广义积分敛散性判别法的应用
- 格式:doc
- 大小:55.00 KB
- 文档页数:6
摘要广义积分是定积分的突破被积区间有界性与被积函数无界性的束缚得到的推广形式.在实际应用中,大部分的广义积分不能直接运算,有的积分虽然可以计算,但是过程太复杂,不方便我们的应用,而对广义积分而言,求其值的一个先决条件就是广义积分收敛,否则毫无意义,因此,广义积分的敛散性判别显得十分重要.本文主要论述了广义积分的两种形式:无穷积分和瑕积分.首先简述了无穷积分和瑕积分的定义,性质;其次,重点讨论了无穷积分与瑕积分的收敛与发散的判别,讨论了几种常用的判别方法,并用例题加以说明;最后,讨论了一下无穷积分与瑕积分混合时的反常积分的收敛与发散的判别.关键词:广义积分;无穷积分;瑕积分;收敛;发散.ABSTRACTGeneralized integrals is definite integral breakthrough was integrated interval bounded ness and integrand unbounded sexual ties get promotion form. In practical applications, most of the generalized integrals cannot direct operations, some integral although can calculate, but process is too complex, it is not convenient to our application, and the generalized integrals, let their value as a precondition is generalized integrals convergence, otherwise has no purpose, therefore, the generalized integral scattered sex discrimination folding is extremely important. This article mainly discusses the generalized integral in two forms: infinite integrals and flaw points. First, this paper expounds the infinite integrals and flaw integral definition, properties; Secondly, this paper discusses infinite integrals and the convergence and divergent flaw integral, discussed several discriminate criterion method commonly used instructions, and binders; Finally, discussed the infinite integrals when mixed with a flaw points of convergence in divergent discrimination.Keywords: Generalized integrals; Infinite integrals; Flaw integral; Convergence; Divergent;目录第一章前言 ........................................................................................ - 1 -第二章无穷积分 ...................................................................................... - 3 -2.1 无穷积分的概念与性质............................................ - 3 -2.2 无穷积分的敛散性判别............................................ - 4 -第三章瑕积分......................................................................................... - 15 -3.1瑕积分的概念与性质 ............................................. - 15 -3.2 瑕积分的敛散性判别............................................. - 16 -第四章混合型反常积分.......................................................................... - 23 -第五章结论............................................................................................. - 27 -参考文献............................................................................................. - 29 -致谢 .................................................................................................. - 31 -第一章前言无限区间上的积分或无界函数这两类积分叫作广义积分,又名反常积分.在讨论定积分时有两个最基本的限制:积分区间的有穷性和被积函数的有界性。
柯西判别法在广义积分敛散性中的运用
作者:余小飞郭洪林
来源:《开心素质教育》2017年第07期
【摘要】本文首先简述了无穷积分和瑕积分的定义,重点研究了柯西极限判别法在无穷积分与瑕积分的收敛与发散的判别,并用例题加以说明。
【关键词】广义积分收敛发散
广义积分是定积分的推广形式,实际应用非常广泛,而对广义积分而言,求其值的一个先决条件就是广义积分收敛,否则毫无意义,因此,广义积分的敛散性判别显得十分重要。
一、无穷区间上的广义积分
(1)定义
设函数f(x)在[a,+∞)上有定义,对?b>a,记
柯西极限判别法用极限的形式研究了广义积分的敛散性,为我们提供了很好的判别方法,非常值得推广运用。
(作者单位:河南工业职业技术学院)
参考文献:
[1]白水周.无穷限广义积分的几种有效解法[J].开封大学学报,2000,14(1):49-50.
[2]李绍成.论广义积分的计算[J].绵阳农专学报:自然科学版,1996,13(2):65-70.
[3]数学分析.华东师范大学数学系[M].高等教育出版社,2001.。
广义积分敛散性判别法的应用主要的广义积分敛散性证明方法如下:套定义验证比较判别法、等价无穷小Cauchy准则Dirichlet判别法Abel判别法另外本文还有用Cauchy准则来处理广义积分有关的证明题的例题总结.1 广义积分的定义定义1.1[无穷积分]如果 f(x) 在任意有限区间 [a,A] 都是Riemann可积, 且极限 limA→+∞∫aAf(x)dx 存在, 则把无穷积分定义为∫a+∞f(x)dx=limA→+∞∫aAf(x)dx.否则称无穷积分是发散的.此外,∫−∞+∞f(x)dx=∫a+∞f(x)dx+∫−∞af(x)dx.这与Cauchy主值积分不同:(V.P.)∫−∞+∞f(x)dx=limA→+∞∫−AAf(x)dx.广义积分与Riemann积分有类似性质, 运算法则(分部积分、变量替换等)可以推广过来.定义1.2 [瑕积分]如果 f(x) 在任意有限区间 [a′,b],(a<a′<b) 都是Riemann可积, 且极限 lima′→a+∫a′bf(x)dx 存在, 则把瑕积分定义为∫abf(x)dx=lima′→a+∫a′bf(x)dx.否则称无穷积分发散.例1.1 无穷积分∫1+∞1xpdx 当 p>1 时, 该无穷积分收敛;当 p≤1 时, 该无穷积分发散.例1.2 瑕积分∫011xpdx. 当 p<1 时, 该瑕积分收敛; 当 p≥1 时, 该瑕积分发散.例1.3 ∫−∞+∞11+x2dx=arctanx|−∞0+arctanx|0+∞=π例1.4 ∫−1111−x2dx=arcsinx|−10+arcsinx|01=π.如果被积函数 f(x) 恒大于0, 我们有如下结论.定理1.5 设 f≥0, 则无穷积分∫a+∞f(x)dx 收敛当且仅当 F(A)=∫aAf(x)dx 是 A∈[a,+∞) 的有界函数.2 比较判别法与等价无穷小定理2.1 设 0≤f≤Mg,M>0 为常数,(这个不等式对充分大的x都成立就行了). 则当无穷积分∫a+∞g(x)dx 收敛时, 无穷积分∫a+∞fdx 也收敛. 当无穷积分∫a+∞fdx 发散时, 无穷积分∫a+∞g(x)dx 发散. 瑕积分的结果类似.在比较判别法中, M的寻找可以用极限去找. 如果极限 l=limx→∞f(x)g(x) 存在, 则(1) 当 0<l<∞时, 积分∫a+∞f(x)dx 与∫a+∞g(x)dx 同敛散.(2) 当 l=0 时, 如果∫a+∞g(x)dx 收敛, 则∫a+∞f(x)dx 也收敛.(3) 当 l=+∞时, 如果∫a+∞g(x)dx 发散, 则∫a+∞f(x)dx 也发散.注:对瑕积分有类似结论..例2.2 判断积分∫0+∞dxexx 的敛散性.提示:无. \QED例2.3 积分∫01dxlnx 是发散的.证明:注意到 limx→0+1lnx=0, 于是0不是瑕点, 1是瑕点. 我们只需要考虑∫1/21dxlnx. 由于∫1/21dxlnx=∫01/2dtln(1−t),且 ln(1−t)∼−t(t→0), 则积分∫1/21dxlnx 与−∫01/2dtt 同敛散. 则原积分是发散的. \QED例2.4 积分∫01lnx1−xdx 是收敛的.证明: 0,1 都是瑕点. 把积分区间拆成 (0,1/2) 与 (1/2,1). (在 (0,1/2) 区间内, 出现瑕点的地方是 lnx, 而在 (1/2,1) 区间内, 出现瑕点的地方是 11−x, 没出现瑕点的地方可以视作有限数)注意0>∫01/2lnx1−xdx>2∫01/2lnxdx,而∫01/2lnxdx=xlnx|01/2−∫01/2dx=12(ln12−1),则∫01/2lnx1−xdx 收敛. 另一方面,∫1/21lnx1−xdx=∫01/2ln(1−t)tdt,并注意到 limt→0+ln(1−t)t=−1, 则∫1/21lnx1−xdx 收敛. \QED3 用Cauchy准则验证收敛性定理3.1 [Cauchy准则] f(x) 在 [a,+∞) 上的积分收敛的充分必要条件是: ∀ε>0,∃M=M(ε),当 B>A>M 时, |∫abf(x)dx|<ε.例3.2 积分∫0+∞cosx2dx 是收敛的.证明:我们只需要看被积函数在 [1,+∞) 的积分即可. 作变量代换 x=t, 则∫1+∞cosx2dx=12∫1+∞costtdt.则|∫ABcosttdt|=|sintt|AB+12sintt3/2dt|≤1A+1B+12∫ABt −3/2dt=2A→0(B>A→+∞).因此积分是收敛的. \QED注:f在 [a,+∞) 积分存在不能推出 f(x)→0(x→+∞). 需要添加条件. 详见第6小节.例3.3 积分∫0+∞|cosx2|dx 是发散的.证明:【方法一】只需要考虑 cost 的一个周期. 由于∫(mπ)2(mπ+π)2|cosx2|dx=12∫mπ(m+1)π|cost|tdt>12(m+1)π∫mπ(m+1)π|cost|dt=22(m+1)π>2π1m+1+m+2=2π(m+2−m+1).固定m, 取 n>m, 则∫(mπ)2(nπ)2|cosx2|dx>2π(n+1−m+1)→∞(n→∞).因此原积分是发散的. \QED【方法二】(比较判别法). 由于 |cosx2|≥cos2x2=12(1+cos2x2), 由例3.2, 积分∫1+∞cos(2x2)dx 是收敛的, 但是积分 \int_1^{+\infty}1dx 发散, 则原积分发散. \QED注:方法二的技巧在例4.3、例6.5也用到了. 也就是说当 |x|≤1 时, 根据幂函数 y=xα的性质, 必有 x2≤|x|≤1. 利用这个技巧可以去掉绝对值.。
正函数广义积分敛散性的判别法的推广
杨青
【期刊名称】《安徽电子信息职业技术学院学报》
【年(卷),期】2017(016)005
【摘要】通过对广义积分与无穷级数基础理论的研究,利用数学知识规律的变化推导出新的运用形式并应用于不同的广义积分敛散性的判定中.
【总页数】3页(P58-60)
【作者】杨青
【作者单位】正德职业技术学院, 江苏南京 211106
【正文语种】中文
【中图分类】O177.6
【相关文献】
1.正函数广义积分敛散性的两个判别法 [J], 郭才顺;黄绍斌
2.试论级数敛散性的判别法在广义积分中的推广 [J], 董振华
3.正函数无穷积分敛散性的一种判别法 [J], 玉璋
4.广义积分敛散性的一个判别法:“0”收敛法 [J], 王敬有
5.正函数广义积分敛散性的两个判别法 [J], 李录书
因版权原因,仅展示原文概要,查看原文内容请购买。