七年级数学上册单元清1新版新人教版
- 格式:doc
- 大小:97.00 KB
- 文档页数:4
新人教版七年级数学上册《第1章有理数》单元测试卷(四川省自贡市富顺县赵化中学)一、选择题:1.(3分)下列各组数中,不是互为相反意义的量的是()A.收入200元与支出20元B.上升10米和下降7米C.超过0.05mm与不足0.03mD.增大2岁与减少2升2.(3分)用﹣a表示的数一定是()A.负数B.正数或负数C.负整数D.以上全不对3.(3分)下列说法中:①0是最小的整数;②有理数不是正数就是负数;③正整数、负整数、正分数、负分数统称为有理数;④非负数就是正数;⑤不仅是有理数,而且是分数;⑥是无限不循环小数,所以不是有理数;⑦无限小数不都是有理数;⑧正数中没有最小的数,负数中没有最大的数.其中错误的说法的个数为()A.7个B.6个C.5个D.4个4.(3分)若a为有理数,且满足|a|+a=0,则()A.a>0B.a≥0C.a<0D.a≤05.(3分)若|x|=7,|y|=9,则x﹣y为()A.±2B.±16C.﹣2和﹣16D.±2和±16 6.(3分)下列说法中,正确的是()A.若两个有理数的差是正数,则这两个数都是正数B.两数相乘,积一定大于每一个乘数C.0减去任何有理数,都等于此数的相反数D.倒数等于本身的为1,0,﹣17.(3分)如果两个有理数的和除以它们的积,所得的商为0,那么这两个有理数()A.互为倒数B.互为相反数但均不为0C.有一个数为0D.都等于08.(3分)下列四组数中,其中每组三个都不是负数的是()①2,|﹣7|,﹣(﹣);②﹣(﹣6),﹣|﹣3|,0;③﹣(﹣5),,﹣(﹣|﹣6|);④﹣[﹣(﹣6)],﹣[+(﹣2)],0.A.①、②B.①、③C.②、④D.③、④9.(3分)把﹣1,0,1,2,3这五个数,填入下列方框中,使行、列三个数的和相等,其中错误的是()A.B.C.D.10.(3分)下列运算结果是负值的是()A.(﹣5)×[﹣(﹣3)]B.(﹣7)﹣(﹣12)C.﹣1+2D.(﹣15)÷(﹣3)×(﹣)×(﹣3)11.(3分)计算×(﹣a)÷(﹣)×a等于()A.1B.a2C.﹣a D.12.(3分)在﹣3,4,﹣5,﹣6,7中,任取两个数相乘,积最大的是()A.15B.18C.28D.3013.(3分)绝对值大于而不大于的所有整数的积以及和分别等于()A.60和12B.﹣60和0C.3600和12D.﹣3600和0 14.(3分)的倒数与4的相反数的商是()A.﹣5B.5C.D.15.(3分)若a+b=0,则下列各组中不互为相反数的数是()A.a3和b3B.a2和b2C.﹣a和﹣b D.和16.(3分)已知(﹣mn)(﹣mn)(﹣mn)>0,则()A.mn<0B.m>0,n<0C.mn>0D.m<0,n<0 17.(3分)若m•n≠0,则+的取值不可能是()A.0B.1C.2D.﹣218.(3分)有理数a、b在数轴上分别对应的点为M、N,则下列式子结果为负数的个数是()①a+b;②a﹣b;③﹣a+b;④﹣a﹣b;⑤ab;⑥;⑦;⑧a3b3;⑨b3﹣a3.A.4个B.5个C.6个D.7个19.(3分)某市大约有36万中小学生参加了“校园文明礼仪”的主题活动,将数据36万用科学记数法记成a×10n﹣1的形式后,则n的值为()A.3B.4C.5D.620.(3分)近似数3.70所表示的准确值x的取值范围是()A.3.695≤x<3.705B.3.60<x<3.80C.3.695<x≤3.705D.3.700<x≤3.70521.(3分)计算:(﹣﹣)×(﹣34)的结果为()A.﹣21B.21C.﹣24D.24二、填空题:22.(3分)相反数等于本身的数有,倒数等于本身的数有,奇次幂等于本身的数有,绝对值等于本身的数有.23.(3分)如图的数轴上有两处不小心被墨水淹没了,所标注的数据是墨水部分边界与数轴相交点的数据;则被淹没的整数点有个,负整数点有个,被淹没的最小的负整数点所表示的数是.24.(3分)在数轴上把点A(﹣5)沿数轴移动6个单位后得到点B,则B所表示的数为.25.(3分)比较大小:①﹣0.﹣(+);②+(﹣5)﹣|﹣17|;③﹣32(﹣2)3.26.(3分)下列各数按大小顺序排列后,用“<”连接起来:﹣(﹣5),﹣(+3),﹣1,4,0,﹣2,﹣22,|﹣0.5|..27.(3分)填“>”或“<”或“=”号:①若m>0,n>0,且|m|<|n|,则m+n0,m﹣n0,mn0,0;②若m<0,n<0,且|m|<|n|,则m+n0,m﹣n0,mn0,0;③若m>0,n<0,且|m|<|n|,则m+n0,m﹣n0,mn0,0;④若m>0,n<0,且|m|>|n|,则m+n0,m﹣n0,mn0,0;⑤若m、n互为相反数,则m+n=.28.(3分)①()﹣(﹣3)=﹣11;②﹣5﹣()=17;③()+(﹣)=﹣;④(﹣22)+()=﹣13;⑤()÷=﹣3;⑥()×(﹣3)=32;⑦32﹣10=();⑧﹣22+1=();⑨()÷(﹣3)4=﹣.29.(3分)①125÷(﹣)×=;②1﹣2+3﹣4+5﹣…﹣2014+2015﹣2016+2017=.30.(3分)①比﹣9大﹣3的数是;②5比﹣16小;③数与的积为14.31.(3分)若|x|=5,|y|=9,则x+y=,x﹣y=.32.(3分)a是最大的负整数,b是最小的正整数,c为绝对值最小的数,则6a ﹣2b+4c=.33.(3分)若|6﹣x|与|y+9|互为相反数,则x=,y=,(x+y)÷(x﹣y)=.34.(3分)地球上的海洋面积约为361 000 000km2,用科学记数法表示应为km2.35.(3分)若x是不等于1的实数,我们把称为x的差倒数,如2的差倒数是=﹣1,﹣1的差倒数为,现已知x1=﹣,x2是x1的差倒数,x3是x2的差倒数,x4是x3的差倒数,…,依此类推,则x2017=.36.(3分)已知:,,,…,观察上面的计算过程,寻找规律并计算C106=.三、计算题37.①(﹣5)+9+(﹣4);②(﹣)+3.25+2+(﹣5.875)+1.15③(﹣33)+|﹣56|+|﹣44|+(﹣67);④(+7.563)+[(﹣3.76)+(﹣3.563)+(﹣0.03)+(﹣1.24)].38.①(﹣5)﹣(﹣2.25)﹣(﹣2)﹣(+5);②(5﹣12)﹣(13﹣5).③0﹣(﹣2)+(﹣7)﹣(+1)+(﹣10);④﹣0.5﹣5﹣1+3﹣4+2.39.①(+1)×(﹣2.4)×(﹣0.125);②0.1×(﹣100)×(﹣0.001)×(﹣10)×(﹣1000)×(﹣0.01);③(+2)×(﹣1)×(+2)×(﹣4);④(﹣375)×(﹣8)+(﹣375)×(﹣9)+375×(﹣7).40.①399×(﹣6);②﹣99×3;③﹣60×(3﹣+﹣).41.①(﹣4)÷(﹣14)×(﹣4.5)②(+﹣)÷(﹣);③365÷(﹣13)+565÷13+1100÷13;④÷(﹣)×().42.①2×(﹣5)+23﹣3÷;②﹣14﹣(2﹣0.5)××[﹣].43.①1﹣2+3﹣4+5﹣6+7﹣8+9﹣…﹣2012+2013﹣2014+2015﹣2016;②(﹣1)×(﹣1)×(﹣1)×…×(﹣1)×(﹣1)×(﹣1);③1﹣﹣﹣﹣﹣…﹣﹣﹣.(提示:﹣=﹣1+,…﹣=﹣+,…以此类推!)四、解答题:44.已知:a、b、c、d是互不相等的整数,且abcd=9,求代数式a+b+c+d的值.45.a的相反数为b,c的倒数d,m的绝对值为6,试求6a+6b﹣9cd+m的值.46.规定○是一种新的运算符号,且a○b=a2+a×b﹣a+2,例如:2○3=22+2×3﹣2+2=10.请你根据上面的规定试求:①﹣2○1的值;②1○3○5的值.五、应用题:47.小车司机蔡师傅某天下午的营运全是在东西走向的富泸公路上进行的,如果规定向东为正,向西为负,他这天下午行车里程(单位:千米)如下:+14,﹣3,+7,﹣3,+11,﹣4,﹣3,+11,+6,﹣7,+9(1)蔡师傅这天最后到达目的地时,距离下午出车时的出发地多远?(2)蔡师傅这天下午共行车多少千米?(3)若每千米好有0.1L,则这天下午蔡师傅用了多少升油?48.气象资料表明,高度每增加1km,气温大约升高﹣6℃.(1)我国著名风景区黄山的天都峰的高度约为1700米,当山下的地面温度约为18℃时,求山顶气温?(2)若某地地面的温度为20℃时,高空某处的气温为﹣22℃,求此处的高度.六、探究题:49.如图的图例是一个方阵图,每行的3个数、每列的3个数、斜对角的3个数相加的和均相等.如果将方阵图的每个数都加上同一个数,那么方阵中每行的3个数、每列的3个数、斜对角的3个数相加的和仍然相等,这样就形成新的方阵图.根据图①②③中给出的数,对照原来的方阵图,请你完成图①②③的方阵图?50.十几年前我国曾经流行有一种叫“二十四点”的数学趣味算题,方法是给出1~13之间的自然数,从中任取四个,将这四个数(四个数都只能用一次)进行“+”“﹣”“×”“÷”运算,可加括号使其结果等于24.例如:对1,2,3,4可运算(1+2+3)×4=24,也可以写成4×(1+2+3)=24,但视作相同的方法.现有郑、付两同学的手中分别握着四张扑克牌(见下图);若红桃、方块上的点数记为负数,黑桃、梅花上的点数记为正数.请你对郑、付两同学的扑克牌的按要求进行记数,并按前面“二十四点”运算方式对郑、付两同学的记数分别进行列式计算,使其运算结果均为24.(分别尽可能提供多种算法)依次记为:、、、依次记为:、、、.(1)帮助郑同学列式计算:(2)帮助付同学列式计算:.51.观察下列三行数:﹣2,4,﹣8,16,﹣32,…①0,6,﹣6,18,﹣30,…②﹣1,2,﹣4,8,﹣16,…③(1)第①行的数按什么规律排列?写出第①行的第n个数;(2)第②、③行数与第①行数分别有什么关系?(3)取每行第7个数,计算这三个数的和.新人教版七年级数学上册《第1章有理数》单元测试卷(四川省自贡市富顺县赵化中学)参考答案一、选择题:1.D;2.D;3.B;4.D;5.D;6.C;7.B;8.B;9.D;10.A;11.B;12.D;13.D;14.C;15.B;16.A;17.B;18.B;19.D;20.A;21.B;二、填空题:22.0;±1;±1,0;非负数;23.69;52;﹣72;24.1或﹣11;25.=;>;<;26.﹣22<﹣(+3)<﹣2<﹣1<0<|﹣0.5|<4<﹣(﹣5);27.>;<;>;>;<;>;>;>;<;>;<;<;>;>;<;<;0;28.﹣14;﹣22;﹣;+9;﹣;﹣10;﹣1;﹣3;﹣9;29.﹣180;1009;30.﹣12;﹣21;﹣6;31.4或﹣14或14或﹣4;﹣14或4或﹣4或14;32.﹣8;33.6;﹣9;﹣;34.3.61×108;35.﹣;36.210;三、计算题37.;38.;39.;40.;41.;42.;43.;四、解答题:44.;45.;46.;五、应用题:47.;48.;六、探究题:49.;50.﹣9;7;﹣6;2;7;﹣13;﹣5;3;(﹣9+7﹣2)×(﹣6);[﹣5×(﹣13)+7]÷3;51.;。
新人教版七年级数学上册单元测试卷第一单元:有理数一、选择题(本题共10小题,每小题3分,共30分)1.如果水库的水位高于正常水位2m时,记作+2m,那么低于正常水位3m时,应记作()A.+3mB.-3mC.+13D.-132. 室内温度是150℃,室外温度是-30℃,则室外温度比室内温度低( )A .120℃ B.180℃ C.-120℃ D.-180℃3. 一个数和它的倒数相等,则这个数是()A.1B.-1C.±1 D.±1和04. 若|a|=5,b=-3,则a-b的值是()A.2或8B.-2或8C.2或-8D.-2或-85. 下列四组有理数的大小比较正确的是()A.−12>−13B.-|-1|>-|+1|C.12<13D.|−12|>|−13|6. 若三个有理数的和为0,则下列结论正确的是()A.这三个数都是0B.最少有两个数是负数C.最多有两个正数D.这三个数是互为相反数7. 下列各式中正确的是()A.a2=.(−a)2B. a3=.(−a)3C.−a2=.|−a2|D. a3=.|a|38. 若x的相反数是3,│y│=5,则x+y的值为()A.-8B.2C.-8或2D.8或-29. 两个数的差是负数,则这两个数一定是( )A.被减数是正数,减数是负数B.被减数是负数,减数是正数C.被减数是负数,减数也是负数D.被减数比减数小10. 点A在数轴上表示+2,从点A沿数轴向左平移3个单位到点B,点B表示的数是( )A. 3B.-1C.5D.-1或3二、填空题(本题共6小题,每小题3分,共18分)11. 甲潜水员所在高度为-45米,乙潜水员在甲的上方15米处,则乙潜水员的所在的高度是__________.12. 大肠杆菌每过20分便由1个分裂成2个,经过3小时后这种大肠杆菌由1个分裂成__________个。
13. 在数轴上,与表示数-1的点的距离是5的点表示的数是。
人教版七年级数学上册第一章有理数 单元测试(一)一、单选题(共10小题,每题3分,共30分)1.−15的相反数是( )A .−15B .15C .−5D .52. 2021年5月国家统计局公布了第七次人口普查结果,我国人口数约为14.12亿,其中14.12亿用科学记数法表示为( ) A .14.12×108 B .0.1412×1010 C .1.412×109D .1.412×1083.在 −(−5) , −|−3| ,4, −4 这4个数中,最小的有理数是( )A .−(−5)B .−|−3|C .4D .−44.如果给出两个说法:①用四舍五入法对3.355取近似值,精确到百分位得3.35;②近似数5.2万精确到千位;那么( ) A .①②都正确 B .①正确,②不正确 C .①不正确,②正确D .①②都不正确5.已知|x |=3,|y |=2,且xy >0,则x ﹣y 的值等于( )A .5或﹣5B .1或﹣1C .5或1D .﹣5或﹣16.数轴上点A 表示的数是-2,那么与点A 相距5个单位长度的点表示的数是 ( )A .-7B .3C .-7或3D .以上都不对7.下列说法中正确的个数是( )①|a| 一定是正数;②−a 一定是负数;③−(−a) 一定是正数;④a3 一定是分数.A .0个B .1个C .2个D .3个8.已知 a,b 表示两个非零的实数,则 |a|a +|b|b的值不可能是( )A .2B .–2C .1D .09.某商场举办“迎新春送大礼”的促销活动,全场商品一律打八折销售.小明买了一件商品,比标价少付了40元,那么他购买这件商品花了( ) A .80元B .120元C .160元D .200元10.若a=-2020,则式子 |a 2+2019a +1|+|a 2+2021a −1| 的值是( )A .4036B .4038C .4040D .4042二、填空题(共5小题,每题3分,共15分)11.如图,数轴上点A,B所表示的两个数的和的绝对值是.12.观察图形,并用你发现的规律直接写出图4中的y的值是.13.用计算器计算并填空:112=,1112=,11112,你发现计算结果有什么规律?根据你发现的规律,不用计算器计算:1111112=14.若a,b都是不为零的有理数,那么|a|a+ |b|b的值是.15.若整数a、b、c、d满足abcd=21,且a>b>c>d,则|c﹣a|+|b﹣d|=.三、计算题(24分)16(8分).计算(1)12﹣(﹣18)+(﹣7)﹣15(2)﹣8²+2×(﹣2)³﹣(﹣6)÷(﹣13)²﹣(−1)200817(8分).阅读(1)题的计算方法,再计算(2)题.( 1 )计算:(−556)+(−923)+1734+(−312).解:原式=[(−5)+(−56)]+[(−9)+(−23)]+(17+34)+[(−3)+(−12)]=[(−5)+(−9)+17+(−3)]+[(−56)+(−23)+34+(−12)]=0+(−114)=−114.上面这种解题方法叫拆项法.( 2 )计算:(−201856)+(−201723)+403323+(−112)18(8分).化简|x+5|+|2x−3|四、解答题(31分)19(9分).为了迎接全国文明城市创建,市交警队的一辆警车在一条东西方向的公路上巡逻,如果规定向东为正,向西为负,从出发点开始所走的路程为:+2,﹣3,+2,+1,﹣2,﹣1,﹣2(单位:千米)(1)此时,这辆警车的司机如何向队长描述他的位置?(2)如果此时距离出发点东侧2千米处出现交通事故,队长命令他马上赶往现场处置,则警车在此次巡逻和处理事故中共耗油多少升?(已知每千米耗油0.2升)20(12分).(1)已知|m|=5,|n|=2,且m<n,求m−n值.(2)已知|x+1|=4,(y+2)2=4,若x+y≥−5,求x−y的值.21(12分).甲、乙两商场上半年经营情况如下(“+”表示盈利,“-”表示亏本,以百万为单位)(1)三月份乙商场比甲商场多亏损多少元;(2)六月份甲商场比乙商场多盈利多少元;(3)甲、乙两商场上半年平均每月分别盈利或亏损多少元.参考答案一、单选题(共10小题,每题3分,共30分)1.【答案】B【解析】解:−15的相反数是15.故答案为:B.【分析】只有符号不同的两个数叫做互为相反数,根据定义即可得出答案。
最新人教版七年级数学上册单元测试题及答案全册最新人教版七年级数学上册单元测试题及答案全册第一章有理数末章综合检测时间:90分钟满分:120分)一、选择题(每小题3分,共30分)1.有理数-4的相反数是()A.4B.-4C.4D.-42.比较-3,1,-2的大小,下列排序正确的是()A.-3<-2<1B.-2<-3<1C.1<-2<-3D.1<-3<-23.为了市民出行更加方便,某市政府大力发展交通,2016年某市公共交通客运量约为1 608 000 000人次,将1 608 000 000用科学记数法表示为()A.160.8×107B.16.08×108C.1.608×109D.0.1608×10104.某市一天上午的气温是10℃,下午上升了2℃,半夜(24时)下降了15℃,则半夜的气温是()A.3℃B.-3℃C.4℃D.-2℃5.杨梅开始采摘啦!每筐杨梅以5 kg为基准,超过的千克数记为正数,不足的千克数记为负数,记录如图1-1,则4筐杨梅的总质量是()A.19.7 kgB.19.9 kgC.20.1 kgD.20.3 kg6.(-3)的倒数是()A.3B.-2C.3D.27.下列运算错误的是()A.-8×2×6=-96B.(-1)2014+(-1)2015=0C.-(-3)2=-9D.2÷4÷3×3=28.如图1-2,A,B两点在数轴上表示的数分别为a,b,下列式子成立的是()A.ab>0B.a+b0 D.(b-1)(a-1)>09.若|a-1|+(b+3)2=0,则ba=()A.1B.-1C.3D.-310.规定一种新的运算“*”:对于任意有理数x,y满足x*y=x-y+xy.例如,3*2=3-2+3×2=7,则2*1=()A.4B.3C.2D.1二、填空题(每小题4分,共32分)11.一个点从数轴上表示-1的点开始,先向右平移6个单位长度,再向左平移8个单位长度,则此时这个点表示的数是_____。
七年级数学上册第一章有理数单元综合测试卷(含解析)(新版)新人教版第一章 有理数考试时间:120分钟;满分:150分学校:___________姓名:___________班级:___________考号:___________题号 一二三总分得分评卷人 得 分一.选择题(共10小题,满分40分,每小题4分)1.(4分)如果温度上升10℃记作+10℃,那么温度下降5℃记作( ) A .+10℃B .﹣10℃C .+5℃D .﹣5℃2.(4分)下列四个数中,是正整数的是( ) A .﹣1B .0C .21D .1 3.(4分)如图所示,数轴上A 、B 、C 三点表示的数分别为a 、b 、c ,下列说法正确的是( )A .a >0B .b >cC .b >aD .a >c 4.(4分)﹣8的相反数是( ) A .﹣8 B .81C .8D .﹣81 5.(4分)﹣2018的绝对值是( ) A .2018 B .﹣2018 C .20181 D .﹣201816.(4分)计算:0+(﹣2)=( ) A .﹣2 B .2C .0D .﹣207.(4分)已知a=(143﹣152)﹣161,b=143﹣(152﹣161),c=143﹣152﹣161,判断下列叙述何者正确?( )A .a=c ,b=cB .a=c ,b ≠cC .a ≠c ,b=cD .a ≠c ,b ≠c8.(4分)已知两个有理数a ,b ,如果ab <0且a+b >0,那么( ) A .a >0,b >0 B .a <0,b >0 C .a 、b 同号D .a 、b 异号,且正数的绝对值较大9.(4分)2018年政府工作报告指出,过去五年来,我国经济实力跃上新台阶.国内生产总值从54万亿元增加到82.7万亿元,稳居世界第二.82.7万亿用科学记数法表示为( ) A .0.827×1014B .82.7×1012C .8.27×1013D .8.27×101410.(4分)如果四个互不相同的正整数m ,n ,p ,q ,满足(5﹣m )(5﹣n )(5﹣p )(5﹣q )=4,那么m+n+p+q=( )A .24B .21C .20D .22二.填空题(共4小题,满分20分,每小题5分)11.(5分)一只电子跳蚤从数轴原点出发,第一次向右跳一格,第二次向左跳两格,第三次向右跳三格,第四次向左跳四格…,按这样的规律跳100次,跳蚤所在的点为 . 12.(5分)如果|x|=6,则x= .13.(5分)某日的最高气温为5℃,最低气温为﹣5℃,则这一天的最高气温比最低气温高 ℃. 14.(5分)若a ≠b ,且a 、b 互为相反数,则ba= .三.解答题(共9小题,满分90分) 15.(8分)计算: (1)(32﹣43+61)÷121(2)﹣12×4﹣(﹣2)2÷216.(8分)①已知x 的相反数是﹣2,且2x+3a=5,求a 的值.②已知﹣[﹣(﹣a )]=8,求a 的相反数.17.(8分)已知a ,b 互为相反数,c ,d 互为倒数,x 的绝对值为5,求:x 3﹣x 2+(﹣cd )2017﹣(a+b )2018列的值18.(8分)已知a 的相反数是2,b 的绝对值是3,c 的倒数是﹣1. (1)写出a ,b ,c 的值;(2)求代数式3a (b+c )﹣b (3a ﹣2b )的值. 19.(10分)计算:﹣23+6÷3×32圆圆同学的计算过程如下: 原式=﹣6+6÷2=0÷2=0请你判断圆圆的计算过程是否正确,若不正确,请你写出正确的计算过程.20.(10分)奥运会期间,志愿者小王在奥运村一条东西向的道路上负责接送残疾运动员,如果规定向东为正,向西为负,某天上午的行车记录为(单位:千米):+8、﹣9、+4、+7、﹣2、﹣10、+6、﹣3、﹣7、+5.(1)最后一名残疾运动员的目的在小王出车地点什么方位、距离是多少? (2)若汽车耗油量为0.3升/千米,这天下午汽车共耗油多少升? 21.(12分)若a 、b 互为相反数,c 、d 互为倒数,m 的绝对值为2. (1)直接写出a+b ,cd ,m 的值; (2)求m+cd+mba +的值. 22.(12分)探索规律:(1)计算并观察下列每组算式:⎩⎨⎧=⨯=⨯9788,⎩⎨⎧=⨯=⨯6455,⎩⎨⎧=⨯=⨯13111212;(2)已知25×25=625,那么24×26= ;(3)请用代数式把你从以上的过程中发现的规律表示出来. 23.(14分)(1)把左右两边计算结果相等的式子用线连接起来:(2)观察上面计算结果相等的各式之间的关系,可归纳得出:1﹣2n = (3)利用上述规律计算下式的值:⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-⨯⨯⎪⎭⎫ ⎝⎛-⨯⎪⎭⎫ ⎝⎛-⨯⎪⎭⎫ ⎝⎛-222221001199114113112112018年秋七年级上学期 第一章 有理数 单元测试卷参考答案与试题解析一.选择题(共10小题,满分40分,每小题4分) 1.【分析】此题主要用正负数来表示具有意义相反的两种量:上升记为正,则下降就记为负,直接得出结论即可.【解答】解:如果温度上升10℃记作+10℃,那么下降5℃记作﹣5℃; 故选:D .【点评】此题主要考查正负数的意义,正数与负数表示意义相反的两种量,看清规定哪一个为正,则和它意义相反的就为负. 2.【分析】正整数是指既是正数还是整数,由此即可判定求解. 【解答】解:A 、﹣1是负整数,故选项错误; B 、0是非正整数,故选项错误; C 、21是分数,不是整数,错误; D 、1是正整数,故选项正确. 故选:D .【点评】此题主要考查正整数概念,解题主要把握既是正数还是整数两个特点,比较简单. 3.【分析】直接利用数轴上A ,B ,C 对应的位置,进而比较得出答案. 【解答】解:由数轴上A ,B ,C 对应的位置可得: a <0,故选项A 错误; b <c ,故选项B 错误; b >a ,故选项C 正确; a <c ,故选项D 错误;故选:C .【点评】此题主要考查了数轴,正确得出各项符号是解题关键. 4.【分析】根据相反数的概念:只有符号不同的两个数叫做互为相反数可得答案. 【解答】解:﹣8的相反数是8, 故选:C .【点评】此题主要考查了相反数,关键是掌握相反数的定义. 5.【分析】根据绝对值的定义即可求得. 【解答】解:﹣2018的绝对值是2018. 故选:A .【点评】本题主要考查的是绝对值的定义,熟练掌握相关知识是解题的关键. 6.【分析】直接利用有理数的加减运算法则计算得出答案. 【解答】解:0+(﹣2)=﹣2. 故选:A .【点评】此题主要考查了有理数的加法,正确掌握运算法则是解题关键. 7.【分析】根据有理数的减法的运算方法,判断出a 、c ,b 、c 的关系即可. 【解答】解:∵a=(143﹣152)﹣161=143﹣152﹣161,b=143﹣(152﹣161)=143﹣152+161,c=143﹣152﹣161, ∴a=c ,b ≠c . 故选:B .【点评】此题主要考查了有理数的减法,要熟练掌握,解答此题的关键是要明确:有理数减法法则:减去一个数,等于加上这个数的相反数.8.【分析】先由有理数的乘法法则,判断出a,b异号,再用有理数加法法则即可得出结论.【解答】解:∵ab<0,∴a,b异号,∵a+b>0,∴正数的绝对值较大,故选:D.【点评】此题主要考查了有理数的加法和乘法法则,熟记法则是解本题的关键.9.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:82.7万亿=8.27×1013,故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.10.【分析】由题意确定出m,n,p,q的值,代入原式计算即可求出值.【解答】解:∵四个互不相同的正整数m,n,p,q,满足(5﹣m)(5﹣n)(5﹣p)(5﹣q)=4,∴满足题意可能为:5﹣m=1,5﹣n=﹣1,5﹣p=2,5﹣q=﹣2,解得:m=4,n=6,p=3,q=7,则m+n+p+q=20,故选:C.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.二.填空题(共4小题,满分20分,每小题5分)11.【分析】数轴上点的移动规律是“左减右加”.依据规律计算即可. 【解答】解:0+1﹣2+3﹣4+5﹣6+…+99﹣100=﹣50, 故答案是:﹣50.【点评】主要考查了数轴及图形的变化类问题,要注意数轴上点的移动规律是“左减右加”.把数和点对应起来,也就是把“数”和“形”结合起来,二者互相补充,相辅相成,把很多复杂的问题转化为简单的问题,在学习中要注意培养数形结合的数学思想. 12.【分析】绝对值的逆向运算,因为|+6|=6,|﹣6|=6,且|x|=6,所以x=±6. 【解答】解:|x|=6,所以x=±6. 故本题的答案是±6.【点评】绝对值具有非负性,绝对值是正数的数有两个,且互为相反数. 13.【分析】直接利用有理数的加减运算法则计算得出答案. 【解答】解:∵某日的最高气温为5℃,最低气温为﹣5℃, ∴这一天的最高气温比最低气温高:5﹣(﹣5)=10(℃). 故答案为:10.【点评】此题主要考查了有理数的加减,正确掌握运算法则是解题关键. 14.【分析】由a 、b 互为相反数可知a=﹣b ,然后代入计算即可. 【解答】解:∵a 、b 互为相反数, ∴a=﹣b . ∴1-=-=bbb a . 故答案为:﹣1.【点评】本题主要考查的是相反数的定义、有理数的除法,根据相反数的定义得到a=﹣b 是解题的关键.三.解答题(共9小题,满分90分) 15.【分析】(1)原式利用除法法则变形,再利用乘法分配律计算即可求出值; (2)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可求出值. 【解答】解:(1)原式=(32﹣43+61)×12=8﹣9+2=1; (2)原式=﹣4﹣2=﹣6.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键. 16.【分析】①直接利用相反数的定义得出x 的值,进而得出a 的值; ②直接去括号得出a 的值,进而得出答案. 【解答】解:①∵x 的相反数是﹣2,且2x+3a=5, ∴x=2, 故4+3a=5, 解得:a=31;②∵﹣[﹣(﹣a )]=8, ∴a=﹣8, ∴a 的相反数是8.【点评】此题主要考查了相反数,正确掌握相反数的定义是解题关键. 17.【分析】根据题意得出a+b=0、cd=1、x=5或x=﹣5,再分情况列式计算可得. 【解答】解:根据题意知a+b=0、cd=1、x=5或﹣5, 当x=5时,原式=53﹣52+(﹣1)2017﹣02018=125﹣25﹣1﹣1 =98;当x=﹣5时,原式=(﹣5)3﹣(﹣5)2+(﹣1)2017﹣02018=﹣125﹣25﹣1﹣1=﹣152.【点评】本题主要考查有理数的混合运算,解题的关键是熟练掌握相反数的性质、倒数的定义、绝对值的性质及有理数的混合运算顺序和运算法则. 18.【分析】(1)根据a 的相反数是2,b 的绝对值是3,c 的倒数是﹣1,可以求得a 、b 、c 的值; (2)先对题目中的式子化简,然后将(1)a 、b 、c 的值代入即可解答本题. 【解答】解:(1)∵a 的相反数是2,b 的绝对值是3,c 的倒数是﹣1, ∴a=﹣2,b=±3,c=﹣1; (2)3a (b+c )﹣b (3a ﹣2b ) =3ab+3ac ﹣3ab+2b 2=3ac+2b 2,∵a=﹣2,b=±3,c=﹣1, ∴b 2=9,∴原式=3×(﹣2)×(﹣1)+2×9=6+18=24.【点评】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法. 19.【分析】圆圆的计算过程错误,写出正确的解题过程即可. 【解答】解:圆圆的计算过程不正确,正确的计算过程为:原式=﹣8+34=﹣320. 【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键. 20.【分析】(1)根据有理数的加法运算,可得答案; (2)根据单位耗油量乘以行车距离,可得共耗油量.. 【解答】解:(1)+8﹣9+4+7﹣2﹣10+6﹣3﹣7+5=﹣1(km ). 答:最后一名残疾运动员的目的在小王出车地点的正西1km (2)8+9+4+7+2+10+6+3+7+5=61(km ).61×0.3=18.3升. 答:这天下午汽车共耗油18.3升.【点评】本题考查了正数和负数,利用了有理数的加法运算.21.【分析】(1)根据互为相反数的和为0,互为倒数的积为1,绝对值的意义,即可解答;(2)分两种情况讨论,即可解答.【解答】解:(1)∵a 、b 互为相反数,c 、d 互为倒数,m 的绝对值为2,∴a+b=0,cd=1,m=±2.(2)当m=2时,m+cd+mb a +=2+1+0=3; 当m=﹣2时,m+cd+m b a +=﹣2+1+0=﹣1. 【点评】本题考查了倒数、相反数、绝对值,解决本题的关键是熟记倒数、相反数、绝对值的意义.22.【分析】(1)利用乘法法则计算即可求出所求;(2)原式变形后,利用平方差公式计算即可求出值;(3)根据以上等式得出规律,写出即可.【解答】解:(1)⎩⎨⎧=⨯=⨯63976488,⎩⎨⎧=⨯=⨯24642555,⎩⎨⎧=⨯=⨯143131********;(2)已知25×25=625,那么24×26=624;(3)根据题意得:n 2=(n+1)(n ﹣1)+1.故答案为:(2)624【点评】此题考查了有理数的乘法,熟练掌握乘法法则是解本题的关键.23.【分析】(1)根据有理数的乘法和乘方运算分别计算结果可得;(2)根据以上表格中的计算结果可得;(3)根据以上规律,将原式裂项、约分即可得.【解答】解:(1)把左右两边计算结果相等的式子用线连接起来:(2)观察上面计算结果相等的各式之间的关系,可归纳得出:⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛+=-n n n 1111112, 故答案为:⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛+n n 1111;(3)原式2001011001012110010110099454334322321100111001199119911411411311311211211=⨯=⨯⨯⨯⨯⨯⨯⨯⨯=⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛+⨯⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛+⨯⨯⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛+⨯⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛+⨯⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛+= 【点评】本题主要考查有理数的混合运算,解题的关键是掌握有理数的乘法和乘方运算法则及数字的变化规律.。
新人教版七年级上册数学第1章单元测试卷一、选择题(每题3分,共30分) 1.12的相反数是( ) A.12B .-12C .2D .-22.化简:|-15|等于( )A .15B .-15C .±15D.1153.在0,2,-1,-2这四个数中,最小的数是( )A .0B .2C .-1D .-24.计算(-3)+5的结果等于( )A .2B .-2C .8D .-85.“一带一路”倡议提出三年以来,广东企业到“一带一路”国家投资越来越活跃,据商务部门发布的数据显示,2016年广东省对沿线国家的实际投资额超过4 000 000 000美元,将4 000 000 000用科学记数法表示为( ) A .0.4×109B .0.4×1010C .4×109D .4×10106.下列每对数中,不相等的一对是( )A .(-2)3和-23B .(-2)2和22C .(-2)2 018和-22 018D .|-2|3和|2|37.有理数a ,b 在数轴上对应的点的位置如图所示,则a +bab的值是( )(第7题)A .负数B .正数C .0D .正数或08.下列说法正确的是( )A .近似数0.21与0.210的精确度相同B .近似数1.3×104精确到十分位C .数2.995 1精确到百分位是3.00D .“小明的身高为161 cm”中的数是准确数9.已知|m|=4,|n|=6,且|m +n|=m +n ,则m -n 的值等于( )A .-10B .-2C .-2或-10D .2或1010.一个整数的所有正约数之和可以按如下方法求得,如:6=2×3,则6的所有正约数之和为(1+3)+(2+6)=(1+2)×(1+3)=12; 12=22×3,则12的所有正约数之和为(1+3)+(2+6)+(4+12)=(1+2+22) ×(1+3)=28;36=22×32,则36的所有正约数之和为(1+3+9)+(2+6+18)+(4+12+36)=(1+2+22)×(1+3+32)=91.参照上述方法,那么200的所有正约数之和为( ) A .420B .434C .450D .465二、填空题(每题3分,共24分)11.某蓄水池的标准水位记为0 m ,如果用正数表示水面高于标准水位的高度,那么-0.2 m 表示____________________________.12.有理数-15的倒数为________,相反数为________,绝对值为________.13.将数60 340精确到千位是__________.14.比较大小:-(-0.3)________⎪⎪⎪⎪⎪⎪-13(填“>”“<”或“=”).15.如图,点A 表示的数是-1,以点A 为圆心、12个单位长度为半径的圆交数轴于B ,C 两点,那么B ,C 两点表示的数分别是______________.(第15题)(第17题)16.如果|a -1|+(b +2)2=0,那么3a -b =________.17.如图是一个简单的数值运算程序图,当输入x 的值为-1时,输出的数值为________.18.按一定规律排列的一列数依次为:12,-16,112,-120,130,…按此规律排列下去,这列数中的第7个数为________,第n 个数为____________(n 为正整数).三、解答题(19,23题每题8分,20题18分,21,22题每题6分,其余每题10分,共66分)19.(1)将下列各数填在相应的大括号里:-(-2.5),(-1)2,-|-2|,-22,0,-12.整数:{ …}; 分数:{ …}; 正有理数:{ …}; 负有理数:{ …}.(2)把表示上面各数的点画在数轴上,再按从小到大的顺序,用“<”号把这些数连接起来.20.计算(能简算的要简算): (1)-6+10-3+|-9|;(2)-49-⎝ ⎛⎭⎪⎫-118+⎝ ⎛⎭⎪⎫-18-59;(3)⎝ ⎛⎭⎪⎫79-1112+16×36; (4)-42÷(-2)3+(-1)2 018-49÷23.21.现规定一种新运算“*”:a*b =a b-2,例如:2*3=23-2=6,试求⎝ ⎛⎭⎪⎫-32*2*2的值.22.每年的春节晚会都是由中央电视台直播的,现有两地的观众,一是与舞台相距25 m 远的演播大厅里的观众,二是距北京2 900 km 正围在电视机前观看晚会的边防战士,这两地的观众谁先听到晚会节目的声音(声速是340 m /s ,电波的速度是3×108 m /s )?23.某景区一电瓶车接到任务从景区大门出发,向东走2 km到达A景区,继续向东走2.5 km到达B景区,然后又回头向西走8.5 km到达C景区,最后回到景区大门.(1)以景区大门为原点,向东为正方向,以1个单位长度表示1 km,建立如图所示的数轴,请在数轴上表示出上述A,B,C三个景区的位置.(2)若电瓶车充足一次电能行走15 km,则该电瓶车能否在一开始充好电而途中不充电的情况下完成此次任务?请计算说明.(第23题)24.点P,Q分别从A,B两点同时出发,在数轴上运动,它们的速度分别是2个单位长度/s、4个单位长度/s,它们运动的时间为t s.(1)如果点P,Q在点A,B之间相向运动,当它们相遇时,点P对应的数是________;(2)如果点P,Q都向左运动,当点Q追上点P时,求点P对应的数;(3)如果点P,Q在点A,B之间相向运动,当PQ=8时,求点P对应的数.(第24题)25.观察下面三行数:2,-4,8,-16,32,-64,…;4,-2,10,-14,34,-62,…;1,-2,4,-8,16,-32,….(1)第1行的第8个数为________,第2行的第8个数为________,第3行的第8个数为________.(2)第3行中是否存在连续的三个数,使得这三个数的和为768?若存在,求出这三个数;若不存在,说明理由.(3)是否存在这样的一列,使得其中的三个数的和为1 282?若存在,求出这三个数;若不存在,说明理由.答案一、1.B 2.A 3.D 4.A 5.C 6.C7.B 8.C 9.C 10.D 二、11.水面低于标准水位0.2 m12.-5;15;15 13.6.0×104 14.<15.-32,-12 16.5 17.118.156;(-1)n +11n (n +1)三、19.解:(1)整数:{(-1)2,-|-2|,-22,0,…};分数:{-(-2.5),-12,…};正有理数:{-(-2.5),(-1)2,…}; 负有理数:{-|-2|,-22,-12,…}.(2)图略.-22<-|-2|<-12<0<(-1)2<-(-2.5).20.解:(1)原式=-6+10-3+9=(-6-3+9)+10=10;(2)原式=-4+11-1-5=⎝ ⎛⎭⎪⎫-49-59+⎝ ⎛⎭⎪⎫118-18=-1+1=0;(3)原式=79×36-1112×36+16×36=28-33+6=1;(4)原式=-16÷(-8)+1-49×32=2+1-23=73.21.解:⎝ ⎛⎭⎪⎫-32*2*2=⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫-32-2*2=14*2=⎝ ⎛⎭⎪⎫142-2=-3116.22.解:25÷340≈0.074(s );2 900 km =2 900 000 m ,2 900 000÷(3×108)≈0.0097(s ).因为0.074>0.0097,所以是边防战士先听到晚会节目的声音.23.解:(1)如图所示.(第23题)(2)电瓶车一共走的路程为|+2|+|+2.5|+|-8.5|+|+4|=17(km ).因为17>15,所以该电瓶车不能在一开始充好电而途中不充电的情况下完成此次任务. 24.解:(1)-83(2)易得t =16-(-12)4-2=282=14.此时-12-2×14=-40, 即点P 对应的数是-40.(3)当PQ =8时,有以下两种情况: ①P ,Q 相遇前,t =28-82+4=103,此时点P 对应的数是-12+2t =-163;②P ,Q 相遇后,t =28+82+4=6,此时点P 对应的数是-12+2t =0. 综上所述,点P 对应的数是-163或0.25.解:(1)-256;-254;-128(2)存在.设中间数为m ,根据题意,有m÷(-2)+m +m×(-2)=768. 解得m =-512,符合第3行数的规律. 此时m÷(-2)=256,m×(-2)=1 024. 所以这三个数分别为256,-512,1 024. (3)存在.因为同一列的数符号相同, 所以这三个数都是正数.设这一列的第一个数为2n (n 为正整数). 根据题意,有2n +(2n +2)+12×2n =1 282,即2n =512=29. 所以n =9.此时2n+2=514,12×2n=256.所以这三个数分别为512,514,256.。
、、、、4对于近似数01830,下列说法正确的是、有两个有效数字,精确到千位、有三个有效数字,精确到千分位、有四个有效数字,精确到万分位、有五个有效数字,精确到万分5下列说法中正确的是.一定是负数一定是负数一定不是负数一定是负数二、填空题每题5分,共25分6若0<<1,则,,的大小关系是7若那么28如图,点在数轴上对应的实数分别为,则间的距离是.用含的式子表示9如果且2=4,2=9,那么+=10、正整数按下图的规律排列.请写出第6行,第5列的数字.三、解答题每题6分,共24分11①-5×6+-125÷-5②312+-12--13+223③23-14-38+524×48④-18÷-32+5×-123--15÷5四、解答题12本小题6分把下列各数分别填入相应的集合里1正数集合{…};2负数集合{…};3整数集合{…};4分数集合{…}13本小题6分某地探空气球的气象观测资料表明,高度每增加1千米,气温大约降低6℃.若该地地面温度为21℃,高空某处温度为-39℃,求此处的高度是多少千米?14本小题6分已知在纸面上有一数轴如图,折叠纸面1若1表示的点与-1表示的点重合,则-2表示的点与数表示的点重合;2若-1表示的点与3表示的点重合,则5表示的点与数表示的点重合;15本小题8分某班抽查了10名同学的期末成绩,以80分为基准,超出的记为正数,不足的记为负数,记录的结果如下+8,-3,+12,-7,-10,-3,-8,+1,0,+10.1这10名同学中分是多少?最低分是多少?210名同学中,低于80分的所占的百分比是多少?310名同学的平均成绩是多少?参考答案1.234567≤8-9±1103211①-5②6③12④12①②③④1310千米14①2②-315①分92分;最低分70分②低于80分的学生有5人。
所占百分比50③10名同学的平均成绩是80分【篇二】人教版七年级上册数学第一单元测试题及答案一、仔细选一选30分10是.正有理数.负有理数.整数.负整数2中国第一座跨海大桥——杭州湾跨海大桥全长36千米,其中36属于.计数.测量.标号或排序.以上都不是3下列说法不正确的是.0既不是正数,也不是负数.0的绝对值是0.一个有理数不是整数就是分数.1是绝对值最小的数4在数-,0,45,|-9|,-679中,属于正数的有个.2.3.4.55一个数的相反数是3,那么这个数是.3.-3..6下列式子正确的是.2>0>-4>-1.-4>-1>2>0.-4-17一个数的相反数是的负整数,则这个数是.1.±1.0.-18把数轴上表示数2的点移动3个单位后,表示的数为.5.1.5或1.5或-19大于-22的最小整数是.-2.-3.-1.010学校、家、书店依次座落在一条东西走向的大街上,学校在家的西边20米,书店在家东边100米,张明同学从家里出发,向东走了50米,接着又向西走了70米,此时张明的位置在在家在学校在书店不在上述地方二、认真填一填本题共30分11若上升15米记作+15米,则-8米表示。
第一章有理数一、课标要求1.知识与技能(1)了解正数、负数的实际意义,会判断一个数是正数还是负数.(2)掌握数轴的画法,能将已知数在数轴上表示出来,•能说出数轴上已知点所表示的解.(3)理解相反数、绝对值的几何意义和代数意义,•会求一个数的相反数和绝对值.(4)会利用数轴和绝对值比较有理数的大小.2.过程与方法经过探索有理数运算法则和运算律的过程,体会“类比”、“转化”、“数形结合”等数学方法.3.情感、态度与价值观使学生感受数学知识与现实世界的联系,鼓励学生探索规律,并在合作交流中完善规范语言.二、本章教材分析1.主要内容:1.本单元结合学生的生活经验,列举了学生熟悉的用正、负数表示的实例,•从扩充运算的角度引入负数,然后再指出可以用正、负数表示现实生活中具有相反意义的量,使学生感受到负数的引入是来自实际生活的需要,体会数学知识与现实世界的联系.引入正、负数概念之后,接着给出正整数、负整数、正分数、负分数集合及整数、分数和有理数的概念.2.通过怎样用数简明地表示一条东西走向的马路旁的树、•电线杆与汽车站的相对位置关系引入数轴.数轴是非常重要的数学工具,它可以把所有的有理数用数轴上的点形象地表示出来,使数与形结合为一体,揭示了数形之间的内在联系,从而体现出以下4个方面的作用:(1)数轴能反映出数形之间的对应关系;(2)数轴能反映数的性质;(3)数轴能解释数的某些概念,如相反数、绝对值、近似数;(4)数轴可使有理数大小的比较形象化.3.对于相反数的概念,•从“数轴上表示互为相反数的两点分别在原点的两旁,且离开原点的距离相等”来说明相反数的几何意义,同时补充“零的相反数是零”作为相反数意义的一部分.4.正确理解绝对值的概念是难点.理解绝对值的两种意义,•一种是几何意义:一个数a的绝对值就是数轴上表示数a的点与原点的距离;另一种是代数意义:绝对值的几何意义是以线段长度来表示一个数的绝对值的;而绝对值的代数意义则是给出了求绝对值的法则,由绝对值的两种意义可知,有理数a•的绝对值可表示为:│a│=(0) 0(0)(0)a aaa a>⎧⎪=⎨⎪-<⎩根据有理数的绝对值的两种意义,可以归纳出有理数的绝对值有如下性质:(1)任何有理数都有唯一的绝对值.(2)有理数的绝对值是一个非负数,即最小的绝对值是零.(3)两个互为相反数的绝对值相等,即│a│=│-a│.(4)任何有理数都不大于它的绝对值,即│a│≥a,│a│≥-a.(5)若│a│=│b│,则a=b,或a=-b或a=b=0.2.本单元在教材中的地位与作用:本章是数从自然数扩展到有理数,初步形成有理数的概念后,进一步学习有理数的运算,是小学算术的延续和发展。
人教版2024-2025学年七年级上册数学单元检测(有理数的运算)一、选择题:(本大题共10小题,每小题4分,共40分,给出的四个选项中,只有一项是符合题目要求的)1.若一个数的倒数是,则这个数是( )134-A. B. C. D.413413-134134-2.我国对“一带一路”沿线国家不断加大投资,目前已为有关国家创造了近1100000000美元税收,其中1100000000用科学记数法表示应为( )A. B. C. D.80.1110⨯101.110⨯91.110⨯81110⨯3.计算结果是( )(32)4(8)-÷⨯-A.1 B. C.64 D.1-64-4.下列各式中结果是负数的为( )A. B. C. D.()5--()25-25-5-5.下列各式运算错误的是( )A. B.()()236-⨯-=()11262⎛⎫-⨯-=- ⎪⎝⎭C. D.()()()52880-⨯-⨯-=-()()()32530-⨯-⨯-=-6.下列说法正确的是( )A.近似数3.6万精确到十分位B.近似数0.720精确到百分位C.近似数5.78精确到百分位D.近似数3000精确到千位7.甲、乙两人用简便方法进行计算的过程如下,下列判断正确的是( )甲.11(14)19(6)1119[(14)(6)]10+-+--=++-+-=乙.71171168588855⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫--++-=-+-+-=- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦A.甲、乙都正确B.甲、乙都不正确A. B. C.4 D.2-4-289.若,,则a 与b 的乘积不可能是( )||a a =||b b -=14.计算的结果是_____________.()22022515292⎛⎫-÷-⨯--- ⎪⎝⎭15.求值:_____.1(2)3(4)5(6)7(8)2021(2022)2023+-++-++-++-+⋯++-+=三、解答题(本大题共6小题,共计60分,解答题应写出演算步骤或证明过程)16.(8分)用四舍五入法,对下列各数按括号中的要求取近似数.(1)0.6328(精确到0.01);(2)7.9122(精确到个位);(3)130.96(精确到十分位);(4)46021(精确到百位).17.(8分)计算:(1);()()()()81021++-----(2).()()221310.5233⎡⎤---÷⨯--⎣⎦18.(10分)计算.32118(3)2⎛⎫-÷-⨯- ⎪⎝⎭莉莉的计算过程如下:解:原式.1111(18)9(18)8984=-÷⨯=-⨯⨯=-佳佳的计算过程如下:解:原式.198(18)9(18)(18)16889⎛⎫⎛⎫⎛⎫=-÷⨯-=-÷-=-⨯-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭请问莉莉和佳佳的计算过程正确吗?如果不正确,请写出正确的计算过程.19.(10分)某食品厂从生产的袋装食品中随机抽样检测每袋的质量是否符合标准质量,超过或不足的质量分别用正、负数表示,例如+2表示该袋食品超过标准质量2克.现记录如下:与标准质量的误差(单位:克)-5-60+1+3+6袋数533423(1)在抽取的样品中,最重的那袋食品的质量比最轻的那袋多多少克;(2)若标准质量为500克/袋,则这次抽样检测的总质量是多少克.20.(12分)某中学开展一分钟跳绳比赛,成绩以200次为标准数量,超过的次数记为正数,不足的次数记为负数,七年级某班8名同学组成代表队参赛,成绩(单位:次)记录如下:+8,0,-5.+12,-9,+1,+8,+15.(1)求该班参赛代表中最好成绩与最差成绩相差多少次?(2)求该班参赛代表队一共跳了多少次?(3)规定:每分钟跳绳次数为标准数量,不得分;超过标准数量,每多跳1次得2分;未达到标准数量,每少跳1次扣1分,若代表队跳绳总积分超过70分,便可得到学校的奖励,请通过计算说明该代表队能否得到学校奖励.21.(12分)观察下列等式:第1个等式:;11111323⎛⎫=⨯- ⎪⨯⎝⎭第2个等式:;111135235⎛⎫=⨯- ⎪⨯⎝⎭第3个等式:;111157257⎛⎫=⨯- ⎪⨯⎝⎭第4个等式.111179279⎛⎫=⨯- ⎪⨯⎝⎭(1)探寻上述等式规律,写出第5个等式:_________;(2)求的值.1111155991320172021++++⨯⨯⨯⨯答案以及解析1.答案:B解析:因为,,所以的倒数是.113344-=-1341413⎛⎫⎛⎫-⨯-= ⎪ ⎪⎝⎭⎝⎭134-413-2.答案:C解析:1100000000用科学记数法表示应为.91.110⨯故选:C.3.答案:C解析.()(32)4(8)=88=64-÷⨯--⨯-故选C.4.答案:C解析:A 、是正数,此项不符题意;(5)5--=B 、是正数,此项不符题意;2(5)25-=C 、是负数,此项符合题意;2525-=-D 、55-=是正数,此项不符题意;故选:C.5.答案:B解析:A 、,则此项正确,不符合题意;()()23236-⨯-=⨯=B 、,则此项错误,符合题意;()111212622⎛⎫-⨯-=⨯= ⎪⎝⎭C 、,则此项正确,不符合题意;()()()()52852880-⨯-⨯-=-⨯⨯=-D 、,则此项正确,不符合题意;()()()()32532530-⨯-⨯-=-⨯⨯=-故选:B.6.答案:C解析:A.近似数3.6万精确到千位,原说法错误;B.近似数0.720精确到千分位,原说法错误;C.近似数5.78精确到百分位,说法正确;D.近似数3000精确到个位,原说法错误;故选:C.7.答案:D解析:,甲不正确.11(14)19(6)1119[(14)6]30822+-+--=++-+=-=711711711858858885⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫--++-=-+-+-=-+-+- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦,乙正确.16(1)55⎛⎫=-+-=- ⎪⎝⎭8.答案:C解析:输入,则1x =21242420⨯-=-=-<输入,则,2-()22244-⨯-=所以输出y 的值为:4故选:C.9.答案:A解析:因为,,所以,,所以a 与b 的乘积不可能是负数,故a ||a a =||b b -=0a ≥0b ≥与b 的乘积不可能是.5-10.答案:A解析:由题知,,,,,,,,,,122=224=328=4216=8232=6264=72128=82256=⋯所以的末位数字按2,4,6,8循环出现,2n 又余2,20224505÷=所以的末位数字是4.20222,,,,,,,, 133=239=3327=4381=53243=63729=732187=836561=…,所以的末位数字按3,9,7,1循环出现,3n 又余3,20234505÷=所以的末位数字是7.20233的末位数字是3()20232202320202222(3)32=--+-故选:A.11.答案:千解析:,41.51015000⨯= 近似数精确到千位,∴41.510⨯故千.12.答案:8112019-+-解析:写成省略加号的和的形式是.8(11)(20)(19)-+--+-8112019-+-故答案为.8112019-+-13.答案:5解析:由题意可得:已知有理数中的负整数为,1-则,2(1)(4)1432-+-=-=-<-则有2(3)(4)9452-+-=-=>-,则输出的结果为5,故5.14.答案:3解析:()22022515292⎛⎫-÷-⨯--- ⎪⎝⎭212575⎛⎫=-⨯-⨯- ⎪⎝⎭107=-.3=15.答案:1012解析:1(2)3(4)5(6)7(8)2021(2022)2023+-++-++-++-+⋯++-+(12)(34)(56)(78)(20212022)2023=-+-+-+-+⋯+-+2022(1)20232=-⨯+.1012=故1012.16.答案:(1)0.63(2)8(3)131.0(4)44.6010⨯解析:(1)0.6328(精确到0.01).0.63≈(2)7.9122(精确到个位).8≈(3)130.96(精确到十分位).131.0≈(4)46021(精确到百位).44.6010≈⨯17.答案:(1)1(2)1.5解析:(1)()()()()81021++-----81021=-++;1=(2)2213(10.5)2(3)3⎡⎤---÷⨯--⎣⎦()19372=--⨯⨯-910.5=-+18.答案:见解析解析:莉莉和佳佳的计算过程都不正确.正确的计算过程:原式.111118918928884⎛⎫=-÷⨯-=÷⨯=⨯= ⎪⎝⎭19.答案:(1)12(2)9985解析:试题(1)根据题意及表格得:(克),()666612+--=+=最重的食品比最轻的重12克;(2)由表格得:()()()()()556303143263-⨯+-⨯+⨯++⨯++⨯++⨯()251804618=-+-++++2510=-+,15=-则(克).50020159985⨯-=这次抽样检测的总质量是9985克.20.答案:(1)24次(2)1630次(3)该班能得到学校奖励解析:(1)(次),15(9)15924+--=+=故该班参赛代表中最好成绩与最差成绩相差24次;(2)(次),2008(8)0(5)(12)(9)(1)(8)(15)1630⨯++++-+++-++++++=故该班参赛代表队一共跳了1630次;(3)(分),(8121815)2(59)174++++⨯-+⨯=,7470> 该班能得到学校奖励.∴21.答案:(1)11119112911⎛⎫=⨯- ⎪⨯⎝⎭(2)5052021解析:(1)观察所给的等式,可得第5个等式为.故答案为11119112911⎛⎫=⨯- ⎪⨯⎝⎭.11119112911⎛⎫=⨯- ⎪⨯⎝⎭(2)原式.111111120205051455920172021420212021⎛⎫=-+-++-=⨯= ⎪⎝⎭。
七年级数学上册第一单元测试题人教版3篇篇一:人教版初一数学上册第一章有理数单元测试题及答案有理数单元测试题满分100分时间60分一、选择题(本题共有10个小题,每小题都有A、B、C、D四个选项,请你把你认为适当的选项前的代号填入题后的括号中,每题2分,共20分)1、下列说法正确的是()A整数就是正整数和负整数B负整数的相反数就是非负整数C有理数中不是负数就是正数D零是自然数,但不是正整数2、下列各对数中,数值相等的是()A -27与(-2)7B -32与(-3)2C -3×23与-32×2D ―(―3)2与―(―2)33、在-5,-9,-3.5,-0.01,-2,-212各数中,最大的数是()A.-12B.-9C.-0.01D.-54、如果一个数的平方与这个数的差等于0,那么这个数只能是()A. 0B.-1C.1D. 0或15、绝对值大于或等于1,而小于4的所有的正整数的和是()A. 8B. 7C. 6D. 56、计算:(-2)100+(-2)101的是()A. 2100B.-1C.-2D.-21007、比-7.1大,而比1小的整数的个数是()A. 6B. 7C. 8D. 98、2003年5月19日,国家邮政局特别发行万众一心,抗击“非典”邮票,收入全部捐赠给卫生部门用以支持抗击“非典”斗争,其邮票发行为12050000枚,用科学记数法表示正确的是( )A.1.205×107 B.1.20×108 C.1.21×107 D.1.205×1049、下列代数式中,值一定是正数的是( )A.x2 B.|-x+1| C.(-x)2+2 D.-x2+110、已知8.622=74.30,若x2=0.7430,则x的值等于()A. 86. 2B. 862C. ±0.862D. ±86211、一幢大楼地面上有12层,还有地下室2层,如果把地面上的第一层作为基准,记为0,规定向上为正,那么习惯上将2楼记为;地下第一层记作;数-2的实际意义为,数+9的实际意义为。
新人教版七年级数学上册单元测试卷第一单元:有理数一、选择题(本题共10小题,每小题3分,共30分)1.如果水库的水位高于正常水位2m时,记作+2m,那么低于正常水位3m时,应记作()A.+3mB.-3mC.+13D.-132. 室内温度是150℃,室外温度是-30℃,则室外温度比室内温度低( )A .120℃ B.180℃ C.-120℃ D.-180℃3. 一个数和它的倒数相等,则这个数是()A.1B.-1C.±1 D.±1和04. 若|a|=5,b=-3,则a-b的值是()A.2或8B.-2或8C.2或-8D.-2或-85. 下列四组有理数的大小比较正确的是()A.−12>−13B.-|-1|>-|+1|C.12<13D.|−12|>|−13|6. 若三个有理数的和为0,则下列结论正确的是()A.这三个数都是0B.最少有两个数是负数C.最多有两个正数D.这三个数是互为相反数7. 下列各式中正确的是()A.a2=.(−a)2B. a3=.(−a)3C.−a2=.|−a2|D. a3=.|a|38. 若x的相反数是3,│y│=5,则x+y的值为()A.-8B.2C.-8或2D.8或-29. 两个数的差是负数,则这两个数一定是( )A.被减数是正数,减数是负数B.被减数是负数,减数是正数C.被减数是负数,减数也是负数D.被减数比减数小10. 点A在数轴上表示+2,从点A沿数轴向左平移3个单位到点B,点B表示的数是( )A. 3B.-1C.5D.-1或3二、填空题(本题共6小题,每小题3分,共18分)11. 甲潜水员所在高度为-45米,乙潜水员在甲的上方15米处,则乙潜水员的所在的高度是__________.12. 大肠杆菌每过20分便由1个分裂成2个,经过3小时后这种大肠杆菌由1个分裂成__________个。
13. 在数轴上,与表示数-1的点的距离是5的点表示的数是。
一、选择题1.数学考试成绩85分以上为优秀,以85分为标准,老师将某一小组五名同学的成绩记为+9、-4、+11、-7、0,这五名同学的实际成绩最高的应是()A.94分B.85分C.98分D.96分2.数轴上点A和点B表示的数分别为-4和2,若要使点A到点B的距离是2,则应将点A向右移动()A.4个单位长度B.6个单位长度C.4个单位长度或8个单位长度D.6个单位长度或8个单位长度3.2--的相反数是()A.12-B.2-C.12D.24.下列说法正确的是( )A.近似数1.50和1.5是相同的B.3520精确到百位等于3600C.6.610精确到千分位D.2.708×104精确到千分位5.实数a,b,c,d在数轴上的位置如图所示,下列关系式不正确的是()A.|a|>|b| B.|ac|=ac C.b<d D.c+d>06.下列说法中,正确的是()A.正数和负数统称有理数B.既没有绝对值最大的数,也没有绝对值最小的数C.绝对值相等的两数之和为零D.既没有最大的数,也没有最小的数7.下列说法:①a-一定是负数;②||a一定是正数;③倒数等于它本身的数是±1;④绝对值等于它本身的数是l;⑤平方等于它本身的数是1.其中正确的个数是()A.1个B.2个C.3个D.4个8.一个数的绝对值是3,则这个数可以是()A.3B.3-C.3或者3-D.1 39.据《经济日报》2018年5月21日报道:目前,世界集成电路生产技术水平最高已达到7nm(1nm=10﹣9m),主流生产线的技术水平为14~28nm,中国大陆集成电路生产技术水平最高为28nm.将28nm用科学记数法可表示为()A.28×10﹣9m B.2.8×10﹣8m C.28×109m D.2.8×108m10.6-的相反数是()A .6B .-6C .16D .16- 11.已知有理数a ,b 在数轴上表示的点如图所示,则下列式子中正确的是( )A .a+b <0B .a+b >0C .a ﹣b <0D .ab >012.有理数a ,b 在数轴上表示如图所示,则下列各式中正确的是( )A .0ab >B .b a >C .a b ->D .b a <二、填空题13.按下面程序计算,若开始输入x 的值为正数,最后输出的结果为656,则满足条件所有x 的值是___.14.截至格林尼治标准时间2020年6月7日10时,全球累计报告新冠肺炎确诊病例达7000000例;其中累计死亡病例超过40万例,数据7000000科学记数法表示为_____. 15.某电视塔高468 m ,某段地铁高-15 m ,则电视塔比此段地铁高_____m .16.33278.5 4.5 1.67--=____(精确到千分位) 17.填空:(1)____的平方等于9;(2)(-2)3=____;(3)-14+1=____;(4)23×212⎛⎫ ⎪⎝⎭=____. 18.气温由﹣20℃下降50℃后是__℃.19.我们知道,海拔高度每上升100米,温度下降0.6℃,肥城市区海拔大约100米,某时刻肥城市区地面温度为16℃,泰山的海拔大约为1530米,那么此时泰山顶部的气温大约为______.℃20.在数轴上与表示 - 2的点的距离为3个单位长度的点所表示的数是 _________ . 三、解答题21.(1)()()()()413597--++---+;(2)340.2575⎛⎫-÷-⨯ ⎪⎝⎭. 22.计算:(1)152|18|()263-⨯-+; (2)20203221124(2)3()3-+÷--⨯. 23.如图,将一根木棒放在数轴(单位长度为1cm )上,木棒左端与数轴上的点A 重合,右端与数轴上的点B 重合.(1)若将木棒沿数轴向右水平移动,则当它的左端移动到点B 时,它的右端在数轴上所对应的数为30;若将木棒沿数轴向左水平移动,则当它的右端移动到点A 时,它的左端在数轴上所对应的数为6,由此可得这根木棒的长为________cm ;(2)图中点A 所表示的数是_______,点B 所表示的数是_______;(3)由(1)(2)的启发,请借助“数轴”这个工具解决下列问题:一天,妙妙去问奶奶的年龄,奶奶说:“我若是你现在这么大,你还要37年才出生;你若是我现在这么大,我就119岁啦!”请问奶奶现在多少岁了?24.计算:(1)()110822⎫⎛---÷-⨯-⎪⎝⎭ (2)()2313232154⎫⎛-⨯--⨯-÷- ⎪⎝⎭25.计算:(1)113623⎛⎫-⨯- ⎪⎝⎭ (2)2233(3)3(2)|4|-÷-+⨯-+-26.某儿童自行车厂计划一周生产儿童自行车1400辆,平均每天生产200辆,但由于种种原因,实际每天的生产量与计划每天的生产量有出入.实际情况如下表(超产记为正,减产记为负) 星期一 二 三 四 五 六 日 增减 5+ 2- 4- 13+ 10- 16+ 9-(2)这周生产量最多的一天比生产量最少的一天多生产多少辆?(3)该厂实行每周计件工资制,每生产一辆可得50元,若超额完成任务,则超出部分每辆另奖12元;少生产一辆扣20元,那么该工厂这周的工资总额是多少元?【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】根据85分为标准,以及记录的数字,求出五名学生的实际成绩,即可做出判断.【详解】+-+--解:根据题意得:859=94,854=81,8511=96,857=78,850=85即五名学生的实际成绩分别为:94;81;96;78;85,则这五名同学的实际成绩最高的应是96分.故选D.【点睛】本题考查了正数和负数的识别,有理数的加减的应用,正确理解正负数的意义是解题的关键.2.C解析:C【分析】A点移动后可以在B点左侧,或右侧,分两种情况讨论即可.【详解】∵到2距离为2的数为2+2=4或2-2=0∴-4移动到0需向右移动4个单位长度,移动到4需向右移动8个单位长度故选C.【点睛】本题考查了数轴表示距离,分两种情况一左一右讨论是本题的关键.3.D解析:D【分析】|-2|去掉绝对值后为2,而-2的相反数为2.【详解】--的相反数是2,2故选:D.【点睛】本题考查了相反数和绝对值的概念,本题的关键是首先要对原题进行化简,然后在求这个数的相反数;其中,正数的相反数是负数,负数的相反数是正数,0的相反数是0.4.C解析:C相似数和原值是不相同的;3520精确到百位是3500;2.708×104精确到十位.【详解】A、近似数1.50和1.5是不同的,A错B、3520精确到百位是3500,B错D、2.708×104精确到十位.【点睛】本题考察相似数的定义和科学计数法.5.B解析:B【分析】先弄清a,b,c在数轴上的位置及大小,根据实数大小比较方法可以解得.【详解】从a、b、c、d在数轴上的位置可知:a<b<0,d>c>1;A、|a|>|b|,故选项正确;B、a、c异号,则|ac|=-ac,故选项错误;C、b<d,故选项正确;D、d>c>1,则c+d>0,故选项正确.故选B.【点睛】本题考核知识点:实数大小比较. 解题关键点:记住数轴上右边的数大于左边的数;两个负数,绝对值大的反而小.6.D解析:D【分析】分别根据有理数的定义,绝对值的定义,有理数的大小比较逐一判断即可.【详解】整数和分数统称为有理数,故原说法错误,故选项A不合题意;没有绝对值最大的数,绝对值最小的数是0,故原说法错误,故选项B不合题意;绝对值相等的两数之和等于零或大于0,故原说法错误,故选项C不合题意;既没有最大的数,也没有最小的数,正确,故选项D符合题意.故选:D.【点睛】本题考查有理数的定义、绝对值的定义,熟知有理数和绝对值的定义是解题的关键.7.A解析:A【分析】根据正数与负数的意义对①进行判断即可;根据绝对值的性质对②与④进行判断即可;根据倒数的意义对③进行判断即可;根据平方的意义对⑤进行判断即可.-不一定是负数,故该说法错误;①a②||a一定是非负数,故该说法错误;③倒数等于它本身的数是±1,故该说法正确;④绝对值等于它本身的数是非负数,故该说法错误;⑤平方等于它本身的数是0或1,故该说法错误.综上所述,共1个正确,故选:A.【点睛】本题主要考查了有理数的性质,熟练掌握相关概念是解题关键.8.C解析:C【解析】试题∵一个数的绝对值是3,可设这个数位a,∴|a|=3,∴a=±3故选C.9.B解析:B【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】28nm =28×10﹣9m = 2.8×10﹣8m ,所以28nm用科学记数法可表示为:2.8×10﹣8m,故选B.【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.10.B解析:B【详解】先根据绝对值的定义化简|-6|,再由相反数的概念解答即可.解:∵|-6|=6,6的相反数是-6,∴|-6|的相反数是-6.故选B.11.A解析:A【分析】根据数轴判断出a 、b 的符号和取值范围,逐项判断即可.【详解】解:从图上可以看出,b <﹣1<0,0<a <1,∴a+b <0,故选项A 符合题意,选项B 不合题意;a ﹣b >0,故选项C 不合题意;ab <0,故选项D 不合题意.故选:A .【知识点】本题考查了数轴、有理数的加法、减法、乘法,根据数轴判断出a 、b 的符号,熟知有理数的运算法则是解题关键.12.C解析:C【分析】根据数轴可得0a b <<且a b >,再逐一分析即可.【详解】由题意得0a <,0b >,a b >,A 、0ab <,故本选项错误;B 、a b >,故本选项错误;C 、a b ->,故本选项正确;D 、b a >,故本选项错误.故选:C .【点睛】本题考查数轴,由数轴观察出0a b <<且a b >是解题的关键.二、填空题13.131或26或5或【分析】利用逆向思维来做分析第一个数就是直接输出656可得方程5x+1=656解方程即可求得第一个数再求得输出为这个数的第二个数以此类推即可求得所有答案【详解】用逆向思维来做:第一解析:131或26或5或45. 【分析】利用逆向思维来做,分析第一个数就是直接输出656,可得方程5x+1=656,解方程即可求得第一个数,再求得输出为这个数的第二个数,以此类推即可求得所有答案.【详解】用逆向思维来做:第一个数就是直接输出其结果的:5x+1=656,解得:x=131;第二个数是(5x+1)×5+1=656,解得:x=26;同理:可求出第三个数是5;第四个数是45,∴满足条件所有x的值是131或26或5或45.故答案为131或26或5或45.【点睛】此题考查了方程与不等式的应用.注意理解题意与逆向思维的应用是解题的关键.14.7×106【分析】根据科学记数法形式:a×10n其中1≤a<10n为正整数即可求解【详解】解:7000000科学记数法表示为:7×106故答案为:7×106【点睛】本题考查科学记数法解决本题的关键是解析:7×106【分析】根据科学记数法形式:a×10n,其中1≤a<10,n为正整数,即可求解.【详解】解:7000000科学记数法表示为:7×106.故答案为:7×106.【点睛】本题考查科学记数法,解决本题的关键是把一个大于10的数记成a×10n的形式,其中a是整数数位只有一位的数,n是正整数,这种记数法叫做科学记数法.[科学记数法形式:a×10n,其中1≤a<10,n为正整数.15.483【分析】根据有理数减法进行计算即可【详解】解∶依题意得:电视塔比此段地铁高468-(-15)=483m故答案为:483【点睛】本题考查了有理数减法根据题意列出式子是解题的关键解析:483【分析】根据有理数减法进行计算即可.【详解】解∶依题意得:电视塔比此段地铁高468-(-15)=483 m.故答案为:483.【点睛】本题考查了有理数减法,根据题意列出式子是解题的关键.16.【分析】根据有理数的运算法则进行运算再精确到精确到千分位【详解】故答案为【点睛】此题主要考查近似数解题的关键是熟知有理数的运算法则解析: 2.559【分析】根据有理数的运算法则进行运算,再精确到精确到千分位.【详解】33278.5 4.55231.6 2.56 2.5597823543--=-≈- 故答案为 2.559-.【点睛】此题主要考查近似数,解题的关键是熟知有理数的运算法则.17.3或-3-802【分析】根据乘方的法则计算即可【详解】解:(1)32=9(-3)2=9所以3或-3的平方等于9;(2)(-2)3=-2×2×2=-8;(3)-14+1=-1+1=0;(4)23×=8解析:3或-3 -8 0 2【分析】根据乘方的法则计算即可.【详解】解:(1)32=9,(-3)2=9,所以3或-3的平方等于9;(2)(-2)3=-2×2×2=-8;(3)-14+1=-1+1=0;(4)23×212⎛⎫ ⎪⎝⎭=8×14=2. 故答案为:3或-3;-8;0;2.【点睛】本题考查了有理数乘方运算,熟记法则和乘方的意义是解决此题的关键. 18.-70【分析】先将-20-50转化为-20+(-50)再由有理数的加法运算法则进行计算【详解】解:零上的温度用正数来表示零下的温度用负数来表示再根据有理数的减法的运算法则(减去一个数等于加上这个数的解析:-70【分析】先将-20-50转化为-20+(-50),再由有理数的加法运算法则进行计算.【详解】解:零上的温度用正数来表示,零下的温度用负数来表示,再根据有理数的减法的运算法则(减去一个数等于加上这个数的相反数),将有理数的减法化为有理数的加法来进行计算.∵-20-50=-20+(-50)=-70∴答案为:-70.【点睛】本题考查了有理数的减法的运算法则(减去一个数等于加上这个数的相反数),有理数的加法运算法则之一:(同号两数相加,和的正负号取任何一个加数的正负号,和的绝对值取两个加数的绝对值的和),熟记并灵活运用这两个运算法则是解本题的关键.19.【分析】首先用泰山的海拔减去肥城市区海拔求出泰山的海拔比肥城市区海拔高多少米进而求出泰山顶部的气温比某时刻肥城市区地面温度低多少;然后用某时刻肥城市区地面温度减去此时泰山顶部低的温度即可【详解】解: 解析:7.42【分析】首先用泰山的海拔减去肥城市区海拔,求出泰山的海拔比肥城市区海拔高多少米,进而求出泰山顶部的气温比某时刻肥城市区地面温度低多少;然后用某时刻肥城市区地面温度减去此时泰山顶部低的温度即可.【详解】解:()1615301001000.6--÷⨯1614301000.6=-÷⨯168.58=-7.42=(℃);答:此时泰山顶部的气温大约为7.42℃.故答案为:7.42.【点睛】此题主要考查了有理数混合运算的实际应用,正确理解题意并列出算式是解题的关键. 20.-5或1【分析】根据题意得出两种情况:当点在表示-2的点的左边时当点在表示-2的点的右边时列出算式求出即可【详解】分为两种情况:①当点在表示-2的点的左边时数为-2-3=-5;②当点在表示-2的点的解析:-5或1【分析】根据题意得出两种情况:当点在表示-2的点的左边时,当点在表示-2的点的右边时,列出算式求出即可.【详解】分为两种情况:①当点在表示-2的点的左边时,数为-2-3=-5;②当点在表示-2的点的右边时,数为-2+3=1;故答案为-5或1.【点睛】本题考查了数轴的应用,注意符合条件的有两种情况.在数轴上到一个点的距离相等的点有两个,一个在这个点的左边,一个在这个点的右边.三、解答题21.(1)-6;(2)715. 【分析】(1)原式根据有理数的加减法法则进行计算即可得到答案;(2)原式把除法转换为乘法,再进行乘法运算即可得到答案.【详解】解:(1)()()()()413597--++---+=-4-13-5+9+7=-22+9+7=-13+7=-6;(2)340.2575⎛⎫-÷-⨯ ⎪⎝⎭ =174435⨯⨯ =715. 【点睛】 此题主要考查了有理数的混合运算,熟练掌握运算法则是解答此题的关键.22.(1)6;(2)-5【分析】(1)先去掉绝对值,然后根据乘法分配律即可解答本题;(2)根据有理数的乘方、有理数的乘除法和加减法可以解答本题.【详解】解:(1)152|18|()263-⨯-+ =18×(12﹣56+23) =18×12﹣18×56+18×23=9﹣15+12=6;(2)20203221124(2)3()3-+÷--⨯ =﹣1+24÷(﹣8)﹣9×19=﹣1+(﹣3)﹣1=﹣5.【点睛】 此题主要考查有理数的混合运算,熟练掌握混合运算顺序是解题关键.23.(1)8;(2)14,22;(3)奶奶现在的年龄为67岁.【分析】(1)由观察数轴可知三根这样长的木棒的长度,即可求出这根木棒的长;(2)由所求出的这根木棒的长,结合图中的已知条件即可求得A 和B 所表示的数; (3)根据题意,设数轴上小木棒的A 端表示妙妙的年龄,小木棒的B 端表示奶奶的年龄,则小木棒的长表示二人的年龄差,由此参照(1)中的方法结合已知条件分析解答即可.【详解】(1)观察数轴可知三根这样长的木棒长为30624cm -=,则这根木棒的长为2438cm ÷=;(2)由这根木棒的长为8cm ,所以A 点表示为6+8=14,B 点表示为6+8+8=22;(3)借助数轴,把妙妙和奶奶的年龄差看做木棒AB ,奶奶像妙妙这样大时,可看做点B 移动到点A ,此时点A 向左移后所对应的数为37-,可知奶奶比妙妙大()11937352⎡⎤⎣÷⎦--=,则奶奶现在的年龄为1195267-=(岁). 【点睛】此题考查认识数轴及用数轴表示有理数和有理数的加减法,难度一般,读懂题干要求是关键.24.(1)12- ;(2)0【分析】(1)先去绝对值,同时把除变乘,再计算乘法,最后加减即可(2)先计算乘方和括号内的,把除变乘,再计算乘法,最后加减法即可【详解】(1)()110822⎫⎛---÷-⨯-⎪⎝⎭ =1110822⎛⎫⎛⎫--⨯-⨯- ⎪ ⎪⎝⎭⎝⎭ =102--=-12(2)()2313232154⎫⎛-⨯--⨯-÷- ⎪⎝⎭=()()2386154-⨯---⨯-=243660--+=0【点睛】本题考查有理数的混合运算,解答的关键是熟练掌握运算法则和运算顺序.25.(1)2;(2)-21.【分析】(1)根据有理数的混合运算法则即可求解;(2)根据有理数的混合运算法则即可求解.【详解】解:(1)113623⎛⎫-⨯-⎪⎝⎭ =1136623-⨯+⨯ =332-+=2;(2)2233(3)3(2)|4|-÷-+⨯-+-=993(8)4-÷+⨯-+=1244--+=-21.【点睛】此题主要考查有理数的运算,解题的关键是熟知其运算法则.26.(1)该厂本周实际生产自行车1409辆;(2)产量最多的一天比产量最少的一天多生产自行车26辆;(3)该厂工人这一周工资总额是70558元.【分析】(1)根据每天的增减量,依次相加,可得答案;(2)根据每天的增减量,用最多的一天减去最少的一天即可;(3)该厂一周工资=实际自行车产量×50+超额自行车产量×12.【详解】解:(1)1400+5-2-4+13-10+16-9=1409(辆),答:该厂本周实际生产自行车1409辆;(2)16-(-10)=26(辆),答:产量最多的一天比产量最少的一天多生产自行车26辆;(3)50×1409+12×9=70558.答:该厂工人这一周工资总额是70558元.【点睛】本题考查有理数加、减运算的应用,用正数和负数表示.明白“+”是比计划多、“-”是比计划少是解题的关键.。
第1章有理数一.选择题1.下列说法中正确的是()A.两数相加,和一定比加数大B.互为相反数的两个数(0除外)的商为﹣1C.几个有理数相乘,若有奇数个负数,那么它们的积为负数D.减去一个数等于加上这个数2.下列各对数中,互为相反数的是()A.﹣23与﹣32B.(﹣2)3与﹣23C.(﹣3)2与﹣32D.﹣与3.将式子(﹣20)+(+3)﹣(﹣5)﹣(+7)省略括号和加号后变形正确的是()A.20﹣3+5﹣7B.﹣20﹣3+5+7C.﹣20+3+5﹣7D.﹣20﹣3+5﹣7 4.5G是第五代移动通信技术,5G网络理论下载速度可以达到每秒1300000KB以上,这意味着下载一部高清电影只需要1秒.将1300000用科学记数法表示应为()A.13×105B.1.3×105C.1.3×106D.1.3×1075.下列命题中,正确的是()A.若m•n>0,则m>0,n>0B.若m+n<0,则m<0,n<0C.若m•n=0,则m=0且n=0D.若m•n=0,则m=0或n=06.若|﹣x|=5,则x等于()A.﹣5B.5C.D.±57.下列各式错误的是()A.|﹣|=B.﹣的相反数是C.﹣的倒数是﹣D.﹣<﹣8.在数﹣(﹣3),0,(﹣3)2,|﹣9|,﹣14中,正数的有()个.A.2B.3C.4D.59.若数a,b在数轴上的位置如图示,则()A.a+b>0B.ab>0C.a﹣b>0D.﹣a﹣b>010.在算式(﹣2)□(﹣3)的□中填上运算符号,使结果最小,运算符号是()A.加号B.减号C.乘号D.除号二.填空题11.的相反数是,的倒数是,()2=.12.已知数轴上点A,B分别对应数a,b.若线段AB的中点M对应着数15,则a+b的值为.13.若a>b,则化简|a﹣b|+b的结果是.14.若a,b互为相反数,x,y互为倒数,p的绝对值为2,则(a+b)﹣3xy+p=.15.如果5x+3与﹣2x+9是互为相反数,则x﹣2的值是.16.已知|x|=2,|y|=5,且x>y,则x+y=.三.解答题17.计算题:(1)(﹣53)+(+21)﹣(﹣69)﹣(+37)(2)5.7﹣4.2﹣8.4﹣2.3+1(3)﹣(﹣12)+(+18)﹣(+37)+(﹣41)(4)(﹣1)﹣1+(﹣2)﹣(﹣3)﹣(﹣1)+4.18.同学们都知道,|4﹣(﹣2)|表示4与﹣2的差的绝对值,实际上也可理解为4与﹣2两数在数轴上所对应的两点之间的距离;同理|x﹣3|也可理解为x与3两数在数轴上所对应的两点之间的距离.试探索:(1)求|4﹣(﹣2)|=;(2)若|x﹣2|=5,则x=;(3)请你找出所有符合条件的整数x,使得|1﹣x|+|x+2|=3.19.阅读下列内容,并完成相关问题:小明说:“我定义了一种新的运算,叫*(加乘)运算.”然后他写出了一些按照*(加乘)运算的运算法则进行运算的算式:(+4)*(+2)=6;(﹣4)*(﹣3)=+7;…(﹣5)*(+3)=﹣8;(+6)*(﹣7)=﹣13;…(+8)*0=8;0*(﹣9)=9.…小亮看了这些算式后说:“我知道你定义的*(加乘)运算的运算法则了.”请你帮助小亮完成下列问题:(1)归纳*(加乘)运算的运算法则:两数进行*(加乘)运算,..特别地,0和任何数进行*(加乘)运算,或任何数和0进行*(加乘)运算,都得这个数的绝对值.(2)若有理数的运算顺序适合*(加乘)运算,请直接写出结果:①(﹣3)*(﹣5)=;②(+3)*(﹣5)=;③(﹣9)*(+3)*(﹣6)=;(3)试计算:[(﹣2)*(+3)]*[(﹣12)*0](括号的作用与它在有理数运算中的作用一致);20.小虫从某点A出发在一直线上来回爬行,假定向右爬行的路程记为正数,向左爬行的路程记为负数,爬行的各段路程依次为:(单位:厘米)+5,﹣3,+10,﹣8,﹣6,+12,﹣10.(1)小虫最后是否回到出发点A?(2)小虫离开原点最远是多少厘米?(3)在爬行过程中,如果每爬行1厘米奖励一粒芝麻,则小虫一共得到多少粒芝麻?21.某集团公司对所属甲.乙两分厂下半年经营情况记录(其中“+”表示盈利,“﹣”表示亏损,单位:亿元)如下表.月份七月份八月份九月份十月份十一月份十二月份甲厂﹣0.2﹣0.4+0.50+1.2+1.3乙厂+1.0﹣0.7﹣1.5+1.8﹣1.80(1)计算八月份乙厂比甲厂多亏损多少亿元?(2)分别计算下半年甲.乙两个工厂平均每月盈利或亏损多少亿元?参考答案一.选择题1.B.2.C.3.C.4.C.5.D.6.D.7.D.8.B.9.D.10.A.二.填空题11.﹣;3;.12.30.13.a.14.﹣1或﹣515.﹣6.16.﹣3或﹣7.三.解答题17.解:(1)原式=﹣53+21+69﹣37=(21+69)+(﹣53﹣37)=90﹣90=0;(2)原式=(5.7+1.2)+(﹣4.2﹣8.4﹣2.3)=6.9﹣14.9=﹣8;(3)原式=12+18﹣37﹣41=30﹣78=﹣48;(4)原式=(﹣1﹣2)+(﹣1+3+1)+4=﹣4+3+4=3.18.解:(1)原式=6;(2)∵|x﹣2|=5,∴x﹣2=±5,∴x=7或﹣3;(3)由题意可知:|1﹣x|+|x+2|表示数x到1和﹣2的距离之和,∴﹣2≤x≤1,∴x=﹣2或﹣1或0或1.故答案为(1)6;(2)7或﹣3;19.解(1)根据题意知,两数进行*(加乘)运算,同号得正、异号得负,并把绝对值相加,故答案为:同号得正、异号得负,并把绝对值相加.(2)①(﹣3)*(﹣5)=+(3+5)=8;②(+3)*(﹣5)=﹣(3+5)=﹣8;③(﹣9)*(+3)*(﹣6)=(﹣12)*(﹣6)=18;(3)原式=(﹣5)*12=﹣17.20.解:(1)+5﹣3+10﹣8﹣6+12﹣10=27﹣27=0,所以小虫最后回到出发点A;(2)第一次爬行距离原点是5cm,第二次爬行距离原点是5﹣3=2(cm),第三次爬行距离原点是2+10=12(cm),第四次爬行距离原点是12﹣8=4(cm),第五次爬行距离原点是|4﹣6|=2(cm),第六次爬行距离原点是﹣2+12=10(cm),第七次爬行距离原点是10﹣10=0(cm),从上面可以看出小虫离开原点最远是12cm;(3)小虫爬行的总路程为:|+5|+|﹣3|+|+10|+|﹣8|+|﹣6|+|+12|+|﹣10|=5+3+10+8+6+12+10=54(cm).54÷1=54(粒)所以小虫一共得到54粒芝麻.21.解:(1)由图可得出乙厂亏0.7亿元,甲厂亏0.4亿元,∴可得出乙比甲多亏0.3亿元.(2)甲:﹣0.2﹣0.4+0.5+0+1.2+1.3=2.4亿元;乙:1.0﹣0.7﹣1.5+1.8﹣1.8+0=﹣1.2亿元.∴甲平均每月盈利0.4亿元,乙平均每月亏0.2亿元答:八月份乙厂比甲厂多亏损0.3亿元;甲平均每月盈利0.4亿元,乙平均每月亏0.2亿元。
第一章有理数单元测试题(2)一、精心选一选: 1、a,b,c 三个数在数轴上的位置如图所示,则下列结论中错误的是 ()(A) a+b<0 (B) (C) a — b>0 (D) a+c<0 b — c<0 1 1 1 1ab 0c 2、若两个有理数的和是正数,那么 一疋有结论 ( ) (A )两个加数都是正数; (B ) 两个加数有- 个是正数; (C ) 一个加数正数,另一个加数为零; (D )两个加数不能同为负数 3、1 2 3 4 5 6+……+2005— 2006的结果不可能是: ( ) A 、奇数 B 、偶数 C 、负数 D 、整数4、、两个非零有理数的和是 0,则它们的商为: () A 、0 B 、-1 C 、 + 1 D 、不能确定5、观察等式:1 + 3 = 4= 2 2, 1+ 3 + 5 = 9= 32, 1+ 3+ 5+ 7 = 16 = 4 2 , 1 + 3 +5+ 7+ 9=25 = 5 2 ,猜想:(1) 1 + 3+5+ 7 …+ 99 = ________ ;(2) 1+ 3+ 5+ 7 +•••+( 2n-1 ) = __(结果用含n 的式子表示,其中n =1,2,3, 计算|3.14 - 卜 的结果是 _______ 」 6、7、 规定图形表示运算a - b + c,图形表示运算x z y w .11(直接写出答案).2000 =15、有1 0 0 0个数排一行,其中任意相邻的三个数中,中间的数等于它前后两数的和,若第一个数和第二个数都是1,则 1000个数的和等于() (A) 1000 (B)1 (C)0 (D)—1 6每天供给地球光和热的太阳与我们的距离非常遥远, 它距地球的距离约为千米, 将150000000千米用 9.观察下面一列数,根据规律写出横线上的数,;…….第2003个数是科学记数法表示为( A . 0.15 X 109千米 B . ) 1.5 X 108 千米C. 15X 107 千米 D . 1.5X 107 千米 *7 . ( 2) 2004 3 (2) 2003的值为( ). A . 2 2003 B . 22003 C 20042 D 22004 10、已知mm ,化简m 2所得的结果:*8、已知数轴上的三点 A B C 分别表示有理数a , 1, 1,那么a 1表示() A. A 、B 两点的距离 B .A 、C 两点的距离 D . A C 两点到原点的距离之和12 3 4 14 15 , *等( 2 4 6 8 28 301 r 1 1 1 A B . -C D .4 4 2 2 — 填空题:C. A 、B 两点到原点的距离之和 1、如果数轴上的点 ). A 对应的数为-1.5,那么与A 点相距3个单位长度的点所对应的有理数为 2、倒数是它本身的数是 _______________ ;相反数是它本身的数是 ________________ ;绝对值是它本身的数 3、 观察下列算式:* ■- - ' , _「 •,-•■'-- ,•丨•二I 一: :■,请你在观察规律之后并用你得到的规律填空:——'—— ----- 一 .4、 如果 | x +8 | = 5,那么 x= ________________ 。
检测内容:第一章 有理数
得分________ 卷后分________ 评价________
一、选择题(每小题3分,共30分)
1.(绍兴中考)如果向东走2 m 记为+2 m ,则向西走3 m 可记为(C ) A .+3 m B .+2 m C .-3 m D .-2 m 2.(鄂州中考)据统计,2019年全国高考人数再次突破千万,高达1 031万人.数据1 031万用科学记数法可表示为(B )
A .0.103 1×106
B .1.031×107
C .1.031×108
D .10.31×109
3.在|-2|,-|0|,(-2)5
,-|-2|,-(-2)这5个数中,负数共有(B ) A .1个 B .2个 C .3个 D .4个 4.下列计算正确的是(D )
A .-2-1=-1
B .3÷(-1
3 )×3=-1
C .(-3)2÷(-2)2
=32
D .0-7-2×5=-17
5.下面说法错误的有(C )
①-a 一定是负数;②若|a |=|b |,则a =b ;③一个有理数不是整数就是分数;④一个有理数不是正数就是负数.
A .1个
B .2个
C .3个
D .4个
6.下列三个关于近似数的说法:①近似数2.6的准确值a 满足2.60≤a <2.65;②近似数3.05万精确到0.01;③近似数1.6和近似数1.60的精确度相同.其中正确的有(A )
A .0个
B .1个
C .2个
D .3个
7.有理数a ,b 在数轴上对应点的位置如图所示,则下列各式正确的是(B )
A.a +b <0 B .a -b <0 C .|a |>|b | D .b a
>0
8.按照下面的操作步骤,若输入x =-4,则输出的值为(C )
A .3
B .-3
C .-5
D .5
9.小刚做单元过关练习题时,遇到了这样一道题:“计算:|(-2)+☆|-(-6)”,其中“☆”是被污损看不清的一个数,他翻开后面的答案知该题计算的结果是10,则“☆”表示的数是(D)
A .6
B .-2
C .-6或2
D .6或-2
10.(常德中考)观察下列等式:70=1,71=7,72=49,73=343,74=2 401,75
=16 807,…,
根据其中的规律可得70+71+72+…+72 019
的结果的个位数字是(A )
A .0
B .1
C .7
D .8 二、填空题(每小题3分,共24分)
11.-2的相反数是2;1
2
的倒数是2;1-π的绝对值是π-1.
12.有理数-4,500,0,-2.67,(-3)2
,534 中,负整数有-4,分数有-2.67,534 .
13.近似数5.40精确到百分位;465 721精确到万位是47万或4.7×105
.
14.点A 在数轴上距离原点3个单位长度,且位于原点右侧,若将点A 先向左移动5个单位长度,再向右移1个单位长度,此时点A 所表示的数是-1.
15.若x 2=(-2)2,y 3=(-3)3
,则x +y 的值为-5或-1.
16.一家电脑公司仓库原有电脑100台,一个星期调入、调出的电脑记录是:调入38台,调出42台,调入27台,调出33台,调出40台,则这个仓库现有电脑50台.
17.现规定一种新运算“*”:a *b =a b ,如3*2=32
=9,则(12 )*3=18
.
18.如图所示,下列图形都是由相同的玫瑰花按照一定的规律摆成的,按此规律摆下去,
第n 个图形中有120朵玫瑰花,则n 的值为30.
三、解答题(共66分)
19.(6分)将-|-2.5|,312 ,0,(-1)100
,-(-2)各数在数轴上表示出来,并按从小
到大的顺序用“<”连接起来.
解:-|-2.5|=-2.5,(-1)100
=1,-(-2)=2,在数轴上表示各数如图所示.
按从小到大的顺序用“<”连接起来为-|-2.5|<0<(-1)100
<-(-2)<312
20.(12分)计算:
(1)(+32 )-512 -52 +(-712 ); (2)9+5×(-3)-(-2)2
÷4;
解:原式=-2 解:原式=-7
(3)(56 +14 -512 -38 )×(-24); (4)-14-1÷6×[3-(-3)2
].
解:原式=-7 解:原式=0
21.(7分)已知ab 2<0,a +b >0,且|a |=1,|b |=2,求|a -13
|+(b -1)2
的值.
解:因为ab2<0,a+b>0,所以a<0,b>0,且b的绝对值大于a的绝对值,因为|a|
=1,|b|=2,所以a=-1,b=2,所以原式=|-1-1
3
|+(2-1)2=
7
3
22.(9分)如图,在数轴上有三个点A,B,C,完成下列问题:
(1)将点B向右移动6个单位长度到点D,在数轴上表示出点D.
(2)在数轴上找到点E,使点E到A,C两点的距离相等,并在数轴上标出点E表示的数.
(3)在数轴上有一点F,满足点F到点A与点F到点C的距离和是9,则点F表示的数是5或-4.
解:(1)-5+6=1;如图
(2)点E表示的数为(-2+3)÷2=1÷2=0.5;如图
(3)设点F表示的数为x,由已知得|x-(-2)|+|x-3|=9,
解得x=5或x=-4
23.(10分)下表是某水库管理人员记录的雨季一周内水位高低的变化情况:(上周末的水位达到警戒水位,用正数表示水位比前一天上升数,用负数表示水位比前一天下降数,警戒水位为72.5米)
星期一二三四五六日
水位变化(米)+0.15+0.62-0.28+0.05+0.28-0.38+0.03
(1)本周哪一天的水位最高?哪一天的水位最低?与警戒水位的距离分别是多少?
(2)与上周相比,本周末的水位是上升了还是下降了,为多少米?
解:(1)星期五水位最高,与警戒水位相距0.82米,星期一水位最低,与警戒水位相距0.15米(2)水位上升了0.47米
24.(10分)高速公路养护小组,乘车沿东西向公路巡视维护,如果规定向东为正,向西为负,当天的行驶记录如下(单位:千米):
+18,-9,+7,-14,-3,+11,-6,-8,+6,+15.
(1)养护小组最后到达的地方在出发点的哪个方向?距出发点多远?
(2)养护过程中,最远处离出发点有多远?
(3)若汽车行驶每千米耗油量为0.5升,求这次养护小组的汽车共耗油多少升?
解:(1)18-9+7-14-3+11-6-8+6+15=+17.
则养护小组最后到达的地方在出发点的东边,17千米处
(2)养护过程中,最远处离出发点是18千米
(3)(18+9+7+14+3+11+6+8+6+15)×0.5=48.5(升).
答:这次养护小组的汽车共耗油48.5升
25.(12分)观察下面三行数:
2,-4,8,-16,…①
3,-3,9,-15,…②
-2,1,-5,7,…③
(1)请用含有字母n(n为正整数)的式子表示出第①行第n个数;
(2)第②③行数与第①行数分别有什么关系?
(3)取每行数的第8个数,计算这三个数的和;
(4)是否存在同时取每行的第n个数,使它们的和等于768?若存在,求出n值;若不存在,说明理由.
解:(1)-(-2)n
(2)第②行的数是第①行的每个数加1得到的;第③行的数是第①行对应的每个数除以-2再减去1得到的
(3)第①行的第8个数为-(-2)8=-256,第②行的第8个数为-256+1=-255,第
③行的第8个数为-256÷(-2)-1=127,所以这三个数的和为(-256)+(-255)+127=-384
(4)存在,理由如下:由题意得:-(-2)n+[-(-2)n+1]+[-(-2)n÷(-2)-1]=
-(-2)n-(-2)n+1
2
(-2)n=(-2)n(-1-1+
1
2
)=-
3
2
(-2)n=768,所以(-2)n=-
512,因为-512=-29=(-2)9,所以n=9。