AC=10,同理可证∠ACN=60°,在△AMB 和△ANC 中,AB AC B ACN BM NC =⎧⎪∠=∠⎨⎪=⎩,∴△AMB ≌△ANC ,∴AM=AN ,∠BAM+∠MAC=∠MAC+∠NAC=60°,∴∠MAN=60°,∴△AMN 为等边三角形,∴MN=AM ,∠MAN=60°,当AM ⊥BC 时,AM 最短,即MN 最短,∵sinB=AM AB , ∴AM=sin60°×10=53.∵∠ABC=60°,∴∠BAM=30°,∴∠MAC=30°,∴∠NAC=30°,∴AP ⊥MN .∵sin ∠AMN=AP AM, ∴AP=sin60°×53=152, ∴CP=10-152=52. 故答案为:52.【点睛】本题考查了菱形的性质,全等三角形的判定与性质,等边三角形的判定与性质,以及锐角三角函数的知识,熟练掌握各知识点是解答本题的关键.14.【分析】在△ABC 中求出AC 与AB 的长点P 在AC 上则6≤BP≤8由点N 为线段EF 的中点∠ABC=90º则EF=2BN 根据四边形BEPF 的面积为18利用对角线乘积的一半求面积得BN 与PB 成反比例PB 最 解析:154【分析】在△ABC 中,6BC =,4cos 5CAB ∠=求出AC 与AB 的长,点P 在AC 上 则6≤BP≤8,由点N 为线段EF 的中点,∠ABC=90º,则EF=2BN ,根据四边形BEPF 的面积为18,EF BP ⊥利用对角线乘积的一半求面积得,PB BN=18,BN 与PB 成反比例, PB 最小时,BN 最大,当PB ⊥AC 时,PB 最小,求出最小值即可.【详解】在△ABC 中,6BC =,4cos 5CAB ∠=, ∵22sin cos 1CAB CAB ∠+∠=,∴3sin 5CAB ∠=, 由正弦函数定义BC sin =ACCAB ∠, ∴AC=BC 6==103sin 5CAB ∠,由勾股定理得8==,点P 在AC 上 则6≤BP≤8,∵点N 为线段EF 的中点,由∠ABC=90º,∴EF=2BN ,∵四边形BEPF 的面积为18,EF BP ⊥,∴S 四边形EBFP =11PB EF=PB 2BN=PB BN=1822⨯, ∴PB BN=18, ∴18BN=PB, 当PB 最小时,BN 最大, 当PB ⊥AC 时,PB 最小,即S △ABC=11AB BC=AC BP 22 BP 最小=AB BC 8624==AC 105⨯ BN 最大=1815=2445故答案为:154.【点睛】本题考查锐角三角函数解直角三角形与点到直线距离最短问题,掌握锐角三角函数及其之间的关系,会用锐角三角函数解直角三角形,掌握垂线段最短,会利用面积或勾股定理求BP的最小值,解题时要理解BP最小,BN最大是解题关键.15.【分析】先计算特殊角的三角函数值化简绝对值零指数幂再计算实数的混合运算即可得【详解】原式故答案为:【点睛】本题考查了特殊角的三角函数值绝对值零指数幂实数的运算熟记各运算法则是解题关键解析:32322+【分析】先计算特殊角的三角函数值、化简绝对值、零指数幂,再计算实数的混合运算即可得.【详解】原式213131)622-++=⨯21312322=++3 23 2=+,故答案为:3232.【点睛】本题考查了特殊角的三角函数值、绝对值、零指数幂、实数的运算,熟记各运算法则是解题关键.16.【分析】根据题意先考虑多种情况①与D重合=AB;②与D不重合过点C 作CE于点E利用的余弦值求出由等腰三角形三线合一得求出再用减去得到【详解】①如图与D重合②如图与D不重合过点C作CE于点E∵旋转∴在解析:125 5,5【分析】根据题意,先考虑多种情况,①A '与D 重合,B D '=AB ;②A '与D 不重合,过点C 作CE ⊥A B ''于点E ,利用CA B ''∠的余弦值求出A E ',由等腰三角形三线合一得2A D A E ''=,求出A D ',再用A B ''减去A D '得到B D '.【详解】①如图,A '与D 重合,45B D AB '==.②如图,A '与D 不重合,过点C 作CE ⊥A B ''于点E , ∵旋转,∴4AC A C '==,8BC B C '==,在Rt A B C ''△中,由勾股定理,22224845A B A C B C ''''=++= 5cos 45A C CA B A B '''∠===', 在Rt A EC '中,5cos 4A E A E CA E A C '''∠===', ∴45A E '=∵D 是BC 中点∴4CD CA '== 在等腰三角形ACD '中,由“三线合一”得852A D A E ''==, ∴8512545B D A B A D ''''=-==故答案是:45或125. 【点睛】 本题考查图形的旋转,等腰三角形三线合一,锐角三角函数,关键在于要画出对应的图象进行分类讨论,把情况考虑全面.17.【分析】连接AC 利用求出的面积再求出的面积【详解】解:连接AC 如图:∵∴;∴故答案为:30【点睛】本题考查了解直角三角形平行四边形的性质以及求三角形的面积解题的关键是利用求出三角形的面积解析:30【分析】连接AC ,利用1sin 2ABC S AB BC B ∆=••求出ABC ∆的面积,再求出ABCD 的面积. 【详解】解:连接AC ,如图:∵30B ∠=︒,BC 10cm =,6AB cm =,∴111sin 61015222ABC S AB BC B ∆=••=⨯⨯⨯=; ∴215230ABCD ABC S S ∆==⨯=.故答案为:30.【点睛】本题考查了解直角三角形,平行四边形的性质,以及求三角形的面积,解题的关键是利用1sin 2ABC S AB BC B ∆=••求出三角形的面积.18.【详解】解:如解图作点关于直线的对称点连接则线段的长就是的最小值作直径连接∵为的中点点关于直线对称∴∴故答案为:【点睛】本题考查了与圆有关的基础知识如直径的性质圆心角及圆周角的性质 解析:2 【详解】解:如解图,作点B 关于直线MN 的对称点B ',连接AB ',则线段AB '的长就是PA PB +的最小值,作O 直径AC ,连接CB ',∵30AMN ∠=︒,B 为AN 的中点,点B 、B '关于直线MN 对称,∴45C ∠=︒, ∴sin 452AB AC '=⋅︒=故答案为:2.【点睛】本题考查了与圆有关的基础知识,如直径的性质、圆心角及圆周角的性质.19.【分析】过C 作CE ⊥AB 于EDF ⊥AB 于F 分别在Rt △CEB 与Rt △DFA 中使用三角函数即可求解【详解】解:过C 作CE ⊥AB 于EDF ⊥AB 于F 可得矩形CEFD 和Rt △CEB 与Rt △DFA ∵BC=6∴解析:62【分析】过C 作CE ⊥AB 于E ,DF ⊥AB 于F ,分别在Rt △CEB 与Rt △DFA 中使用三角函数即可求解.【详解】解:过C 作CE ⊥AB 于E ,DF ⊥AB 于F ,可得矩形CEFD 和Rt △CEB 与Rt △DFA , ∵BC=6,∴CE=2sin 456322BC ︒=⨯= ∴DF=CE=32∴62sin 30DF AD ==︒故答案为:62【点睛】此题考查了解直角三角形的应用-坡度坡角问题,难度适中,解答本题的关键是构造直角三角形和矩形,注意理解坡度与坡角的定义.20.【分析】先过点F 作直线交轴于点过点作于点证明根据cos ∠FGO=06以及勾股定理即可得到答案【详解】过点F 作直线交轴于点过点作于点如图:∴(两直线平行内错角相等)又∵∠EFG=90°∴∠AFE+∠H解析:(8,12)【分析】先过点F 作直线//FA OG 交y 轴于点A ,过点G 作GH FA ⊥于点H ,证明FGO ∠HFG FEA =∠=∠,根据cos ∠FGO =0.6以及勾股定理即可得到答案.【详解】过点F 作直线//FA OG 交y 轴于点A ,过点G 作GH FA ⊥于点H ,如图:∴FGO HFG ∠=∠(两直线平行,内错角相等),又∵∠EFG =90°,∴∠AFE+∠HEG =90°,又∵∠AFE+∠FEA =90°,∴HFG FEA ∠=∠,∴FGO HFG FEA ∠=∠=∠,在Rt AEF ∆中,10EF =,则10cos 100.66AE FEA =⋅∠=⨯= ∴221068AF =-=(勾股定理),∴1789FH =-=,在Rt FGH ∆中,90.615FG =÷=, ∴2215912HG =-=(勾股定理),∴(8,12)F ,故答案为:(8,12).【点睛】本题主要考查了平行的性质(两直线平行,内错角相等)、勾股定理的应用以及三角函数,熟练掌握各知识点并灵活运用是解题的关键.三、解答题21.约为12.3m【分析】过A作AD⊥PM于D,延长BC交AD于E,则四边形BMNC,四边形BMDE是矩形,于是得到BC=MN=16m,DE=CN=BM=1.6m,求得CE=AE,设AE=CE=x,得到BE=16+x,解直角三角形即可得到答案.【详解】过A作AD⊥PM于D,延长BC交AD于E,则四边形BMNC,四边形BMDE是矩形,∴BC=MN=16m,DE=CN=BM=1.6m,∵∠AEC=90°,∠ACE=45°,∴△ACE是等腰直角三角形,∴CE=AE,设AE=CE=x,∴BE=16+x,∵∠ABE=22°,∴tan22°=AEBE =16xx+≈0.40,解得:x≈10.7(m),经检验x≈10.7是原分式方程的解∴AD≈10.7+1.6=12.3(m),答:观星台最高点A距离地面的高度约为12.3m.【点睛】本题考查了解直角三角形的应用-仰角俯角问题,要求学生能借助仰角构造直角三角形并解直角三角形.22.3 1.5【分析】利用60°的正切值可表示出FG长,进而利用∠ACG的正切函数求AG长,加上1.5即为这幢教学楼的高度AB.【详解】解:在Rt△AFG中,tan∠AFG=AG FG,∴FG=tan AGAFG∠=3=33AG.在Rt△ACG中,tan∠ACG=AG CG,∴CG=tan AGACG∠=3AG.又CG−FG=40,即3AG−33AG=40,∴AG=203,∴AB=203+1.5.答:这幢教学楼的高度AB为(203+1.5)米.【点睛】本题考查了解直角三角形,利用两个直角三角形的公共边求解是常用的解直角三角形的方法.23.200mm【分析】求ABCD的周长就是求AB和AD的长,可分别过B、D作垂线垂直于l,通过构造直角三角形根据α=36°和ABCD的四个顶点恰好在横格线且每个横格宽12mm等条件来求出AB、AD 的长.【详解】作BE⊥m于点E,DF⊥m于点F,∵α+∠DAF=180°-∠BAD=180°-90°=90°,∠ADF+∠DAF=90°,∴∠ADF=α=36°,根据题意,得 BE=24mm,DF=48mm,在Rt△ABE中,BE sinAB α=,∴2440sin 360.60BE AB ===︒( mm), 在Rt △ADF 中,DF cos ADF AD ∠=, ∴4860cos360.80DF AD ===︒( mm), ∴矩形ABCD 的周长=2(40+60)=200( mm).【点睛】本题考查了矩形的性质,解直角三角形的应用,通过作辅助线构造直角三角形,再把条件和问题转化到这个直角三角形中解决.24.(1)1542--;(2)113x =,213x =;(3)13x =,26x =-; 【分析】(1)原式利用特殊角的三角函数值,以及乘方的意义计算即可得到结果;(2)利用求根公式计算即可;(3)将(x -1)看作整体,然后利用因式分解法解方程即可.【详解】(1)解:222cos30sin 45cos 60tan 45-+︒+︒︒︒=214()122-+⨯=14++1)124---=154-- (2)解:23260x x --=,∵3,2,6a b c ==-=-,∴2(2)43(6)472760,∆=--⨯⨯-=+=>∴方程有两个不相等的实根,∴x ==∴1x =2x =; (3)解:2(1)5(1)140x x -+--=,[][](1)7(1)20,x x -+--=∴60x +=或30x -=,∴126,3x x =-=.【点睛】本题考查了特殊角的三角函数值、实数的运算以及一元二次方程的解法,常用的解一元二次方程的方法有直接开平方法、配方法、因式分解法、求根公式法,熟练掌握运算法则是解本题的关键.25.(1)边AB 的长为46;(2)tan ∠AED 的值为21+.【分析】(1)由两个角相等证明△AED ∽△ABC ,利用相似三角形的性质以及线段的和差,解方程求出AB 的长;(2)由等腰三角的判定与性质,勾股定理的应用,解直角三角形求出tan ∠AED 的值.【详解】(1)∵∠AED=∠ABC ,∠A=∠A ,∴△AED ∽△ABC , ∴AE AD AB AC=, ∵点D 是AB 中点, ∴AD=BD=12AB , 又∵AC=AE+EC ,AE=6,EC=2,∴AC=8,∴21682AB =⨯, ∴46AB =(负值已舍),∴边AB 的长为46;(2)过点C 作CH ⊥AB 交AB 于点H ,如图所示:∵CH ⊥AB ,∠A=30°,AC=8,∴CH=12AC=4, ∴22228443AC CH --=∴BH=AB- AH=4643,∵∠AED=∠ABC ,∴tan ∠AED= tan ∠ABC=1CH BH ==. 【点睛】 本题综合考查了相似三角形的判定与性质,等腰三角形的判定与性质,勾股定理的应用,解直角三角形等相关知识,重点掌握相似三角形的判定与性质,难点是构建直角三角形求出三角函数的值.26.(1)y =﹣x 2﹣2x +3,AC =DC ;(2)E (1,0);(3【分析】(1)将点A (﹣3,0),B (1,0)分别代入抛物线y =ax 2+bx +3可解的a ,b 的值,从而得到解析式,tan ∠DAC =DC AC,可根据表达式求出C ,D 的坐标然后计算DC 和AC 的长度计算;(2)可取一点E ,过E 作EF 平行于x 轴,交AC 于F 此时可表示出S △ACE ,根据类方程S △ACE =2S △ACD ,求E 点坐标即可;(3)根据题能得到Q 的运动轨迹为直线,且当P 在A 处时Q 在C 处,当P 运动到C 处时,可以得到△ADC ∽PQD ,根据形似性质可得到PQ 长度即为Q 的运动路径长.【详解】解:(1)将A (﹣3,0),B (1,0)分别代入抛物线y =ax 2+bx +3可得: 093303a b a b =-+⎧⎨=++⎩,解得12a b =-⎧⎨=-⎩; ∴抛物线解析式为y =﹣x 2﹣2x +3,∴D (﹣1,4),C (0,3);∴AC =DC ;∴tan ∠DAC =1=3DC AC . (2)如图1所示,过E 作EF //x 轴交AC 于点F ,设点E (m ,﹣m 2﹣2m +3),直线AC 的表达式为y =kx +n ,将A (﹣3,0),C (0,3)分别代入y =kx +n 可得:033k n n =-+⎧⎨=⎩,解得13k n =⎧⎨=⎩, ∴直线AC 表达式为y =x +3,∴F (﹣m 2﹣2m ,﹣m 2﹣2m +3),∴EF =m +m 2+2m =m 2+3m ,∴S △ACE =12(x C ﹣x A )EF , ∵S △ACD =12AC •CD =3,∴S△ACE=1(x C﹣x A)EF=2S△ACD=6,2∴3(m2+3m)=6,2解得m1=1,m2=﹣4(舍),∴E(1,0).(3)如图2所示当点P与点A重合时,∵∠ADQ=∠DCA=90°,∴∠DAC+∠ADC=90°=∠ADC+∠QDC,∴∠DAC=∠QDC,又∵∠DCA=∠DCQ=90°,∴△ADC∽△DQC,∴DC CQ AC DC=,∴.3CQ ==, 当点P 与点C 重合时,∴∠Q'DC=∠ACD=90°,∴DQ'∥CQ ,∵∠DAC=∠Q'P'D ,∠Q'DP'=∠ACD=90°,∴△ADC ∽△P'Q'D , ∴DQ DC DC AC'=,∴DQ '=, ∴DQ'=CQ ,∴四边形DQ'QC 是平行四边形,∴.【点睛】本题综合性比较强,主要考查二次函数点相关知识,解题的关键在于找出变换后的图形,根据已知条件,建立方程求解.。
2019-2020年中考数学考点系统复习第三单元函数单元测试三函数试题一、选择题(每小题4分,共32分) 1.(xx·雅安中学三诊)在函数y =1x -3中,自变量x 的取值范围是( A ) A .x ≠3 B .x ≠0 C .x >3 D .x ≠-3 2.抛物线y =x 2-2x +3的对称轴是( C )A .直线x =2B .直线x =-2C .直线x =1D .直线x =-1 3.在平面直角坐标系中,下列函数的图象经过原点的是( C ) A .y =-x +3 B .y =5xC .y =2xD .y =-2x 2+x -74.已知正比例函数y =kx(k<0)的图象上两点A(x 1,y 1),B(x 2,y 2),且x 1<x 2,则下列不等式中恒成立的是( C ) A .y 1+y 2>0 B .y 1+y 2<0 C .y 1-y 2>0 D .y 1-y 2<05.(xx·锦江区一诊)将抛物线y =2(x -1)2-1先向上平移2个单位,再向右平移1个单位后其顶点坐标是( A ) A .(2,1) B .(1,2)C .(1,-1)D .(1,1)6.如图,A ,B 是双曲线y =kx 上的两点,过A 点作AC⊥x 轴,交OB 于D 点,垂足为C.若△ADO 的面积为1,D 为OB 的中点,则k 的值为( B )A.43B.83C .3D .4 7.(xx·贺州)抛物线y =ax 2+bx +c 的图象如图所示,则一次函数y =ax +b 与反比例函数y =c x 在同一平面直角坐标系内的图象大致为( B )8.(xx·营山县一模)二次函数y =ax 2+bx +c(a≠0)的图象如图所示,对称轴为直线x =1,给出下列结论:①abc>0;②b 2=4ac ;③4a+2b +c >0;④3a+c >0,其中正确的结论有( B )A .1个B .2个C .3个D .4个 二、填空题(每小题4分,共24分)9.(xx·三台县一诊)在平面直角坐标系中,点P(5,-2)关于原点(0,0)的对称点的坐标是(-5,2). 10.一次函数y =2x +4交x 轴于点A ,则点A 的坐标为(-2,0).11.(xx·丹棱县一诊)如图,从y =ax 2的图象上可以看出,当-1≤x≤2时,y 的取值范围是0≤y ≤4. 12.(xx·广安)若反比例函数y =kx (k≠0)的图象经过点(1,-3),则一次函数y =kx -k(k≠0)的图象经过第一、二、四象限.13.设抛物线y =ax 2+bx +c(a≠0)过A(0,2),B(4,3),C 三点,其中点C 在直线x =2上,且点C 到抛物线对称轴的距离等于1,则抛物线的函数解析式为y =18x 2-14x +2或y =-18x 2+34x +2.14.如图,点A 在双曲线y =23x (x>0)上,点B 在双曲线y =kx (x>0)上(点B 在点A 的右侧),且AB∥x 轴,若四边形OABC 是菱形,且∠AOC=60°,则k =63.三、解答题(共44分)15.(10分)已知二次函数y =a(x -h)2+k(a≠0)的图象经过原点,当x =1时,函数有最小值为-1.求这个二次函数的解析式,并画出图象.解:∵当x =1时,函数有最小值为-1, ∴二次函数的顶点为(1,-1).∴二次函数的解析式为y =a(x -1)2-1. ∵二次函数的图象经过原点,∴(0-1)2·a -1=0.∴a=1.∴二次函数的解析式为y =(x -1)2-1. 列表如下:x … -2 -1 0 1 2 3 4 … y =(x -1)2-1…83-138…描点并连线:16.(10分)(xx·广安)如图,一次函数y 1=kx +b(k≠0)和反比例函数y 2=mx (m≠0)的图象交于点A(-1,6),B(a ,-2).(1)求一次函数与反比例函数的解析式;(2)根据图象直接写出y 1>y 2时,x 的取值范围.解:(1)将A(-1,6)代入反比例函数y 2=mx (m≠0),得m =-1×6=-6,∴反比例函数的解析式为y 2=-6x .将B(a ,-2)代入y 2=-6x ,得-2=-6a,解得a =3.∴B(3,-2).将A(-1,6),B(3,-2)代入一次函数y 1=kx +b ,得⎩⎪⎨⎪⎧-k +b =6,3k +b =-2,解得⎩⎪⎨⎪⎧k =-2,b =4. ∴一次函数的解析式为y 1=-2x +4. (2)x <-1或0<x <3.17.(12分)(xx·云南)草莓是云南多地盛产的一种水果,今年某水果销售店在草莓销售旺季,试销售成本为每千克20元的草莓,规定试销期间销售单价不低于成本单价,也不高于每千克40元,经试销发现,销售量y(千克)与销售单价x(元)符合一次函数关系,下图是y 与x 的函数关系图象. (1)求y 与x 的函数解析式(也称关系式);(2)设该水果销售店试销草莓获得的利润为W 元,求W 的最大值.解:(1)设y 与x 的函数解析式为y =kx +b ,根据题意,得⎩⎪⎨⎪⎧20k +b =300,30k +b =280,解得⎩⎪⎨⎪⎧k =-2,b =340.∴y 与x 的函数解析式为y =-2x +340, x 的取值范围为20≤x≤40. (2)W =(x -20)y=(x -20)(-2x +340)=-2x 2+380x -6 800=-2(x -95)2+11 250.∵-2<0,∴当x≤95时,W 随x 的增大而增大. 又∵20≤x≤40,∴当x =40时,W 最大,最大值为5 200.18.(12分)在平面直角坐标系中,O 为原点,直线y =-2x -1与y 轴交于点A ,与直线y =-x 交于点B ,点B 关于原点的对称点为点C.(1)求过A ,B ,C 三点的抛物线的解析式;(2)P 为抛物线上一点,它关于原点的对称点为点Q.当四边形PBQC 为菱形时,求点P 的坐标.解:(1)由题意,得⎩⎪⎨⎪⎧y =-2x -1,y =-x.解得⎩⎪⎨⎪⎧x =-1,y =1. ∴B(-1,1). ∵点B 关于原点的对称点为点C ,∴C(1,-1). ∵直线y =-2x -1与y 轴交于点A , ∴A(0,-1).设抛物线的解析式为y =ax 2+bx +c , ∵抛物线过A ,B ,C 三点, ∴⎩⎪⎨⎪⎧c =-1,a -b +c =1,a +b +c =-1.解得⎩⎪⎨⎪⎧a =1,b =-1,c =-1.∴抛物线的解析式为y =x 2-x -1.(2)∵对角线互相垂直平分的四边形为菱形,已知点B 关于原点的对称点为点C ,点P 关于原点的对称点为点Q ,且与BC 垂直的直线为y =x ,∴P(x ,y)需满足⎩⎪⎨⎪⎧y =x ,y =x 2-x -1, 解得⎩⎨⎧x 1=1+2,y 1=1+2,⎩⎨⎧x 2=1-2,y 2=1- 2.∴点P 的坐标为(1+2,1+2)或(1-2,1-2). o 22451 57B3 垳25046 61D6 懖 n 32552 7F28 缨 35762 8BB2 讲[。
单元测试卷(三)(考试时间:120分钟试卷满分:120分)一、选择题(每小题3分,共36分)1.函数y=-中,自变量x的取值范围是()A.x≥-B.x≥C.x≤-D.x≤2.已知点A(a,1)与点B(-4,b)关于原点对称,则a+b的值为 ()A.5B.-5C.3D.-33.若k≠0,b<0,则y=kx+b的图象可能是图D3-1中的()图D3-14.如图D3-2,在平面直角坐标系xOy中,函数y=kx+b(k≠0)与y=(m≠0)的图象相交于点A(2,3),B(-6,-1),则不等式kx+b>的解集为 ()图D3-2A.x<-6B.-6<x<0或x>2C.x>2D.x<-6或0<x<25.下列说法中不正确的是()A.函数y=2x的图象经过原点B.函数y=的图象位于第一、三象限C.函数y=3x-1的图象不经过第二象限D.函数y=-的函数值y随x值的增大而增大6.如图D3-3,在平面直角坐标系中,点P(1,4),Q(m,n)在函数y=(x>0)的图象上,当m>1时,过点P分别作x 轴,y轴的垂线,垂足分别为点A,B;过点Q分别作x轴,y轴的垂线,垂足分别为点C,D,QD交PA于点E,随着m 的增大,四边形ACQE的面积()图D3-3A.减小B.增大C.先减小后增大D.先增大后减小7.已知二次函数y=ax2+bx+c(a≠0)的图象如图D3-4所示,则下列结论正确的是()图D3-4A.a>0B.c<0C.3是方程ax2+bx+c=0的一个根D.当x<1时,y随x的增大而减小8.直线y=x+1与直线y=-2x+a的交点在第一象限,则a的取值可以是 ()A.-1B.0C.1D.29.如果将抛物线y=x2+2向下平移1个单位,那么所得新抛物线的表达式是()A.y=(x-1)2+2B.y=(x+1)2+2C.y=x2+1D.y=x2+310.已知点P(m,n)是一次函数y=x-1的图象位于第一象限部分上的点,其中实数m,n满足(m+2)2-4m+n(n+2m)=8,则点P的坐标为()A.,-B.,C.(2,1)D.,11.已知二次函数y=-(x-1)2+5,当m≤x≤n且mn<0时,y的最小值为2m,最大值为2n,则m+n的值为()A. B.2 C. D.12.如图D3-5,过点A0(2,0)作直线l:y=x的垂线,垂足为点A1,过点A1作A1A2⊥x轴,垂足为点A2,过点A2作A2A3⊥l,垂足为点A3,…,这样依次下去,得到一组线段:A0A1,A1A2,A2A3,…,则线段A2018A2019的长为()图D3-5A.B.C.D.二、填空题(每小题3分,共18分)13.若抛物线y=ax2+bx+c的开口向下,则a的值可能是.(写一个即可)14.如图D3-6,反比例函数y=的图象经过矩形OABC的边AB的中点D,则矩形OABC的面积为.图D3-615.若点P(x-2,x+3)在第一象限,则x的取值范围是.16.如图D3-7,在平面直角坐标系中,将点P(-4,2)绕原点顺时针旋转90°,则其对应点Q的坐标为.图D3-717.如图D3-8,抛物线y=ax2+bx+c与x轴相交于点A,B(m+2,0),与y轴相交于点C,点D在该抛物线上,坐标为(m,c),则点A的坐标是.图D3-818.如图D3-9①,E为矩形ABCD的边AD上一点,点P从点B处出发沿折线BE-ED-DC运动到点C停止,点Q从点B处出发沿BC运动到点C停止,它们运动的速度都是1cm/s.若点P、点Q同时开始运动,设运动时间为t(s),△BPQ的面积为y(cm2),已知y与t之间的函数图象如图D3-9②所示.给出下列结论:①当0<t≤10时,△BPQ 是等腰三角形;②S△ABE=48cm2;③当14<t<22时,y=110-5t;④在运动过程中,使得△ABP是等腰三角形的点P一共有3个;⑤△BPQ与△ABE相似时,t=14.5.其中正确结论的序号是.图D3-9三、解答题(共66分)19.(6分)已知一次函数y=2x+4.(1)在如图D3-10所示的平面直角坐标系中,画出函数的图象;图D3-10(2)求图象与x轴的交点A的坐标,与y轴交点B的坐标.20.(6分)如图D3-11,一次函数y=kx+b的图象与反比例函数y=的图象在第一象限交于点A(4,2),与y轴的负半轴交于点B,且OB=6.(1)求函数y=和y=kx+b的解析式;(2)已知直线AB与x轴相交于点C,在第一象限内,求反比例函数y=的图象上一点P,使得S△POC=9.图D3-1121.(8分)某市规定了每月用水18立方米以内(含18立方米)和用水18立方米以上两种不同的收费标准.该市的用户每月应缴水费y(元)是用水量x(立方米)的函数,其图象如图D3-12所示.(1)若某月用水量为16立方米,则应缴水费多少元?(2)求当x>18时,y关于x的函数表达式;若小敏家某月缴水费81元,则她家这个月的用水量为多少立方米?图D3-1222.(8分)甲、乙两车分别从A,B两地同时出发.甲车匀速前往B地,到达B地立即以另一速度按原路匀速返回到A地;乙车匀速前往A地.设甲、乙两车距A地的路程为y(千米),甲车行驶的时间为x(时),y与x之间的函数图象如图D3-13所示.图D3-13(1)求甲车从A地到达B地的行驶时间;(2)求甲车返回时y与x之间的函数关系式,并写出自变量x的取值范围;(3)求乙车到达A地时甲车距A地的路程.23.(8分)甲、乙两人进行羽毛球比赛,羽毛球飞行的路线为抛物线的一部分,如图D3-14,甲在O点正上方1m 的P处发出一球,羽毛球飞行的高度y(m)与水平距离x(m)之间满足函数表达式y=a(x-4)2+h.已知点O与球网的水平距离为5m,球网的高度为1.55m.图D3-14(1)当a=-时,①求h的值;②通过计算判断此球能否过网.(2)若甲发球过网后,羽毛球飞行到与点O的水平距离为7m,离地面的高度为m的Q处时,乙扣球成功,求a 的值.24.(10分)如图D3-15,一次函数y=kx+b的图象与反比例函数y=的图象在第一象限交于点A(4,3),与y轴的负半轴交于点B,且OA=OB.图D3-15(1)求函数y=kx+b和y=的表达式;(2)已知点C(0,5),试在该一次函数图象上确定一点M,使得MB=MC,求此时点M的坐标.25.(10分)某公司开发出一款新的节能产品,该产品的成本价为6元/件,该产品在正式投放市场前通过代销点进行了为期一个月(30天)的试销售,售价为8元/件.工作人员对销售情况进行了跟踪记录,并将记录情况绘制成图象,图D3-16中的折线ODE表示日销售量y(件)与销售时间x(天)之间的函数关系.已知线段DE表示的函数关系中,时间每增加1天,日销售量减少5件.图D3-16(1)第24天的日销售量是件,日销售利润是元;(2)求y与x之间的函数关系式,并写出x的取值范围;(3)日销售利润不低于640元的天数共有多少天?试销售期间,日销售最大利润是多少元?26.(10分)如图D3-17,已知抛物线y=x2-x-n(n>0)与x轴交于A,B两点(A点在B点的左边),与y轴交于点C.图D3-17(1)如图①,若△ABC为直角三角形,求n的值;(2)如图①,在(1)的条件下,点P在抛物线上,点Q在抛物线的对称轴上,若以BC为边,以点B,C,P,Q为顶点的四边形是平行四边形,求P点的坐标;(3)如图②,过点A作直线BC的平行线交抛物线于另一点D,交y轴于点E,若AE∶ED=1∶4,求n的值.参考答案1.B2.C3.B4.B5.D6.B7.C8.D9.C10.D11.D[解析] 结合二次函数图象的开口方向、对称轴以及增减性进行解答即可.二次函数y=-(x-1)2+5的大致图象如下:因为mn<0,所以m<0,n>0.(1)当n<1时,在x=m处y取最小值,即2m=-(m-1)2+5,解得m=-2(m=2不合题意,舍去).在x=n处y取最大值,即2n=-(n-1)2+5,解得n=2或n=-2(均不合题意,舍去).(2)当n≥1时,在x=1处y取最大值,即2n=-(1-1)2+5,解得n=.①当m<-时,在x=m处y取最小值,即2m=-(m-1)2+5,解得m=-2.所以m+n=.②当0>m≥-时,在x=n,即n=处y取最小值,即2m=--12+5.解得m=(舍去).所以m+n=-2+=.故选D.12.B[解析] 由y=x可得该直线与x轴的正方向的夹角∠A0OA1=30°,由已知,可得∠A0A1A2=∠A1A2A3=∠A2A3A4=∠A3A4A5=∠A4A5A6=30°,∴在Rt△A0A1O中,A0A1=OA0=×2=1,A1A2=A0A1·cos 30°=,同理可得A2A3=A1A2·cos 30°=2,A3A4=A2A3·cos 30°=3,…,以此类推,可得A2018A2019=2018.13.-1(答案不唯一,小于零即可)14.415.x>216.(2,4)17.(-2,0)[解析] 根据函数值相等的两点关于对称轴对称可得对称轴,根据A,B关于对称轴对称,可得点A的坐标.由C(0,c),D(m,c),得函数图象的对称轴是直线x=.设点A的坐标为(x,0),由A,B关于对称轴x=对称,得=.解得x=-2,即点A的坐标为(-2,0).故答案为(-2,0).18.①③⑤[解析] 由题图②可判断出BE=BC=10 cm,DE=4 cm.当点P在ED上运动时,S△BPQ=40 cm2,∴AB=8 cm,∴AE=6 cm.∴当0<t≤10时,点P在BE上运动,BP=BQ.∴△BPQ是等腰三角形.所以①正确.S△ABE=AB·AE=24 cm2,所以②错.当14<t<22时,点P在CD上运动,y=×10×(22-t)=110-5t,所以③正确.△ABP为等腰三角形需要分类讨论,当AB=AP时,ED上存在一个点P;当BA=BP时,BE上存在一个点P;当P A=PB时,点P在AB的垂直平分线上,所以BE和CD上各存在一个点P,共有4个满足条件的点,所以④错.△BPQ与△ABE相似时,只存在△BPQ∽△BEA这种情况,此时点Q与C点重合,即==,所以PC=7.5,即t=14.5.所以⑤正确.19.解:(1)当x=0时y=4,当y=0时,x=-2,则图象如图所示.(2)由(1)可知,A(-2,0),B(0,4).20.解:(1)∵点A(4,2)在反比例函数y=的图象上,∴m=4×2=8.∴反比例函数的解析式为y=.∵点B在y轴的负半轴上,且OB=6,∴点B的坐标为(0,-6).把点A(4,2)和点B(0,-6)的坐标分别代入y=kx+b,得, -解得, -∴一次函数的解析式为y=2x-6.(2)设点P的坐标为n,(n>0).在直线y=2x-6上,当y=0时,x=3,∴点C的坐标为(3,0),即OC=3.∴S△POC=OC·y P=×3×=9.解得n=.∴点P的坐标为,6.故当S△POC=9时,在第一象限内,反比例函数y=的图象上点P的坐标为,6. 21.解:(1)设函数表达式为y=ax(x≤18).∵直线y=ax过点(18,45),∴18a=45.解得a=.∴y=x(x≤18).将x=16代入,得y=40.答:应缴水费40元.(2)设函数表达式为y=kx+b(x>18).∵直线y=kx+b过点(18,45),(28,75),∴,解得,-∴y=3x-9(x>18).由81元>45元,得用水量超过18立方米.∴当y=81时,3x-9=81,解得x=30.答:她家这个月的用水量为30立方米.22.解:(1)180÷1.5=120(千米/时),300÷120=2.5(小时).答:甲车从A地到达B地行驶了2.5小时.(2)设所求函数关系式为y=kx+b(k≠0).将(2.5,300),(5.5,0)分别代入,得,解得-,∴y=-100x+550(2.5≤x≤5.5).(3)(300-180)÷1.5=80(千米/时),300÷80=3.75(时).当x=3.75时,y甲=175.答:乙车到达A地时,甲车距离A地175千米.23.解:(1)①把(0,1),a=-代入y=a(x-4)2+h,得1=-×16+h.解得h=.②把x=5代入y=-(x-4)2+,得y=-(5-4)2+=1.625.∵1.625>1.55,∴此球能过网.(2)把点(0,1),7,分别代入y=a(x-4)2+h,得,解得-,∴a=-.24.[解析] (1)利用待定系数法即可解答;(2)设点M的坐标为(x,2x-5),根据MB=MC,得到-)=--),即可解答.解:(1)把A(4,3)的坐标代入y=,得a=3×4=12.∴y=.易得OA==5.∵OA=OB,∴OB=5.∴点B的坐标为(0,-5).把B(0,-5),A(4,3)的坐标分别代入y=kx+b,得-,解得,-∴y=2x-5.(2)∵点M在一次函数y=2x-5的图象上,∴设点M的坐标为(x,2x-5).∵MB=MC,∴-)=--).解得x=2.5.∴点M的坐标为(2.5,0).25.解:(1)330660(2)设线段OD所表示的y与x之间的函数解析式为y=kx.∵y=kx的图象过点(17,340),∴17k=340.解得k=20.∴线段OD所表示的y与x之间的函数解析式为y=20x.由题意得,线段DE所表示的y与x之间的函数解析式为y=340-5(x-22)=-5x+450.∵D是线段OD与线段DE的交点,解方程组,-,得,∴点D的坐标为(18,360).∴y=),-)(3)当0≤x≤18时,由题意,得(8-6)×20x≥640,解得x≥16;当18<x≤30时,由题意,得(8-6)×(-5x+450)≥640,解得x≤26.∴16≤x≤26.∵26-16+1=11,∴日利润不低于640元的天数共有11天.∵点D的坐标为(18,360),∴日最大销售量为360件.∴日销售最大利润是(8-6)×360=720(元).26.解:(1)若△ABC为直角三角形,则OC2=OA·OB.由抛物线y=x2-x-n(n>0),可得OC=n,OA·OB=2n,∴n2=2n,解得:n1=2,n2=0(舍去),∴n=2.(2)由(1)可知抛物线的对称轴为直线x=,抛物线解析式为y=x2-x-2,令y=0,得x1=-1,x2=4,∴A(-1,0),B(4,0),设点P m,m2-m-2,①当直线PQ∥BC时,当点P1在点Q1的左侧时(如图①所示),当△BOC平移到△Q1NP1的位置时,四边形P1Q1BC为平行四边形,此时NQ1=OB,即-m=4,m=-.当m=-时,y=m2-m-2=,此时点P的坐标为-,.当点P2在点Q2的右侧时(如图①所示),同理可得:m-=4,m=.当m=时,y=m2-m-2=,此时点P的坐标为,.②当直线PQ与直线BC相交时,如图②所示:此时点P到y轴的距离等于点B到对称轴的距离.即m=4-=.当m=时,y=m2-m-2=-,此时点P的坐标为,-.综上所述,满足条件的点P的坐标为-,,,,,-.(3)如图③,过点D作DF⊥x轴,垂足为F.则AO∶OF=AE∶ED=1∶4.设A(a,0),B(b,0),则AO=-a,OF=-4a,∵AD∥BC,∴∠DAO=∠OBC,∵∠AFD=∠BOC=90°,∴△BOC∽△AFD,∴=,即=--,由题意:ab=-2n,∴=-,∴DF=-5a·=-5a·-=a2, ∵点A,D在抛物线上,∴--,--)-,解得:-, ,∴n的值为.。