二次函数复习
- 格式:ppt
- 大小:794.00 KB
- 文档页数:26
完整版)二次函数知识点复习二次函数知识点一、二次函数概念:二次函数是形如y=ax²+bx+c(a≠0)的函数。
需要强调的是,和一元二次方程类似,二次项系数a≠0,而b、c可以为零。
二次函数的定义域是全体实数。
二、二次函数的基本形式1.二次函数基本形式:y=ax²的性质:a的绝对值越大,抛物线的开口越小。
a的符号决定开口方向,顶点坐标为(0,0),对称轴为y轴。
当a>0时,抛物线开口向上;当a<0时,抛物线开口向下。
性质:a>0时,当x增大时,y增大;当x减小时,y减小;当x=0时,y有最小值。
a<0时,当x增大时,y减小;当x减小时,y增大;当x=0时,y有最大值。
2.y=ax²+c的性质:上加下减。
a的符号决定开口方向,顶点坐标为(0,c),对称轴为y轴。
性质:a>0时,当x增大时,y增大;当x减小时,y减小;当x=0时,y有最小值c。
a<0时,当x增大时,y减小;当x减小时,y增大;当x=0时,y有最大值c。
3.y=a(x-h)²的性质:左加右减。
a的符号决定开口方向,顶点坐标为(h,0),对称轴为x=h。
性质:a>0时,当x>h时,y增大;当x<h时,y减小;当x=h 时,y有最小值。
ah时,y减小;当x<h时,y增大;当x=h时,y有最大值。
4.y=a(x-h)²+k的性质:a的符号决定开口方向,顶点坐标为(h,k),对称轴为x=h。
性质:a>0时,当x>h时,y增大;当x<h时,y减小;当x=h 时,y有最小值k。
ah时,y减小;当x<h时,y增大;当x=h时,y有最大值k。
三、二次函数图象的平移平移步骤:方法一:将抛物线解析式转化成顶点式y=a(x-h)²+k,确定其顶点坐标(h,k),具体平移方法如下:保持抛物线y=ax²的形状不变,将其顶点平移到(h,k)处,向上(k>0)或向下(k<0)平移|k|个单位。
二次函数复习讲义一、基本概念1. 二次函数的定义二次函数是指一个变量的二次多项式方程所定义的函数。
其一般形式可表示为:f(x) = ax^2 + bx + c其中,a、b、c为常数,且a不等于0。
2. 二次函数的图像二次函数的图像是一条开口向上或向下的抛物线。
当a>0时,抛物线开口向上;当a<0时,抛物线开口向下。
抛物线的顶点坐标为(-b/2a, f(-b/2a))。
3. 二次函数的对称轴和顶点二次函数的对称轴是与抛物线对称的直线,由x = -b/2a表示。
抛物线的顶点坐标即为对称轴的交点。
二、性质与变换1. 平移变换二次函数可通过平移变换进行移动。
设二次函数为f(x),平移的规则如下:a)水平平移:f(x + h)表示将抛物线沿x轴正方向移动h个单位;b)垂直平移:f(x) + k将抛物线沿y轴正方向移动k个单位。
2. 拉伸与压缩变换二次函数可通过拉伸或压缩变换进行缩放。
设二次函数为f(x),变换的规则如下:a)水平拉伸或压缩:f(mx)表示将抛物线的横坐标压缩到原来的1/m倍;b)垂直拉伸或压缩:m*f(x)表示将抛物线的纵坐标拉伸到原来的m 倍。
3. 顶点形式与标准形式的转换二次函数可以通过顶点形式和标准形式之间的转换来说明抛物线的性质。
顶点形式可表示为:f(x) = a(x - h)^2 + k其中,(h, k)为抛物线的顶点坐标。
标准形式可表示为:f(x) = ax^2 + bx + c其中,(h, k)为对称轴的交点。
三、特殊二次函数1. 平方函数平方函数是一种特殊的二次函数,其形式为:f(x) = x^2平方函数的图像是一条开口向上的抛物线,其顶点在(0, 0)处。
2. 平移后的二次函数对于二次函数f(x) = ax^2 + bx + c,进行平移变换可以得到新的二次函数g(x) = a(x - h)^2 + k。
3. 开口向上与开口向下的二次函数当a>0时,二次函数的图像开口向上;当a<0时,二次函数的图像开口向下。
二次函数专题复习考点一 二次函数的概念一般地,如果y =ax 2+bx +c (a ,b ,c 是常数,a ≠0),那么y 叫做x 的二次函数.注意:(1)二次项系数a ≠0;(2)ax 2+bx +c 必须是整式;(3)一次项可以为零,常数项也可以为零,一次项和常数项可以同时为零;(4)自变量x 的取值范围是全体实数.二次函数y =ax 2+bx +c (a ,b ,c 为常数,a ≠0)图象(a >0)(a <0)开口方向 开口向上开口向下对称轴 直线x =-b2a直线x =-b2a顶点坐标⎝⎛⎭⎫-b 2a ,4ac -b 24a⎝⎛⎭⎫-b 2a,4ac -b 24a增减性当x <-b2a 时,y 随x 的增大而减小;当x >-b2a时,y 随x 的增大而增大当x <-b2a 时,y 随x 的增大而增大;当x >-b2a时,y 随x 的增大而减小最值当x =-b2a 时,y 有最小值4ac -b 24a当x =-b2a 时,y 有最大值4ac -b 24a考点三 二次函数图象的特征与a ,b ,c 及b2-4ac 的符号之间的关系考点四 二次函数图象的平移抛物线y =ax 2与y =a (x -h )2,y =ax 2+k ,y =a (x -h )2+k 中|a |相同,则图象的形状和大小都相同,只是位置的不同.它们之间的平移关系如下表:考点五 二次函数关系式的确定(1)一般式:c bx ax y ++=2.已知图像上三点或三对x 、y 的值,通常选择一般式. (2)顶点式:()k h x a y +-=2.已知图像的顶点或对称轴,通常选择顶点式.(3)交点式:已知图像与x 轴的交点坐标1x 、2x ,通常选用交点式:()()21x x x x a y --=考点六 二次函数与一元二次方程的关系1.二次函数y =ax 2+bx +c (a ≠0),当y =0时,就变成了ax 2+bx +c =0(a ≠0). 2.ax 2+bx +c =0(a ≠0)的解是抛物线与x 轴交点的横坐标.3.当Δ=b 2-4ac >0时,抛物线与x 轴有两个不同的交点;当Δ=b 2-4ac =0时,抛物线与x 轴有一个交点;当Δ=b 2-4ac <0时,抛物线与x 轴没有交点.1.抛物线23(1)2y x =-+的对称轴是( )A .1x =B .1x =-C . 2x =D .2x =-2.抛物线3)2(2+-=x y 的顶点坐标是( ) A .(2,3) B .(-2,3) C .(2,-3) D .(-2,-3)3.(2009年泸州)在平面直角坐标系中,将二次函数22x y =的图象向上平移2个单位,所得图象的解析式为A .222-=x y B .222+=x y C .2)2(2-=x y D .2)2(2+=x y 类型一:二次函数的图象1.(2012•泰安)二次函数y=a (x+m )2+n 的图象如图,则一次函数y=mx+n的图象经过( )A .第一、二、三象限B .第一、二、四象限 B .C .第二、三、四象限D .第一、三、四象限2.(2011•湘潭)在同一坐标系中,一次函数y=ax+1与二次函数y=x 2+a 的图象可能是( )3.(2010•达州)抛物线图象如图所示,根据图象,抛物线的解析式可能是( )A .y=x 2-2x+3B .y=-x 2-2x+3C .y=-x 2+2x+3D .y=-x 2+2x-34.(2011•威海)二次函数y=x 2-2x-3的图象如图所示.当y <0时,自变量x 的取值范围是( )A .-1<x <3B .x <-1C .x >3D .x <-3或x >35.已知函数y 1=x 2与函数y 2=-21x+3的图象大致如图.若y1<y 2,则自变量x 的取值范围是( )A .-23<x <2 B .x >2或x <-23 C .-2<x <23 D .x <-2或x >23 类型二:二次函数的性质(2010•兰州)二次函数y=-3x 2-6x+5的图象的顶点坐标是( )A .(-1,8)B .(1,8)C .(-1,2)D .(1,-4)(2010•毕节地区)已知抛物线y=-2(x-3)2+5,则此抛物线( )A .开口向下,对称轴为直线x=-3B .顶点坐标为(-3,5)C .最小值为5D .当x >3时y 随x 的增大而减小 (2012•德阳)设二次函数y=x 2+bx+c ,当x ≤1时,总有y ≥0,当1≤x ≤3时,总有y ≤0,那么c 的取值范围是( )A .c=3B .c ≥3C .1≤c ≤3D .c ≤3类型三:二次函数的增减性 1.已知函数215322y x x =---,设自变量的值分别为x 1,x 2,x 3,且-3< x 1< x 2<x 3,则 对应的函数值的大小关系是( )A .y 3>y 2>y 1B .y 1>y 3>y 2C .y 2<y 3<y 1D .y 3<y 2<y 12.小明从右边的二次函数2y ax bx c =++图象中,观察得出了下面的五条信息:①0a <,②0c =,③函数的最小值为3-,④当0x <时, 0y >,⑤当1202x x <<<时,12y y >.你认为其中正确0 2 3-y的个数为( ) A.2B.3C.4D.53.若123135(,),(1,),(,)43A yB yC y --的为二次函数245y x x =--+的图像上的三点,则y 1,y 2,y 3的大小关系是( )A. y 1<y 2<y 3B. y 3<y 2<y 1C. y 3<y 1<y 2D. y 2<y 1<y 34.从y=x 2的图象可看出,当-3≤x≤-1时,y的取值范围是 A 、y≤0或9≥y B 、0≤y≤9 C 、0≤y≤1 D 、1≤y≤95.小颖在二次函数y =2x 2+4x +5的图象上,依横坐标找到三点(-1,y 1),(21,y 2), (-321,y 3),则你认为y 1,y 2,y 3的大小关系应为( ) A.y 1>y 2>y 3 B.y 2>y 3>y 1 C.y 3>y 1>y 2 D.y 3>y 2>y 1二、利用二次函数图象判断a ,b ,c 的符号【例2】 如图所示,二次函数y =ax 2+bx +c 的图象开口向上,图象经过点(-1,2)和(1,0),且与y 轴交于负半轴.(1)给出四个结论:①a >0;②b >0;③c >0;④a +b +c =0,其中正确结论的序号是__________;(2)给出四个结论:①abc <0;②2a +b >0;③a +c =1;④a >1.其中正确结论的序号是__________.已知二次函数y =ax 2+bx +c (a ≠0)的图象如图所示,有下列结论:①b 2-4ac >0;②abc >0;③8a +c >0;④9a +3b +c <0. 其中,正确结论的个数是( ). A .1 B .2 C .3 D .4(2012•玉林)二次函数y=ax 2+bx+c (a ≠0)的图象如图所示,其对称轴为直线x=1,有如下结论:①c <1;②2a+b=0;③b 2<4ac ;④若方程ax 2+bx+c=0的两根为x 1,x 2,则x 1+x 2=2, 则正确的结论是( )A .①②B .①③C .②④D .③④(2012•威海)已知二次函数y=ax 2+bx+c (a ≠0)的图象如图所示,下列结论错误的是( )A .abc >0B .3a >2bC .m (am+b )≤a-b (m 为任意实数)D .4a-2b+c <0(2011•兰州)如图所示的二次函数y=ax 2+bx+c 的图象中,刘星同学观察得出了下面四条信息:(1)b 2-4ac >0;(2)c >1;(3)2a-b <0;(4)a+b+c <0.你认为其中错误的有( ) A .2个 B .3个 C .4个D .1个四、确定二次函数的解析式【例】 已知一抛物线与x 轴的交点是A (-2,0),B (1,0),且经过点C (2,8). (1)求该抛物线的表达式; (2)求该抛物线的顶点坐标.1.在直角坐标系中,△AOB 的顶点坐标分别为A (0,2),O (0,0),B (4,0),把△AOB 绕O 点按逆时针方向旋转900到△COD 。
二次函数的定义(考点:二次函数的二次项系数不为0,且二次函数的表达式必须为整式)1、若函数y=(m 2-5m -84)x 2+4x+5是关于x 的二次函数,求m 的取值X 围。
2、已知函数y=(m -1)x m2 +1+5x -3是二次函数,求m 的值。
综合:y=(m 2+m-6)xm2-1+(m 2-3m+2)x+7,是二次函数和一次函数,分别求m 的值。
二次函数的对称轴、顶点、最值(技法:如果解析式为顶点式y=a(x -h)2+k ,则最值为k ;如果解析式为一般式y=ax 2+bx+c则最值为4ac-b24a1.若抛物线y =ax 2-6x 经过点(2,0),则抛物线顶点到坐标原点的距离为( )2.若直线y =ax +b 不经过二、四象限,则抛物线y =ax 2+bx +c( ) A.开口向上,对称轴是y 轴 B.开口向下,对称轴是y 轴C.开口向下,对称轴平行于y 轴D.开口向上,对称轴平行于y 轴 3.若二次函数y=3x 2+mx -3的对称轴是直线x =1,则m =。
4.已知二次函数y=mx 2+(m -1)x+m -1有最小值为0,则m = ______ 。
5.已知二次函数y=x 2-4x+m -3的最小值为3,则m =。
二次函数的增减性【技法】:根据单调性求最值,探讨对称轴的X 围。
1.已知函数y=4x 2-mx+5,当x> -2时,y 随x 的增大而增大;当x< -2时,y 随x 的增大而减少;则x =1时,y 的值为。
2.已知二次函数y=-12 x 2+3x+52的图象上有三点A(x 1,y 1),B(x 2,y 2),C(x 3,y 3)且3<x 1<x 2<x 3,则y 1,y 2,y 3的大小关系为. 3.二次函数的平移技法:只要两个函数的a 相同,就可以通过平移重合。
将二次函数一般式化为顶点式y=a(x-h)2+k ,平移规律:左加右减,对x ;上加下减,直接加减 1.将抛物线y=x 2+1向左平移2个单位,再向下平移3个单位,所得到的抛物线的关系式为。
二次函数复习复习二次函数时,你需要了解其基本概念、图像、性质、方程、以及如何解决与二次函数相关的问题。
以下是一个二次函数的复习指南:1. 二次函数的基本定义:二次函数是一个关于未知数x 的二次方程,通常写成f(x) = ax^2 + bx + c,其中a、b、c 是实数,且a 不等于0。
二次函数的图像是一个抛物线,开口方向由 a 的正负决定。
如果a 大于0,抛物线向上开口,如果 a 小于0,抛物线向下开口。
2. 二次函数的图像:学会画二次函数的图像,包括定点、开口方向和焦点。
理解顶点概念,它是抛物线的最高或最低点。
3. 二次函数的性质:学习关于二次函数的凹性、凸性、单调性和对称性的性质。
了解零点(方程f(x) = 0 的解)、判别式(b^2 - 4ac)、顶点坐标等重要属性。
4. 二次函数的方程:学习如何解二次方程,通常使用配方法、因式分解、求根公式或图形法。
理解二次函数的根和判别式之间的关系。
5. 二次函数的应用:了解二次函数在现实生活中的应用,如物体的自由落体运动、开口朝上或朝下的抛物线问题等。
6. 练习题目:做大量练习题来提高解题能力。
包括求零点、找顶点、分析图像、解决实际问题等类型的问题。
7. 复习策略:制定学习计划,将时间分配给不同的主题。
制作笔记和摘要,以便在复习时查阅。
寻求帮助,如果你遇到困难,不要犹豫向老师或同学请教。
8. 模拟考试:最后,做模拟考试,以检验你的学习成果,并模拟真实考试的时间和环境。
通过深入理解二次函数的概念、图像和性质,以及掌握解二次函数方程的方法,你将能够更自信地应对与二次函数相关的问题,无论是在学校的考试中还是在日常生活中的应用中。
二次函数复习专题讲义全1.二次函数概念:指形如y=ax^2(a≠0)的函数。
2.简单二次函数:其图像为过原点的一条抛物线,对称轴为y轴,最值依赖于a的正负性。
3.增减性:当a>0时,在对称轴左边(x0),y随x的增大而增大;当a0),y随x的增大而减小。
4.一般二次函数概念:指形如y=ax^2+bx+c(a≠0)的函数,注意还有顶点式、交点式以及它们之间的转换。
5.二次函数图像:是一条抛物线,开口方向依赖于a的正负性,顶点坐标为(-b/2a。
c-b^2/4a)。
6.对称轴:为x=-b/2a。
7.最值:当a>0时,y的最小值为c-b^2/4a;当a<0时,y 的最大值为c-b^2/4a。
8.增减性:当a>0时,在对称轴左边(x-b/2a),y随x的增大而增大;当a-b/2a),y随x的增大而减小。
9.待定系数法可以用来求解析式,二次函数可以应用于建立函数模型解决实际问题。
10.二次函数的三种解析式:一般式、顶点式和交点式。
其中,顶点式和交点式可以相互转换。
注意,a≠0,而b和c可以为零。
1.系数a决定抛物线的开口方向和大小。
当a>0时,开口向上;当a<0时,开口向下。
绝对值|a|决定开口大小,|a|越大,开口越小;|a|越小,开口越大。
2.系数c决定抛物线与y轴的交点位置。
当c>0时,交点在y轴正半轴;当c=0时,交点在抛物线顶点上方;当c<0时,交点在y轴负半轴。
3.系数a和b共同决定抛物线对称轴的位置。
当- b/2a>0时,对称轴在y轴右侧;当- b/2a<0时,对称轴在y轴左侧;当- b/2a=0时,对称轴为y轴。
4.特别地,当a=1时,顶点坐标为(-b/2.a+b+c),当x=-1时,有y=a-b+c。
5.抛物线y=ax^2+bx+c(a≠0)与一元二次方程ax^2+bx+c=0(a≠0)的关系:若抛物线与x轴有两个交点,则方程有两个不相等的实根;若抛物线与x轴有一个交点,则方程有两个相等的实根;若抛物线与x轴无交点,则方程无实根。